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AN EMPIRICAL LIKELTHOOD APPROACH FOR DISCRIMINANT ANALYSIS
OF NON-GAUSSIAN VECTOR STATIONARY LINEAR PROCESSES
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ABSTRACT. In this paper, we apply the empirical likelihood approach to discriminant analysis
of non-Gaussian vector stationary processes. We propose a classification statistic based on the
empirical likelihood ratio function, and develop the discriminant procedure without assuming
that the true spectral density matrix is known. Even if the true structure of the process is
unknown, it is shown that the empirical likelihood classification criterion is consistent in the
sense that the misclassification probabilities converge to 0 as sample size tends to infinity. A
noteworthy point of the procedure is that the asymptotics of the empirical likelihood discrim-
inant statistic for scalar processes are always independent of non-Gaussianity of the process
under contiguous conditions.

1 Introduction Discriminant analysis is one of the most important topics in both independent
and identically distributed (i.i.d.) case and time series analysis. Suppose that we observe an s x 1
vector time series X,, = {X(1)’,---, X (n)'} (sn x 1 vector) and we want to classify the observed
stretch X, into one of two categories, denoted by II; and Iy with probability density functions
p1(x) and ps(x), respectively. Usual discriminant procedure is to partition the sn-dimensional
Euclidean space R*" into two disjoint regions Ry and Ry such that if X, falls in region R; (j =1
or 2), we assign X, to II;. It is known that the classification regions defined by

Liog 2@ ol (k)= (1,2) or 1)

= [’” w8 pu(@)

give the optimal classification regions in the sense that this classification procedure minimizes the
quantity Pr(2|1) + Pr(1]2) (see Anderson [1]). Here Pr(k|j) is the probability of misclassifying
the observation from II; into II;. In our time series situation, however, the dimensionality n is
often very large and log-likelihood ratio is intractable. Therefore some convenient computational
procedures are important. There are various procedures in the frequency domain approach which
are familiar with spectral analysis in stationary time series. In particular, it is known that the
Kullback-Leibler discrimination information measure (Kullback and Leibler [8]) gives optimal time-
frequency statistics for measuring the discrepancy between two time series. As an example of the
statistics based on the Kullback-Leibler information measure, Zhang and Taniguchi [16] adapted
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as an approximation for n~!x [log-likelihood ratio], where gj(w) is the spectral density matrix
associated with II; and I,, x (w) is the periodogram matrix of X (1),---, X (n). In the paper, they
considered non-Gaussian stationary processes and showed that the statistic I(g; : go) is consistent
classification criterion in the sense that the misclassification probabilities converge to 0 as n — oo.
Zhang and Taniguchi [16] also discussed non-Gaussian robustness, which is an important concept
when we deal with non-Gaussian processes. Many other discriminant procedures and statistics
have been introduced by several authors; see Capon [4], Kakizawa [6], Kakizawa, Shumway and
Taniguchi [7], Liggett [9], Shumway [13], Shumway and Unger [14], Zhang and Taniguchi [17], etc.

On the other hand, there has been a rich body of literature on novel idea of formulating versions
of non-parametric likelihood in various settings of statistical inference in these few decades. One
of them is the empirical likelihood method, which was introduced as a non-parametric method of
inference based on a data-driven likelihood ratio function (Owen [12]) in i.i.d. case. Monti [10] and
Ogata and Taniguchi [11] applied the empirical likelihood approach based on the Whittle likelihood
to second order stationary processes. They considered vector-valued linear processes, and showed
that —2log R(0) converges to a sum of gamma distributed random variables under H: 6 = 6y,
where R(0) is called an empirical likelihood ratio statistic, which is defined by

Zwtm()\t,e) :07 Zwt = 1, ngt < 1},
t=1

t=1

n
(2) R(0) = max {H nwy
R e

and 6y € RP is a vector satisfying E[m(\:;0)] = 0, where m(w; ) is a vector-valued function,
called an estimating function. By choosing m()\;; 0) appropriately, 8y can express various important
indices of a time series model (we shall give an example of 8y in Section 3). Furthermore, the
advantage of this approach is that we can construct appropriate confidence regions of “the pivotal
unknown quantity” 6y even if we do not know the true spectral density matrix of the process and
the distribution of the innovation process.

By the motivation of the empirical likelihood approach, we consider the discriminant analysis
based on the pivotal quantity @ of time series models. Our objective in this paper is twofold:

(I) To apply the empirical likelihood approach to classification problems.

comparison between the misclassification probabilities by the empirical likelihood classifica-
o A ison bet the misclassificati babilities by th irical likelihood classifi
tion statistic and those by existing methods.

This paper is organized as follows: In Section 2, we set down fundamental settings. Section 3
introduces the basis of the classification problems and the empirical likelihood approach. A key
question, of course, is how to apply the empirical likelihood approach to discriminant analysis, and
in this section we suggest the empirical likelihood discriminant statistic in detail. In Section 4,
it is shown that the empirical likelihood discriminant statistic is consistent classification criterion,
and we discuss delicate goodness of the statistic under the contiguous situation. We also discuss
non-Gaussian robustness in Section 5. As a remarkable feature, it is shown that the empirical
likelihood classification criterion is always non-Gaussian robust for scalar processes. To confirm the
theoretical results in this paper, we give simulation studies in Section 6. The proofs of theorems
are given in Section 7.

As for notations and symbols used in this paper, the set of all integers and all real numbers are
denoted as Z and R, respectively. The transpose and complex transpose of matrix M are denoted
by M’ and M*, respectively, and for vector V' and matrix M, the a-th and the («, 5) components
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are denoted by [V], and [M].ga, respectively. For any d x d matrix-valued function M = M (x),
x € RP,

0 0 .
%M(m) = [%[M(w)]ab] T (d x d matrix)

for =1, - ,p. Define | M|| g := /tr[M*M]. For any sequence of random vectors {A(t);t € Z},

A(t) P, Aand A(t) £ A, respectively, denote the convergence to a random (or constant) vector A
in probability and law. Throughout this paper, we denote the distribution function of the standard
normal distribution by ®( - ).

2 Fundamental Setting Let {X(t); t € Z} be an s-dimensional (not necessarily Gaussian)
linear process generated by

(3) X() =Y Grelt—j), ez,
j=0

where {e(t); t € Z} is a sequence of s-dimensional random vectors satisfying E[e(t)] = 0 (s-
dimensional zero vector), Ele(t)e(t)'] = K (s x s positive definite), E[e(s)e(t)'] = O (s x s null
matrix) for s # ¢ and

cun(le(tn)lo e(tal et fe(tala} = { (ot {0 S

(otherwise)

If the sequence {G;; j € Z} satisfies
(4) Y G KG)| < 0o
=0

the process { X (t); t € Z} is a second order stationary process and has a spectral density matrix

g(w) = iG(w)KG(w)*, G(w) =Y _ Gjexp(ijw).

2
=0

We assume the condition (4) throughout this paper. For an observed stretch X (1),---,X(n),
I,, x (w) denotes the periodogram of it;

I, x(w) ::271m{ZX exp(itw) }{ZX exp ztw} .

t=1
We set down the following assumptions.
Assumption 1.

(1) {X(t); t € Z} is strictly stationary and all its moments exist.

(i) The joint k-th order cumulant Q). .., (u1,- -+ ,ur—1) of [X()]ay, [X(t + u1)]ay, -+, [X(t+
Ugp—1)]a, Satisfies

> )@y (s ug1)] < 00
U, U —1€Z

forj=1,--- k=1, aq, -, apy=1,---,sandany k=2, 3, ---.
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Assumption 2. For the sequence {Cy} defined by

Cy = sSup Z |Q§1~-ak(u1»"' 7uk71)|7

an, 0
TP ug e ug 1 €Z

it holds that
oo Ck .
k=1

for z in a neighborhood of 0.

Assumption 1 (ii) implies that the dependence between X (¢) and X (¢ 4+ ) becomes weaker as
the time lag I becomes larger, so this assumption is quite natural. We assume Assumption 2 to
control the maximum of important terms that will appear when we evaluate the asymptotics of the
empirical likelihood ratio statistic defined in the next section. These assumptions are needed for
the results of Brillinger [2] and Ogata and Taniguchi [11].

3 Empirical likelihood approach for discriminant analysis This section outlines the em-
pirical likelihood approach for time series models, and we give a motivation of our classification
statistic. When the model is correctly specified, it is known that the maximum likelihood estimator
automatically yields an estimator that is asymptotically efficient in several senses. However, we
often know neither the true distribution of the innovation process nor the true structure of the time
series model concerned. In such cases, we frequently consider the empirical likelihood approach,
which has been introduced by Owen [12]. Owen [12] has introduced the empirical likelihood ratio
statistic for nonparametric problems. He has shown that the statistics have limiting chi-square
distributions in certain situations, and has shown how to obtain tests and confidence limits for
parameters, expressed as functionals of an unknown distribution function. Monti [10] and Ogata
and Taniguchi [11] developed the empirical likelihood approach for time series models. Hereafter,
we introduce the empirical likelihood approach for time series models as discussed by Ogata and
Taniguchi [11]. They considered the linear process (3). If the process (3) is Gaussian and has the
spectral density matrix f(w;@), then Whittle likelihood

(5) /Tr log [det[f(w;0)] + tr [f(w;0) ' I, x (w)]] dw

—T

is an approximation of (—1)x[log-likelihood for X (1),---, X (n)] (Whittle [15]). In what follows,
{X(t); t € Z} is not necessarily Gaussian process, and f(w;0) may be different from the true
spectral density matrix g(w). Since lim,,_,o E[I, x (w)] = g(w), the expected value of (5) is asymp-
totically

(6) / log [det[f(w;0)] + tr [f(w;0) ' g(w)]] dw.
Now, we are interested in unknown parameter 8, € R? which satisfies an estimating equation

) 56 | tog 4t (wi6)] + tr[£(w:6)g(w]) d oo
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If f(w;0) is of the form

*

(8) f(w;0) =50 ZA ) exp(ijw) ZA )exp(ijw) p

where Ay(0) = I (an s x s identity matrix), {A4;(0); j =1,2,---} is a sequence of s X s matrices
and X is an s x s positive definite which does not depend on 6, (7) becomes

o) o | wlreo g a] =0

0=0,

(Brockwell and Davis [3]). The main aim in Ogata and Tniguchi [11] was to construct the confidence
interval for 8y or hypothesis testing when g(w) is unknown.

This setting is useful for many situations. For example, let us consider the h-step linear pre-
diction of a scalar stationary process {X(t); t € Z}. We predict X (¢) by a linear combination of

{X(s):s<t—h},
Z¢J X(t—j).

The spectral representations of X (t) and X (¢) are

—T

X(t) = / e MdZx(w), X(t) = / e TN " 9;(0)e v dZx (w),
. =
where {Zx (w)}we[—r,n i an orthogonal increment process satisfying
EdZX(w)dZX(u) _ { g(w)dw (Z = ,U,)
Then, the prediction error is

1_Z¢ eliw

(10) BIX(t) — X (1) = /_ (w)duw.

Hence the best h-step predictor is given by E _ 5 0i(00) X (t — j), where 8y minimizes (10). Com-
paring (10) with (9), if we set

(1) i) = 1= Y oy(o)e

this problem is exactly the same as that of seeking 0y in their definition. We can choose various
quantities (autocorrelations of processes, interpolation coefficients, etc.).
Thus, we naturally set the estimating function as

0
m(A;0) := 8—0tr [f()\t;B)_lIn,X()\t)] , M=—,t=1,---.n
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(discretized derivative of (9)), and use the empirical likelihood ratio function R(6) defined by

12 R(0) := ; A;0)=0 =1, 0<w<1,.
(12) (6) wf}?ﬁ)n{nnwt,;wtm( +;0) ,;wt y Vs we = }

t=1

Under Assumptions 1 and 2, Ogata and Taniguchi [11] showed that —2 times logarithm of the
empirical likelihood ratio statistic defined in (12) converges in law to a sum of gamma distributed
random variables under H: 6@ = 6y. Using this result, we can carry out statistical inferences such
as construction of confidence regions of 8y and hypothesis testing.

In this paper, we apply the empirical likelihood approach to discriminant analysis. Consider a
problem of classifying a process (3) into one of two categories described by two hypotheses

(13) Hl :0:01 H220:02(7é 01)
We need to investigate the log likelihood ratio (or its approximation) between IT; and Iy, so we
adopt
2 R(6,)
14 ELR(6,:605) = —1
(14) (61 :82) := —log R(6y)

as a classification statistic. That is, for an observed stretch X,, = {X(1),---, X (n)}/, if ELR(6; :
62) > 0, we classify X, into IT;, otherwise we classify X, into Ils.

4 Main results This section provides the main results for the classification problems by the em-
pirical likelihood classification statistic (14). To describe the asymptotics of the empirical likelihood
ratio statistic, we assume some regularity conditions on the score function f(w;8).

Assumption 3.

(1) © is a compact subset of RP.

(ii) f(w;0) is continuously twice differentiable with respect to 6 € ©.

(iif) f(w;0) € P. Here P is the parametric spectral family whose element is expressed as (8).
(iv) 61 # 02 implies f(w;01) # f(w;02) on a set of positive Lebesgue measure.

Then, from the following theorem, we can see that our classification statistic ELR(6; : 05) is a
consistent classification criterion even if the process is not Gaussian. Set Pr(2|1) := Pr[ELR(6; :
02) < 0|H1] and PI‘(1|2) = Pr[ELR(01 : 02) > 0|H2]

Theorem 1. Under Assumptions 1-3,

lim Pr(2|1) = lim Pr(1J2) =0.

n—oo n—oo

This theorem shows that ELR(6; : 03) has fundamental goodness as a classification criterion.
However, we can not evaluate the degree of goodness of ELR(6; : 02) under situation of 81 # 05.
Thus assume that 65 is contiguous to ;. Now we set the pivotal quantities as

1
(15) II,: 0 =04 H210:01+%h

where h € RP. We introduce the following assumption.
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Assumption 4. f(w;8) is continuously three times differentiable with respect to 6 € O.

Then we can evaluate the misclassification probabilities under the contiguous condition (15) as
follows.

Theorem 2. Suppose that Assumptions 1-4 hold. Then, under the contiguous condition (15),

[_1 W F(6,)W (6,)~'F(6,)h }

lim Pr(2|1) = lim Pr(1)2) =& — ,
@) 2 2 [S(0:) W 6:) TF(6:)h]s

n—oo n—oo

where
F s =5 [ 1] g <w;e>-1g<w>}dw, (b * p matria)
W (6)las = ; [ ol w0 gt g i) ()| s
s [ “[az (wi6) g0 r] 35 £(10) gt)] o (¢ matri
200y = 1 [ | 5 16) N g(0) - £0:6) g) | o
t g7 2 el @O xp ot
and o

™
r,0) = %/_ G(w )*8(3 (w;0)'G(w)dw. (s x s matriz)
5 Non-Gaussian robustness This section discusses non-Gaussian robustness of discriminant
statistics. There are a lot of classification statistics for discriminant analysis of time series models
(e.g., Liggett [9], Shumway and Unger [14], and Zhang and Taniguchi [16, 17]). In this section, we
especially focus on the Whittle likelihood ratio type statistic I(g; : g2), which was introduced by
Zhang and Taniguchi [16], and compare the conditions for non-Gaussian robustness of I(g; : g=2)
with those of the empirical likelihood ratio statistic. This section reveals that the empirical likeli-
hood statistic for scalar processes performs better than the Whittle likelihood ratio type statistic in
the sense of non-Gaussian robustness. Zhang and Taniguchi [16] introduced a classification statistic

oo = = [ log S bt x(){g0) - g1(e) )]s

for the classification problem described by two hypotheses:
H1 . gl(w) H2 : gg(w)
where g1 (w) and go(w) are s X s spectral density matrices satisfying the following condition (C):

(C) g1(w) and go(w) are of the form

gr(w) = %Bk( w)KiBi(w), (k=1 and 2)
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where By (w) = Z;io Bj(-k) exp(ijw), {BJ(-k); j=0,1,2,---} is a sequence of s X s matrices

satisfying
o0
k
> BMas| < 00
j=0
fora, 8=1,---,sand K} is an s X s symmetric positive definite matrix for k =1, 2.

Note that if g;(w) and go(w) satisfy the condition (C), we can easily see that there exists ¢cg > 0
such that the minimum eigenvalues of g;(w) and go(w) are greater than ¢y for all w € [—m, 7).
For an observed stretch X(1),---,X(n), if I(g1 : g2) > 0 we choose category II;. Otherwise we
choose category II,. In the paper, they showed that I(g; : g2) is consistent classification criterion.
Furthermore, they evaluated the delicate goodness of the statistic as follows. Following Zhang and
Taniguchi [16], let the spectral density matrices associated II; and II; be

(16) I : g1(w) = g(w|n) I, : go(w) = g(wln +n""/?h)

where n € H C R?, h = (hy, - ,hy) (hi # 0 for all k, 1 < k < ¢q) and g(w|n) is a parametric
spectral density matrix of the form

*

1 *
g(wln) = ZB n) exp(ijw) ZB n)exp(ijw) o = - B(wn)KB(wln)", (say)

(Bo(n) = I, Bj (), 7=1,2,--- are s x s matrices, K is an s X s symmetric positive definite)
and satisfies the following assumption.
Assumption 5. g(w|n) is continuously three times differentiable with respect to n € H.

In this paper, we say that the parameter n is innovation-free if K is independent of 7.

Lemma 1 (Zhang and Taniguchi [16]). Let {X (t); t € Z} be the linear process with spectral
density matrices g1(w) and go(w) under 11y and I, respectively, and satisfy Assumptions 1 and 2.
Furthermore, suppose that condition (C) holds, and assume that g(w|n) satisfies Assumption 5.

(i) Under the contiguous condition (16),

1 ILi(n)

lim Pr(2]1) = lim Pr(1]2) =@ >
Vii(n)

n—oo n—oo

where
hm = g [ Som(groteim Jotom | a
V) = 0 1oy D Faea D]l
a,b,c,d=1
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(ii) If n is innovation-free, then I(gy : g2) is non-Gaussian robust.

Next, we apply the classification statistic ELR(60; : 83) to (16). Let us define 8, and 61,, by

2/ tr[f(w; 0) g1 (w)]dw =0 and i/ tr[f(w; 0) g2 (w)]dw =0.
00 —r 0=0, 00 -7 0=0,,
If Assumption 4 holds, it is easy to see that
1 _ 1
eln - 01 — ﬁFn(Gl) 1H77(91)h + O (n)
- 1
(15) =6,+0(1) ()

by Taylor expansion. Here

1

™ 2
27r/ﬂtr{ 9 f(w;@)_lg(w|n)] dw (p X p matrix)

90,005

and H,(0) is defined in Theorem 3 below. In this case, the misclassification probabilities Pr(2|1) =
Pr[ELR(0; : 61,) < O|II;] and Pr(1|2) = Pr[ELR(0; : 61,) > O|Il;] are evaluated as follows.

[Fy(0)]ap =

Theorem 3. Suppose that Assumptions 1-5 hold.
(i) Under the contiguous condition (16),

/ / -1
lim Pr(21) = lim Pr(1|2):q>{— W Hy (0,) Wy (01)" Hy(01)h }

1
2|30 (61)Y/2W,(61) " Hy, (61)h||

where

W6 =5 [ o] g i) gl g (10 el |
g [ | £ 0 el |1 - £k 0) gl | o (o p matri

Z0@os = [ tr[a (w;0)‘1g(w|n)£ﬁ <w;e>—1g(w|n>}dw

T J)_n 004
1 > ,
+ in? Z Ertuo[[n,a(0)]rt[Tn,5(0)]uw,  (p x p matriz)
rtu,v=1
1 [7 . 0 4 .
r,,(0)= by B(w|n) an(w; 0)" " B(w|n)dw (s X s matriz)
—T ¥

and

1 T

Hn Oy = 5 [t gy £(30) ™ pglol] do. (9 g matri

- 3

(ii) If n is innovation-free and f(w;61) = g(w|n), then ELR(0 : 61,,) is non-Gaussian robust.

(iii) Even if m is not innovation-free and f(w;0) % g(w|n) for all 6 € ©, ELR(6, : 61,) is

non-Gaussian robust when the process concerned is scalar-valued.
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Remark The statement (iii) shows an essential difference between the statistics ELR(6; : 63) and
I(g1 : g2). For example, let us consider a scalar process {X(¢); t € Z} with innovation variance
02 > 0. Let us set g(w|n) as

oo
Z ) exp(ijw)
=0

2

g(wln) : , m=(n

Then, (17) becomes

(19) LZ / (agailm) g(jm) ot / (aggjm) g<:ln> dw] |

Since

<89(wn)> 1 _ Ologg(wln)
o, ) 9(wln) Oy,

it is not difficult to see that the integrations in the first summation of (19) are all 0 (see Brockwell
and Davis [3], p.191). The second term of (19) is

hy [ (dglwlm)) 1 by /
o ( oo ) gl |M = 52 a0 |, loBslind

_hg 0 [T o o0 1 SENE
= % /_7r [log o + log ’Z]‘:OBJ (n )exp(zyw)‘ dw
B 47rhq

)

(20) 0.
So in this case, the misclassification probabilities by (g : g2) “always” depend on non-Gaussianity
of the process. On the other hand, IT';, ,(61) in Theorem 3 reduces to

L 0 [T glwn)

I'pq(01) = ?0797 . f(w;@)dw

=0
6=6,

for all v, 1 < « < p because of the definition of the pivotal quantity. This implies that the
misclassification probabilities by ELR(6; : 61,) do not depend on the fourth order cumulant of the
process for any n! and o.

6 Numerical studies In this section, we carry out numerical studies to compare the goodness
of ELR(0, : 03) with that of I(gy : g2)-

6.1 Example 1: AR(1) model First, we consider an AR(1) process
X(t)=bX(t—1)+e(t), [b<1
where {e(t); t € Z} is a sequence of i.i.d. random variables with probability density function

p(y) = élteXp (—W) (—n<y)

(otherwise)
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To see the advantage of the empirical likelihood discriminant statistic, let the spectral densities
associated with II; and IIs be

(21) I : g1 (w) = g(w|n) Il : go(w) = g(w|n +n"/%h)
where n= (ba :U‘)/7 h = (17 1) and

12
g(wln) = S—[1 = bexp(iw)|~*.

Note that m is not innovation-free because the innovation {e(t); ¢t € Z} depend on 7. As seen in
Section 5, if we use

F(w;0) =1 = O exp(iw)| >
as a score function, the contiguous hypothesis (21) is understood as

Iy :0=0,:=b Hé:ﬁzgln::b—%
in our framework. Figure 1 shows the asymptotic theoretical misclassification probability Pr(2|1)
for 0 < b <1, p =1 and 2. Since n is not innovation-free, the misclassification probabilities
by I(g1 : g2) depend on the fourth order cumulant x (= 6u*) of the innovation process. On the
other hand, the asymptotics of ELR(6; : gln) are independent of non-Gaussianity of the process.
Moreover, the empirical likelihood statistic gives smaller asymptotic misclassification probabilities
than the classical statistic in this case.

Figure 1: Theoretical misclassification probabilities Pr(2[1) (solid line is by ELR and dashed one
is by I).

(u=1) (u=2)

05+ 05F

04l 04}

3 — o3k ——— — Tt

02f 02}

o1l o1f

0.2 0.4 06 0.8 02 0.4 0.6 08

6.2 Example 2: ARMA(1,1) model Next, we check misclassification probabilities when a
family of score functions does not contain the true spectral density function. Let us consider the
following ARMA(1,1) model:

X(t)=bX({t—1)+e(t)+ae(t—1), |al, b <1,
where {e(t); t € Z} is the same sequence of random variables as Example 1. In this case, we set

gllm = -

2

1+ aexp(iw) |*
1 — bexp(iw)
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where n = (a,b,u)’ and h = (1,1,1). Figure 2 below shows the regions where the misclassification
probability by the empirical likelihood ratio statistic is smaller than that by I(gy : g2) for p =1
and 2. Namely, we plot the regions where the empirical likelihood discriminant statistic shows
better performance than that of classical one. When « is large, the difference between f(w;6;)
and g(w) tends to be large. However, the empirical likelihood approach has potential to improve
the goodness of classifications even if a family of score functions does not contain the true spectral
density matrix.

Figure 2: The regions where the asymptotic misclassification probabilities by ELR(8; : 61,) are
smaller than those by I(g; : g2) for p =1 and 2.

(u=1) (u=2)
b b
05~ = 051 —
00 a 00 s
-05} E -05} R
-05 00 05 -05 00 05

7 Proofs This section provides rigorous proofs for the results in this paper. Throughout this
section, set

1 n 1 n
P,(0) := gZm(xt;e), S,(0) := EZm(At;(;v)fm(At;(;v)’,
t=1 t=1

and assume Assumptions 1-5. N,(u, X) denotes the p-dimensional normal distribution with mean
vector p and covariance matrix 3.

Lemma 2. For (j,k) = (1,2) or (2,1),

and
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where V(0) is a p x 1 vector whose a-th element is

VOl =5 [ ] g f(0) 90|

Proof. We prove only for (j,k) = (1,2). Under II;, the a-th element of P, (6;) is evaluated as

P(0)]a = = S [m(\;61)]a

t=1

1" 0 P

—T

P17 9 .9 -1

In,x(w)} dw + O, (:L)

0=0,

g(w)] dw (" Lemma A.3.3 of Hosoya and Taniguchi [5])

- 6=6,
] 0 under II;
T | [V(61)]a under Iy °
and in Section 5 of Ogata and Taniguchi [11], the assertion on S,,(6) was shown. O

Lemma 3.
| M (02)]% under I1;

. P
ELR(6: : 62) —’{ ZIM(O)]|%  underTT,
where M(0) = W (0)~'/2V(8) (p x 1 vector).

Proof. From Section 5 of Ogata and Taniguchi [11], we can see that ELR(6; : 62) admits, as
n — oo, the asymptotic representation

(22) ELR(91 : 92) = _Pn(el)lsn(al)ilpn(gl) + Pn(02)/5n(02)71P"(02) + OP<1;Z§/12L)

(e.g., Section 5 of Ogata and Taniguchi [11]). Using this representation and Lemma 2, we obtain
the desired result. O

Proof of Theorem 1. Lemma 3 implies that the empirical likelihood classification statistic converges
to a positive (or negative) constant under II; (or Ils). This proves the theorem. O

Proof of Theorem 2. We modify P, () as

(23) VnP,(8) = C,(0) + D,(8) + O, (1n>

where
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First, we consider the asymptotic behavior of C,,(6;1) and C,, (61 + n_l/zh) under IT;. By Lemma
A.3.3 of Hosoya and Taniguchi [5],

(24) Cu(61) = N,(0.3(61))
under II;, and by Taylor expansion, we have
1 1
2 w01+ —=h)=C, (0 — .
> o 01+ J5h) = cn 0, ()

Furthermore, recalling that under 11y,

55 | lfie) lawlds <o,
we have
1 1

(26) D,(6,)=0 and D, (01 + \/ﬁh) =F(0,)h+0 (ﬁ) .
From (22)-(26),

n 1

§ELR (01 101 + \/ﬁh>

=h'F(6,)W(0,)"'C,(6,) + %h’F(Gl)W(el)‘lF(el)h + 0, (hz%l)

(27) ih’F(el)W(el)—lz(el)l/ZN + %h’F(Ol)W(Hl)‘lF(Hl)h,

where NN is a p-dimensional standard normal random vector. We know that the first term of (27)
is a normal random variable with mean 0 and variance || 2(6,)/2W (8,)~'F(0,)h||%. Therefore,
the misclassification probability is
Pr(2|1) = Pr[ELR(8; : 65) < O|II4]
1 RhF(0,)W(6:) 'F(6:)h }
2([3(61)"/°W (61) ' F(61)hl|k
% {_1 W' F(0,)W(6:) ' F(6:)h }
2([3(61)"/°W(01) ' F(01)h|le ]

— Pr [N(O,l) <

O
Proof of Theorem 3. (i) First of all, we prove the following asymptotics:
OFLR(0, :
g e=0.,

under II; as n — oo, where 9~1n is defined in (18). As in the proof of Theorem 2, we can easily see
that

[Po(B1n)]a = [Pa(0)]a + Oy (1)

vn
1
-0 (),
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= %/_ﬂtr laoaaaﬁf(w,e)

— F(61) 1 O, (\/15)

and the same procedure as Section 5 of Ogata and Taniguchi [11], we have

Invx(w)
6=6,

oo ()

o ~
£=61,

S, (01,) = Sn(61) + 0, (1>

\/ﬁ

= Op(l)

and
0 0 1
S5 @] = geis@l]  +00(55)

= 0,(1)

Therefore,
85 £=6., 8£ £=0.,
= (({ip7t(€)‘£_§1”> S7t(§1n)71P7z(§1n)
- Pn(gln)/sn(gln)_l asn(g)‘ _ Sn(gln)_lpn(gln)
g e,

(29) 0,(=).

s0 we can see the convergence (28). By this result and the relationship 61, — 6y, = O(1/n), we can

also see that

g {ELR(Bl :01,) — ELR(6; : éln)} = 0,(1).

This implies that we can work with (n/2)ELR(8 : 01,) instead of (n/2)ELR(6; : 61,) in results
of type (27). Therefore, using Theorem 2, we obtain the desired result.

(ii) See Remark 3.1 of Hosoya and Taniguchi [5].

(i) If the process is scalar-valued, I'y, 5(0) in Theorem 3 reduces to

wln
Ln2(6 K 00, / flw

and from the definition of 6y, this quantity is 0 when @ = ;. This implies that the asymptotic
behavior of the misclassification probabilities Pr(2|1) and Pr(1|2) for ELR(0; : 81,,) are independent
of the fourth order cumulant k of the process. O

Acknowledgments The author thanks Professor Masanobu Taniguchi for his advice and encour-
agement. We are also grateful to the referee for his/her instructive comments.



158 F. AKASHI

REFERENCES

[1] Anderson, T. W. An Introduction to Multivariate Statistical Analysis. New York: Wiley, 1984.

[2] Brillinger, D. R. Time Series: Data Analysis and Theory. San Francisco, CA: Holden Day, expanded
edition, 1981.

[3] Brockwell, P. J. and Davis, R. A. Time Series: Theory and Methods. New York: Springer-Verlag,
second edition, 1991.

[4] Capon, J. An asymptotic simultaneous diagonalization procedure for pattern recognition. Information
and Control, 8(3):264-281, 1965.

[5] Hosoya, Y. and Taniguchi, M. A central limit theorem for stationary processes and the parameter
estimation of linear processes. The Annals of Statistics, 10(1):132-153, 1982.

[6] Kakizawa, Y. Discriminant analysis for non-Gaussian vector stationary processes. Journal of Non-
parametric Statistics, 7(2):187-203, 1996.

[7] Kakizawa, Y., Shumway, R. H. and Taniguchi, M. Discrimination and clustering for multivariate time
series. Journal of the American Statistical Association, 441(93):328-340, 1998.
[8] Kullback, S. and Leibler, R. A. On information and sufficiency. The Annals of Mathematical Statistics,
22:79-86, 1951.
1ggett, . S. On the asymptotic optimality of spectral analysis for testing hypotheses about time
9] Li W. S. On th i imali f 1 lysis f ing h h b i
series. The Annals of Mathematical Statistics, 42(4):1348-1358, 1971.

[10] Monti, A. C. Empirical likelihood confidence regions in time series models. Biometrika, 84(2):395-405,
1997.

[11] Ogata, H. and Taniguchi, M. An empirical likelihood approach for non-Gaussian vector stationary
processes and its application to minimum constrast estimation. Australian € New Zealand Journal of
Statistics, 52(4):451-468, 2010.

[12] Owen, A. B. Empirical likelihood ratio confidence intervals for a single functional. Biometrika,
75(2):237-249, 1988.

[13] Shumway, R. H. Discriminant analysis for time series. Handbook of Statistics, 2:1-46, 1982.

[14] Shumway, R. H. and Unger, A. N. Linear discriminant functions for stationary time series. Journal of
the American Statistical Association, 69(348):948-956, 1974.

[15] Whittle, P. Estimation and information in stationary time series. Arkiv for Matematik, 2(5):423-434,
1953.

[16] Zhang, G. and Taniguchi, M. Discriminant analysis for stationary vector time series. Journal of Time
Series Analysis, 15(1):117-126, 1994.

[17] Zhang, G. and Taniguchi, M. Nonparametric approach for discriminant analysis in time series. Journal
of Nonparametric Statistics, 5(1):91-101, 1995.

Communicated by Masanobu Taniguchi

Fumiya Akashi

Department of Applied Mathematics

Graduate School of Fundamental Science and Engineering
Waseda University

3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
fakashi01@fuji.waseda.jp



Scientiae Mathematicae Japonicae ,77,No.2 (2014) 159-167 159

NORMAL REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE
FORM
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ABSTRACT. We first show that there exist no real hypersurfaces M>"~* which are
Kenmotsu manifolds with respect to the almost contact metric structure (¢,&,7,g)
on M induced from the Kéahler structure of a complex n(2 2)-dimensional nonflat
complex space form M, (¢). Next, weakening this condition, we classify normal real
hypersurfaces M>""! in ML(C) and give some necessary and sufficient conditions for a
real hypersurface M to be normal from the viewpoint of submanifold theory.

1 Introduction We denote by Mn(c) a complex n-dimensional complete and simply con-
nected Kéhler manifold of constant holomorphic sectional curvature ¢(# 0), namely it is
holomorphically isometric to either an n-dimensional complex projective space CP"(c) of
constant holomorphic sectional curvature ¢ or an n-dimensional complex hyperbolic space
CH™(c) of constant holomorphic sectional curvature ¢ according as ¢ is positive or nega-
tive, which is called an n-dimensional nonflat complex space form of constant holomorphic
sectional curvature c.

In order to bridge between submanifold theory and contact geometry, we study real
hypersurfaces M?"~! isometrically immersed into M, (c). We take and fix a unit normal
vector field A/ locally on M. It is well-known that every real hypersurface M?2"~! of Mn (c)
admits an almost contact metric structure (¢,£,n,¢g) from the Kéhler structure (J,g) of
the ambient space Mn(c) Making use of such a structure, many geometers have studied
real hypersurface in nonflat complex space forms (cf. [14]). On the other hand, contact
geometry has been developed also by many geometers (for examples, see [3, 4, 8]).

In this paper, we pay particular attention to normal real hypersurfaces M in Mn(c),
that is, M satisfies [¢,¢](X,Y) + 2dn(X,Y )¢ = 0, where dn is given by dn(X,Y) =
(1/2{X () =Y (n(X))—n([X,Y])} and [¢, ¢] is the Nijenhuis tensor of ¢. Note that nor-
mal almost contact metric manifolds in contact geometry correspond to complex manifolds
in complex differential geometry.

The purpose of this paper is to prove the following:

Theorem. For connected real hypersurfaces M1 jsometrically immersed into a nonflat
complex space form M, (c),n = 2, the following statements (1) and (2) hold with respect to
the almost contact metric structure (¢,&,1,9) on M induced from the Kdhler structure of

the ambient space M,(c).

(1) There exist no real hypersurfaces M which are Kenmotsu manifolds.
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2) The following six statements 2,),2p),2¢),24),2¢) and 2¢) are mutually equivalent.
( g ! y eq

24) M is locally congruent to a hypersurface of type (A).
2) M is a normal almost contact metric manifold.

2.) Every geodesic v = y(s) on M has constant first curvature k, = Hﬁvvﬂ along
v, where V is the Riemannian connection of the ambient space M,(c).

24) M s locally congruent to a naturally reductive Riemannian homogeneous mani-
fold and expressed as an orbit of a subgroup of the isometry group I(]\/Zn(c)) of the
ambient space Mn(c), namely M is a homogeneous real hypersurface of Mn(c)

2¢) M is a Hopf hypersurface and the shape operator A of M is ¢-invariant, i.e.,
A satisfies g(ApX, YY) = g(AX,Y) for all vecors X and Y orthogonal to the

characteristic vector & on M.
27) M is locally congruent to a GO-space, and a homogeneous real hypersurface of
M, (c).

Due to this fact, we can see that normal real hypersurfaces are nice examples of real
hypersurfaces having many geometric properties in M, (c) but they are not Kenmotsu man-
ifolds.

2 Definitions in contact geometry It is well-known that an almost contact metric
manifold (M, ¢,&,n, g) satisfies

¢ =0, n(¢X) =0, n(¢) =1, ¢*X = —X +n(X)&, g(X,€) =n(X),
9(¢X,9Y) = g(X,Y) — n(X)n(Y)

for vector fields X and Y on M.
We can define an almost complex structure J on M x R by

o(x15) = (ox = sen0 %)

where f is a smooth function on M xR. Then the almost complex structure J is integrable if
and only if [¢, #](X,Y) +2dn(X,Y )¢ = 0. An almost contact metric manifold (M, ¢,&,7,g)
is said to be normal if the almost complex structure J on M x R is integrable. We can see
that an almost contact metric manifold M is normal if and only if

(2.1) (dVx )Y — (Vexd)Y — (Vxn)(Y)-£=0 forall X,Y € TM,

where V denotes the Riemannian connection to the Riemannian metric g of M (see page
171 in [18]). An almost contact metric manifold (M, ¢, &, n, g) is called a Kenmotsu manifold
if M satisfies the following two equalities:

(2.2) (Vx@)Y = —n(Y)oX — g(X,¢Y)§ and V& =X —n(X)¢

for vector fields X and Y on M. It follows from (2.1) and (2.2) that every Kenmotsu
manifold is normal. We next recall the definition of Sasakian manifolds. An almost contact
metric manifold (M, $,&,n,g) is called a Sasakian manifold if M satisfies the following
equation:

(2.3) (Vxo)Y = g(X,Y)E—n(Y)X forall X,Y € TM.
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It follows from (2.1) and (2.3) that every Sasakian manifold is a normal almost contact
metric manifold. A Sasakian manifold M is called a Sasakian space form if every ¢-sectional
curvature K (u, ¢pu) := g(R(u, pu)du,u) associated to a unit vector u(€ TM) orthogonal o
& does not depend on the choice of u, where R is the curvature tensor of M. Sasakian
manifolds and Sasakian space forms are analogues to Kéhler manifolds and complex space
forms, respectively.

3 Preliminaries on real hypersurfaces M2"~! in M, (¢) Let M?"~! be a real hyper-
surface with a unit normal local vector field A of an n(2 2)-dimensional nonflat complex
space form M, (c) with the standard Riemannian metric g and the canonical Kahler struc-

ture J. The Riemannian connections V of Mn(c) and V of M are related by the following
formulas of Gauss and Weingarten:

(3.1) VxY = VxY + g(AX,Y)N,

(3.2) VN = —AX

for arbitrary vector fields X and Y on M, where g is the Riemannian metric of M induced
from the ambient space M, (c) and A is the shape operator of M in M,,(c). An eigenvector of

the shape operator A is called a principal curvature vector of M in Mn(c) and an eigenvalue

of A is called a principal curvature of M in M,(c). We denote by V) the eigenspace
associated with the principal curvature A\, namely we set V) = {v € TM|Av = \v}.
On M it is well-known that an almost contact metric structure (¢,&,7,g) associated

with A is canonically induced from the structure (J, g) of the ambient space M, (c), which
is defined by

9(0X.Y) =g(JX)Y), £ =—JN and n(X)=g(£X) =g(JX,N).
It follows from (3.1), (3.2) and V.J = 0 that

(3.3) (Vx@)Y =n(Y)AX — g(AX,Y)¢,

(34) V€ = pAX.
Denoting the curvature tensor of M by R, we have the equation of Gauss given by

(3.5) g(R(X,Y)Z,W) = (¢/A){g(Y, Z)g(X, W) — g(X, Z)g(Y, W)
+9(8Y, Z)g(p X, W) — g(¢ X, Z)g(¢Y, W) — 29(¢ X, Y )g(¢Z, W)}
+g(AY, Z)g(AX, W) — g(AX, Z)g(AY,W).

We have the Codazzi equation given by
(3.6) (VxA)Y — (Vy A)X = (¢/){n(X)oY —n(Y)oX —29(¢X,Y)¢}.

We usually call M a Hopf hypersurface if the characteristic vector £ is a principal cur-
vature vector at each point of M. Every tube of sufficiently small constant radius around
each Kéhler submanifold of M, (c) is a Hopf hypersurface. This fact means that the notion
of Hopf hypersurfaces is natural in the theory of real hypersurfaces in a nonflat complex
space form.
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Lemma A ([11, 7]). Let M be a Hopf hypersurface of a nonflat complex space form
M, (¢),n = 2. Then the following hold.

(1) If a nonzero vector v € TM orthogonal to £ satisfies Av = \v, then (2\ — §)A¢v =
(0N + (¢/2))pv, where § is the principal curvature associated with . In particular,
when ¢ > 0, we have Apv = ((6X + (¢/2))/(2X — 0)) pv.

(2) The principal curvature § associated with & is locally constant.

We here recall the following real hypersurfaces which are the simplest examples of Hopf
hypersurfaces.
When ¢ > 0,

(A1) a geodesic sphere G(r) of radius r (0 < r < w/y/c ) in CP"(c),

(A2) a tube of radius r (0 < r < 7/4/c ) around a totally geodesic complex submanifold
CP*(c) with 1 £ /£ < n—2in CP"(c).

When ¢ < 0,
(Ao) a horosphere HS in CH"(c),
(A1,0) a geodesic sphere G(r) of radius r (0 < r < co0) in CH"™(¢),

(A1,1) a tube of of radius r (0 < r < o0) around a totally geodesic complex hypersurface
CH" Y(c) in CH"(c),

(A) a tube of radius r (0 < r < 00) around a totally geodesic complex submanifold CH*(c)
with 1 £ ¢ < n-2.

Unifying these real hypersurfaces in ]\/Z"(c), n = 2, we call them hypersurfaces of type (A).
The following shows the importance of hypersurfaces of type (A) in the theory of real
hypersurfaces in M,,(c) (for example, see [14]).

Theorem A. For every real hypersurface M in a nonflat complex space form Mn(c), n=2,
the length of the derivative of the shape operator A of M satisfies |[VA||? = (c?/4)(n—1) > 0
at its each point. In particular, ||VA|? = (c*/4)(n — 1) holds on M if and only if M is
locally congruent to a hypersurface of type (A).

The following gives a characterization of hypersurfaces of type (A) in ]\A/[/n(c)

Theorem B. Let M be a connected real hypersurface of a nonflat complex space Mn(c), n=
2. Then the following conditions are mutually equivalent:

(1) M is locally congruent to a hypersurface of type (A);

(2) A = A¢ holds on M, where ¢ is the structure tensor of M and A is the shape
operator of M in My,(c);

(3) The shape operator A of M in Mn(c) satisfies
(3.7) 9(VxA)Y. Z) = (¢/4)(-n(Y)g(¢X. Z) —1(Z)g(¢X.Y))

for arbitrary vectors X,Y and Z on M.
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It is well-known that every hypersurface of type (A) is a homogeneous real hypersurface
in Mn(c), namely it is an orbit of some subgroup of the isometry group I(Mn(c)) of the
ambient space Mn(c) For other homogeneous real hypersurfaces in Mn(c), see the classifi-
cation theorems of all homogeneous real hypersurfaces in a nonflat complex space form (cf.
(16, 5]).

In the rest of this section, we recall the notion of ruled real hypersurfaces, which are
typical examples non-Hopf hypersurfaces in M, (c). A real hypersurface M in a nonflat
complex space form Mn(c),n > 2 is ruled if the holomorphic distribution T°M = {X €
TM|X L &} is integrable and each of its leaves is locally congruent to a totally geodesic
complex hypersurface M,,_1(c) of the ambient space M, (c). By this definition we find that
a real hypersurface M is ruled if and only if VxY € T°M for all X,Y € T°M, where v
is the Riemannian connection of M, (¢). This, together with (3.1) and (3.4), shows that a
real hpersurface M is ruled if and only if g(AX,Y) =0 for all X,Y € T°M.

The construction of ruled real hypersurfaces is as follows. We take an arbitrary real
smooth curve v = 7(s) defined on some open interval I on R in M, (c) and consider the
totally geodesic complex hypersurface, say Mésjl(c) of Mn(c) through the point 7(s) in

such a way that the tangent space T,Y(SMfi)l at the point 7(s) is orthogonal to the real
plane spanned by 4(s) and J*(s) for each point y(s). Then the real hypersurface M given

by M = U Mé‘i)l is a ruled real hypersurface in M, (c). Note that in general ruled real
sel

hypersurfzfces M have singular points, i.e., M is not smooth at those points. So, in order
to remove such singular points, we consider ruled real hypersurfaces locally. Moreover, we
remark that the set M, defined by M, = {p € M|&, is not a principal curvature vector} is
an open dense subset of a ruled real hypersurface M. When we treat ruled real hypersurfaces
M, we study the open dense subset M, of M. At the end of this section we review the
following fundamental of Hopf hypersurfaces.

Proposition 1. For each Hopf hypersurface M in a nonflat complex space form Mn(c), n =
2 the holomorphic distribution T°M is not integrable.

4 Naturally reductive homogeneous Riemannian manifolds We recall the follow-
ing characterization of homogeneous Riemannian manifolds.

Lemma B ([1]). A complete and simply connected Riemannian manifold M is homogeneous
if and only if there exits a tensor field T of type (1,2) on M such that

(i) 9(IxY,Z) +9(Y,TxZ) =0,
(i) (VxR)(Y,2Z) = [Tx,R(Y,Z)] — R(TxY,Z) — R(Y,Tx Z),
(iii) (VxT)y = [Tx,Ty] — Tryy

for X)Y and Z € TM. Here g, V and R denote the Riemannian metric, the Riemannian
connection and the Riemannian curvature tensor of M, respectively.

We here review the definition of a naturally reductive homogeneous Riemannian mani-
fold. Let M = G/K be a Riemannian homogeneous space with Riemannian metric g, and
denote by g and ¢ the Lie algebras of G and K, respectively. We call M = G/K reductive
if there is an Adg-invariant subspace m of g satisfying

g=t+m, tNm=0,
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which is called a reductive decomposition. A Riemannian homogeneous space M is said to be
naturally reductive if it is naturally reductive with respect to some transitive Lie subgroup
of isometry group. Here, M = G/K is naturally reductive with respect to G if there is a
reductive decomposition g = £ + m such that

9([X, Z]m,Y) + 9(Z,[X,Y]m) =0 forall X,Y,Z € m.

Note that [, ] denotes the canonical projection onto m with respect to the decomposition
g = € +m. This notion gives us some geometric properties. For example, it is known that
every geodesic v = 7y(s) on each naturally reductive Riemannian homogeneous space M is
a homogeneous curve, namely the curve 7 is an orbit of some one-parameter subgroup of
the isometry group I(M) of M. In fact, a geodesic v = «(s) with v(0) = o is an orbit of
the one-parameter subgroup generated by X := 4(0) € m, where we canonically identify m
and the tangent space T, M at the origin o (for details, see [9]). A Riemannian manifold all
of whose geodesics are homogeneous curves is called a geodesic orbit space or a GO-space.
Naturally reductive homogeneous spaces are GO-spaces, but the converse does not hold.
We refer to, for examples, [2, 17].

The following is a characterization of naturally reductive homogeneous Riemannian man-
ifolds, which is derived from the viewpoint of Lemma B.

Lemma C ([19]). A complete and simply connected Riemannian manifold M is naturally
reductive homogeneous if and only if there exits a tensor field T of type (1,2) on M such
that

(i) 9(IxY,Z)+g(Y,TxZ) =0,

(i) (VxR)(Y,Z) = [Ix,R(Y,Z)] - R(TxY, Z) — R(Y,Tx Z),
(il) (VxT)y = [Tx,Ty] — Tryv,
(iv) TxX =0

for X)Y and Z € TM. Here g, V and R denote the Riemannian metric, the Riemannian
connection and the Riemannian curvature tensor of M, respectively.

We call T' a naturally reductive homogeneous structure on M.

5 Proof of Theorem We shall verify Statement (1). We suppose that there exists a

real hypersurface M2~ ! which is a Kenmotsu manifold isometrically immersed into Mn(c)
Then by the first equality in (2.2) and (3.3) we have

(5.1) n(Y)oX 4+ g(X,¢Y)¢ = —n(Y)AX + g(AX, V).

Putting X =Y = ¢ in (5.1), we see that A = g(A&, £)E, so that M is a Hopf hypersurface
in Mn(c). So we can take a nonzero vector X in such a way that AX = AX and g(X,¢§) =0.
For such a vector X and Y = &, from (5.1) we find that ¢ X = —AX, which is a contradiction.
Hence we get Statement (1).

Next, we investigate Statement (2). We shall show that Condition 2,) is equivalent to
one of Conditions 2;), 2), 24), 2.) and 2¢) one by one.

We suppose Condition 2;). It follows from (3.3) and (3.4) that Equation (2.1) is equiv-
alent to

(5.2) Y )(pA—Ap)X + g((Ap — pA)X,Y)E =0 for all X,Y € TM.
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Setting X =Y = £ in (5.2), we see pAE = 0, so that our real hypersurface M is a Hopf
hypersurface in Mn(c) Then, putting Y = ¢ in (5.2), we know that (¢pA — A¢p)X = 0 for
any X € TM, so that M is locally congruent to a hypersurface of type (A) (see Theorem
B). Thus we obtain Condition 2,).

Conversely, it follows from ¢A = A¢ that Equation (5.2) holds. Hence we find that
Condition 2,) implies Condition 2;).

We suppose Condition 2.). Note that Condition 2.) is equivalent to the following equa-
tion:

(5.3) g((VxA)X,X)=0 foreach X € TM.

Let M be a real hypersurface satisfying (5.3) of M, (c). We may easily check that (5.3) is
equivalent to

(5.4) 9(VxA)Y, 2) +9(VyA)Z, X) + g((VzA)X,Y) = 0

for any X,Y and Z tangent to M. On the other hand, by virtue of Codazzi equation (3.6)
we have

(5.5) 9(VzA)X,Y) —g((VxA)Z,Y)
= (/9 n(2)g(¢X,Y) = n(X)g(¢Z,Y) — 2n(Y)g($Z, X)).

Exchanging X and Y, we get

(5.6) 9(VzA)Y, X) —g((VyA)Z, X)
= (¢/4)(n(2)g (¢Y X) =n(Y)g(6Z, X) = 29(X)g(¢Z,Y)).
Summing up (5.4), (5.5) and (5.6), we obtain (3.7). Therefore M is locally congruent to a

hypersurface of type (A) (see Theorem B). Hence we have Condition 2,).

Since (5.3) is derived directly from (3.7), the converse is obvious. Then we can see that
Condition 2,) implies Condition 2.).

We suppose Condition 24). Let M be a Riemannian manifold satisfying Condition 24).
We take an arbitrary geodesic v = v(s) on M. Then the curve v is a homogeneous curve on
M because M is a naturally reductive homogeneous Riemannian manifold. This, together
with the assumption that M is homogeneous in M, (¢) through an equivariant isometric
immersion ¢ : M — Mn(c), implies that the curve ¢ o v is a homogeneous curve in the
ambient space Mn(c) Hence all the curvatures of the curve ¢ o« in the sense of Frenet
formula are constant along ¢ o . So, in particular the first curvature k, := ||§7’y|| is
constant along v, where we identify ¢ o v with ~. This, combined with (3.1), yields that
|g(A%,%)| is constant along . Thus, by the continuity of the function g(A7¥,~) we find that
g(A%,%) is constant along each geodesic v on M. Then our real hypersurface M satisfies
(5.3). Therefore, by the above discussion we can see that M is locally congruent to a
hypersurface of type (A). Hence we obtain Condition 2,).

Conversely, we suppose Condition 2,). For a hypersurface M of type (A) in M, (c), we
take the universal cover M of M. We define the following tensor T of type (1,2) on M as
follows:

(5.7) TxY =n(Y)pAX — n(X)pAY — g(pAX,Y)¢ for all X,Y € TM.

Using (3.3), (3.4), (3.5), Theorem B and Lemma C repeatedly, we can see that the tensor

T given by (5.7) is a naturally reductive homogeneous structure on M (see Theorem 9 in
[13]). Thus we get Condition 24).
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We suppose Condition 2.). For a unit vector X orthogonal to £ with AX = AX, Then by
assumption we have (2A — §)g(AdX, X ) = (2A—0)g(AX, X), which together with Lemma
A(1), yields A(2X — §) = A + (¢/2), so that 222 — 26\ — (¢/2) = 0. Thus we know that our
Hopf hypersurface M has either two constant principal curvatures A;,d, or Ay, d or three
constant principal curvatures A1, Ag,d with A\; + Ao = § and A\ A\e = —c¢/4. This, combined
with Lemma A, shows that M satisfies A = A¢ (cf. [10]). Then our real hypersurface
M is locally congruent to a hypersurface of type (A) (see Theorem B). Hence we obtain
Condition 2,).

Conversely, we suppose Condition 2,). It is well-known that for each hypersurface M
of type (A) every eigenspace V) orthogonal to £ satisfies V) = V). This means that the
shape operator A is ¢-invariant. Therefore we have Condition 2.).

We suppose Condition 2¢). Then by the discussion in the assumption 24) we get Con-
dition 2,).

Conversely, we suppose Condition 2,). Then by the above discussion we have Condition
2q). Hence we get Condition 2) (see Section 4).

Therefore we complete the proof of our Theorem.

Remark. (1) In [15, 12], they already proved that in a nonflat complex space form all
hypersurfaces of type (A) are the only examples of normal real hypersurfaces.

(2) If we omit the hypothesis that M is a Hopf hypersurface in Condition 2.), then our

Theorem is no longer true. In fact, for each ruled real hypersurface M in Mn(c) we
see g(A9X,9Y) =0=g(AX,Y) for all X,Y (L &) € TM, so that the shape operator
A of M is ¢-invariant in a trivial sense (cf. [10]).

(3) As a consequence of our Theorem 2,) and 2;) we obtain the following:

Fact. Let M be a connected Sasakian real hypersurface of a nonflat complex space
form M, (c),n = 2. Then M is locally congruent to one of the following homogeneous

real hypesurfaces of the ambient space Mn(c) :
i) A geodesic sphere G(r) of radius r with tan(y/c r/2) = /¢ /2(0 <r <m/\/c) in
CP"(c);
ii) A horosphere in CH™(—4);
iii) A geodesic sphere G(r) of radius r with tanh(y/|c| r/2) = \/|c| /2(0 < r < o)
in CH"(c) (—4 < ¢ < 0);
iv) A tube of radius r around a totally geodesic complex hypersurface CH" 1 (c) with

tanh(y/|c| r/2) = 2/+/|c| (0 < r < 00) in CH™(c) (c < —4).

In these cases, M is automatically a Sasakian space form. It has constant ¢-sectional
curvature ¢ + 1.
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THE FRACTIONAL INTEGRAL OPERATORS RELATED TO THE
ADAMS INEQUALITY ON WEIGHTED MORREY SPACES

TAKASHI IZzuMI, YASUO KOMORI-FURUYA AND ENJI SATO
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ABSTRACT. In this paper, we improve Komori-Shirai’s result about the boundedness
of the fractional integral operators on weighted Morrey spaces.

1 Introduction In 1974, Muckenhoupt and Wheeden [7] proved the boundedness of the
fractional integral operators on weighted LP spaces. Also, Adams [1] studied the fractional
integral operators on Morrey spaces, and Chiarenza and Frasca [3] gave an alternative proof.
Komori and Shirai [6] noted these results, and investigated the boundedness of the fractional
integral operators on weighted Morrey spaces. In this paper, we shall improve the result in
Komori and Shirai [6].

Throughout this paper, we will use the following notation: For £ C R™, we denote the
Lebesgue measure of F by |E|. We call a nonnegative locally integrable function w on R™
a weight function and define w(E) = [, w(x)dx. For a ball Q, 2Q denotes the ball with
the same center as @ whose radius is twice as large. For 1 < p < oo, p’ is defined by the
conjugate index which satisfies % + ﬁ = 1. Also, the letter C' stands for a constant not

necessarily the same at each occurrence.

First, we introduce some definitions.

Definition 1.1. Let 0 < a < n. Then, the fractional integral operator I, is defined by

I.f(z) = /” Ady.

x =yl

Definition 1.2. Let 1 < p < o0, 0 < A < 1, and u, v are weight. Then, weighted Morrey
space LP*(u,v)(R") is defined by

PN, v)(BT) = {f € L} (u)(B")

— 1 p %
s = s (e [ 15Punar)” <o),

When v = v = 1 in Definition 1.2, then it is classical Morrey space, that is,

BV PO I p)i Oo}
LPA R {f-lfllm chn,gzbau(m /Q FlPdy ) < ool

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.
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Definition 1.3. Let 1 < p, ¢ < co. We say that a weight w belongs to A4, ,(R™) if
1

1 1 o P
e (@ Ly 100) (g fy o) <0

Definition 1.4. (1) We say that a weight w satisfies the doubling condition if there exists
K1 > 0 such that

Q=

w(2Q) < Kyw(Q)
for all balls Q.

(2) We say that a weight w satisfies the reverse doubling condition if there exists Ko > 1
such that

w(2Q) > Kaw(Q)
for all balls Q.

Remark 1.5. If w € A, ,(R™) for 1 < p,¢q < 0o, then w? and w™?" satisfy both the doubling
condition and the reverse doubling condition, respectively.

Komori and Shirai [6] proved a weighted estimate (cf. [3]).

Theorem A ([6; Theorem 3.6]). Let 0 < a < n, 1 <p < &, 0 < X < ;41, and

w € Ap g (R™). Then, the fractional integral operator I, is bounded from LP*(wP,w)

q1 24y q q1 1 1 «a
to L7 (w? wit), where — = = — <.
@ P n

Remark 1.6 ([7]). When A = 0 in Theorem A, then it is the Muchenhoupt-Wheeden in-
equality:
Lo fllLar wnry < ClIf e wr)-

We improve Theorem A in the next section.

2 Main result Our result is as follows:

[e3%

Theorem 2.1. Let 0 < a<n, 1 <p< M, 0< A< £ andw e A, 4 (R™). Then,
q1 ’

the fractional integral operator I, is bounded from LP*(wP,w?) to LI (w® w), where
1 _ 1 [e% 1 _ 1 o

— == -2 gnd - =+ — & .
q1 p n’ q2 P n(l1—2X)

From this theorem, we can see the following:

Remark 2.2. (1) Since L% (w®  w®)(R") C L‘“’%(wq%w(h)(R”), Theorem 2.1 improves

Theorem A. In fact, since =2 = L — 2 e have

@2 @ D’

a

wq(;) /Q @) @)de < wq(;) ( /Q /(@) (’I)dx) Cun(@ R

S Hf”%lw,x(wa,wa)

A

Aq

by the Hélder inequality. When w = 1, we note L9*(R") & Lq“Tl(]R”). It is easy to
check this fact by the method of [5; Proposition 5.1] (cf. [8]).

(2) (1], [7]) When A = 0 in Theorem 2.1, then it is the Muckenhoupt-Wheeden inequality.
When w = 1, then we have the Adams inequality:

Hafllpazr < Cll e
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For the proof of Theorem 2.1, we need measures on R".

Definition 2.3. Let u be a positive measure on R™. We say that u is a doubling measure
if there exists C' > 0 such that

1(2Q) < Cu(Q)
for all balls Q, where u(Q) = fQ d.

Throughout the rest of this section, we assume that p is a doubling measure.

Definition 2.4. Let 1 < p < oo and 0 < A < 1. Then, LP*(u)(R") is defined by

LPA () (R = {f € LL ()R :

g = sup ( /\f ) Pdu(y ) <oo}.
CR"Qball

Definition 2.5. The Hardy-Littlewood maximal operator M, is defined by

1
Muf@)= s s /Q F@)lduy).

Next, we give some lemmas. It is easy to see Lemma 2.6.

Lemma 2.6 (cf. [2], [3]). Let 1 < p < o0 and 0 < A < 1. Then, the Hardy-Littlewood
mazimal operator M,, is bounded on LP*(u).

Lemma 2.7. If w € A, 4, (R"), then there exists py such that 1 < py < p and

1 . w1 . o
L (y)d = P () d .
QCRS“ITQ ball <|Q| / ) y) <|Q| /Qw ) y) =

Proof. Since w € A, 4, (R") if and only if w™?" € A, p (R") ([6; Remark 2.11]), this lemma

(II

is proved by the reverse Holder inequality. O
By Lemma 2.7, we get the following:

Lemma 2.8. Ifw € A, 4, (R"), then there exists r such that 1 <r < p and

1 "
sup ( / w (y)dy)
QCR",Q batl \ | Q|

1
7

1 / —qr'(L—2) >T
o [ WP TR (y)dy | < oo,
(|Q| Q

o

3

where - =1 — &,

q1 p n
Proof. As for py in Lemma 2.7, we define r as r ( 2)q1 = py. Then, we obtain the desired
result by applying Lemma 2.7. O

Now, we define mqf = |Q| fQ y)dy. Then, we estimate |Q|"mg|f| in two different
ways. First, we have the following:

Lemma 2.9. Ifw € A, 4, (R"), then we have

C‘ |f| |LP*A(wP,wq1)

Q" mqlf| < Wi (Q)
1 1 1 _ 1 _1-=X
wher@qfl—gf%,g—gfﬁ,andd— P
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Proof. By w € A, 4, (R™) and the Hélder inequality, we have

1
7

@l mol < 1+ ( / |f<x>|?wp<y>dy)’l’ (i / w? y)’

1

A

< C(||f||L1"v’\(wl’,w‘?1)’wq1 (Q) o,

and get the desired inequality by the choice of d. O
Next we estimate |Q|=mg|f| in terms of M,.

Lemma 2.10. Ifw € A, 4 (R™) and du(y) = w? (y)dy, then we have

1
r

Q" mqlf| < Cw™(Q)" Myu(|fw™|")(x)

for all x € Q, where a = % — 1, and r is a number chosen in Lemma 2.8.

Proof. Let c = q; (7 — 7) + 1. Then, by the Holder inequality and Lemma 2.8, we obtain

@l melf <101% (7 [ ) dy)i (& o)’

1 1
7

-2 (i [ i i) (5 / e )y )

PR —ayryoy L N B
< (|Q| M| fu ) @) (@) (Q| / <y>dy)
< Cw™(Q)* My(|fw™|")(x)".

By using these lemmas, we prove Theorem 2.1.

Proof of Theorem 2.1. Let r be a number chosen in Lemma 2.8, and d, a be in Lemma 2.9
and Lemma 2.10, respectively. First, we obtain

S lf W)l
I, E ——
Hoi(z /2J Lejo—yl<ai [T —y[m T Y

Z 20— 1)(n a)/ |f(y)|dy

— |z—y|<279

j=—00
where Q; = Q;(z) = {y: |z —y| < 27}. By Lemma 2.9 and Lemma 2.10, we have

J

o f(2)] < C Z w (Q;) " M, (| fw™") Z 11 e A(wp wa)

qul
j=—o0
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for all J € Z. Since w? satisfies both the doubling condition and the reverse doubling
q .

condition, there exist constants K7 and K5 such that 1 < K7 < % < K5 < oo for

J

all j € Z. Therefore, we get

1ot @) < 0 {un@Ean( ot + Ll ]

wi (Q )
for all J € Z. Now, we take J such that

Hf”LP*)‘(wP,wa) < A4+«

qQ d+2 n 1 a+3
w (QJ) < M‘u(|f’w70“r)(1’)% >~ Ng w (QJ)

for all x € @), and we have

—a —alr nd
o f (@) < ClF LS oy M| fro™|") () 70527

By the choice of ¢2 and d, we have

(s s [ sl o >dx)1

—_—a 1 _a 7" gond
< C||f|‘£§§°&wp7wa) ( o (Q / M |fw ( )T(nd+of) wt (x)d.%‘)

1
a2

, x
= U (s [, Mo P @) P e )

Since p > r, we can use Lemma 2.6. By the choice of a, we have

1 p
T

wi (Q)> /M (|fw™ ") () F wh (z)de = (u(;)k/QMuﬂfw_aV)(:v)fdu(x)) )

ya
<M fwe )

P
< il 1wt

= C| |f| |Z[)‘p~>\(wP7wQ1)'

7 (k)

(w)

Therefore, we obtain

q2 a P
(a7 [ s 1) < CUAIEE i I
- C||f|‘LPv>‘(w1’,wa)'

3 A remark We show a multilinear version of Theorem 2.1.

Definition 3.1. Let 0 < a < n, 6; # 0 (1 < i < m), and 0; are all distinct. Then, the
multilinear fractional integral operator IV is defined by

2 e = 0)

R™ |y|—e

ap(f1y o fm) () =

b

where 6 = (01,...,0.,).
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We give a remark as a corollary of Theorem 2.1.

Proposition 3.2. Let 0 < a <n, 1 <p < "= 0 < ) < (%, and w € Apq, (R™).

(03

Then, the multilinear fractional integral operator I}, is bounded from H111 LPoA (wP, wit)
q2,A (9d1 991 1_ym 1 1 _1_ « 1 _1_ o
to L2 wh  wh), where p = Doict M =P and il cE v

Proof. First, we remark

by the Holder inequality (cf. [4]). From this fact and Theorem 2.1, we have

12 (Free o Fa) @) < OTT (2 (15
i=1

1

<U)q11)\/Q |Ig?€(fla'~'7fm)($)|q2wa (-’L’)d.’t) ”

@)
=¢ <w¢11(1Q)>\/Q (f[l (Ia (|f1 %> (x))’i> wi (m)dm) ?
=C (/Qf[ (Ia (|f1|%) (_7;)(1211)‘11 (m)wa(Q)—A)P% dm) o
< cf[1 (waéQ)/\/QIa (1£1%) (x)qzwa(x)dxy‘z:i
< CHJ 1o (I51%) im(wa,wa)

Py
P

P
Py
LA (wP widl)

< OH H|fz
=1

= CH HfiHLPiv)‘(wP’w‘n) .

i=1
Therefore, we obtain the desired result. O
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ABSTRACT. The present paper proposes a new model to discuss the efficiency of
optimal business hours for retailers. The model can be applied generally for any
retailer and especially exercised within the newsvendor problem framework. Under the
proposed model, the customers’ residences are uniformly distributed over the Hotelling
unit interval and each individual customer departs from her residence for the store at a
finite velocity. Customers purchase a single product only if they arrive at the retailer’s
store during business hours. Under these circumstances, this study explores efficiency
of the model to obtain optimal business hours for retailers. Numerical examples are also
provided to illustrate the theoretical underpinnings of the proposed model formulation.

1 Introduction

There are numerous problems in economics that can be applied to to real world problems.
To better reflect the reality and acquire precise results, it necessitates to include more
parameters in models to cover major parameters. Among these parameters, there are some
specific ones that make the model too complicated. For Example business hours as a decision
factor, is usually eliminated from the mathematical models when it comes to avoid model
complexity. A prominent case of such model is the newsvendor problem.

The newsvendor problem (NVP) can be traced back to the economist Edgeworth[4],
who has discussed this problem to deal with cash-flows in banking. The NVP evolved and
gained attention of economists and other scientists such as those in operations research
and management science after World War II; particularly the works by Arrow et al.[1] and
Whitin[11] have stimulated their interests.

Since the NVP has a simple yet stylish structure, it has vastly been scrutinized and
many derivations and extensions have emerged over time to have a long validated history
in both the manufacturing and retailing environments. Khouja[6], Petruzzi and Dada[g],
and Chan et al.[2] have provided extensive surveys of works in this regard, and presented
the wide range of NVP framework extensions. According to Khouja[6, 7] and Qin[9], NVP
extensions are mainly relevant to pricing policy, supplier policy, different objectives and
utility functions, random yields, multi-production, multi-location and echelon systems, etc.

When we deal with a NVP for retailers located in the downstream of a supply chain, it
is important to take into account the arrival time of each customer at the retailer’s store
since it obviously influences her probability of obtaining a product. The vast majority
of past models have, however, ignored or occasionally overlooked this aspect relevant to
arrival times of customers. Decker et al.[3] have interestingly dealt with a model where
each individual customer has a transaction under the assumption of customers’ Poisson
arrivals within the framework of queuing theory.

2010 Mathematics Subject Classification. 90B05, 90B50 .
Key words and phrases. efficiency, Hotelling interval, customer’s departure and arrival time, business
hours, Newsvendor problem.
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Hosseinipour and Sandoh[5], for the first time, concentrated on the NVP of end-retailers
of a supply chain to propose a new model which can deal with both stocking quantity and the
number of business hours simultaneously, since they are significantly related to each other.
The idea of timing in Hosseinipour and Sandoh model is rooted from Shy et al.[10]. In the
proposed model, it is assumed that customers’ residences are uniformly located over the
Hotelling unit interval, and each individual customer departs from her residence following
a general departure time distribution to travel for the retailer’s store at a finite velocity.
Each customer can purchase a single product only when she meets both the conditions:
(1) she arrives at the retailer’s store during business hours and (2) on her arrival, there
still remains inventory. Under these assumptions, an optimal strategy consisting optimal
stocking quantity and optimal number of business hours of the retailer were discussed.

Though the model suggested by Hosseinipour and Sandoh[5] elaborately includes time
as a decision variable under NVP framework, it is highly complicated to analyze the model.
In this study, we propose a model in which an efficiency function investigates the optimal
business hours of a retailer for the purpose of simplifying the model for better analysis
and generalizing the model to be applied to other problems. It is worth noting that the
proposed model adheres some assumptions of Hosseinipour and Sandoh model, in addition
it is not monopoly problem oriented. Numerical examples are also presented to examine
the characteristics of the proposed model.

2 Model Formulation

2.1 Assumptions and notations The assumptions along with their relevant notations
are listed below:

1) We consider a retailer dealing in some specific product such as fast food.

2) Customers residences are located on the Hotelling horizontal unit interval, [0, 1] following
the uniform distribution, while the retailer’s store is at 0.

3) Customers’ departure times from their residences are i.i.d. random variables having a
general distribution with the cdf, G(t).

4) The time horizon of a single day is expressed by a vertical unit interval [0, 1].

5) G(0) > 0 and G(1) < 1. These two assumptions indicate that an arbitrary customer
cannot depart from her residence with probability 1 + G(0) — G(1) for some reasons or
other.

6) Customers’ traveling velocity is A (> 0).

7) The population size of the potential customer is denoted by n.

8) The retailer’s operating time span, i.e., the business hours of the store, is represented by
an interval [t,,t.], 0 < t, < t. < 1.

9) Each customer can purchase a single product only when she arrives at the store during
business hours.

10) The number of the retailer’s stocking is denoted by @ and it satisfies Q < n.
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2.2 Demand distribution Focusing on a single customer, the probability n(t,,t., )
that a single customer located at « € [0,1] arrives at the retailer’s store during business
hours is given by

0 x> M.
(1) Ntote,x) = ¢ G (te — %) — G(0) Mo < 7 < Mo -

Figure 1 illustrates n(t,,t., ) along with customers’ arrivals according to retailer’s busi-
ness hours. It can be verified that business hours effectively influences the probability of
welcoming customers. It is also noted that the probability of a customer’s arrival at the
retailer’s store decreases with shorter business hours or a customer having more distant
from the retailer’s store.

Customers’ Departure
Distribution

Closing
Time A\*

Opening t.
Time

Retailer’s e 1| Customers’
location O Location

Figure 1: Customers’ Arrival Probability

Since the location, x, of the customer’s residence follows a uniform distribution on [0, 1],
the probability of the retailer’s welcoming any single customer during business hours is
given by

@) pltort) = / W(tor e, 2)d,

which indicates that p(t,,t.) is decreasing in ¢, and increasing in t.. It is convenient for the
rest of this paper to introduce py,q, defined by

1
Pmaz ‘= IMax p(to,tc):/ n(0,1, z)dz,
0

0<t,<t,<1
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which represents the maximum probability of welcoming customers according to customers’
traveling speed even when the opening and the closing time are respectively set to 0 and 1,
in other words, even when the retailer’s store opens for 24 hours.

Let us denote by, Z;(t,,t.), (i = 1,2, --n), binary random variables, where Z;(t,,t.) = 1
signifies that the i-th customer will arrive at the retailer’s store during business hours,
conversely Z;(t,,t.) = 0 corresponds to the fact that the i-th customer is not capable of
arriving at the store during business hours. Consequently, the probabilities for a variable
Zi(to, tc) are

Pr[Zi(to, 1) = 1] = plto, o),
3) { Pr[Zi(to, ) = 0] = o pltorte).

From assumption (9), the total amount, X (¢,,t.), of demand for a product during business
hours is given by X (to,tc) = Y iy Zi(to, te)-

When n is large, by means of the central limit theorem, X (¢,,t.) asymptotically follows a

normal distribution N(u(to, te), 0% (to, tc)> , where

(4) w(to,te) = np(to,te),
(5) o2 (torte) = np(to,te)[l — plto,te)]-

The above considerations reveal that the demand quantity can be represented by a
normal distribution regardless of the departure time distribution, and that both the pa-
rameters, y(to,t.) and o2(t,,t.), are functions of the business hours or the probability of
welcoming a single customer during business hours. For simplicity we will be using p, y, o
instead of p(to, t.), i(to, te), o(to, te) respectively.

2.3 Efficiency Now, let us define the efficiency, €(p), as an objective function, which is
given by

H [ QL-w
o _#(%),

It should be noted in the above that the numerator expresses the probability that the
demand quantity, X, exceeds the stocking quantity, ), while the denominator represents
the probability of welcoming a single customer. Accordingly, we can obtain an efficient
number of business hours with which we can possibly sell all the inventory within less
business hours by maximizing €(p) with respect to p.

It resembles choosing the best probability of welcoming a customer according to the
number of stocks the retailer holds. If the retailer opens his store for 24 hours, he might
benefit from capturing greater (all) part of potential customers, but at the same time he
might undergo the low probability of welcoming customers in the neighborhood of the
opening and closing time. This suggests that it may not be beneficial to run the business
in low probable customer arrival times. In addition, since the retailers have to deal with
labor cost in reality, it is preferred to narrow the number of business hours to an optimized
value.

3 Efficient Business Hours

In this section we first seek an optimal value of p instead of optimal number of business
hours. For this we let p* denote an optimal value of p which maximizes €(p) in reference to
p. Second, we discuss how to obtain the corresponding optimal opening and closing hours.
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3.1 Optimal probability p* By differentiating €(p) in Eq. (6) with respect to p, we
have

o () () (%)

Now, we have a proposition as follows:

Propostion 1 % is decreasing in p.

Proof. Let A(p) be defined by

then its derivation with respect to p is
’ _ dA(p)
Alp) = Tp
(8) _ _2”20(1 -+ (@— np)n(l —2p) _ ~ni{np+Q(1 —2p)}
2{np(1 - )} 2{np(1 - p)}3
_nQl=p)
{2np(1—p)}2 =

where the last transformation is derived by the substitution of n = @ into the numerator
because of Q) < n.
When we extend the domain of p from (0, pmas] to (0,1), we have

©) plinjrlo Alp) = oo,
(10) lim A(p) = —oo,
p—1-0

and thereby A(p) is decreasing from +oo to —oo in p.m

As for p*, we have the following proposition:

Propostion 2 IfQ > 5 n , Pt > %

Proof.  In the RHS of Eq.(7), we have ,p% < 0 and

(11) ¢(0) =

DN | =
-
N

(12) 2(0) =

Hence, by letting

o 0= o (252) (45) +o(%5)]

we confine our attention to behavior of B(p).
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For p = £, Eq. (8) reveals

n’

(14) A’<Q>_—”QQ2 S

Y omg et

Substituting Egs. (11), (12) and (14) into Eq.(13), we have

(15)

S
7 N
SO
N—

I

|
[N}

A
-
|
2

+

o |

It should here be noted that B (%) < 0 is equivalent to:

n
%n—&—l’

(16) Q=

and hence % >0at p= @ This indicates pr > Q.
0 n n

It is very difficult to mathematically clarify the behavior of B(p) for 0 < p < pmaz.

For this reason, we examine the characteristics of the proposed model through numerical

examples in Section 4.

3.2 Optimal opening and closing hours When the optimal probability, p*, is
achieved, its relevant optimal opening and closing times can be obtained subsequently.
The problem to find them can be discussed on the basis of the following classification:

(1) When the opening time, t,, is already assigned to fixed ¢; according to retailer’s policies,
the optimal closing time, ¢}, can be acquired by solving the following equation with respect
to t:

1
P =/ n(ty,t, x)dz.
0

(2) Subsequently when closing time t. is already specified to to, the optimal opening time
is given by solving

1
p* = / n(t7t27x)d$7
0

in reference to t.
(3) When neither opening time ¢, nor closing time t. are arranged, the minimal interval
that satisfies,

1
Pt = / n(to,te, x)dr,
0
leads to the optimal opening and closing times. The problem can be formulated as :
min te — to

(17) Subject to: p* = fol N(to,te, z)dz -

0<t, <t <1
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4 Numerical examples

In this section we demonstrate the behavior of efficiency through numerical examples and
look for optimal business hours. Figure 2 shows the shape of efficiency function when
n = 100 with @ = 60,70, 80, where the values of ) are suitably chosen by considering the
value of n. It is seen in Fig. 2 that the efficiency for each value of @) is unimodal. It is also
observed that the maximum value of efficiency increases in accordance with the stocking

quantity Q.

e(p).

Figure 2: Behavior of efficiency.

Figure 3 illustrates the case when @ is very close to zero, while Fig. 4 depicts the case when
Q is close to n. It also confirms that when stocking quantities are comparably much smaller
than the population size of potential customers, then the business hours should be very
short, contrariwise when stocking quantity is close to the number of potential customers

the retailer’s business hours will be extended roughly to 24 hours. Figure 5 shows the shape

dp(0,1)
TR A
AT

Table 1: Departure time follows N (0.5,0.2%)
Q to  te
60 0.6901 0.46 0.75

A
2
60 0.6901 043 0.67 3
70 0.7901 0.28 1.0 2
3
2
3

70 0.7901 0.38 0.97
80 0.8801 0.0 1.0
80 0.8801 0.27 1.0

Table 1 and 2 show the optimal opening and closing time against optimal p* obtained
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Figure 3: Behavior of efficiency for small Q.

e(p)

0.2

0.7

Figure 4: Efficiency function behavior: @ is close to n

by numerical solution. Both tables refer to the third case of the classification in 3.2 in
which both opening and closing times are the decision variables. In Tables 1 and 2, cases
under three quantities (Q = 60,70,80) with two different traveling speed (A = 2,3) were
investigated. Once p* is obtained, if p* = ppqz, the retailer should open his store for 24
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n
T

dp(0, H/d ¢

: . dp((0,t)
Figure 5: Shape of <=~

Table 2: Departure time follows N (0.5,0.32)
Q 6 & X
60 0.6901 0.20 1.0 2
60 0.6901 0.34 1.0 3
70 0.7901 0.0 1.0 2
3
2
3

70 0.7901 0.08 1.0
80 0.8801 0.0 1.0
80 0.8801 0.0 1.0

hours, while we need some computation to search for p* if p* < ppaz.

5 Concluding Remarks

In this paper we proposed a new model which concentrates upon the efficiency of business
hours for retailers within the framework of newsvendor problems. The proposed model can
easily be exercised for general retailers. Under this model we considered that customers’
residences are uniformly distributed over the Hotelling unit interval and each individual
customer departs from her residence for the store at a finite velocity. Customers purchase a
single product only if they arrive at the retailer’s store during business hours. In this model
we derived the demand regardless of the customers’ departure distribution. Furthermore, we
defined the efficiency as a criterion, to discuss an optimal number of business hours. More
precisely, the optimal number of business hours was discussed in terms of the probability
p of accepting a single customer during a business hours. Under the proposed model, once
an optimal probability p* is obtained, its relevant optimal opening and closing times can
be computed. Numerical examples were also presented to illustrate the proposed model.
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ABSTRACT. This paper is oriented to an elementary introduction to function spaces

with variable exponents and a survey of related function spaces. After providing ba-

sic and elementary properties of generalized Lebesgue spaces Lp(‘)(R") with variable

exponents, we give rearranged proofs of the theorems by Diening (2004), Cruz-Uribe,

Fiorenza and Neugebauer (2003, 2004), Nekvinda (2004) and Lerner (2005). They are

maybe simpler than the originals. Moreover, we deal with topics related to L”(‘)(R").

For example, we present an alternative proof for Lerner’s theorem on the modular in-

equality and a detailed proof of the density in Sobolev spaces with variable exponents.

Furthermore, we will describe the recent results of fractional integral operators and

Calderén-Zygmund operators on LP()(R™). Finally, we survey recent results (with-

out proofs) on several function spaces with variable exponents, for example, gener-

alized Morrey and Campanato spaces with variable growth condition, Hardy spaces

HPO(R™), Besov spaces B;E:;,q(.)(Rn) and Triebel-Lizorkin spaces F;((A‘))yq(A)(R"), etc.
Preface Recently, in harmonic analysis, partial differential equations, potential theory and
applied mathematics, many authors investigate function spaces with variable exponents. In
particular, function spaces with variable exponents are necessary in the field of electronic
fluid mechanics [177] and the applications to the image restoration [17, 65, 108]. Kovacik
and Rakosnik [101] gave an application of generalized Lebesgue spaces with variable expo-
nents to Dirichlet boundary value problems for nonlinear partial differential equations with
coefficients of a variable growth. Another simple example of the application to differential
equations can be found in [49, p. 438, Example], where Fan and Zhao implicitly showed
that the variable Lebesgue spaces can be used to control the non-linear term of differential
equations.

The theory of Lebesgue spaces with variable exponents dates back to Orlicz’s paper
[163] (1931) and Nakano’s books [158, 159] (1950, 1951). In particular, the definition of
so-called Musielak-Orlicz spaces is clearly written in [158, Section 89], while it seems that
Orlicz is mainly interested in completeness of function spaces. Later, Sharapudinov [208]
(1979) and Kovacik and Rékosnik [101] (1991) clarified fundamental properties of Lebesgue
spaces with variable exponents and Sobolev spaces with variable exponents. This important
achievement nowadays leads to the hot discussion of function spaces with variable exponents.
A noteworthy fact is that Fan and Zhao independently investigated Lebesgue spaces with
variable exponents and Sobolev spaces with variable exponents.

One of the important problems in this field is to prove the boundedness of the Hardy-
Littlewood maximal operator M on generalized Lebesgue spaces Lp(')(]R”) with variable
exponents. Once this is established, our experience makes us feel that this boundedness can

2010 Mathematics Subject Classification. 46E30, 42B25, 46E35, 42B20, 26A33, 42B30, 42B35, 46E15,
46A80, 46B10.

Key words and phrases. variable exponent, Lebesgue space, Hardy-Littlewood maximal operator, frac-
tional integral operator, Calderén-Zygmund operator, weighted norm inequality, vector-valued inequality,
Sobolev spaces, Morrey-Campanato space, Hardy space.
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be applied to many parts of analysis. Actually, many authors tackled this hard problem.
The paper [36] (2004) by Diening is a pioneering one. Based upon the paper [36], Cruz-
Uribe, Fiorenza and Neugebauer [26, 27] (2003, 2004) have given sufficient conditions for
M to be bounded on Lebesgue spaces with variable exponents and the condition is referred
to as the log-Hdélder condition.

Due to the extrapolation theorem with weighted norm inequalities by Cruz-Uribe,
Fiorenza, Martell and Pérez [25] (2006) about Lebesgue spaces with variable exponents,
we can prove the boundedness of singular integral operators of Calderén-Zygmund type,
the boundedness of commutators generated by BMO functions and singular integral oper-
ators and the Fourier multiplier results.

Moreover, Hardy spaces HP()(R") with variable exponents (Nakai and Sawano [154]
(2012), Sawano [203] (2013) and Cruz-Uribe and Wang [30]) and inhomogeneous Besov
spaces B;E:iq(')(R") and inhomogeneous Triebel-Lizorkin spaces F;((:)),q(.)(R”) with three
variable exponents (Diening, Hasté and Roudenko [42] (2009) and Almeida and Hésto [3]
(2010)) are also investigated. Remark that much was done by Xu [219, 220, 221, 222] (2008,
2008, 2009, 2012) when ¢(-) = ¢ is a constant.

In Part I, we first state basic properties on the classical Lebesgue spaces LP(Q)), the
Hardy-Littlewood maximal operator M, A,-weight and BMO(R"™). Next we prove ele-
mentary properties on generalized Lebesgue spaces LP()(Q) with variable exponents in
Part IT. Then we discuss the boundedness of the operator M on LPC)(R™) in Part ITI. We
give rearranged proofs of the theorems by Diening [36], Cruz-Uribe, Fiorenza and Neuge-
bauer [26, 27], Nekvinda [161] (2004) and Lerner [102] (2005). They are maybe simpler than
the originals. In Part IV we deal with topics related to LP(") (R™). For example, we present
an alternative proof for Lerner’s theorem on the modular inequality and a detailed proof of
the density in Sobolev spaces with variable exponents. Moreover, we will describe the recent
results of fractional integral operators and Calderén-Zygmund operators on Lp(')(R").

Finally, in Part V we give recent results (without proofs) on several function spaces with
variable exponents, for example, generalized Morrey and Campanato spaces with variable
growth condition, Hardy spaces HP()(R™), Besov spaces Bt) (R™) and Triebel-Lizorkin

p(),a()
spaces F;((_'){q(_)(R"), etc.

The feature of this paper is as follows:

(i) A presentation of the Lebesgue spaces with variable exponents is performed in com-
parison with the classical Lebesgue spaces in Parts I and II. This will supplement the
introductory part of the book [40] (2011), while we referred to [40] for the structure
of the Lebesgue spaces Lp(')(R"), but also for other topics.

(ii) We recall a recent technique of the proof of the boundedness of the Hardy-Littlewood
maximal operator in Part IIT and IV. Here, by polishing the earlier results, we obtained
some new results.

(iii) In Part V, we define and compare several function spaces with variable exponents,
which may be of importance for further research.

This paper is based on the following:

(i) Two manuscripts [77, 78] by Mitsuo Izuki, Eiichi Nakai and Yoshihiro Sawano, for
RIMS Koékytiroku Bessatsu of the workshop “Harmonic Analysis and Nonlinear Partial
Differential Equations” held on July 2—4, 2012.
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(ii) Eight lectures by Mitsuo Izuki for master course students at Ibaraki University on
July 9-11, 2012.

(iii) Three lectures by Eiichi Nakai at Chowa-Kaiseki (Harmonic Analysis) Seminar held
at The University of Tokyo on December 25-27, 2012.
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Part I
Notation and basic properties

1 Notation In the whole paper we will use the following notation:

(i) Let R™ be the n-dimensional Euclidean space. We denote by L°(R™;T) be the set of
all measurable functions from R™ to T, where T'C C or T' C [0,00]. If T' = C, then
we abbreviate L°(R™; C) to L°(R").

(i) We denote by Li _(R™) the set of all locally integrable functions. We also denote by

loc

LE,p (R™) the set of all f € LP(R™) with compact support. For f € LP(R"), we write

11 =l = ( [ 1P as)”

(iii) The set Cgsyy,p(R™) consists of all compactly supported and infinitely differentiable
functions f defined on R™.

(iv) Given a measurable set S C R™, we denote the Lebesgue measure by |S| and the
characteristic function by xs.

(v) Given a function f defined on a set F and an interval I, we denote by {f € I} the
level set given by

i) ={zcE: flx) eI}

When we want to clarify the set on which f is defined, we write {z € E : f(z) € I}
instead of {f € I}.

(vi) For a measurable set G C R™, f € L°(R™) and ¢ > 0, let
(L.1) m(G, f,t) = {z € G |f(x)] > t}].
If G = R™, then we denote it by m(f,t) simply.

(vii) Given a measurable set S C R™ with |S| > 0 and a function f on R, we denote the
mean value of f on S by fg or fg f, namely,

(1.2) fs = ]i f = ]é fly)dy = ﬁ /S f(y) dy.

(viii) We define an open ball by
B(z,r) :={y eR" : |z —y| <r},
where x € R™ and r > 0.

(ix) An open cube Q C R™ is always assumed to have sides parallel to the coordinate axes.
Namely, for any cube @, we can write

n

Q=Q(z,r) = H(xl, —r/2,x,+71/2)

v=1

using = (z1,...,2,) € R and r > 0. Let Q be the set of all open cubes Q@ C R"
with sides parallel to the coordinate axes.
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Given a positive number s, a cube @ = Q(z,r) and an open ball B = B(x,r), we
define sQ := Q(x, sr) and sB := B(x, sr).

The set Ny consists of all non-negative integers.

Given a multi-index o = (o, ..., ap) € No™, we write

n
|| := Zau.
v=1
In addition the derivative of f is denoted by

Do e @Ialf

oxTt...0xp"

We adopt the following definition of the Fourier transform and its inverse:
FIE) = | fa)e ™ de, F ()= [ f(&)e* ™ de
R7 an

for f € L*(R").

Using this definition of Fourier transform and its inverse, we also define

(1.3) e(D)f(x) = F o Ffl(w) = (f,F'p(x—+)) (z€R)
for f € S'(R™) and ¢ € S(R™).

For (quasi-)norm spaces E and F, let B(E, F) be the set of all bounded operators
from F to F. We denote B(E, E) by B(E).

The set 2 C R™ is measurable and satisfies |Q2] > 0.

By a weight on 2 we mean any non-negative locally integrable function defined on
Q. We exclude the possibility that a weight is zero on a set of positive measure. If
Q = R", we mean it by a weight simply.

A symbol C always stands for a positive constant independent of the main parameters.
Inequality A < B means A < CB and inequality A 2 B means A > CB.

2 Some basic inequalities We use the following generalized inequality of arithmetic
and geometric means:

Lemma 2.1. Ifa,b>0 and 0 < a < 1, then we have the inequality

a®b' ™ < aa+ (1 —a)b

with equality if and only if a = b.

The next inequality is a consequence of the convexity or Lemma 2.1.

Lemma 2.2. Ifz,y € R® and 0 <t <1 < r < oo, then the following inequality holds:

te + (1= t)y|" < tlz[" + (1 =)y
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3 Lebesgue spaces In this section, we review classical Lebesgue spaces. We provide
a detailed proof so that the proof motivates the argument about Lebesgue spaces with
variable exponents.

3.1 Definition and norm We suppose here that the set & C R™ is measurable and
satisfies |Q2] > 0. We recall the definition and the fundamental property of LP().

Definition 3.1. Let 1 < p < oo. The Lebesgue space LP({) is the set of all complex-valued
measurable functions f defined on Q satisfying || f||.rq) < oo, where

_ S Ualf@Pde)" (1 <p <o),
17 llerce {esssupﬁegf(xn (p = o0).

Then LP() is a complex vector space, since, by Lemma 2.2 we have
[ 1@+ a@p s < [ 27 5@F +lo@l) do < o0
for f,g € LP(Q) if 1 < p < co. The case p = oo is easy.

Theorem 3.1 (Holder’s inequality). Let 1 < p < co. Then, we have

/ F@)9(@)|dz < 1l 9] o

for all f € LP() and all g € LP ().

Proof. The case p =1 or p = oo is easy. We consider the case 1 < p < co. We may assume
that [|f|[zr(0) > 0 and [|g| 1 (q) > 0. If we put

’

p p
F::< | f] ) e gl 7
Ifllzr o) N9l )

then Lemma 2.1 to follow gives us

; |f(z)g(x)| dz
Hf”LP(Q)Hg”LP'(Q) B /Q
Thus, the proof is complete. O

F() /PG a) 7 dy < /

Q

(F(x)+G<x>) du = 1.

P 2

Applying Holder’s inequality, we obtain the following:
Theorem 3.2 (Minkowski’s inequality). Let 1 < p < co. Then, we have

If +gllr) < I fllze) + l9llze (o)
for all f, g € LP(Q).

Proof. The case p = 1 or p = oo is easy. We consider the case 1 < p < oo. Let f,g €
LP(€2). We may assume that || f + gl zr() > 0. Let b = (|f + g|/I|f + gllLr())?~". Then
|h] 70 (@) = 1, since (p—1)p’ = p. Hence, by the triangle inequality and Holder’s inequality
we have

1+ gllzme = 'ﬁjm /|f 4 9(@)| - h(@)) do
LP(Q

< Ao @ Pl o 0y + Ngllze@ Rl Lor @) = I fllzr@) + lgllzr). T
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Theorem 3.3. If1 < p < oo, then |- | 1r() is a norm.

Proof. We have only to check the following conditions are true:
1) fllzr) =0,
(ii) Ifllzr(@) = 0 if and only if f =0 a.e. €,

(iil) llafllze) = lel- [ £llzr @),

(V) If +9lle@) < 1 flle@) + lgllLe ),
for all f, g € LP(Q) and all @ € C. We omit the detail. O

3.2 Weak type Lebesgue spaces For a measurable set 2 C R, f € L°(R") and t > 0,
the distribution function of f over € is defined by;

m(, f,t) = [{z € @+ | f(z)] > t}].
If O = R", then we denote it by m(f,t) simply, see (1.1).

Definition 3.2. For 0 < p < oo, let L? . (Q) be the set of all measurable functions f on
Q such that

||fHLfveak(Q) = igg tm(Q7 f? t)l/p < o0.

By the Chebychev inequality we have LP(Q2) C L?

weak

(©2) and

Ifllze @) < Ifllzeco)-
weak

3.3 Weighted Lebesgue spaces Recall that “by a weight on {2 we mean any non-
negative locally integrable function defined on . If @ = R", we mean it by a weight
simply.

Definition 3.3. For 1 < p < oo and a weight w on 2, let L () be the set of all functions
fin LY(£2) such that

1/p
£z ) = (/Q |f(z)[Pw(zx) dx) < 0.

Of course if w(z) = 1, then L? () means the usual Lebesgue space LP ().

4 Maximal operator In this section we supply the proof of the boundedness of the
Hardy-Littlewood maximal operator M.
Recall that, for a function f € L{ (R™) and z € R", the uncentered Hardy-Littlewood

maximal operator M f(z) is defined by

1
Mf(e) = sup [ 17wl dy. where | [7w)]dy = = [ 1wl dy.
B>z JB B ‘ | B
where the supremum is taken over all balls B containing z. See (1.2). Meanwhile, for
a function f € LL _(R") and x € R", the centered Hardy-Littlewood maximal operator

loc

Meenterea f () is defined by

(41) Mcenteredf(x) = sup][ |f(y>| dy

r>0J B(x,r)
Due to the estimate Meenteredf(2) < M f(z) < 2" Mcentereaf (), most of the results for
M f carry over to those for Mconteredf- We do not allude to this point, unless there is not
difference between M f and Mcentered f -
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4.1 Measurability of the Hardy-Littlewood maximal operator First, we check
that M f and M entereqf are both measurable functions. Our proof is simpler than that in
the textbook [113].

Proposition 4.1. Let A > 0 and f € L°(R"™). Then the sets E) := {x € R" : M f(z) > \}
and E :={x € R" : Mcentereda f(z) > A} are open.

Proof. To prove this, we choose x € E) arbitrarily. Then by the definition of M f(x), we
can find a ball B such that

1

(4.2) x € B, E/B|f(y)\dy>)\.

Then, by the definition of M f, B C E), and hence x is an interior point of E). The point
x being arbitrary, we see that F) is open.

We modify the above proof to obtain the proof for EY. In view of the definition (4.1),
the ball B in (4.2) must be centered at x, so that B assumes the form of B = B(x,r) for
some r > 0. By choosing « slightly larger than 1, we have

1

F-Tmp [f ()l dy > A.
|B(£U, HT)| B(z,r)

Let y € B(z, (k—1)r). Then a geometric observation shows that B(y, xr) D B(x,r). Thus,
it follows that

! F)ldy >

T’ TR |f(y)dy > A
|B(y7 K:T)| B(y,kr) |B(JL‘, HT)| B(z,r)

Hence, B(z, (k — 1)r) C EY. Since z is again arbitrary, it follows that Ef is an open set as
well. O

4.2 Boundedness of the Hardy-Littlewood maximal operator on LP(R™) In this
paper, we are mainly concerned with the extension of the following fundamental results on
the LP(R™)-boundedness of the Hardy-Littlewood maximal operator:

Theorem 4.2.
(1) The Hardy-Littlewood mazimal operator M is of weak type (1,1), namely,
{z eR™ : Mf(x) > A} < CA Y flloiqen
holds for all A > 0 and all f € L*(R™).
(2) If 1 < p < o0, then M is bounded on LP(R"™), namely,
IM fllze@ny < Clfllzr@n)
holds for all f € LP(R™).

Before we proceed further, a couple of remarks may be in order.
Remark 4.1.

(1) If p = oo, then Theorem 4.2 (2) with C' = 1 is immediately proved by the definition
of the norm || - || o (rn).
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(2) If 1 < p < o0, then M is of weak type (p, p), namely,

(43)  IXgern:mp@sayllr = [z € R« Mf(@) > MY < CA7Y|fl| o any

holds for all A > 0 and all f € LP(R™). (4.3) is easily checked by the Chebychev
inequality and Theorem 4.2 (2).

(3) One of the important reasons why we are led to the weak (1, 1) inequality is that M
always maps L'(R™) functions to non-integrable functions except the zero function.
To explain why, let us place ourselves in the case of n = 1. Then, a simple computation
shows that M (x[_1,1) ¢ L'(R) but that x[_;,1) € L'(R). By a similar reason, even in
R™, Mf ¢ L'(R™) unless f = 0.

(4) The remark (3) above applies to the centered Hardy-Littlewood maximal operator.

Classically the boundedness of the Hardy-Littlewood maximal operator is shown as
follows: In order to prove Theorem 4.2 we will use the following two lemmas:

Lemma 4.3 (Vitali’s covering lemma). Given a bounded set E C R™, we take a covering
{B(z;,rj)}; of E. If {r;}; is bounded, then there exists a disjoint subfamily {B(xj,r;)}
such that £ C \J; B(zj, 5rjr).

In connection with covering lemmas, we introduce some Japanese books, for example,
Igari [69], Mizuta [120] and Sawano [202] for further information on the covering lemma.
In [202] a covering lemma is presented as Theorem 2.2.8 but the condition supyep 7a < 00
was indispensable.

The next lemma enables us to express the LP-norm of a measurable function f in terms
of distribution functions. However, in the variable setting, this expression is not effective.

Lemma 4.4. If 1 <p < oo and f € LP(R™), then we have

[ r@pas=p [T et er (@) > ]

0

Proof. If we define the set A := {(z,t) € R™ x [0,00) : |f(x)| > t}, then we get by Fubini’s

theorem,
[f ()]
/ |f(z)|Pde = / p(/ tp_ldt> dx
n n 0
= / p(/ tp_1XA(a:,t)dt) dx
n 0
o0
— p/ 1 (/ XA(!L‘,t)dm> dt
0 n
- p/ 1z € R” ;| f(2)] > )] dt.
0
This is the desired result. O

Proof of Theorem 4.2. We first prove (1). For every A > 0 and N € N, we write

Ey = {ZL’ERn : Mf(x)>)\} and E)\’N Z:E)\QB(O,N).
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By the definition of M f(x), for each = € E) there exists a ball B, such that € B, and

that )
— fly)|dy > A
|Bac|/BI| W

We remark that {B,}.cp, is a covering of a bounded set E y and that the radius of B,
is bounded, since |B,| < || f| £1®n)/A. By virtue of Vitali’s covering lemma, there exists a
disjoint subfamily

{Bj = Ba,};j C {Bs}ack,
such that

1
E/\’NCU5Bj and |Bj|/B.|f(y)|dy>)\.
Vi J

Since {B;}; is disjoint, we obtain

[Exn| < ||J5B)| <5"> Bl <5 <>\_1/B f(y)|dy> <BMATH oty
j

j i i
Moreover by Ex v C Ex n+1 C--- and U?ﬂ E\ .~ = E), we have

{z € R : Mf(z) > A} = [Ex[ = lim |Exn|< 5"ATU f Nl @y
Next we prove (2). Let 1 < p < co. Take a > 0 arbitrarily and define

F3(a) = {f(w) (/@) > a/2),

0 (f@) <aj, Je@=I@=/@) (@R

Since
M f(x) < M(f*)(@) + M(fa)() < M(f*)(@) + 5 (@ €R"),

we have
{r eR" : Mf(z)>a} C{x eR" : M(f*)(x) > a/2}.
The weak (1,1) inequality gives us
o € R MJ(x) > a}] < [{z € R : M()(@) > 0/2} < C- 2|12y

By virtue of Lemma 4.4 we get

/H(Mf(x))pdx = p/oooap_1|{xeR" : Mf(z) > a}| da

IN

Cy [ a0 e da
0

= G (/ a”‘QIf“(y)Ida>dy-
r» \Jo
9p—1

T L .
| e ida= [ @l da = @) 6] = S0P

An arithmetic shows that

Consequently we have

p—1
[ s@pae< S [ rwpa,

Thus, the proof is therefore complete. O
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4.3 Inequality for the convolution Recall that Mcentereq is the centered Hardy
-Littlewood maximal operator generated by balls. Here and below we write Mcentered,balls
for definiteness. The following result is known about the mollifier:

Lemma 4.5 ([48, Proposition 2.7], [213, p. 63]). Let ¢» € L*(R™) be a radial decreasing
function. Define

(4.4) Yy =t () (> 0).
Then we have that for allt >0 and all f € L] (R"),

loc

(45) |wt * f(ir)‘ < ||1/J||L1Mcentered,ballsf(x)~
The collection {1 }+=0 is often called a mollifier.

Proof. We have only to prove the case t = 1, since ||t¢||r1 = ||[¢||r: for all ¢ > 0. Take
simple functions {¢,}22; of the form

n

(bn = ch,jXB(O,rnyj)a Cn,j > 0; Tn,1 > Tn,2 > > Tn,n > 0;
j=1

which satisfy ¢,, < ¥ and ¢,, — 1 a.e. as n — oco. Then

603 S@I < [ 3 nimar, o =9Iy
j=1

n
S
j=1 B

< Z Cn,j |B(O, Tn7j) ‘Mcentered,ballsf(x)

j=1
< ||¢HL1 Mcentered,ballsf(x)-

As n — oo, we have the conclusion. O

Let Mcentered,cubes be the centered Hardy-Littlewood maximal operator generated by
cubes. Since the volume of unit ball is 7%/2/T'(1 + n/2), we have

Mcentered,ballsf(m> S F(l + n/2)2n7r_n/2Mcentered,cubesf(x)‘

Thus, if we use Lemma 4.5, then we obtain

|¢t * f(-r)| < H'¢||L1Mcentered,ballsf(x) < F(l + n/2)2n777n/2||¢HL1Mcentered,cubesf(x)-

4.4 Rearrangement The nonincreasing rearrangement of f € L°(R™) is defined by
@) :=inf{A>0:m(f,\) <t} (0<t<o0).

The average function f** of f is defined by

£ ::%/Of*(s)ds (0 <t < o0).
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It is known that (see, for example, [10, p. 122]) for any f € Li (R"™),

loc
(4.6) (Mf)*(t) v () (t>0),

where v, is a positive constant depending only on n. We will also need the fact that

(4.7) L) = / £*(s)ds = sup /E (@) dx,

|E|=t
where the supremum is taken over all measurable set E with |E| = t.

5 A,-weights and BMO(R") The theory of A,-weights dates back to the work by
Muckenhoupt and Wheeden in 1972 [137], while the space BMO(R") including the John-
Nirenberg inequality is investigated in 1961 [82]. Both theories became more and more
important not only in harmonic analysis but also in PDEs. The two things seemingly are
independent topics, but, some relations between A,-weights and BMO(R") are known, see
Theorem 5.3 for example. Later, we shall see that these relations are used to prove some
non-trivial property in the theory of Lebesgue spaces with variable exponent, see Subsec-
tion 16.3, the proof of Lerner’s theorem (Theorem 15.4).

We recall that Q is the set of all open cubes ) C R™ with sides parallel to the coordinate
axes.

5.1 A,-weights In this paper, the weight will play a key role for the boundedness of
the Hardy-Littlewood maximal operator on generalized Lebesgue spaces with variable ex-
ponents.

Definition 5.1. A weight w is said to satisfy the Muckenhoupt A, condition, 1 < p < oo,

if
p—1
[w]a, := sup <][ w(zx) dx) <][ w(z)~ VP da:) <oo, l<p<oo,
QeQ \JQ Q

b= g (f,v00) (o) <

Let A, be the set of all weights satisfying the Muckenhoupt A, condition. The quantity
[w]a,,1 < p < oo is referred to as the A,-constant or the A,-norm of w.

and

Here we content ourselves with recalling the most elementary fact in the class A,.

Theorem 5.1 (Muckenhoupt [137] (1972)). Let 1 < p < oco. Then M € B(LE (R™)) if and

only if w € A,. Moreover, the operator norm of M 1is bounded by a constant depending only

onn, p and [w]a,.
See Section 20 for further properties.

5.2 BMO(R"™) Having set down the definition of weights and the fundamental properties,

we now recall the definition of BMO(R"™). Recall that fq is the average of a locally integrable

function f over a cube @, see (1.2).

Definition 5.2. Let BMO(RR™) be the set of all measurable functions f on R™ such that

|l fllBMO == Sup][ |f(z) — fol de < oc.
QeRJQ
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We collect important properties used in this paper.

Theorem 5.2 (John and Nirenberg [82] (1961)). There exist positive constants B and b,
depending only on n, such that, for f € BMO(R"), Q € Q and ¢ > 0,

{z € Q:|f(z) - fol > o}| < BIQ[e~"/ Iz,
One can take B = e'/(¢=1) < 2 and b= 1/(2"¢).
The following is a consequence of Theorem 5.2, see [54, pp. 407-409]:

Theorem 5.3. Let 1 < p < co. Ifw € Ay, then logw € BMO(R"™), and conversely, if
¢ € BMO(R"™), then €% € A, for some e > 0.

Theorem 5.4 (Coifman and Rochberg [19] (1980)). There exists a constant 7y, (which
depends only on n) such that if & and B are positive constants, g and h are nonnegative lo-
cally integrable functions with Mg < oo and Mh < 0o a.e., and b is any bounded measurable
function then the function

(5.1) f(z) = alog Mg(z) — Blog Mh(z) + b(z)

is in BMO(R™) and
[fllBMo < ynla+ B+ b ze).
Conversely, if f is any function in BMO(R™) then f can be written in the form (5.1) with

a+ B +bllze < mllfllBMO-
Corollary 5.5. Let M f < oo a.e. Then log(M f) € BMO(R") and

[log(M f)l[BMO < Y-

5.3 Sharp maximal operator To prove the boundedness of Calderén-Zygmund op-
erators in particular, the Riesz transform on generalized Lebesgue spaces with variable
exponents, we rely upon the control by the sharp maximal operator.

Definition 5.3. The Fefferman-Stein sharp maximal operator is defined as

i) = MPf(z) = sup ]{2 W) - faldy (z€RY)

zeQ€eQ

for f € Ll .(R™), where fo denotes the average of f over @, see (1.2). More generally, let

loc

0 < § < 00. Define
MEf(z) = (M*(|f1°)()/° (z €R)
for f € LY (R™).

loc

By the definition we have ||f|smo = || f¥||L=. On the other hand, if 1 < p < oo, then
I flle ~ | £l s for all f € LP(R™). Actually, from the boundedness of M it follows that

£l S I f Il

Moreover, we have the following:

Theorem 5.6 (Fefferman and Stein [51] (1972)). Let 0 < pg < 0o. For any pp < p < 00
and for all f € LL (R™) with M f € LPo(R"),

I lze S 11l
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5.4 Pointwise multipliers on BMO Let E C L°(R") be a normed function space. We
say that a function g € LY(R™) is a pointwise multiplier on E, if the pointwise multiplication
fgisin E for any f € E. We denote by PWM(FE) the set of all pointwise multipliers on E.
If £ is a Banach space and has the following property (5.2), then PWM(FE) C B(FE):

(52) fn— fin E == there exists a subsequence {n(j)};2; such that f, ;) — f a.e.

Actually, from (5.2) we see that each pointwise multiplier is a closed operator. Hence it is
a bounded operator by the closed graph theorem. Note that

| fllBmo + \fQ(0,1)\

is a norm on the function space BMO(R™) and thereby BMO(R") is a Banach space with
the property (5.2). For g € PWM(BMO(R™)), let us define its operator norm |/g||o, by

lgllop = sup I£gllzmo + 1(£9)oq,1)]
! f%o ||f||BMO + |fQ(071)|

For a function ¢ : R™ x (0,00) — (0, 00), let

£ :
BMO, = Sup
¢ Q(z,r)€Q (b(.]?,?“)

][ |f(y) - fQ(a:,r)| dy~
The following result is a basic result that will be used in this paper:
Theorem 5.7 (Nakai and Yabuta [157]). Let

1

= , z€R" r>0.
log(r +1/r + |z|)

o(z,r)
Then g € PWM(BMO(R")) if and only if ||g|lL~ + ||gllBMmO,, < 00. Moreover,

lgllop ~ llgllze + llgllBMmO, -

For example,

(5.3) g1(x) :=sin (XB(O,I/e) (z)log log(|:17|71)),
and
(5.4) g2(z) = sin (xp(0,¢)(x) log log |z|)

are pointwise multipliers on BMO(R"™). For the example (5.3), see Janson [81] (1976) and
Stegenga [212] (1976). For the example (5.4), see Nakai and Yabuta [157] (1985).

6 Banach function spaces Lebesgue spaces with variable exponents were hard to han-
dle. Despite a concrete expression as we shall give in Definition 8.1 below, the effective
techniques had been scarce until the advent of the paper by Diening [36]. Looking back
on the proof and the history, we are led to a generalized setting. Banach function spaces
generalize many other function spaces including Lebesgue spaces with variable exponents.

In this section we outline the definition of Banach function spaces and the Fatou lemma.
For further information we refer to Bennett and Sharpley [10].

Let L°(2) be the set of all complex-valued measurable functions on €2 as before.
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Definition 6.1. A linear space X C L°((2) is said to be a Banach function space if X is
equipped with a functional || - ||x : L°(Q) — [0, o0] enjoying the following properties:
Let f, g, f; € L°(Q) (j =1,2,...) and A € C.

(1) f € X holds if and only if || f||x < .

(2) (Norm property):

(A1) (Positivity): ||f|lx > 0.

(A2) (Strict positivity) || f]lx = 0 if and only if f =0 a.e..
(B) (Homogeneity): [[Af]lx = [Al- [[f]lx-
(C) (Triangle inequality): |[f + gllx < [If]lx + llgllx-

(3) (Symmetry): [|f]lx = [[1f]llx-
(4) (Lattice property): If 0 < g < f a.e., then |lg||lx < ||f|lx-

(5) (Fatou property): If 0 < fi < fo <--- and lim f; = f, then lim || f;||x = | fllx.
j—o0 j—o0

(6) For all measurable sets F with |F| < oo, we have ||xr||x < oo.
(7) For all measurable sets F' with |F| < oo, there exists a constant Cp > 0 such that

/F @)l dz < Cr [1fllx.

Example 6.1. Both the usual Lebesgue spaces LP()) with constant exponent 1 < p < oo
and the Lebesgue spaces LP()(Q) with variable exponents p(-) : @ — [1,00] are Banach
function spaces (see Theorems 3.3 and 8.3).

In this generalized setting, we can formulate an inequality of Fatou type as follows:

Lemma 6.1 (The Fatou lemma). Let X be a Banach function space and f; € X (j =
1,2,...). If f; converges to a function f a.e. on Q and liminf; .. ||f;]|x < oo, then we
have f € X and || f||x < liminf; .o || f;]x-

Proof. If we put hy(z) :=inf,,>; | fm(x)] ({ =1,2,...), then we have
0§h1§h2§§h1§h1+1§~>|f| a.e. Q.
Thus by virtue of the Fatou property, we obtain || f||x = lim;_ |||l x. Note that by < |fp,]

a.e. if m > [. Hence by the lattice property we get |[lyllx < [|fmllx, that is ||y]x <
inf,,>; || fm||x. Therefore, we have

Il < i (i Ul ) = mint il < o
Thus, the proof is complete. O

Remark 6.1. In the proof of Lemma 8.2 we have used the Fatou lemma with X = L*({p(z) <
00}), L®(Qso).
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7 Density Let E be a subspace of L .(R™) equipped with a norm or quasi-norm | - || .
[e%

Let Ej be the space of all functions f € E such that 3
z
o f

—— € E whenever |a| < k. Then the space Ej is a normed space or a quasi-normed space

ox®
= °f _
||fHEk = E7 <(9.’130_f>

with
la|<k
We invoke the following criteria for a density result.

= exist in the weak sense and

o°f

ozx®

Theorem 7.1 (Nakai, Tomita and Yabuta [156] (2004)). Let k be a non-negative integer
and let E enjoy the following properties:

(i) The characteristic functions of all balls in R™ are in E.
(ii) Ifg € E and |f(x)] < |g(z)| a.e., then f € E.

(iii) gfg € E), |fi(z)| <lg(x)| a.e. (=1,2,...) and f;(x) — 0 (j — o0) a.e., then f; — 0

If the Hardy-Littlewood mazimal operator M is bounded on E, then Cg5,, (R") is dense in
Ey.

Let £ = LP(R™) or E = LP(R") with w € A,. Then E satisfies the assumption in
Theorem 7.1, if 1 < p < co. Moreover, for p = 1, the same conclusion still holds; see [156,
Theorem 1.1].

Part 11
Lebesgue spaces with variable
exponents

Let Q C R™. We recall that L?(€2) is the set of all measurable functions for which the norm

I£1er = ([ f(x)l”dx>;

is finite. Here and below we consider Lebesgue spaces with variable exponent, which is the
heart of this paper. We are placing ourselves in the setting where the value of p above varies
according to the position of = € ). The simplest case is as follows: Suppose we are given a
measurable partition Q = Q; U Qs of . Consider the norm || f||z given by

1£llz = ( / 1@ dx)”ll i ( / 1@ dx) =

p(-) == pixa, + P2xas,,

So, if we set

then we are led to the space LP()(Q2). What happens if the measurable function p(-) assumes
infinitely many different values ? The answer can be given by way of modulars.
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Lebesgue spaces with variable exponents have been studied intensively for these two
decades right after some basic properties were established by Kovacik and Rékosnik [101].
We refer to surveys [63, 66, 121, 189] and a book [40] for recent developments. In this part
we state and recall some known basic properties and their proofs.

The set Q@ C R™ is measurable and satisfies |2 > 0 throughout this part. In this part,
by “a variable exponent”, we mean a measurable function p(-) : @ — [1,00]. The symbol
“(-)” emphasizes that the function p does not always mean a constant exponent p € [1, oo].

8 Elementary properties Given a variable exponent p(-), we define the following:
(a) p— :=essinfyeqp(z) =sup{a : p(x) > a a.e. x € Q}.
) P4 =esssup,cqp(x) =inf{a : p(z) <aae xeQ}.
) Qo i={r€Q: 1<p(x)<oo}=p (1 00))

d) Q={zeQ:pla)=1}=p~'(1).
)
)

(€) Qoo :={z €Q : p(x) =0} =p~ ().
(f) the conjugate exponent p’(-):
00 (x € ),
(@)= e (xe ),
1 (x € Qx),

namely, p(lT) + ﬁ = 1 always holds for a.e. € Q. In particular, if p(-) equals to

a constant p, then of course p'(-) = p’ is the usual conjugate exponent. By no means
the function p’(-) stands for the derivative of p(-).

We define variable Lebesgue spaces in a modern fashion. We compare the definition we
shall give here with the one by Nakano [159] later.

Definition 8.1. Let L°() be the set of all complex-valued measurable functions defined
on 2 C R™. Given a measurable function p(-) : € — [1,00], define the Lebesgue space
LP0)(Q) with variable exponents by;

LPOQ) == {f € L°(Q) : pp(f/)\) < oo for some A > 0},

where

polf) = /Q o H@F s £ o

Moreover, define
[ fllLeer ) = 1nf {A >0 p,(f/A) < 1}.
We sometimes use an equivalent norm to || f||,»¢) (), see Remark 8.2.

Remark 8.1. An arithmetic shows

LPO(Q) = LP(Q)  and £l o> ) = [1flLro (@),

if p(-) equals to a constant py € [1, c0].

We will prove that p,(-) is a modular and that || - || »() (o) is a norm in the above. The
modular was first defined by Nakano [158] on vector lattices. For other definitions, see
Musielak and Orlicz [138] and Maligranda [116]. We adopt a terminology in [40].
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Definition 8.2. A functional p : LY(2) — [0, co] is said to be a semimodular if the following
conditions are fulfilled:

(a) p(0) = 0.
(b) For all f € LY(2) and X\ € C with || = 1, we have p(Af) = p(f).

(c) p is convex, namely, we have that, for all f,g € L°(R") and all t € [0, 1],
p(tf+ (1 =1)g) <tp(f) + (1 —1)p(g).
(d) For every f € L°(R™) such that p(Af) < oo for any A € [0,1), we have that

Jim p(Af) = p(f)-

(e) p(Af) =0 for all A > 0 implies f = 0.

Note that, if 0 < s < t < oo, then p(sf) < p(tf) by the properties (a) and (c). We call the
property (d) the left-continuity, while p,(f) is allowed to assume infinity. A semimodular
is called a modular if

(f) p(f) =0 implies f = 0.
A semimodular p is called continuous if

(g) for every f € L°(Q) such that p(f) < oo, the mapping A € [0,00) — p(Af) € [0, 0] is
continuous on [0, co).

Since [0, 00) satisfies the first axiom of countability, we can rephrase (g) as follows; if
{152, is a convergent positive sequence and f € L°(Q), then

i pif) = (fim At )

As is pointed out in [23, Theorem 1.4], the notions of modular and semimodular are different.
About the above notions and the Lebesgue spaces with variable exponents, we have the
following:

Theorem 8.1. Let p(-) : Q — [1,00] be a variable exponent. Then p,(-) is a modular. If p(-)
additionally satisfies py 1= esssup e\, P(T) < 00, then py(-) is a continuous modular.

Proof. We can easily check conditions (a), (b), (¢) and (f). We shall prove that (c), (d) and
(g) are also true.
Using Lemma, 2.2, we obtain that, for all f, g € LP)(Q) and all ¢ € [0, 1],

pp(tf +(1—1)g)

= [ @)+ (= 0g@) de [ + (1= Oglecon
{p(z)<oo}

IN

/{ ey @I+ (1= Dlg@P ) do L) + (L= Ol
p(xr)<oo
= tpp(f) + (1 - t) Pp(g)a

namely, (c) is true.
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Next we check the left-continuity (d). We consider any positive increasing sequence
{A;}32, which converges to 1. Then we see that

M f (@)W < Paf@)P <o )P T @) ae. 2 € Q) Qo

Hence by the monotone convergence theorem we obtain

Jj—oo

lim p,(A;f) = lim {/ I\ f ()P da + ||)\jf||L°°(Qoo)} = pp(f).
Jee {p(z)<oo}

This implies (d).
If we additionally suppose that p; = esssup,co\q. p(z) < oo and take a positive
sequence {\;}52; which converges to A, then letting

co = sup |\;|P- +sup|)\j\75+,
jJEN JEN

we have the estimate
AFOPE < (sup e ) 170 < ol )12
€

for a.e. © € Q\ Q. Hence, by the argument similar to above using the Lebesgue dominated
convergence theorem, we get (g). O

Lemma 8.2. Assume that f € L°(Q) satisfies 0 < || f|| 1o () < 0.

N S
(1) pp <|f|Lp(v>(m> =t

(2) If Py = esssup,cqrq.. P(T) < oo, then p ( ) =1 holds.

f
Hf”Lp(-)(Q)

Proof. Suppose 0 < ||fll1sc) ) < oo. We first prove (1). Take a decreasing sequence
{77352, which converges to [|f||zr() (o). Using the left-continuity of the modular p, or
Lemma 6.1 and the definition of the modular p,, we obtain

f . ( f )
pp| 7 | =limp, [ — ) <1
P <||f||LP(‘)(Q) jmoa ! Vi
Thus, (1) is proved.

Next we suppose esssup, e\, P(7) < 0o and let us prove (2). Define the function

c=n(§) 0<r<w)

Observe that ( is strictly decreasing by the definition p,. The result (1) and the Lebesgue
dominated convergence theorem give us lim;_. ((t) = 0 and lim;_o((t) = co. Further-
more, by virtue of Theorem 8.1, we conclude ( is continuous. Hence there exists a unique
constant 0 < A < oo such that

(s.1) cw=p (5) =1

By the definition of the norm

(8.2) 1 fllLecr ) = A
If we combine (8.1) and (8.2), then we obtain (2). O
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Theorem 8.3. Let p(-) : Q — [1,00] be a variable exponent. Then | - || o) (o) is a norm.

This norm is referred to as the Luxemberg-Nakano norm after L. Maligranda called so.
Note that an argument used in Theorem 3.1 no longer works because of “inf” in the
definition of LP()(R™).

Proof. The three conditions
() [1fllzeer @) =0,
(ii) [[fllre) (o) = 0 holds if and only if f = 0 a.e. holds,
(iif) HafllLP(')(Q) = |af - Hf”LP(')(Q)
for all f € Lp(')(Q) and all a« € C are clearly true. We have only to check the triangle
inequality:
() I +glleer @) < o) + I9llLro ) for all f, g € LPO(9Q).

We may assume || f||p»c)(q) > 0 and [[g||ze¢) (@) > 0 without loss of generality. Otherwise
we have f =0 or g =0 a.e.. We denote the normalized functions by

! and G := g

F=— I —
£l o) @) 9/l rer (@)

By virtue of the convexity of the modular and Lemma 8.2(1), we have that for all 0 <t <1,
pp(tF + (1 = 1)G) < tpp(F) + (1 = t)pp(G) < 1.

. L 171 o) (o .
Taking t := [EiPRyme F pmp we obtain
f+yg
p =p,(tF+ (1 -1)G) < 1.
P (Hf”LP(')(Q) + 191l v (@) P
This implies that the triangle inequality (iv) is true. O

Lemma 8.4. Let p(+) : Q — [1,00| be a variable exponent and f € L°(€2).

() I [ fllprer) < 1, then we have pp(f) < || fllLeer ) < 1.
(2) Conversely if pp(f) <1, then || fllLrc) () < 1 holds.

(3) Assume in addition that 1 < py = ess.sup,cq\o. P(z) < 0o and that py(f) < 1
holds. Then || f|| Loy < pp(f)1/P+ < 1.

Proof. The definition of || f||»¢)(q) directly shows (2). We shall prove (3) in Theorem 10.1.

It remains to prove (1) for || f[| »¢)(q) > 0. Lemma 8.2 (1) implies that p,, <|f|f()> <L
r() (@)

Since p(z) > 1 and || f|| Lec) () < 1 we get

/{p(1)<00}

1
> / |f(@)|P® dz + || fll L) | -
1 flee @) \Jip(e)<oo}

namely, we have ||| vy = pp(f)-

p(z)

@ [

£l 2ro (@)

_fF
£l Lro @)

—_
v

L>(Qo0)
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Remark 8.2. Let
o) = [1H@P do and 171D g, =it {3> 016070 <1}

where it is understood that
rw:{o, 0<r<l1,

oo, r>1.

(0

Then p( is a semimodular and ||f||Lp( (o) I8 & norm. If p; < oo, then pp ) clearly coincides

(0)

with p, and it is continuous. Theorems 8.1 and 8.3 are valid for p, ’ and || f ”(Lop)(» (@) 8 well

as Lemmas 8.2 and 8.4, if we replace p; with p;. Moreover, ||f||Lp)(,)(Q) is an equivalent

norm to || f[| s (q) on the space LP0)(Q). Namely, we have the equivalence

0
(8.3) 11y < 1Flzoor ) < 201500 -

Actually, if A > [[fllzrr @) = [flle= @) + [fllre @\0u)> then [[fllLe(o.) < A. Hence,
in this case (|f(z)]/A\)> = 0 for a.e. x € Q. Hence ||f||(L()2(,)(Q) < A Conversely, if

||f||Lp( ) <A then (If(@)]/N)>° =0 for a.e. x € o and

p(z)
[ (M) g,
O\ Qe A
Hence, since p_ > 1, we have

p(z) p(z)
/ (If(w)> dHHf S/ (lf(w)l) dm+1Hf
Q\Qoo 2)\ QA Lo (Qoo) Q\Qoo A 21)7 2 )\

That is, || f|lzr¢) (@) < 2A. Therefore, we have (8 3).

In Part IIT and after, we use the norm ||f||Lp() Q) 38 £l e (0)-

L2 (Qe0)

9 Holder’s inequality and the associate space The aim of this section is to prove
results related to duality. Recall that, for a measurable function p(-) : Q& — [1,00], the
generalized Lebesgue space LP() (Q) with variable exponents is defined by

LPO(Q) = {f : pp(f/N) < oo for some A > 0},

where
pul)i= | @)+ |l rer-ptor—oo

{z€Q:p(z)<oco}
Moreover,

1fll oty = Inf A > 02 p,(F/A) < 1}

For p(+) :  — [1,00], we defined p/'(-) : Q — [1,00] as
1 1
1:M+m (z € R™).

We use Lemma 2.1 to prove the following theorem:
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Theorem 9.1 (Generalized Holder’s inequality). Let p(-) : Q — [1,00] be a variable expo-
nent. Then, for all f € LP)(Q) and all g € LP )(Q),

(9.1) [ @@ de < ryl oo lale e
where
1 1
9.2 rpi=14+——-—.
62 ? p— P+
Remark 9.1. If we use the norm || - ||(LO,,)(,)(Q) instead of || - || L») (), then we have the same

inequality as (9.1). That is,

0 0
/Q F@)g@)] de < A1 @ I9l w0
Proof of Theorem 9.1. Recall that

W ={reQ:px)=1}={zeQ:p(r) =},
QW={reQ:1<pla)<oc}={re:1<p(z)< oo},
Do ={2€Q:plx)=00} ={xeQ:p(x)=1}.

We may assume that || f|[zr0 ) = 9]l 0o ) = 1-
If Qg # 0, then, by Lemma 2.1 we have

f(2)g(x)] < |f () [P n lg(@) P ™) _ |f ()P n Ig(r)llp'(x) for ae. 2 € Q.

p(x) p'(z) p- P

If Q; # 0, then p_ =1, p/, = 00 and

|f ()P

[f(@)g(@)] < [f @)llgllLe @) < [f(@)] =

for a.e. x € Q.

If Qu # 0, then p, = o0, p” =1 and

(2)
F@@)] < 1=y - 19| < lg(a)] = 9“2' for a.c. 7 € Onp.

Therefore, we have
p(z) P’ (z) 1 1
/If(x)g(x)ldxé/ Mda:+/ wclxg—Jrf:rp_
Q QoU p— QoUQso p_ p— p_

This shows the conclusion. O

It is well known that LP(€) (1 < p < oo) has L¥' (Q) as its dual. This is not the case
when p = 0o. The notion of associated spaces is close to dual spaces, which is used in the
theory of function spaces. It is sometimes referred to as the Koéthe dual. In the case of
Lebesgue spaces Lp(')(R”) the definition is given as follows:



212 MiTsuo Izuki, EiicHI NAKAT AND YOSHIHIRO SAWANO

Definition 9.1. Let p(-) : Q — [1,00] be a variable exponent. The associate space of
Lr0)(Q) and its norm are defined as follows:

LroQ)y = {fer’Q ”fHLP()(Q < oo},

Il = Sup{/ lf(x)g(z)dz : [|g]|Lrer o) < 1}.

Remark 9.2. The condition [|g||.rc) (o) < 1 is equivalent to py(g) < 1 by virtue of Lemma
8.4.

Theorem 9.2. Let p(-) : Q — [1,00] be a variable exponent. Then LPO)(Q) = LF'O)(Q)
with norm equivalence

1
(9:3) 3l o < flleeo @y < 7ol fllrer )
where 1, is the constant defined in (9.2).

See [31] for the weighted case.

Remark 9.3. Let f be a measurable function. Define

0
1%y =50 { [ 1£@ato)] o+ gl < 1}

Then we have

(9.4) £l L)y < ||f||Lp< )y S <2[|fll ey s
from (8.3).

Lemma 9.3. Let p(-) : Q@ — [1,00] be a variable exponent. Then every simple function s is
in LPC)(Q) and

(9-5) po(s/lsllLee (@) = 1.

It is worth noting that (9.5) holds even when p; = [[xo\o. P(*)|z>= is not finite, which
we assumed in Lemma 8.2(2).

Proof. Assume for the time being that s has an expression; s := cxg, where E C €,
0 < |E| < oo and ¢ > 0. and Then s is in LP()(Q), since p,(s/c) < |E|+ 1 < co. From the
properties of modular it follows that A — p,(As) is continuous and strictly increasing on
some interval [0, Ag) with limy_,», pp(As) = oo, where Ag € (0, 00]. Since limy_.o pp(As) = 0,
we have (9.5). For general s, we have the same conclusion, since the finite sum of continuous
and strictly increasing functions is also continuous and strictly increasing. O

See [117, Lemma 3] for a similar technique.

Proof of Theorem 9.2. Let f € Lp/(')(Q). Then the second inequality in (9.3) holds by the
definition of the norm || - || s () and generalized Holder’s inequality Theorem 9.1. That

is, LPO)(Q) D L' O)(Q).
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Conversely, let f € LP1)(Q)". We may assume that f # 0. Take a sequence {f; }32, of
simple functions such that f; # 0 and that 0 < f; < fo <--- and f; — |f| a.e. as j — oo.

Then each f; is in LP'()(Q). We normalize f; set fj = fi/llfill Lo ) (q)- We also abbreviate;

aj = || fill L ({weap @)=1}):

b= [ Fi@)P @ da,
{zeQ:1<p’(z)<o0}

¢ = | Fill L (taequp (2)=0c});
Uj={zeQ:p(z) =00, fj(z)=c;}.
Then a; +b; + c¢; =1 by Lemma 9.3.

Case 1: a; > 1/3 Let 9j = X{zeQp/(z)=1} = X{z€Q:p(z)=oc0}" Then pp(gj) = 1, that is,
lgll s> =1, and

155l o ey

Wl =

, Wl 2 [ |F@g(e)lde = a2
£l o ) Q

Case 2: b; > 1/3. Let g; := |Jgj(CE)\Pl(w)71X{meQ:1<p/(m)<oc}. Then p,(g;) = b; < 1, that is,
lgjllLeer <1, and

I £5ll e oy

Wl =

} Wl = [ 1i@lgs@)lde =b; >
£l Lor e ) Q

Case 3: ¢; > 1/3. Let g; := |U;|"*xu,. Then py(g;) = 1, that is, [|g;||z») = 1, and

Il f5ll oo ) 1 P 1
TR sy 2 [ |Fi()gs(e)ldo = o5 = 3.
||fJ||LP’(-)(Q) Q 3
This shows 1
ngj”LP’(-)(Q) <[ filleror @y < 1 llror @y
As j — oo, we have the first inequality in (9.3) and LP0)(Q)' ¢ LP'O)(Q). O

10 Norm convergence, modular convergence and convergence in measure Here
we investigate the relations between several types of convergences.

10.1 Elementary results The following theorem is recorded as [23, Theorem 1.3]. When
py < 00, this goes back to [49, 101]. Let Q be a measurable set in R™ again.

Theorem 10.1. Let p(-) : Q — [1,00] be a variable exponent and f; € LPO(Q) (j =
1,2,3,...).

(1) Iflimy—oo || f5]l Lrer (@) = 0, then lim; . py(fj) = 0.
(2) Assume that |2\ Q| > 0. The following two conditions (A) and (B) are equivalent:

(A) esssup,eq\q, P(x) < o0.
(B) Iflim; o0 pp(f;) = 0, then lim;_o || f5ll o) (q) = 0.
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Proof. (1) Suppose lim; o || fillLe(r () = 0 and fix 0 < & < 1 arbitrarily. We can take
j € N so large that [|fj|r»c)) < & By virtue of Lemma 8.4 (1) we obtain p,(f;) <
[ fillLrcr (o) < & This implies that lim; o p,(f;) = 0 is true.

(2) Assume that (A) holds and that lim;_ . pp(f;) = 0. Fix 0 < & < 1 arbitrarily.
Below we write p; = esssup,co\o. P(z) and take j € N so large that p,(f;) < eP+. Since
pp(f;) <1, we have

fi

(o) = Lo el o
P\ pp(f5)/ P+ . | Pp(fi) /P pp(fi)1/P+
o) [ o @ 2t 57 o

p(z)

fi(z)

dx—I—‘

L>* ()

IN

IN

o1 ( [ @ d ||fj||mgm>>
O\ Qo
= 1,
that is,
£l Lo ) < pp(f5)/PF <e.
Therefore (B) is true.

Meanwhile, if esssup,co\q. p(¥) = oo, then we can take a family of measurable sets
{G;}32, such that the following are satisfied:

(101) Gj+1 - Gj - Q\Qoo, |GJ| < oo for all j € N,
(10.2) lim |G| =0,
j—00
(10.3) p(x) > jif € G,
(10.4) sup{j € N : |G; \ Gj41]| > 0} = o0.

Now we fix 0 < A < 1 and define

wj = |G; \ Gjtal,
0 )\jwj_l (w; > 0),
TT\o (wj =0),
. 1/p()
f@) =" aixene. (@) (z € Q).
j=1

We use

plh)= [ 1@ e
N\
By inserting the definition of f to the equality we have
(10.5) pp(f) = / Z ajXG,\G 4, (T) dr = Zajwj < Z)\j < oo.
N0 =1 j=1 j=1
Meanwhile, note that

(10.6) w(BE)= [

J

p(x)

f(z)

i\ dzr
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for every j € N, and hence, by (10.1),

fXG,) -
(521
g A kz GK\Grt1

=J

/(=)

p(z) o
dx = / ag)A"P®) g,
kgj Gi\Gr+1

Recall that {G}52, satisfies (10.1), (10.2), (10.3) and (10.4). Thus, we obtain

Pp <)\J> > Z/ arN"Fdx = Zwkakx\fk = Z wrag\ ",
k=j Y Gr\Gri1 k—j k=3, wi >0

The most right-hand side is not finite;
Pp (JIXG’) > Z wkak)fk:jj{kEN k>34, wp >0} = o0,
k):j, wg>0

that is,

(10.7) x|l @) = A > 0.

Meanwhile, by virtue of (10.2), (10.5) and the Lebesgue dominated convergence theorem,
we obtain

108)  lim pylrxe) = Jim [ (7@ ds = [ (£ i o)) do =0
j—o0 i—o Jg, Q j—oo

(10.7) and (10.8) show that (B) is false. O
Remark 10.1. A similar construction is used to prove that

{f € LQ) : pylf) < o0} = {f € L°Q) : pp(f/A) < oo for some A > 0},
if and only if p; < oo, see [49, Theorem 1.1].

Theorem 10.2. If a sequence {f;}32, C LPO)(Q) converges to 0 in LPC)(Q), then it con-
verges to 0 in the sense of the Lebesque measure, namely,

(10.9) Jim [{z € 2+ |f;(@)] > e} = 0

for all e > 0.

Proof. We may assume that p(z) is finite for all z € R". Indeed, on Qw, {f;j}72; is
convergent to 0 in L*°(R™), which is stronger than (10.9).
Assume that p(z) is finite for all x € R™. Then we have, if || f;[| o)) < €,

p(z) )
dx < pp <fj) <

e

fi(z)

€

L

€

_ illzeo
Lr() €

o € 2\ Qe © [£(2)] > €} s/

O\ Qoo

Letting 7 — oo, we obtain

Tim [z € 2\ Qa5 |f3(@)] > )] = 0.

Hence it follows that f; converges to 0 in the sense of the Lebesgue measure. O
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See [23, Example 1.7] for an example showing that convergence in measure does not
guarantee the convergence in modular.

As an example of p(-) satisfying the requirement of Theorem 10.2, we can list

2 (z¢B(0,1)),

p(x) =2+ 00 Xpo1)(r) = {Oo (z € B(0,1)).

Here we assumed B(0,1) C €.
Remark that Sharapudinov considered the norm convergence in [208].

10.2 Nakano’s results on convergence of functions The definition of Lebesgue
spaces with variable exponent is clearly written in the book of Nakano [159, Section 89].
Nakano placed himself in the setting of the compact interval [0,1] to define the function
spaces. Let p(+) : [0,1] — [1,00] be a measurable function. Unlike Definition 8.1, Nakano
used the following modular;

(10.10) PN(f) = / ﬁuwm d,

where it will be understood that

1 0, 0<r<1,
oo, r>1.

Let p, and p]([,o) be as in Definition 8.1 and Remark 8.2 with Q = [0, 1], respectively. That
is,

pih)= | SO dt 4+ £ got=oe):
[0,1\{p(t)=00}
and

1
O)(fy — p(t) g
Py’ (f) /O |f ()| dt,

where it is understood that

0, 0<r<i,
(10.11) ro = { R
oo, 1> 1.
First we give an example to show the difference between p,, p]([,o) and p;N). It can happen

that pi™) () = 00 > p,(f).

Example 10.1. For each n € N, we let a,, solve the equation

an™ 1
an > 0, - =

- nn+1) nyn’
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Then, if we let p(t) := [t~!],¢ € [0,1], then

(ZanX((nJrl) 1n-1)( )

n=1

00 p(t)
(Z X((nt1)-1n-1)(t )> dt

/ ap™ dt < oo
n+1)—1,n-1)

p(t)
(Z anX((n+1) 1n— 1)( )) dt

na," dt = 0o
((n+1)—1,n-1)

(N) (ZanX((n+l) 1n- 1) )

n=1

L
-3
I st
-3

However, we can show that Nakano’s LP()([0,1]) coincides with the one taken up in the
present paper. Actually, we have the following:

Proposition 10.3. Let p(-) : [0,1] — [1,00] be a variable exponent. For a measurable

function f:[0,1] — C, let
p(t)
O 4 < 1} ,

1
||f||Lp() —1nf{/\>0:pl(,o)(f/)\) < 1} :inf{)\>0:/o

1 g f(t) p(t)
. (N — .
17157, _mf{A>o.p§, (f/N) < 1} _mf{)\>0./0 p(t)‘A dt<15p.
Then
N N
(10.12) 17152 < A1 < 217150
Proof. Using the inequality
(10.13) 1 <p(t) < 2°®),
we have ) 1
—— | f(HIP® < HIP® < 19 7(#)|P®
SIOPO <O < IO,
that is,
(10.14) PO < o (f) < PV (25).
This shows (10.12). O

From (8.3) and (10.12) we have the following;:

Corollary 10.4. Let p(-) : [0,1] — [1,00] be a variable exponent. Then

N 0 0 N
LAY < A1 < Ao < 2019 < 4l 7189,

for f € L°(%).

Next we show the equivalence of the modular convergence ([159, Section 78]) with respect

to pp, p (0) and p(N)
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Proposition 10.5. Let {f;}32, be a sequence in L°([0,1]), and let p(-) : [0,1] — [1,00] be
a variable exponent. Then the following are equivalent:

(i) lim pp(&f;) =0 for every & >0,
j—00

(ii) lim pl(jo) (&f;) =0 for every £ > 0,
j—o0

(iii) Jlggo png) (&f;) =0 for every £ > 0.

Proof. From the inequalities (10.14) we have the equivalence between (ii) and (iii). Assume
that (i) holds, that is,

lim p,(¢f;) = lim £ dt + T (| f; ] Lo (gp(e=ocy) = 0
Jee I7700 J10,1\{p(t)=00} Jmee

for every £ > 0. Then, for every £ > 0, |l 1o ({p(t)=oc}) < 1 if j is large enough. In

this case pz()O)(gf]) = f[O,l]\{p(t):OO} |§f](t)|p(t) dt < pp(ffj) This shows that (11) holds.

Conversely, assume that (ii) holds. Then, for every k € N, there exists jo € N such that

pz(;o)(kfj> < 00 (j > ]O) In this case ||kfjHLoo({p(t):00}) < 1, that is, ||fj||Loc({p(t):Oo}) <
1/k. This shows that, for every & > 0,

(10.15) Jim €551 Lo (pity=oep) = 0.

Moreover,

(10.16) lim £ P dt < lim pD(Ef;) = 0.
700 S0 1)\ (p(t) =00} 7

(10.15) and (10.16) show that (i) holds. O
Let p be a modular on L°([0,1]), and let
X :={f € L%0,1]) : p(£f) < oo for some & > 0}.

One says that the modulared space (X, p) is modular complete, if any sequence {f;}32; of
X satisfying
lim p(&(f; — fx)) =0 for every £ >0

J,k—o00

has a unique element f satisfying
lim p(&§(f; — f)) = 0 for every £ > 0.
j—00

See [159, p. 205].
Nakano proved in his book the modular completeness of LP()([—1,1]).

Theorem 10.6 ([159, Section 89, Theorem 1]). Let p(-) : [0,1] — [1,00] be a measurable
function. Then LPC)([—1,1]) is modular complete.

An element f € X is said to be finite if p(£f) < oo for all £ > 0, and X is said to be
finite if every element of X is finite; see [159, Section 86]. From (10.14) it follows that f is
finite with respect to pz(,o) if and only if f is finite with respect to pg,N). Note that, if p = oo
and f =1, then f is finite with respect to p,, but not finite with respect to péo) or p;N).
Nakano proved that Nakano’s LP(*)([—1,1]) space is finite if and only if p; < occ.
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Theorem 10.7 ([159, Section 89, Theorem 2]). Nakano’s LP)([0,1]) space equipped with

the modular p]()N) is finite if and only if p4 < oo.

By assuming p; = oo, Nakano constructed a function by a method akin to Theorem 10.1.
More can be said for the case py < oo.

Theorem 10.8 ([159, Section 89, Theorem 3]). Let p; < co. Nakano’s LPC)([0,1]) space

equipped with the modular p,(,N) 18 uniformly finite and uniformly simple in the following

senses, respectively;
sup{pp Y (€f) = pM(F) <1} < oo and  inf{p(M(€f) = pV(f) 2 1} > 0,
for every € > 0.

The first inequality is the uniformly finiteness [159, p. 224] and the second inequality

is the uniformly simpleness [159, p. 221]. The above two theorems are valid for pl(jo)

by (10.14). In [159, Section 89, Theorems 4 and 5], the converse is proved; if Nakano’s
L) ([0,1]) space is uniformly finite or uniformly simple, then p, < oo. Next, Nakano
defined the finite subspace of all finite elements in Nakano’s LP()([0, 1]) space and Nakano
showed the finiteness and the modular completeness in [159, Section 89, Theorem 6].

The Lebesgue convergence theorem can be carried over to Nakano’s LP(1%1) ([0, 1]) space.

Theorem 10.9. [159, Section 89, Theorem 7] Let {f;}32, belong to Nakano’s L0 ([0,1])

space equipped with the modular p,(DN). Assume that {f;}32, converges a.e. to 0 and that

there exists a finite element fo in Nakano’s LP()([0,1]) space such that |f;| < fo. Then
N .
151y — 0 as j — oo.

Nakano investigated duality (see Section 12.2 below) in [159, Section 89]. In his book
Nakano’s LP(") ([0,1]) space shows up as another context; he investigated the product space
[159, Section 93, Theorem 4].

11 Completeness We go back to the initial setting, where we are given a measurable
set Q with |Q| > 0. Next, we show that LP()(Q) is a complete space.

Theorem 11.1. Let p(-) : Q — [1,00] be a measurable function. Then the norm || || Loc) g
is complete, that is, LP)(Q) is a Banach space.

Proof. Take a Cauchy sequence {f;}32; in LPC)(Q) arbitrarily. We prove that {52
converges to a function in LP() (). We can take a subsequence {f;, }32, C {f; 32 so that

1 fir = Filloor @) < 27

holds for every k € N. Thus Lemma 8.4 implies that

pp(fjkﬂ - fjk) < 27]6'

Now we define

N
gn(@) = Y N fiun (@) = fi@)] (N eNzeq)
k=1

<

—
8

~—
Il

Z |fjk+1($) - f]k($)| (1‘ € Q).
k=1
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Note that
N N
lgnllLre ) < Z [ finer = ficllzeor @) < ZTk <1
k=1

k=1

in particular, p,(gn) < 1 holds. By virtue of the Lebesgue monotone convergence theorem
we get
/ g(z)P®) de = lim gn (x)P@ dx < 1.
Q\Q N—=oo Jo\Qe

Hence we see that gP() € L1(Q\ Q) and that g < oo a.e. Q\ Quo. If € Qo then we get

o

)
(11.1) 9(@) <Y Nfier = filli=oy <Y 27 = 1.
k=1 k=1

Namely we have g € L>°(Qq), that is, g € LP()(Q). We also see that the series

(e o)
Z f]k+1 f]k
k=1

converges absolutely a.e. ). Now we additionally define

f(‘T) = f]l )+ Z fjk+1 f]k( )) = klggo fjk(‘T)?

Fle) = [f(x )\+9()
for z € Q. We see that f, f;, € LP()(Q) and that F € LPO(Q) for all [ € N, since
Lfl, | f5,] < F ae. Q. For m > 1,

I fim = Fillror @) < Z [ finir = fiellror @) < 27
k=1

.

By the Fatou lemma, we deduce

Hence, it follows that
p(z)
dr < 1.

fin () = fii (2)

o—I+1

/ (@) = f@) | / foing | £ @) = S @)
N\ 2—l+1 N\ M — 00 2—l+1
it / fiul®) = £ @[
T om=eo Jova, 2-t+1
<1.
As a result, it follows that
(11.2) I(f = fi)xenawllro @) < 270

Hence, we conclude from (11.1) and (11.2) that the Cauchy sequence {f;}52; converges to
fin LPO(Q). O
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12 Duality (The generalized F. Riesz representation theorem) Here we show
that a counterpart to the LP(Q2)-L? (Q) duality is available in the variable setting.

12.1 A fundamental result Let p(-) : & — [1,00] be a variable exponent. The dual
space of LP()(Q) and its norm are given by

POQ)* = {T 1 LPO(Q) — C : T is linear and bounded} ,
”T”LM‘)(Q)* = SUP{|T(U)| : HUHLP(')(Q) < 1}~

It is natural to ask ourselves whether L¥'()(Q) is naturally identified with the dual of
LPO)(Q) when py < oo. Part of the answer is given by the next theorem.

Theorem 12.1. Let p(-) : Q@ — [1,00] be a variable exponent. Given a measurable function
f € LP0)(Q), define the functional Ty by

Ti(u) == /Qf(x)u(a:) dz  (ue LPO(Q)).

Then, the integral defining Tyu converges absolutely. Also, the functional Ty belongs to
LPO)(Q)* and the estimate below holds;

1 1 1
(12.1) 1o < o < (14 = L) Il
In particular LP'O)(Q) ¢ LPO(Q)* is true.
Proof. The generalized Holder inequality gives us

1 1
Te(u)| < 1+—> fllec Ul Lr)
Ty () ( = = ) Wl el

for all u € LP()(Q), namely, the right inequality (12.1) holds. Meanwhile, using the associate
norm (Theorem 9.2), we obtain

1
s < Ul =suwf| [ @) de] + Moo <1} = 1Tl

which prove the left inequality of (12.1). O

When py < 0o, then we can give a positive answer to the above question. Remark that
Theorems 12.1 and 12.2 can be found in [49, 101].

Theorem 12.2. Let p(-) : Q — [1,00) be a variable exponent such that
Py < 0.

Then, for all linear functionals F € LPC)(Q)*, there exists a unique function f € LT’/(‘)(Q)
such that

F(u) = / f@)u(z)de  (ue LPO(Q)).
Q
Moreover, we have the norm estimate;

1 1 1
(12.2) g”fHLP’(')(Q) < N Fllpror @) < (1 + b p+) 11l o (-

In particular LPO)(Q)* C LV O(Q) is true.
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Proof. We will prove this theorem by five steps.

Step 1. We first show the uniqueness of the function f. If there exist two functions
f, f1 € LP"0)(Q) such that

W= [ fapu@do= [ fi@ude e @),

then by virtue of Theorem 12.1 we get

1
§||f = fillrory S N Tf=pllror ) = 1T — T || Leer (@)= = 0,
that is, f = fi.
Step 2. Next construct a function f € LP ()(Q) such that

1 .
(123 3l lom < Pluo@- Pa) = [ f@ueds @e10@).

provided || < oco.
To begin with, we define v(E) := F(xg) for a measurable set £ C Q and then we shall
prove that v is a finite complex measure. By virtue of |E| < || < oo we see that

W(E)| <

If we choose a sequence of disjoint measurable sets {E; } > 1, then we have for each k € N,

k
S ulE) =Y Flxs,) = Flxye, s,).

j=1 j=1
Hence we obtain
%) k
A UB | =2wE)| = [P, s) - Fu, 5)
j=1 j=1
= |[Foug,. )
< HFHLP(')(Q * k1 EJ‘”Lp(')(Q)'

By virtue of the fact that

P (XU 0 B) = > pplxe) =0 (k— o),
Jj=k+1

we get limy oo ||XU§';k+1

B, llLre) @) = 0 by Theorem 10.1 (2) (B). Thus, we have

C8

o0
=2 v(E;
Jj=1

j=1

that is, v is a finite complex measure. Meanwhile, if a measurable set E satisfies |E| = 0,
then xg = 0 a.e. holds. Hence, we have

[W(E)] < [Fllpro - IXEl ro) (@) = 0.
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Namely, v is absolutely continuous with respect to the Lebesgue measure. Therefore, we
can apply the Radon-Nykodym theorem to get a function f € L'() such that

v(E)=F(xg) = /Qf(a:)XE(a:) dx

holds for all measurable sets E. In particular, given a simple function
= ZanEj () (z€R")
J
we obtain

(12.4) F(s) = ZajF(XEj) = Z a; /Q f(@)xE; (z) dr = A f(x)s(z) dx

We shall prove that (12.4) is still true replacing s by any u € LPO)(Q). Take u € LP()(Q)
and k € N arbitrarily, and define ug () := w(x)x{ju/<k}(z). Then we have |u(z)| < k and
the next lemma.

Lemma 12.3. There exists a sequence of simple functions {sh}; such that |s}| < |ug| and
that lim;_, s? = uy, hold for a.e. ).

We postpone the proof of Lemma 12.3 till Step 5. The Lebesgue dominated convergence
theorem implies that lim; . pp(ux — s45) = 0 and that lim;_o [lug — s¥|| o) (@) = 0. Hence
we have

F(uy) = lim F(s; ¥) = lim f()]( x)dz.

J—0o0 J—00

Meanwhile, |fs¥| < k|f| € L'(€2) holds. Thus using the Lebesgue dominated convergence
theorem again we conclude lim; .o [q, f(2)s¥(z) dx = [, f(z)ux(z) dx and that

(12.5) Plug) = /Q F@)un(z) do

Now we consider (12.5) replacing u by |u] - i e LP0)(Q). Since

k(&) = Xgpur <x (@) - [u(@)] % (z € R", f(z) £0).

we have F'(uy) f{luk\<k} |f(2)| - |u(z)| dz. Because F(ug) < || F[|Loc) () |1l Lo (o) holds,
by k — oo we obtain

(12.6) i@

Taking the supremum of (12.6) over u such that [lufs¢) ) < 1, we conclude that
||T|f‘||Lp<> @ < 1E || 70 ()" . Applying Theorem 12.1, we get

)

§||f||Lp'<->(Q) < Il zee @)+
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in particular f € L?'()(€). Moreover we obtain

’F(u) - /Q F@)u(z) d

IN

|F(u) — F(ug)| + ‘F(uk) - /Q flz)u(z)dx

|qum+LLﬂmwamum»m

IN

1 1
%FMMmy+@+p'%”wﬁmw@}u—WMMmy

By virtue of |ug| < |u| and the Lebesgue dominated convergence theorem once again, we
conclude limy_, o pp(u — ux) = 0 and that lim,_ ||u — uk||Lp(.)(Q) = 0. Therefore,

Flu) = /Q F@)u(z) de

is true.
Step 3. We prove (12.3) in the case of |Q] = co. Take a sequence of measurable sets
{2, }5°_; so that

(A) Qp C Qyppgq for all m € N,
(B) 92| < oo for all m € N,
(C) Q=Up=y Om-

By virtue of Step 2., for all m € N, there exists a unique function f,, € Lp/(')(Qm) such
that

(12.7) F(uxa,,) = A fm(@)u(x) de = ; fm(@)xa,, (z)u(z)dx (u€ Lp(')(Q)).

Because f,, is unique, f; = f, a.e. ; if 7 < m. Now if we define

f(@) = fn(z) (z € Qn),
then the function f is well-defined for a.e. Q. By (12.7) we see that

F(uxa,,) :/Q f(z)u(x) de.

Replacing u by % and using [, [f(2)] - [u(z)[dx = [, f(z)- % dx, we have
(WY
0 |f(@)] - [u(z)|dz = F W X | S ”FHLP(')(Q)* UHLP(')(Q)'
Thus, we obtain as m — oo,
1@ @l de < 1Py Tl o

By the same argument as Step 2. with taking the supremum over [lul[zs¢) () < 1, we get

1 "
o) < Il @y f € L7O(Q).
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Meanwhile, we see that

‘mm_éfmm@m

< |F(u) = F(uxa,,)| + ‘F(uxgm) - /Q f(x)u(z)dz

|F(u— uxa,)| + 1 [ 1@ ute)a, () - u(w)) ds

IA

1 1
{0 + (14 2 = ) Ul | = oxa oo

Since ||u — uxq,, |Lr¢) (@) — 0 as m — oo, we have

ﬂmzéfwm@m.

Step 4. We shall complete the proof of the norm estimate (12.2). By the generalized
Holder inequality we get

1

IFw)] = ] [ f@ntae] < (14— L) Wl

for all u € LP) (). Taking the supremum over ull oc) () < 1, we obtain

1 1
Pl < (14 50 = =) oo

Step 5. We prove Lemma 12.3.

(i) In the case of uy > 0, we define for each j € N

2791 —1) if |z| <jand 279(1 — 1) < ug(z) < 2771,
1=1,2,...,j-2,

J if |z| <j and ug(x) > 7,

0 if |z| > j.

k— uy ae. Q.

Then s% satisfies 0 < [s¥| < |uy| and lim;_ o s}

(ii) In the case of u € R, we have
up = max{ug, 0} — max{—ug, 0}, max{ug, 0} >0, max{—ug, 0} > 0.
Thus it suffices to consider (i).
(ili) In the case of uy € C, we have
up = R(ug) + V=13 (ur), R(ux) € R, S(uz) € R.

Hence we have only to prove the case (ii). O
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12.2 Nakano’s contribution of the dual spaces Let p](DN) be the modular given by

(10.10). In [159, Section 89], Nakano considered the dual space of LP()(]0, 1]) assuming that
1 < p(t) < oo for all t € [0,1].

Nakano ([159, Sections 78-80, 84]) called a linear space R a modulared space associated
with a modular p : R — [0, o0, if p satisfies (a)—(e) in Definition 8.2 for R instead of L%((2),
and if,

(h) for any f € R there exists A > 0 such that p(Af) < cc.

Moreover, if p satisfies (f) in Definition 8.2, then Nakano said that R is simple, or that the
modular p of R is simple. A linear functional ¢ on R is said to be modular bounded if

sup{le(f)] = p(f) <1} < oo

Let R be the set of all modular bounded linear functionals on R, and define

plp) = Sl}p{w(f) -p(f)}, peR.

Then R is a modulared space associated with the adjoint modular 5 of p. The space R is
called the modular adjoint space of R. We can consider further the modular adjoint space

R of R. Then R may be considered as a subspace of R by the relation
p(p) =p(p) for pe R and p € R.

If R coincides with the whole %, then Nakano said that R is regular, or that the modular
p of R is regular.
Denote by p/(t) the harmonic conjugate of p(t) as before. For g € LP ()([0,1]), putting

oo(f) = / f(hg(tyde,  f e PO([0.1]),

we see that LP'()([0,1]) is contained in the modular adjoint space of LP()([0,1]). Let
LR(0,1)) = {f € LO([0,1]) : piM (&) < oo for all € > 0}

Nakano proved the following three theorems:

Theorem 12.4 ([159, Section 89, Theorem 8]). If LPC)([0,1]) is simple, that is, if 1 <
p(t) < 00, then the modular adjoint space of L’}(')([O, 1)) coincides with L¥')(]0,1]).

Theorem 12.5 ([159, Section 89, Theorem 9]). The modular adjoint space of LP()([0,1])
coincides with L ()([0,1]) if and only if p, < oo.

Theorem 12.6 ([159, Section 89, Theorem 10]). The space LPC)([0,1]) is regular if and
only if 1 <p_ < py < oo.

Also, Nakano proved
lim © sup{p(€z) : p(z) <1} =0, lim ~inf{p(¢z) : p(z) > 1}
111 — Ssu T . T =V, 11m — 1n T N xr) =~ =
Elof PP 14 > gToof 1Y 1Y

when p_ > 1 [159, Section 89, Theorem 11]. These two properties are referred to as uni-
formly monotone [159, Section 85] and uniformly increasing [159, Section 86], respectively.
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Finally, when 1 < p_ < py < oo, Nakano proved the uniform convexity and the uniform
smoothness [159, Section 89, Theorem 12]. Remark that in Nakano’s book [159], the termi-
nology of uniform evenness is used instead of uniform smoothness. The uniformly convexity
of LPO)([0,1]) with 1 < p_ < py < oo is extended to the space LP()(R™) in [49, Theorem

1.10]. Since Nakano’s LP()([0, 1]) space is a normed space equipped with || - H(L]Z(),), we can
also use terminology of normed spaces. Recall that a normed space (X, || - ||) is uniformly

convex, if for any € > 0 there exists 6 > 0 such that ||z|| <1, |ly|| <1, ||z — y|| > ¢ implies
T+y

” < 1-94. Recall also that a normed space (X, || -||) is uniformly smooth [112], if for

any € > 0, there exists § > 0 such that ||z|| = 1, ||y|| < & implies ||z +y| + ||z —y| < 2+¢|y].
The triple (¢, f,9) = (1,2X[0,1/2), 20X[1/2,1)) With § > 0 disprove that L'([0,1]) is a uni-
formly convex Banach space and the triple (e, f,g) := (1, x[0,1,9(X[0,1/2) = X[1/2,1])) With
4 > 0 disproves L*°(]0,1]) is a uniformly smooth Banach space.

13 Density We shall state and prove basic properties about density. The results in this
section are in [101, (2.47), Theorem 2.11, Corollary 2.12]. See also [49, Theorems 1.5 and
1.6]. As an application of what we have obtained, we consider a density condition. We are
interested in the condition that C22, (Q) is dense in LP) ().

comp

Theorem 13.1. If a variable exponent p(-) : Q@ — [1,00] satisfies

esssup p(x) < 00,
€N Qoo

then the set

G:={g e LPV(Q) : g is essentially bounded} = LP1)(Q) N L>®(Q)
is dense in LP()(Q).
Proof. Take f € LP)(Q) arbitrarily and for each j € N define

Gj = {reQ\ Qs : |z| <j},
f(x) (z € G U, |f(2)] <J),
fi@) = @@ (@G U9, @) > ),
0 (Z‘ ¢ GjUQOO).

Then we see f; € G and that |f;| < min{j, |f|}. Thus, we are in the position of using the
Lebesgue dominated convergence theorem and we obtain

(13.1) Jim pp(f5 = 1) =0,
that is, lim; oo [|f; — fllre) (@) = 0 by virtue of Theorem 10.1 (2) (A). O

If Q@ € R™ is an open set, we define

Coomp() :=={f € C(Q) : supp(f) is compact},

where supp(f) :={x € Q : f(z) #0}.

Theorem 13.2. If a variable exponent p(-) : Q@ — [1,00) satisfies p; < oo, then the
following hold:
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(1) The set C(Q) N LPO)(Q) is dense in LPO)(Q).

(2) If Q is an open set, then CS. () is dense in LP()(Q).

comp

Proof. Take f € LP*)(Q) and & > 0 arbitrarily.

We first prove (1). By virtue of Theorem 13.1, we can take a bounded function g €
LPO)(Q) so that ||f — 9llrer (@) < €. Now we use the Luzin theorem (cf. [69, 71, 215]) to
obtain a function h € C(Q2) and an open set U such that

c P
(13.2) |U| <min{1, () },
2|9l = (o)
that
(13.3) sup |[h(z)| = sup [g(z)] < [|gllL= ()
€N zeQ\U
and that
(13.4) g(x) = h(z) for all z € Q\ U.

By the triangle inequality, we have
19 = Rll=(0) < lgllz=(@) + [[hllz=(@) < 2[l9llL~9)-
We write p, (%) out in full;
g—h\ _
n(12)

Since tP(*) < max(1,#+) holds for ¢ > 0, we obtain

_ h 2 o b+
(13.5) oy (g€> < |U|max{1, (”9”2(9)> } <1,

namely, ||g — hl|Lr() (o) < €. Therefore we have

p(x)

gl@) = @) [

g

1f = PllLeer ) < IIf = gllLeer ) + 119 = PllLee) ) < 2e.

Next we assume that  is open and prove (2). Again we fix ¢ > 0. For f € LP()(Q),
take h € C(Q) such that || f — | 1r) (o) < 2e. Since p; < 0o, we have Cg5,,,(Q) C LrO(Q)
and

h
Pp (5) < max{e™ P+, e P }p,(h) < o0.

Thus if we take a bounded open set G C €2 so that

hxava
() o,

then we get

(13.6) [h = hxellLro @) < e
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Observe that G is compact since G is bounded. Now we take a polynomial Q() so that

sup |h(z) — Q(z)| < emin{l, |G|}
zeCG

by using the Weierstrass theorem. Then, since min{1, |G|™'}?®) < min{1, |G|~} for all
z € G, we have

h _
oo (PEZHE) < femin, 1617 <1
that is,

(13.7) [hxe — @xcllLro @) <&

By virtue of p, (QZ‘G) < 00, we can take a small constant a > 0 so that
o (QXG\KQ> <1,
€
where K, is a compact set defined by
K, :={z € G : dist(z,0G) > a}.
Thus we obtain

(13.8) 1@xc — Qxk.llLrey (@) <€

Now we fix a function ¢ € C22 () such that

comp

supp(¢) C G, 0<p<lonG, ¢=1lonk,
to have;

(13.9)  [@xc — Q¢llLror) = Q] - Ixa — #lllLrer) < M@ Ixe — XK. lllLrer ) <&
where the last inequality follows from (13.8). Combining (13.5), (13.6), (13.7) and (13.9),
we have Qp € C,,,(22) and
1f = Qellror oy < If = hlloor ) + 1B = hxell oo ()
+ Ihxe = @xallzro ) + 11Q@xe — Qell Lo (o)

<2+4+e+e+e¢
= be.

Thus, the proof is therefore complete. O

Corollary 13.3. If a variable exponent p(-) : Q — [1,00) satisfies p; < oo, then LPC)(Q)
18 separable.

We also remark that the property of mollifier is investigated in [114, Theorems 1.1 and
1.2] together with some examples in [114, Remarks 3.5 and 3.6], where the authors extended
the result to LP()(log L)9() (R™), where the norm is given by

p(z) q(z)
o =at a0 [ () (o )} ).
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Part III

Hardy-Littlewood maximal operator
on LU)(R")

On the generalized Lebesgue space LP()(R™) with variable exponents, the boundedness
of the Hardy-Littlewood maximal operator was proved by Diening [36] and Cruz-Uribe,
Fiorenza and Neugebauer [26, 27] at the beginning of this century. In this chapter we
rearrange their proof. Our proof may be simpler than the original. Moreover, we state
some basic results around 2005.

14 Variable exponent and norm Recall that LY(R™;T) is the set of all measurable
functions from R™ to T, where T C C or T C [0,00]. If T = C, then we denote L°(R";C)
by L°(R™) simply.

In this section, by a variable exponent we mean any measurable function from R™ to a
subset of (—o0, 00].

14.1 Log-Holder condition For a variable exponent p(-), let

p_ =essinf p(x), py = esssupp(z).
zER™ zER™

We consider the local log-Holder continuity condition;

Cx
< -
~ log(1/]z —yl)

and a log-Holder type decay condition at infinity;

1
(14.1) lp(z) — p(y)| for |z —y|l < 50 Ty €RY,

C*

14.2 2) = poo| € ——— for x€R",

(14.2) [p(2) = poc| < log(e + 7))

where ¢, ¢* and p., are positive constants independent of x and y. Let
LHy := {p(-) € L°(R™;R) : p(-) satisfies (14.1)},
LH,, = {p(-) € L°(R™;R) : p(-) satisfies (14.2)},

LH := LHyN LH,,.
From p; < oo and (14.1) it follows that

< C
~ log(e +1/]z - yl)

(14.3) Ip() - p(y)| for all z,y € R,

From (14.2) it follows that

2c*

<— 2 forallz,y € R with |y| > |z|.
|*log(e+\x|) or all z,y with |y| > |z]

(14.4) Ip(z) — p(y)

The condition (14.2) is equivalent to

|(p(z) — poo) log(e + |z])| < ¢ for all x € R™,



FUNCTION SPACES WITH VARIABLE EXPONENTS — AN INTRODUCTION — PART III 231

that is,

p(z) .
1 w<eC for all z € R™.

9 R

Recall that, for a variable exponent p(-) € L°(R";[1,00]), its conjugate exponent p'(-) €

L°(R™;[1, 00]) is defined as
1 1

[ + P
p(z)  p'(z)
where 1/00 = 0. If p(-) € LHp and p— > 1, then p/(-) € LHy. If p(-) € LHy and p_ > 1,
then p'(-) € LHw.
14.2 Norm of LP(") (R™) Unlike the usual Lebesgue spaces L?, we have to be careful for
the proof of the boundedness of operators. To this end, we reconsider Definition 8.1. For a

variable exponent p(-) € L°(R™; (0, 00]), here we let LP()(R™) be the set of all measurable
functions f on R™ such that

(z)
1w :=inf{x>o:/ ('fg)') dx§1}<oo.

In the above we regard

)

oo _ 0, 0<r<1,
oo, r>1.
See (10.11). In this subsection we supplement some properties of the above norm.

Remark 14.1. If p; = oo, then this definition is not exactly the same as in Definition 8.1.
However, both definitions give the same space up to equivalence of (quasi) norms if p_ > 0,
see Remark 8.2.

If 1 < p_ <py < oo, then ||f||1o is a norm and thereby LP()(R™) is a Banach space
(see Part II).
From the definition, for a positive constant C, if

then || f|lz») < C. Conversely, from

/ (lf(awl)““ dr<1 e>0
n \ N fllprer +€ -

f ()] \"
/ n(lfllm<«>> st

by € — +0. Therefore, we have the following conclusions:

it follows that

Lemma 14.1. For f € L°(R"),

[ s@P@de <1 = flo <1

It is not so hard to prove;
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Lemma 14.2. If0 < p_ < p; < o0, then we have

/()| )W’ B
/ <|f||LP<‘> dr=1

for all f € LPO)(R™)\ {0} and

POE) = {7 e @) [ 0P <o),

15 Boundedness of the Hardy-Littlewood maximal operator Recall that the un-
centered Hardy-Littlewood maximal operator M is given by

Mf(z) = sup ﬁ /B @)l dy,

B>x

where the supremum is taken over all open balls B containing z. We can replace the open
balls {B} by the open cubes {@Q}. As we have shown in Theorem 4.2, the operator M is
bounded on LP(R™) if 1 < p < co. That is, M € B(LP(R™)) if 1 < p < oo.

Let

(15.1) B(R") := {p(-) € L°(R™; [1,00]) : M € B(LPV)(R™))}.

If p is a constant in (1, 00], then p € B(R™).

Remark 15.1. Let ¢(+) € B(R™) and 1 < r < co. Then rq(-) € B(R™). Actually, by Holder’s
inequality, we have

r r ril/r rnl/r
IMf )| praer < LY | praer = IMIFTIY S S AT N = 1l praco-

15.1 Log-Holder condition as a sufficient condition: Diening’s result Here we
consider the following theorem proved in Diening [36] and Cruz-Uribe, Fiorenza and Neuge-
bauer [26, 27].

Theorem 15.1. Ifp(-) € LH and 1 < p_ < p, < oo, then M € B(LPO)(R™)).

This boundedness relies upon the next pointwise estimate and the boundedness of M
on LP~(R™) for p_ > 1.

Theorem 15.2. If p(-) € LH and 1 < p_ < py < oo, then there exists a positive con-
stant C, dependent only on n and p(-), such that, for all measurable functions f with

[ fllro @y <1,
M f(x)P@ < C(M(|fPO/P=)(x)P~ + (e + |z|)~"P~)  for all x € R™.

We prove Theorem 15.2 in Section 16.1. We remark that similar technique is used in
[131, 132]. In [131, Lemma 3.5] and [53], an estimate was obtained with the help of the
Hardy operator. A similar technique to Theorem 15.2 is used to prove the boundedness of
one-sided maximal operator, see [32].

Proof of Theorem 15.1. Tt is enough to prove that, there exists a positive constant C' such
that ||MfHLp(-)(R’n,) S O fOI' all f S Lp()(Rn) Wlth ||fHLp(-)(]Rn) S 1. Note that ||fHL1’(')(R") S
1 is equivalent to

[ 1r@p s <1,
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In this case, letting g(z) = |f(2)[P®)/P~, we have ||g[|r»- @®n) < 1. By Theorem 15.2 and
the boundedness of M on LP-(R™) for p_ > 1, we have

M f(z)P®) do < Mg(x)P- dx + /
R"'L R’n

This shows that, for some C > 0,

(@)
[ e

since 1 < p_ < py < oo. That is, ||Mf|\Lp(.)(Rn) <C. O

(e + |z|)™™- dx < / g(z)P~dx+1< 1.

n n

We give a proof of Theorem 15.2 in the next section.
Here, we present examples of p(-) ¢ P(R™) \ B(R™), whose details are investigated in
Section 17.

Example 15.1. Let n = 1. Then the operator M is not bounded on LP()(R) in the
following cases:

(i) P(*) = 4X(=00,0) + 2X[0,00), S€€ Proposition 17.1.
(i) p(-) = 2X(—00,—2] T 4X(=2,0) T 2X[0,00), see Corollary 17.2.
(ili) p(-) is continuous, p(x) = 2 on (—oo0, —1] and p(z) =4 on [1, 00), see Proposition 17.3.
(iv) p(-) = 3 + cos(27-), see Proposition 17.6.
Moreover, there is a Lipschitz continuous function p(-) ¢ B(R™) such that
p(x) = poo > 1 for x <0, lim [p(2) = poo| =0,  Tim [p(z) = poo|logz = o0;
see Proposition 17.5.

15.2 Other sufficient conditions While examples in Example 15.1 are not in the class
LH, LH is not always necessary. In [131], the following function was considered;
alog(e + log(e + |z|)) b

log(e + |x]) log(e + |z|)

P(x) = Poo +

when a = 0 this function is in LH. If a # 0, then p(-) does not belong to LH.,. Mizuta and
Shimomura [131] showed that the maximal operator is bounded in LP()(R™) with a # 0.

Let ICy be the set of all variable exponents satisfying the following condition: There
exist constants po, € (1,00) and ¢ € (0, 00) such that

(15.2) / Ip() = poo|c/P@ Pl dz < 0.

We shall recall the proof of the following theorem later.

Theorem 15.3 (Nekvinda [161] (2004)). Let p(-) € LHyNICsx and 1 < p_ < py < 0.
Then M € B(LPC)(R™)).

A simple calculation shows that
(15.3) LH, C ICx.

The following theorem shows that LHy, LH. and (15.2) are not always necessary for
the boundedness of M:
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Theorem 15.4 (Lerner [102] (2005)). Let p(-) € LY(R™;R). Ifp(-) is a pointwise multiplier
on BMO(R™), then a+ p(-) € B(R™) for some nonnegative constant «.

Let g1 and g2 be the functions in (5.3) and (5.4), respectively. Then
g1 € PWM(BMO(R"))\ LHy (g1 is not continuous at the origin),

and
g2 € PWM(BMO(R™)) \ ICs € PWM(BMO(R")) \ LHw.

The following inclusion relation is a special case of [157, Proposition 5.1] (1985):
LH = LHyNLH,, C PWM(BMO(R")).
Let

> 2
93(7) == poo + Z(l/k’ — |z —eF DX(er2 1 g, er2 1 /m (@) (@ € R).
k=1

Then g3 € LHy and
93 € LHyNICy \ (LH, UPWM(BMO(R"))),

see [16, 102]. Note that Lerner’s idea is valid for the martingale setting, see [153].
Meanwhile, Diening gave an equivalent condition to the boundedness of M:

Theorem 15.5 (Diening [38] (2005)). Let p(:) be a positive variable exponent and 1 <
p— < py <oo. Then p(-) € B(R™) if and only if there exists a positive constant ¢ such that
for any family of pairwise disjoint cubes T,

> (fle)xa <l fllzeer-

Qem Lp()

Necessity is clear; Z(| flo)xo < M f. As other equivalent conditions, we can list the

Qem
following ones.

Remark 15.2. Let p(-) be a positive variable exponent with 1 < p_ < p; < oco. Then
p(-) € B(R™) if and only if either one of the following conditions holds;

(i) p'(-) € B(R™),
(i) for some a > (1/p_), ap(-) € B(R™).
In 2009 the following was proved so as to cover the case when p; = oo:

Theorem 15.6 (Diening, Harjulehto, Hast, Mizuta and Shimomura [39]). Let p(-) be in
LO(R™; (1,00]). Assume that 1/p(-) € LH and p_ > 1. Then M € B(LP")(R™)).

Note that although 1/p(+) is bounded, the variable exponent p(-) itself can be unbounded.
For the proof, see [40] also.
Again, for any positive constant «,

91 € PWM(BMO(R")), 1/(a+g1) ¢ LHo,

and
g2 € PWM(BMO(R™)), 1/(a+ g2) ¢ ICs.

Observe ICy D LHo again, see (15.3).
Later, we point out that p_ > 1 is a necessary condition. See Theorem 21.2 below.
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16 Proofs of Theorems 15.2, 15.3 and 15.4

16.1 Proof of the pointwise estimate (Theorem 15.2) In this section we prove
the pointwise estimate (Theorem 15.2).The method is due to Mizuta and Shimomura (see
129, 125)).

For a nonnegative function f and a ball B(z, ), let

Wy a=twn=f e J=d@n=f e

(z,r)
Then

Mf(z) ~supl and M(f()]PO)(x) ~ supJ.
>0 r>0

Let
Fp(y = {f € Li (R")NLO(R™; {0} U[1,00)): £l e vy < 1}7
G := L°(R";[0,1))

To prove Theorem 15.2, we state and prove two basic lemmas.

Lemma 16.1. Let p(-) € LHy and 1 < p_ < py < oco. Then there exists a positive
constant C, dependent only on n and p(-), such that, for all functions f € Fp.y and for all
balls B(x,r),

1< CJi/r@)

Lemma 16.2. Let p(-) € LHy, and 1 < p_ < p; < oo. Then there exists a positive
constant C, dependent only on n and p(-), such that, for all functions f € G and for all
balls B(z,r),
1< O 4 (e + [a) ™).

Proof of Lemma 16.1. Let B = B(z,r) and let f € Fp(.).

Case 1: J > 1. In this case 1 < J < 1/|B| = 1/(v,r™), since [ f(y)P¥) dy < 1, where
v, 18 the volume of the unit ball in R™. Take an integer m such that 1/v, < e™. Then
1< J<1/(v,r") < e™/r™ < (e+1/r)™™. Let K := JY/?P(®)  Then, for y € B(z,r), using
(14.3), we have

Ip(z) — p(y)|
p

|(p(z) — p(y)) log K| = log J

m+ n)log(e + 1/r)

m+n C
= p- logle+1/|z —yl)

log(e+1/r) < C,
that is, K?(®) ~ KP(®) Hence

= ][B F@)Xqoen: sy (8) dy + ][B FW)Xqwesn: fornr () dy

<4 Kdy++4 f(y) Mp(y)_ldy
fyras {0 ()

K
_ p(y)
=K+ 7ZB Z0) f(y) dy

K
K ()

<K+ J=2K =2J4/7)

~
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Case 2: J < 1. In this case, using f(y) < f(y)?¥), we have I < .J < J'/?() Therefore
we have the conclusion. O

Proof of Lemma 16.2. Let B = B(x,r) and f € G. Let
Ey:={yeB:yl <], (e+[y)™ " < fly) <1},
Ey:={yeB:ly <z, 0< f(y) < (e+]y) "'}
Es:={yeB:y| > zf, (e+z]) """ < fy) <1},
={yeB:lyl >z, 0< fly) < (e+|z)™ ).
Case 1: Integration over Fy. Let y € Ey. By (14.2)
[(p(z) — p(y)) log f(y)| = [p(x) — p(y)|log(L/f(y))

< ——— log((e + [y))"*) = C,
e os((e + ")

that is, f(y)P®) ~ f(y)?®). Let K := J'/P(*) again. Then

1 1 f(y))”(””“
d Kd LA d
B /s, 'V V< o “|B| f“”( y

K
< K4+ - p(y) 4
SK+ e /. Sy dy
<K+ B g9k — o/

- Kp(z)

Case 2: Integration over Esy. Let y € Ey. If r < |z|/2, then |z| ~ |y|. Hence

1 1 —n— —n—
3 Ef(y)dys@/E@Hyn Ly < Cle+ [2) !

If r > |x|/2 and |z| > 1, then

1 1 —n— 1 —n— -n —-n
1 L f0r < g [ e s g ey S0 S (et el

If 2| < 17 then
1
1B] JE,
Case 3: Integration over E3. Let y € E3. By (14.2)

(p(z) = p(y)) log f(y) = [p(x) — p(y)[log(1/f(y))

fly)dy <1< Cle+|z))™"

C
< —— 1 ntly <
< toate 7y e e < €

that is, f(y)P?® ~ f(y)?®). Then, by the same calculation as Case 1, we have

1

f( ) dy < 2JH/P@)
|B]

Case 4: Integration over E4. A crude estimate f(y) < (e + |z|)™"" ! for y € Ey suffices;

1 1 o e
B Jy TS g [ ety < et o)

Therefore we have the conclusion. O
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Proof of Theorem 15.2. Let ||f|lz»¢) < 1. We may assume that f is nonnegative. Decom-
pose f = f1 + fo, where

J1:= fX{zern: f(@)>1) f2 7= [X{zerr :0<f(z)<1}-

Let p(x) = p(x)/p—. Then p(-) satisfies (14.1), (14.2) and 1 <p_ <P, < oo. In this case
I fill 5y < 1, since fi (y)PW) < f1(y)PW) < f(y)PW), that is, f, € Fp(y and fa € G. Let

r=ten=f gwa T=swn=f swrw

z,7)

I, = L(x,7) :f fity)dy, J; = Ji(x,7) :][ fi(y)p(y) dy, i=1,2.
B(x,r) B(z,r)

By Lemmas 16.1 and 16.2 we have

I=5L+1<CLY™ L 0B 4 (e + |2))™™) < C(TVP® 4 (e + |z|)™™).

Then )
°@) < C(JP~ + (e + |z|) "),
that is,
p(@) -
(][ f(y) dy) <C ((][ f(y)p(y)/pf dy) + (e + |:L.|)—np> ,
B(z,r) B(z,r)
for all balls B(x,r). Then we have the conclusion. 0

16.2 Proof of Nekvinda’s theorem (Theorem 15.3) The following lemma is a fun-
damental one in that this lemma can be transformed for other operators when we consider
the boundedness:

Lemma 16.3. Let p(-) € L°(R™;[1,00)) and p4 < co. Then the following are equivalent:
(i) There exists a positive constant C such that |Mf||rscy < C|fllzecr for all f €
LPO(R™),
(i) fon M f(2)P®) dz < 0o provided [g, |f(z)[P®) dz < 1.

Proof. (i) = (ii): If [g. |f(2)[P® dz <1, then ||f||»c) < 1. By (i) we have

(=) (z)
ﬁ Mf(2)"® da g/ (]‘fi(?)p dx g/ (W)p di < oo,
R R™ n

This shows (ii).

(ii) = (i): Assume the contrary. Then there exists a sequence of functions f,, > 0 with
| finll e < 1 and || M fonllpoc) > 4™, Set f:=>""_ 27™f,,. Then | f|z») <1 by virtue
of the triangle inequality for LP()(R™). This implies Jgn |f(z)[P(®) dz < 1 in view of the
definition of the norm. On the other hand, we obtain | M f||zr¢y > |27 M fin || Loy > 2™ for

each m, that is, || M f|| L») = co. Since p4 < oo, this means that [, M f(2)P®) dz = co. O

The key observation Nekvinda made is that his assumption (15.2) enables us to freeze
the variable exponent p(-), namely, his assumption can be used to replace p(-) with p
when f € L®(R™). Nekvinda generalized his idea in the following form:
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Lemma 16.4. Let p(-),q(-) € L(R™;[1,0)) satisfy
(16.2) / Ip(z) — q(z)|c/P@=a@ gy < 50
for some positive constant c. Assume that 0 < f(z) <1 a.e. Then
flx )p(w dr < oo if and only if f(x)? @) dz < 0.

R™ R

Proof. Without loss of generality we can assume ¢ < 1 by replacing ¢ with min(e, 1) if
necessary. Symmetry reduces the matter to proving

f(2)1®) dz < oo,

under the condition that
f(2)P@) dz < .

R’ﬂ
Let G1 := {x € R" : p(z) > ¢q(x)} and G5 := R™ \ G1. Then, since 0 < f(z) <1 for a.e.
z € R", we have

f(m)q(’”) dx < f(2)P® dz < oco.
G2

Let g(z) := f(2)?™®) and e(z ) = (p(x)—q(z))/p(x). Then [, g(x)dr < coand 0 < e(z) < 1
for x € G1. We will show that

(16.3) f( )a(@ dx( / g(zx)t—=@) dx) < o0.
G1
Then inserting the definition of e(x), we obtain
(16.4) / e(x)ct/f@ dg < / (p(z) — q(z))c/ P@=1@) 4z < 0,
G1 Gl

since p(x) > 1 and ¢ < 1. Let Gz = {z € Gy : g(z) > e(x)c/*®} and G4 = G \ Gs.
Observe that e(x)~5(®) < el/¢. If 2 € G, then g(2)~*®) < (e(x)c!/=@)~=@) < c~1el/e and

(16.5) / g(x) =@ dy < cflel/e/ g(x)dz < 0.
G3

Gs

If z € Gy, then g(z)' 5 < (g(x)c/=@)1=2@) < c=lel/e(g(x)c!/5(®)) and

(16.6) / g(x) =@ dx < cflel/e/ e(z)c/* ) dr < oo
G4 G4
by virtue of (16.4). Therefore, (16.3) follows from (16.5) and (16.6). O

Proof of Theorem 15.5. Let [g, |f(z)[P®) dz < 1 as we considered in Lemma 16.3. We may
assume that f is nonnegative. Let f1 := fXx{zern: fx)>1) and f2 := f — f1. We show that

Mf@)P® de < [ Mfy(z)P@de+ [ Mfo(z)P® de < co.
R R™ R™

Then we have the conclusion by Lemma 16.3.
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For fi1, by using the same argument as in the proof of Theorem 15.1, in particular by
using Lemma 16.1, we have

Mfi(z)P @ de < C [ M[|fi[PO/P-](z)P- dx < .
R" R~
Next, we remark that 0 < fa(z) < 1 and that
fg(a:)p(z) dr < (x)p(f”) dr < 1.
R"L R"L

Then, by Lemma 16.4, we have
fo(z)P= dz < co.
]R'n.
By the boundedness of M on LP=(R"), we have

M fo(z)P> dx < 0.
R?L

From the fact that Mfo(x) < | fzllz= < 1 for almost all z € R™, we can use again
Lemma 16.4 to obtain

M fo(2)P@) da < oc.
R"L

Therefore, we have the conclusion. O

16.3 Proof of Lerner’s theorem (Theorem 15.4) We will use Theorem 5.3 in the
following form:

Proposition 16.5. There exists a constant c,, depending only on n, such that for any
© € BMO(R") with ||¢|lBmo < ¢, one has e? € Ay with ||e®]| 4, < 4.

Proof. Let b be the constant in Theorem 5.2 and let ¢, :=b/3. If ||p]lBmo < ¢p, then
/ elr@)—val 1, = Q| +/ H{zeq: elp@)—val AHdx < Q| +2‘Q|/ A3 d\ = 2|Q).
Q 1 1

Thus, it follows that

lle?]| 4, = sup <][ e#@) dz) (][ e #@) da:)
Qe \JQ Q
= sup (][ e?(@)—vq dx) <][ e~ v(@)tee dx) < 4. |
QRe2 \JQ Q

We consider another BMO estimate and we recall that we adopted the notation Q(0,1) =

(—1/2,1/2)".

Lemma 16.6. Let p(-) € L°(R™,[1,00)) with py < co. For any nonnegative function

f € LPO(R™) with || f]| oy < 1, write f := f + XQ(0,1) and set @ := log(M f). Then

(16.7) lellsmo + 1eqo,1)] < Ans

where v, > 1 depends only on n.
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Proof. Let fi = fX{zern: fz)>1}- Then f1 € LY(R™), since 0 < f; < fP0) and fP0) €
L'(R™). Hence

Mf(z) < Mxqo,1)(x) + Mf(x) <24+ Mfi(x) < oo, ae. z.
Let ¢ = log(M f). By Theorem 5.4 we have

(16.8) lellBMo < Yn-

Next, using the relation
(log(1+ M f))" = log(1 + (M f)*),

and (4.7), we have
1
. x)dx 1 z))dxr = I * dt.
(169) 0< /Q CEE /Q o a1+ M F @) / og(1 + (M f)* (1)) dt
Let 0 <t < 1. By (4.6) and (4.7) we have
(16.10) (Mf) (1) < vaf*™(t) = 2% sup [ f(x)da.

Let E be any measurable set with |E| = ¢. Then ||xg| .. ) <1, since

/ X ()P @) dx:/ dr =1t < 1.
n B

Hence

(16.11) /E F(@) dz < 2o X8l s < 2.

Thus, it follows from (16.9)—(16.11) that

1
/ o(z)dx < / log(1 4 2y, /t) dt := 7., < cc.
Q(0,1) 0

That is,
(16.12) [0Qo,n] < n-
If we combine (16.8) and (16.12), then we obtain (16.7). O

Proof of Theorem 15.4. Let p(-) € L°(R™;R) N PWM(BMO(R")). First we assume that
p(-) is nonnegative and that ||p||z- and that the operator norm ||p||o, are small enough as
to have;

”pHOpﬁ/n <c, 0Z p(x) < 1/27

where ¢, is from Proposition 16.5. We use the notation in Lemma 16.6. For any nonnegative
function f € L2~P()(R™) with ||f|| 2-»» < 1, by Theorem 5.7 and Lemma 16.6, we have

1(=p)log(M f)[Bnmo < [Ipllop(110g(M f)) .| + Iog(M f)llemo) < IPlopTn < cn.
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Hence, by Proposition 16.5, (M f(z))~ P(®) is an A,-weight and its Ay constant is less than
or equal to 4. Then, using M f > f > 0 also, we have

/R(Mf(x))z—p(x) dr < /n(Mf(x))z—p(gc) du

— [ O4f@)P 01 f ) 7 de
< [ F@POrfa) 7 ds
< [ G@prast

This shows that M is bounded on L>~P0)(R™).

For general p(-) € L°(R™;R) N PWM(BMO(R")), let p(z) = (p4 — p(x))/r, for large
r > 1. Then j(-) is nonnegative and ||p||o, is small. Hence M is bounded on L*~P()(R™).
In this case M is bounded on L™2~2())(R"™) = [2"+P()=P+(R™) by Remark 15.1. The proof
is complete. O

17 Counterexamples In this section, to guarantee the boundedness of M, we need to
postulate some regularity assumption on p(-), we give several examples of p(-) for which
the Hardy-Littlewood maximal operator M is not bounded on LP(*)(R™) with n = 1.
We will use the following fundamental facts in Propositions 17.1 and 17.3, respectively:
For a > 0,
M| - |_9X(07a]](1‘) > C‘$|_GX[,G?O)U(07(L] (x), if 0<O<1,

and
MH . |_9X[a7oo)](x) > C|$‘_0X(,m7,a]u[a7oo) (.13), if 6>0.

The authors learned these propositions below from Diening’s talk.
The variable exponent p(-) in the following proposition doesn’t satisfy the local log-
Holder continuity condition (14.1):

Proposition 17.1. Let n =1 and p(-) := 4X(—c,0) + 2X[0,00)- Then the operator M is not
bounded on LPC)(R).

Proof. Let f(z) := |z|~"*x(0,1)(z). Then
~1/3

VA == [

Hence || f||z») = v/3. On the other hand, for z € (—1,0),

1 [ I || ~1/3
> dy = — Uy > =
0> g [y = g [ ey

Then, for any A > 1,
0 1 0 s
T > / |7 dr = .
/) v )L

That iS, ||Mf||Lp(.) = Q. O]

2 1,.-2/3
dr = / a: dr = 1.
0o 3

4

Mi@[

A

By the same argument as Proposition 17.1, we can prove the following:
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Corollary 17.2. Letn =1 and p(-) := 2X(—00,—2 + 4X(=2,0) + 2X[0,00)- Then the operator
M is not bounded on LPC)(R).

The variable exponent p(-) in the following proposition doesn’t satisfy the log-Holder
type decay condition (14.2):

Proposition 17.3. Let n = 1 and p(-) : R — (0,00). If p(z) < 2 on (—o0,—k) and
p(z) >4 on [k,00) for some k >0, then the operator M is not bounded on LPC)(R).

Proof. Let f(z) := |x‘_1/3X[max(1,k),oo)<x)~ Then

oo p(@) 00 —1/3 % 0o ,.—4/3
/ [(@) dr = / ] dx < / x dr =1.
—o0 \4/g max(1,k) \73 1 3

Hence || f|| o) < v/3. On the other hand, for < —2max(1, k),

(1 2)Mfa) > = / iy > - / T gy s B
o B 2|Z‘| T - 2|$| max(1,k) o 4 .

Then, for any A > 1,

| M p(z) —2max(1,k)
/ ’ f(@) dr > /
SN DY

— 00
That is, | M f]| pr¢) = 0. O

2

Mf(x)

The next corollary follows immediately from the above proposition.

Corollary 17.4. Let n =1 and p(-) : R — (0,00) be a variable exponent. If

limsupp(z) <2 liminfp(z) > 4

T——00 LT—00

then the operator M is not bounded on LP()(R).

The next example shows that the log-Holder type decay condition (14.2) is necessary in
a sense.

Proposition 17.5 ([26]). Fiz ps € (1,00). Let ¢ : [0,00) — [0,poo — 1) be such that

#(0) = lim ¢(x) =0, ILm o(x)log x = oo.

r—00

Assume in addition that ¢ is decreasing on [1,00). Define

p(T) = poo — ¢(max(x,0)) (xz € R).

Then M is not bounded on LP¢)(R).
1
A key idea is that Mx (g 2r) > X (-2R2R)-

Proof. Since 1 < poo — ¢(22,0) < poo, we have

lim <1_poo> g — — lim 2max(2w.0)logz
00 p(2z) z—00 Doy — ¢(max(2z,0))
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or equivalently,
lim 2! Pe/P(22) —
Tr—00

Thus, we can find a negative sequence {c, }°2; such that
Cng1 < 20p < —4, |, |FTPe/PClenl) <977 (for alln € N).
Define -
F@) =" leal P Dx o0, o ().
n=1

Since

cnl <1,

R n=1

we have f € LP()(R). Meanwhile, if = € (—¢,, —2c,), then

—1 [~2n 1 [ 1 - o
Mf(:n)>—/ fly)dy > — f(y)dy:z|cn| 1/p(—2cn)
2

~ 4e, o ~ 4e, 2%,

Hence

1 oo —2cy,
/{Mf(x)}p(ﬁ) dz > 1 Z/ |ep | TP@)/P(=2¢n) gy
R n=1"Y "¢n

1 o0 —2cn, v _

> ZZ/ | P(-2e0)/P(=2¢0) gy
n=1Y "¢n
1 oo

=2 1=

3
I
-

This shows that M f ¢ LPC)(R).

243

O

Remark 17.1. Keep to the same setting as Proposition 17.5. The above proof shows that

the Hardy operator

||

1
i) = o / Jwa wem

is not bounded on LPO)(R).

The next example is from Cruz-Uribe’s web page. This example shows that it does not

suffice to assume the continuity solely.

Proposition 17.6. For z € R, let p(x) := 3 + cos(2rwx). Then, M is not bounded on

LPO(R).

The point is again that M recovers the missing part of f defined by (17.1) below:

M f(x) > Colz|~Y/3 for all z > 0. See (17.3).
Proof. Note that p(z) > 3+ cos(n/4) for z € [§,7 +1/8], 7 =1,2,....
Let

(17.1) f(@) =127 Xpays(@—4) (v €R).
j=1
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Then

0 j+1/8
(17.2) /|f P d = Z/ P8 g

[ee}

< Z/ |x|f(3+cos(7r/4))/3 d
J

Z (34cos(mw/4))/3 < oo,

<.
| I

IN
oo\>—~

On the other hand, for z € (5,5 + 1), 7 =1,2,...,

j+1 Jj+1/8 . -1/3 : -1/3
(17.3)  Mf() z/ f(y)dy=/ ly|~V3 dy > (J+1/88) o (J+18) .

Since p(z) <3 forx € [j+1/4,7+3/4],j=1,2,...,

(17.4) [ s =y / " ((9“8)/)() "

j=1
5[ (e,
S ita 8

(17.2) and (17.4) disprove that M is bounded on LP()(R). O

Part IV
Related topics

In this part, we give results related to the boundedness of the Hardy-Littlewood maximal
operators on Lp(')(R”). For results in this part, refer also to surveys; Harjulehto and
H&sto [63], Harjulehto, Hasto, Lé and Nuortio [66], Mizuta [121], S. Samko [189], and, a
book; Diening, Harjulehto, Hasto and Ruzicka [40].

18 Modular inequalities In this section, we will make a supplemental but important
remark about the proof of the boundedness of the Hardy-Littlewood maximal operator M.
As mentioned in Subsection 14.2, we have to be careful when we prove the boundedness of
M; it seems natural to try to prove

n

M f(z)P@ dx<C’/ £ ()P da.

R

However, this idea does not work. An interesting result is proved by Lerner [103], in which
he used the A,.-weights. In this section, we give an alternative proof. Our proof can be
extended to the setting of the non-doubling measures readily.
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Theorem 18.1 (Lerner [103, Theorem 1.1] (2005)). Let p(-) € L°(R"™; (1,00)) be such that
1 <p_ <ps <oo. Then the following two conditions are equivalent:

(a) There exists a constant C' > 0 such that for all f € LPC)(R™)

(18.1) Mf@@)P@de<C [ |f@)"" da.
Rn Rn

(b) The variable exponent p(-) equals to a constant.

The implication (b) = (a) is well known, see Section 4 for its proof. It counts that
(a) = (b) is true. This implies a difference between the norm inequality and the modular
inequality (18.1). In particular we see that the inequality (18.1) shows a stronger condition
than the norm one. Izuki [72] has considered the similar problems for some operators arising
from multiresolution analysis and wavelets.

Here we shall supply a new proof without using the notion of A.,-weights, which was
obtained by carefully reexamining the original proof of Lerner [103].

Proof of Theorem 18.1. As is remarked above, the heart of the matters is to prove that (a)
implies (b). The indicator function testing (18.1) essentially suffices. Assume that (a) holds
and that p(-) is not a.e. equal to a constant function on a ball B. Let

p_(B) :=essinf p(z), p4+(B):= esssupp(x).
z€B z€B

For € > 0, we write
E.:={z € B : p(x)>ps(B)—¢e}

Since p_(B) < p4(B), there exists ¢ > 0 such that p,(B) — 2¢ > p_(B) + . In this case
we have 0 < |B\ E2.| < |B| and |E.| > 0 in view of the definition of p (B).
Let t > 1. Then, from (18.1) by letting f := txp\g,., we obtain

[ Mitxep )@ do < [ Ml s )@ do
B Rn

<C [ (txB\g,. (2)P dw
R’!‘L

=C tP@) dy
B\ E>.

< Ctr+B) 72| B\ By |.

Since M[txp\g,.](z) > %XEE (2)t, it follows that

B\ E p(x)
ooy de > [ (B2} s @ an
B B

p+(B)
> <B|\BE|‘25|) i |E€|tp+(B)_E,

From both inequalities we have

w>MmBW%

<O -t ,
B (IB\Eze |E |

for any ¢ > 1. This is a contradiction. O



246 MiTsuo Izuki, EiicHI NAKAT AND YOSHIHIRO SAWANO

The proof carries over the setting of the (non-doubling) metric measure spaces, where
the notion of A..-weights is immature. Recall that in the metric measure space (X,d, u),
the uncentered maximal operator

1

Mef(s) = sup { k(B (y. k)

/B LG B am}

and the centered maximal operator

1
My f(x) := sup {w /B(W_) lf)lduly) = r> 0}

satisfy
p2° p2°
(18.2) | M3 fll Loy < plefHLP(W [ M2 fllLeu) < plefHLp(W

respectively. Here

lzmgo = ( [, |f<x>|w<w>)”p.

For estimates (18.2) for M4 and My we refer to [160] and [201, 217] respectively.
Mimicking the above proof, we can prove the following for a measurable function p(-):

Theorem 18.2. Let p(-) : X — [1,00) be a p-measurable function.

(i) Let k > 3. If there exists a constant C > 0 such that

/ MLF ()@ dyu() < C / @)@ dpu(z),
X X

if and only if p(-) is equal to a p-a.e. constant function.

(ii) Let k > 2. If there exists a constant C > 0 such that

/ M f(2)P@ dp(z) < C / @) P dp(z),
X X

if and only if p(-) is equal to a p-a.e. constant function.

19 The norm of the characteristic function of a cube The following is a crucial
inequality and it is used many times in Part V.

Lemma 19.1 ([154, Lemma 2.2]). Suppose that p(-) is a function satisfying (14.1), (14.2)
and 0 < p_ < py < oo.

(i) For all cubes Q = Q(z,7) with z € R™ and v < 1, we have |Q[/P-(@) < |Q|*/P+(@),
In particular, we have

(19.1) |Q|1/P—(Q) ~ |Q‘1/P+(Q) ~ |Q|1/P(Z) ~ ||XQ||LP(‘>~

ii) For all cubes Q = Q(z,7) with z € R™ and r > 1, we have
(i)

IxollLrer ~ |QM/P=.
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Here the implicit constants in ~ do not depend on z and r > 0.

Proof. Tf < 1, then (14.3) yields |Q|'/P®) ~ |Q['/P() ~ |Q|V/P-(@) ~ |Q|/P+(Q) for all
x € Q. Hence, it follows, for example, that

xq(®) )p(z) [ xq@)
/Rn<|Q|1/p(z) dx /n 1] dx =1.

Consequently we obtain | xol e ~ [Q|/P(Z) ~ |Q|/P~(@) ~ |Q*/P+(@). Let {2152, be a
rearrangement of Z" and {Q;}52; = {Q(2;,1)}52, be cubes. Then, invoking the localization
principle [67, Theorem 2.4], we have that, for r > 1,

Ixall o ~ [l o @) llppw ~ 1QIMP>.

Thus, the proof of the lemma is now complete. O

Remark 19.1. The equivalence (19.1) can be implicitly found in [39, Lemma 2.5].

20 Weight class A, Recently it turns out that the theory of maximal operators on
variable Lebesgue spaces has a lot to do with the theory of weights.

Recall that, by “a weight” w, we mean that it is a non-negative a.e. R" and locally
integrable function. Below we write

for a weight w and a measurable set S. Recall also that a weight w is said to satisfy the
Muckenhoupt A, condition, 1 < p < oo, if

p—1
(20.1) [w]a, = [w]a,@®r) = sUp wq ([w_l/(p_l)]Q) <oo, l<p<oo,
QeQ
and
1
20.2 W) A, = W], (Rn) = SUP W (esssup ) < 00, p=1.
(20.2) [w]a, []1()QEQQweQw($)

Let A, be the set of all weights satisfying the Muckenhoupt A, condition.
Theorem 20.1 (Muckenhoupt [137]). Let w > 0 a.e. R™ be a weight.
(1) If 1 < p < o0, then the following three conditions are equivalent:

(a) we Ap.
(b) The Hardy-Littlewood mazimal operator M is bounded on LE (R™).
(¢c) M is of weak type (p,p) on LE (R™), namely, for all f € LP (R™) and all A > 0,

w({z eR™ 1 Mf(z) > AN < OX | fll -

(2) The following two conditions are equivalent:

(a) we A;.
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(b) M is of weak type (1,1) on LY (R™), namely, for all f € LL(R") and all A > 0,

w({z €R" : Mf(x) > A}) < CA™ £l -

Example 20.1. Let a € R. We consider the power weight |z|* defined on R™.

(1) Let 1 < p < oo. Then the weight |z|* is the Muckenhoupt A, weight if and only if
—n<a<n(p-—1).

(2) The weight |z|* is the Muckenhoupt A; weight if and only if —n < a <0.

The theory carries over to the spaces on open sets. Let 2 be an open set in R™ and, for
measurable functions f on 2, define

(20.3) M(z) = sup]{g Uy ]i 1)y :=ﬁ 1wl

B

where the supremum is taken over all balls B containing x.
In analogy with (20.1) and (20.2) for an open set 2, we write

p—1
[’LU]AP(Q) = Sgp wWQNN ([w—l/(P—l)}QmQ> ; 1< p < o0,

where () runs over all cubes and

1
W A, (Q) ‘= SUPpWQNqQ | esssup .
= 1) Q on <ernQ w(@)

For 1 < p < oo, let A,(Q2) be the set of all weights w such that [w]4, ) < co. We also
define

1
20.4 w]balls = supw (esssu ) ,
(20.4) [l @ Bp pns zeBmg w(x)

where the supremum is taken over all balls B. Then [w]}{(,) ~ [w]4, (o). Note that

, Muw(zx)
balls

w = esssup ———
[ ]Al(Q) erp w(z)

)

or equivalently
Muw(z) < [w]g";l%?)) w(r) ae €€,

where M is the operator defined by (20.3).

The next theorem is an analogy of the result due to Lerner, Ombrosi and Pérez [106].
Let @ be a cube and x € R™. Define D(Q) the set of all dyadic cubes with respect to Q.
More precisely, let @ = Q(z,7). Then a dyadic cube with respect to @ is a cube that can
be expressed as

QN (x+ (r/2"HYm+[0,7/2"T1™), meZ", v=0,1,2,....

Denote by D(Q), the subset of all cubes in D(Q) that contain x.



FUNCTION SPACES WITH VARIABLE EXPONENTS — AN INTRODUCTION — PART IV 249

Theorem 20.2 (reverse Holder inequality). Let Q be a cube. Let w € A1(2). Define

1
Mg ayadicow(z) :=  sup w(y)dy (x€R"™).

ReD(Q)x @ RNQ

If we set 6 := , then we have

1
11, balls
2wl (o

1

1+45
( MQ’dyadiC;Q'IU(fE)(S'lU(IE) dx) < 2][ w(z) dz
QNQ onQ

for all cubes Q.
Observe that Mg gyadic;o is controlled by M; Mg ayadic;ow < CMw.

Proof. First we note that, for any positive constant r, we have

[min(w, )3 < WK,

from the definition (20.4). Then, by replacing w with min(w,r) with r > 0, we can and do
assume that w € L>®°(R"™). Abbreviate JCQHQ w(z) dz to p. Then we have

Mg dyadic;ow ()’ w(z) da
Qna

_ b
Q|

1 I o]
= @ (/ +/ ) SA 1w {reQnNQ : Mg ayadicow(z) > A} dX
0 JZ

/ N w {z € QNQ 1 Mg ayadgicow(x) > A} dA
0

1 oo
<’ @/ N lw{z € QNQ 1 Mg ayadieow(z) > A} dA.
n
Let A > p. Then we can decompose

(20.5) {xr € QN 1 Mg ayadicow(x) > A} = UQj nQ
J

into a union of dyadic cubes {Q;}; with respect to @ such that

! 1
20.6 i d A P 0
. Q31 Qmﬂw(x) SR TIToN ermw(x) ! 2"|Qj|w<Qjm )
and that
(20.7) Q;iNQy =0 (#7).

Hence from (20.5)—(20.7) we have

w{r € QN : Mg dyadicow(x) > A} = Zw(Qj n)

7
<273 Q51
7

=2"\ |{{E eEQRNN: Mdeyadic;Qw(x) > )\} ‘
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Inserting this estimate, we obtain

1 o0
@/ SNty {x € Q@NQ : Mg dyadicow(z) > A} dX
m

2n o0
< @/ SXO I{x eQRNN: MQ,dyadic;Qw(l‘) > /\}|d/\
= IQI/ 0N [{z € QNQ + Mg ayagicow(x) > A} dA
27§
=T M, . 146 g
146 Jono Q.dyadic;ow(x) T dx

Therefore, it follows that

M@ ayadicow () w(z) de < p°* + —— 5 ][ M@ ayadicow(z)' 0 dz
Qne + 1

< M6+1 + — 5+ 1 ][ MQ dyadic; Qw( ) M’LU( )d

2n6[ }balls
o+1 79) M, icow(x) dx
> 5+1 on Q,dyadic;2 ( )
1
<0ttty = MQ,dyadiC;Qw((E)é'lU(fE) dx.

2 Jona

Now that we are assuming that w € L (R™), it follows from the absorbing argument that

w(z) dx) o

The proof is therefore complete. O

Mg ayadic:ow(z)w(z) de < 2p° T =2 (][
Qna

QN
Remark 20.1. Since
w1+‘5(x) < MQ’dyadiC;Qu)(m)é’U}(m) (a.e.x € R™),

using Theorem 20.2 we have the reverse Holder inequality for w € A1 (), that is,

1/(1+6)
(][ wi () dx) <2 7[ w(x) dz.
QNQ QNQ

21 Boundedness of the Hardy-Littlewood maximal operator on domains In this
section we recall some known results. To formulate results let us use the following notations,
which are standard in the setting of variable exponents:

Recall the definition of the Hardy-Littlewood maximal operator M on the domain €2 C

M@ = s 11wldy. { 1@ldy= g [ sl

p_ = ess 1nfp( ), D4 :=esssupp(x).
€N zEQ

R™;

We write

Definition 21.1.
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(1) The set P(£2) consists of all variable exponents p(-) : @ — [1,00] such that 1 < p_ <
p+ < 00.

(2) The set B(Q2) consists of all variable exponents p(-) € P() such that the Hardy-
Littlewood maximal operator M is bounded on LP()(Q).

(3) A measurable function r(-) : Q — (0, 00) is said to be locally log-Hélder continuous if
there exists a positive constant C' such that

C
rix) —ry) < ———— r—yl <1/2
@) = W) €~ (=3l <172)
is satisfied. The set LH((£2) consists of all locally log-Hélder continuous functions.

(4) A measurable function 7(-) : © — (0, 00) is said to be log-Holder type decay condition
at oo if there exist positive constants C' and r, such that

(@) — roo] < —C

~ log(e + |z|) (z € Q).

The set LH,(€)) consists of all measurable functions satisfying the log-Holder decay
condition at oo.

(5) The set LH() consists of all measurable functions satisfying the two log-Holder
continuous properties above, namely, LH(Q) := LHy(2) N LH(Q).

Before we proceed further, a helpful remark may be in order.

Remark 21.1. We can easily check the following facts:

(1) Given a measurable function r(-) : @ — (0,00), we see that the following two condi-
tions are equivalent:

(a) r(-) € LHx ().

(b) There exists a positive constant C' such that

r(z) = r(y)l (lyl = [z])

< -
~ log(e + |z])

(2) Let a variable exponent p(-) : 2 — [1,00) satisfy p; < co. Then p(-) € LH(Q) if and
only if 1/p(-) € LH().

(3) Let p(+) € P(Q). Then p(-) € LH(R) holds if and only if 1/p(-) € LH(2) holds.

There are some famous results on sufficient conditions of variable exponents for the
boundedness of the Hardy-Littlewood maximal operator. If a variable exponent p(-) :  —
[1, 00] satisfies 1 < p_ < py < 0o, we define

1 £l L) () = IX{zea: pa)<co} FllLror (@) T+ IX{zeq: pa)=co} fll L= (-
Proposition 21.1.
(1) [36] (2004): If Q2 is bounded, then P(Q) N LHy(2) C B(Q).
(2) [26] (2004): Let Q be an open set of R™. Then P(Q) N LH(Q) C B(Q).



252 MiTsuo Izuki, EiicHI NAKAT AND YOSHIHIRO SAWANO

(3) [20, 39] (2009): If a variable exponent p(-) : R™ — [1,00] satisfies 1 < p_ < py < o0
and 1/p(-) € LH(R™), then the Hardy-Littlewood mazximal operator M is bounded on
LPO)I(R™).

Next we state a necessary condition for the boundedness of the Hardy-Littlewood max-
imal operator.

Proposition 21.2 ([39]). Let Q be a subset in R™ with positive measure. Let p(-) : Q —
[1,00] be a variable exponent. If M is bounded on LP()(Q), then p_ > 1 holds.

The proof is originally by Diening, Harjulehto, Hastd, Mizuta and Shimomura [39].
However, Lerner extended this result to Banach function spaces when Q = R™ (see [105,
Theorem 1.2] and [107, Corollary 1.3]). Here we transform Lerner’s proof to our setting.
Denote by M7 the j-fold composition of M.

Proof of Proposition 21.2. First we show that, if M is bounded on LP()(€2), then M is also
bounded on LP()/(1+9)(Q) for some § > 0: Since M is assumed bounded on LP()(Q), there
exists a constant Cy > 0 such that

M flleer ) < CollfllLro -
Define

o) =3 G M),

I
o
—

J

where it will be understood that MYf(z) = |f(x)|. Observe also that || gl sc) ~ || £l Le¢)-
Since M is sublinear, we have

This means that g is an A;-weight and that the Aj-norm is less than 2Cy. Thus, we are
in the position of using the reverse Holder inequality (Theorem 20.2 and Remark 20.1) and
we obtain

M(g"*)(z) < Clg()|'** (x € Q).

Here the constants C' and § depend only upon n and Cj. Thus, we obtain
IMILF ) oerrass @) < IMIG N pocrsass @y < CUlgl oo ) < CUF Nl e ) -
The function f € LP()(Q) being arbitrary, it follows that the operator M is bounded on
LrO/(+9)(Q).

Next, with this in mind, assume that M is bounded on LP()(Q) with p_ = 1. Then M
is also bounded on LP()/(1+9)(Q) for some § > 0. In this case, the set

U := {xEQﬁB(()?R): f::—r)é = 1-1-15/2}
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has positive measure for large R > 0. Hence there exists f € LP()/(4+9)(Q) such that
anB(o R) |f(x)| dz = oo. For example, we partition U into a collection {U;}52, of measur-
able sets such that _

|U;| =2771U|, 5=1,2,...,
and we let

f= 101 X, -
=1

Then f € LPO/(+9)(Q) and M f = oo on Q. Actually, by the generalized Hélder inequality
(Theorem 9.1) we have

146/2
oo

£l zocrrasar ) = 1 XU oeriassry < Crllflvarsmy = Cr | Y |U;1°2 < o0,
j=1

and
1
2 -
|B(, |z] + 2R)| JonB(z,|z|+2R)
Hence the inequality ||Mf||Lp(A>/(1+5)(Q) < C’||fHLp(.)/(1+a>(Q) fails. This is a contradiction.
Therefore, we have the conclusion. O]

M f(x) fly)dy=o0 (z€Q).

22 Weighted Lebesgue spaces with variable exponents In this section we state
known results on weighted Lebesgue spaces Lf’v(') (R™) with variable exponents without proof.
First we define the space Lﬁ,(')(R") as the following:

Definition 22.1. Let p(-) € L°(R™;[1,00)). Suppose that a measurable function w satisfies
that 0 < w(z) < 0o a.c. € R™ and w!/?() € LPY(R™). Then LA (R™) is the set of all
f € L°(R™) such that

17120 o= 17070 ey < co.

22.1 Muckenhoupt weights with variable exponents The classical Muckenhoupt
A, class has been generalized to the setting A,y of variable exponents by [21, 29, 41] and

some equivalent conditions to the boundedness of M on L) (R™) has been given (see also
[24, 86]).

Definition 22.2. For a variable exponent p(-) € L°(R";[1,0)), a measurable function w
is said to be an A,y weight if 0 < w(r) < oo a.e.x € R™ and

1
(22.1) sgp il

holds, where the supremum is taken over all open cubes () C R™ whose sides are parallel to
the coordinate axes and p'(+) is the conjugate exponent of p(-), that is, 1/p(x)+1/p'(z) = 1.
Note that p'(-) : R™ — (1,00] when p(-) : R" — [1,00). The set A, consists of all A,
weights.

1ot POxqll oo [l ™ PO xql oy < 00

If p(-) is a constant p, then A, is the classical A, class.
The following is an extension of Theorem 20.1.

Theorem 22.1 ([21, 29, 41]). Suppose that p(-) € LH(R™) and p+ < oo. If p_ > 1, then
the following three conditions are equivalent:
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(Cl) w e Ap(.).
e Hardy-Littlewood maximal operator is bounded on Ly~ (R™).
C2) The Hardy-Littlewood mazimal M is bounded on L5\ (R
(C3) M is of weak type (p(-),p(-)) on Lﬁ(')(R”), namely
Ixar s>y Loy < CATH fw0 PO e

for all A > 0 and all f € LAY (R).
If p_ > 1, then two conditions (C1) and (C3) are equivalent.

22.2 Remarks on weighted norms It seems that there are two notations in weighted
Lebesgue spaces with variable exponents. Let w € L°(R"; [0, 00)). Two different expressions
are in order;

1 fw P oy and | fw] oo

For example, the former is used in [200], and, the latter is used in [90, 91, 98]. See [89, 90,
91, 93, 94, 95, 96, 97] for related results.

23 Density in Sobolev spaces with variable exponents In this section we give
alternative proofs for two theorems on density.
Recall that the Schwartz class is defined by

S(R") := {u € C®(R"™) : sup |z*DPu(z)| < oo for all a, 3 € Ng"}.
TER™

The Schwartz space S(R™) is topologized by the family {px} yen, where

pn(e)= D sup (1+[z)V|D%p(x)].
|Q‘SN'£6]R"

As the topological dual, S'(R™) is defined and usually it is equipped with the weak-*
topology. We aim here to deal with Sobolev spaces associated to variable Lebesgue spaces.
This is initially considered by [101] and independently investigated to [49]. Fan and Zhao
[49, p. 444-445] gave an important remark on the variational problem.

23.1 Sobolev spaces based on Banach function spaces Given a function f €
Li _(R™) and « € Ny, we define the derivative D f in the weak sense by

loc

- D f(z)u(x) de = (—1)°! - f(z)D%u(x)dr (ue SR™)).

Definition 23.1. Let s € N and X(R") C L} (R") be a subspace equipped with a norm

loc

Il - |lx. Suppose that for every f € X(R™) there exists N € N such that

[ 1f@p@)lds < N xpale) (o € SE)

The Sobolev space X(R™) and its norm are defined respectively by
Xs(R™)
1f11x.

{f € X(R") : D*f € X(R") for all @ € No", |a| < s},

> ID%fllx.

lal<s
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The above is a very general framework. Here we survey a recent result in connection with
LPO)(R™) =: X. Assume that p(-) satisfies (14.1) and (14.2) as well as 1 < p_ < p; < o0.
Then in [154], we proved that

1/2

(23.1) 1fllzeey ~ Z [F 277 ) F AP ;

Lr()

where ¢ € S(R™) satisfies

supp(p) C B(8) \ B(1) and ) ¢(279€) = xan\ 0 (€)-

j=—o00

Thus, by using the vector-valued boundedness of the Hardy-Littlewood maximal operator,
we have

1/2
o0

Il eer ~ (| Do (L4229 F Hp(277 ) F P

j=—o0
Lr()

Let ¢;(D)f denote the function given by (1.3) with ¢ replaced by ¢,. Note that

oo

f=> ¢i(D)f

j=—00

takes place in §'(R™). See [99], where the case of rectangle Littlewood-Paley patch is
investigated. Indeed, we can characterize LP()(R") by means of the rectangle Littlewood-
Paley patch if and only if p(+) is constant. See [76] for a similar approach, where Izuki used
wavelet.

We remark that (23.1) above is a consequence of the extrapolation result in [25]. We
refer to [73, 100] for related results.

Remark that Almeida and S. Samko characterized X;(R™) by using the Fourier multi-
plier, see [4].

When we study the differential equations

div(|Vu(@) P2 Vu(2)) = u(@)|"@ " u(z) + f(2),

we need to deal with the Dirichlet integral of the form

| (194@P + u(@)) da.

Therefore, W?()(Q) is a natural function space. See [189, p. 461].

23.2 Fundamental results Now we state and reprove two theorems on density. Recall
that B(R™) is the set of all measurable functions p(-) : R™ — [1, co] such that M is bounded
on LPO)(R™) (see (15.1)), namely, there exists a constant C' > 0 such that

IMfllzocy < Cllfllzecy

for all f € LL _(R™). The following result is proved by Diening:

loc

Theorem 23.1 (Diening [37]). If p(-) € B(R™), then C,,,(R™) is dense in Lg(')(R”),

comp
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Recall that the set LHy(R™) consists of all locally log-Holder continuous functions.

Theorem 23.2 (Cruz-Uribe and Fiorenza [22]). Ifp(-) € LHy(R™) and 1 < p_ < py < o0,
then C5,(R™) is dense in L];(')(R”).

comp

We will give alternative proofs of Theorems 23.1 and 23.2 above. In order to prove
Theorem 23.1 we invoke the next theorem due to Nakai, Tomita and Yabuta [156].

Theorem 23.3 (Nakai, Tomita and Yabuta [156]). Let X (R™) be a subspace of L (R™).
Assume the following four conditions:

(1) xg € X(R™) for all open balls B C R™.

(2) If g € X(R™) and f is a measurable function such that |f| < |g| a.e. on R™, then
feX(R™).

(3) If g € X(R™), and each f; (j =1,2,...) is a measurable function such that |f;| < |g|
a.e. on R™ and that lim;_. f; =0 a.e. on R™, then lim;_. || f;]|x = 0.

(4) The Hardy-Littlewood mazimal operator M is bounded on X (R™).
Then C35,,(R™) is dense in Xs(R™).

comp

We give a proof of Theorem 23.3 later for convenience. Theorem 23.1 is a direct conse-
quence of Theorem 23.3.

Proof of Theorem 23.1. We suppose p(-) € B(R™) and we shall apply Theorem 23.3 with
X = LPO)(R™). Theorem 23.3 (1), (2) and (4) are obviously true. We shall check (3). If
g € LPO(R™), Ifil <lgl (7 =1,2,...) a.e. R® and lim; ., f; =0 a.e. R™, then we have

plf) = [ AH@P o< [ lgap@ dn, o) e LR,
Thus by the Lebesgue dominated convergence theorem we obtain
lim p,(f;) = / lim | f;(z)[P® dz = 0.
j—o0 Rn J—00

Therefore we get lim;_.o || f;||L»¢) = 0 by Theorem 10.1. O

Note that we can prove the following by the same way as Theorem 23.1.

Theorem 23.4. Let p(-) € LH, 1 <p_ < py < o0 and w € Apy. Then CZ,, (R") is
dense in (Lﬁ(‘))S(R").

Now we prove Theorem 23.3. Note that the assumptions (1) and (2) imply that
Coomp(R™) C X (R™). We will use the following lemma:

Lemma 23.5. Define
Xscomp(R™) := {f € Xs(R") : supp(f) is compact }

and assume the condition (3) of Theorem 23.3. Then, X comp(R™) is dense in X (R™).
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Proof. Take a cut-off function ¢ € Cgy,,(R™) so that

L (x| <1),

0<¢<1, ((z)= {0 (| > 2).

Given a function f € X (R™), we define

fil@) = f(=)¢(z/j) (j €N).
Then we have f; € X comp(R™) and by condition (3),

Tim [ = filx. = 0.
Thus, the proof is complete. O
Proof of Theorem 23.3. First note that (1) and (2) imply that C22 _(R™) is a subset of

comp

X(R™). Fix a non-negative and radial decreasing function ¢¥ € C5 . (R™) such that

comp

¥l = 1 and define ¢ by (4.4) as before. By virtue of Lemma 23.5, we shall prove
(23.2) tim | — v+ f

Remark that

x, =0 forall fe X comp(R").

D (e Pa) = [ (D)o~ )inly) dy
for every @ € Ny™ with |a| < s. Thus if we prove

(23.3) }111(1) lf =4 * fllx =0 forall f e X(R™) with compact support,

then (23.2) is obtained. Take f € X (R") with compact support. Then Lemma 4.5 gives us
the estimate

|the + f ()| < M f(x)
and due to condition (4) we see that M f € X(R™). On the other hand, we have that
lim;o(f — ¢ * f) = 0 a.e. R™. Therefore, by virtue of condition (3), we conclude that

lime—o || f — ¢ * fl[x = 0. O

Next we give a proof of Theorem 23.2. In order to prove the theorem, we will use the
following lemmas:

Lemma 23.6. If a variable exponent p(-) : R™ — [1,00) satisfies p+ < 0o, then the set
Leomp(R™) :={f € L>=(R") : supp(f) is compact }

is dense in LPC)(R™).

Proof. Take f € LP()(R™) and & > 0 arbitrarily. By Theorem 13.1 we can take a bounded
function g € LPO)(R™) so that ||f — gl 1») < &. Now we define g; := IXB(0,j) € Loomp(R™)
(j € N). Then, since p4 < oo, the Lebesgue dominated convergence theorem implies that

(23.4) Jim pp(g —g;) = 0.
Thus there exists J € N such that ||g — g;||;») <€ for all j > J. Namely we get

If = gillLeery <N = glleey +1lg — gjllLoc) < 2e.

Thus, the proof is complete. O
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Defining 1¢,t > 0 by (4.4) as before, we have the following local estimate in the variable
setting.

Lemma 23.7. Let ¢ € Cgs,,,,(R™). If p(-) € LHo(R™) and 1 < p_ < py < oo, then, for all
N €N, for all f € LPO)(R") supported on B(0,N) and for all t € (0,1],

[ * fllzeer < Cn ([ f o0,
in particular, P * f € LPO(R™).
The proof of Lemma 23.7 is based on the next lemma.

Lemma 23.8. Let p(-) € LHo(R") and 1 < p_ < p; < oo. Then there exists a constant
C > 0 such that

p(x)
p(y)
(23.5) (fB W)|f<y>dy> sc(fB ) dy+1>

for allt >0, all z € R™ and all f €