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FOREWORD

The Forum for Interdisciplinary Mathematics, FIM for short, is a registered trust
in India to promote research in mathematics and its applications/relation in diverse
branches of science and technology. Incepted in 1975 by a group of intellectuals in
Delhi led by Dr. Bhu Dev Sharma, the forum has been holding annual international
conferences in India and abroad alternately. The Twenty Second International Con-
ference of the forum on interdisciplinary mathematics, statistics and computational
techniques was held during 10-12, November 2013, in Kokura of Kitakyushu city
blessed with both a rich natural environment and a high level of culture. The pro-
ceedings of the conference were held in the Kitakyushu International Conference
Centre with excellent facilities and the conference itself was sponsored by the In-
ternational Society of Management Engineers, the Graduate School of Information.
Production Systems of the Waseda University, Kitakyushu, besides the International
Society for Mathematical Sciences and the City of Kitakyushu.

Fifty abstracts were accepted for presentation in the conference comprising three
key-note speeches and five plenary talks. Apart from paper reading sessions on ap-
plied mathematics, mathematical systems and network and computer systems, four
invited sessions/symposia on Rough sets, computational techniques and Combina-
torial Design were also held as part of this conference. Part of the submitted papers
of a more theoretical/mathematical nature, numbering ... that have been refereed
and accepted, are being published in this special issue of Scientiae Mathematicae
Japonicae, published by the International Society for Mathematical Sciences. The
guest-editors are grateful to the International Society for Mathematical Sciences
and the Forum for Interdisciplinary Mathematics for this opportunity and hope
that this collaboration would continue in the future as well.

P.V. Subrahmanyam, IIT madras, India
Hiroaki Ishii, Kwansei Gakuin University, Japan
Junzo Watada, Waseda University, Japan
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ON THE SPACE OF FUZZY NUMBERS

P.V. Subrahmanyam

28 January, 2014.

1 Introduction Ever since Frechet introduced them in 1928, metric spaces have
come to stay as a basic aspect of abstract analysis. Several important classes of functions
and their modes of convergence typify metric spaces and supplement our understanding of
these classes. Zadeh[22], propounded the theory of fuzzy sets and fuzzy logic, in a path
breaking publication in 1965 to study quantitatively problems involving uncertainty due
to subjective considerations. Since then a number of attempts have been made to endow
fuzzy sets with interesting metrics. A metric being a non-negative real-valued function
it is natural to explore if it could take values in the set of fuzzy real numbers. Notable
contributions along this line are due to Kaleva and Seikkala [12] followed by Felbin [7].
Kaleva [9] had also shown that a fuzzy metric space (in the sense of Kaleva and Seikkala
[12]) has a completion unique up to isometry. In another direction Kramosil and Michalek
[13] defined a fuzzy metric space in analogy with and equivalent to a statistical metric space
as defined by Menger [14]. Inspired by an intermediate function considered by Hausdorff
in defining the Hausdorff distance between closed and bounded subsets of a metric space,
Erceg [6] defined a pseudo quasimetric as a map satisfying some natural conditions from
LX × LX into [0,∞], LX being the set of all maps from a set X into L, a completely
distributive lattice with order-preserving involution. For fuzzy points, a pseudo metric was
defined and studied by Deng [1]. Subsequently Peng Yu Wei [15] simplified the concept
of Erceg’s pseudo quasi metric and also related his concept and results to Erceg’s theory.
Later Rodabaugh [17] and subsequently Jian-Zhong Xiao and Xing-hua Zhu [20] examined
L− fuzzy real line for a completely distributive lattice L, vis-a-vis Erceg’s pseudo metric.

Dubois and Prade [4] defined a fuzzy real number as a continuous function µ : R → [0, 1]
vanishing outside a compact interval [c, d] of real numbers such that for some real numbers
a and b with c ≤ a ≤ b ≤ d, µ increases on [c, a] and decreases on [b, d] and µ(x) is 1 on
[a, b]. Goetschel and Voxman [8] modified the assumption of continuity in the definition of
Dubois and Prade to upper semicontinuity to avoid any inconsistency, while including the
characteristic functions of singleton real numbers. More importantly they defined a metric
for this set of fuzzy real numbers, based on the Hausdorff distance between closed and
bounded subsets. This metric has found applications in the study of fuzzy random variables
(see Puri and Ralescue [16]), fuzzy differential equations (Kaleva [10]) and the calculus of
fuzzy real variables (Kaleva [11]) and has been extensively studied by Diamond and Kloeden
in their monograph [3]. Besides this metric, other metrics on fuzzy real numbers have also
been studied by Voxman [18] (using reducing functions), Yang and Zhang [21] (endograph
metric) and Wu Congxion, Hongliang and Xuekun [19] (sendograph metric). Diamond and
Kloeden ([3], [2]) may be consulted for further details.

The purpose of this paper is to consider a wider class of fuzzy subsets of real numbers
that can be topologized by a family (gauge) of pseudometrics and study its properties.
These fuzzy numbers need not have bounded supports, though their supports intersect a

2010 Mathematics Subject Classification. subject classifications .
Key words and phrases. keywords .
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2 P.V. SUBRAHMANYAM

fixed closed set. In this way this class of fuzzy numbers serves to supplement the existing
theory of fuzzy real numbers.

2 The space FU (R) We recall the following

Definition 2.1. A fuzzy subset u of a topological space (X, τ) is called upper semi-continuous
if u : X → [0, 1] is a mapping such that [u]α = {x ∈ X : u(x) ≥ α} is a closed subset X
for each α ∈ [0, 1]. A fuzzy subset u : X → [0, 1] is called normal if {x : u(x) = 1} =
{x : u(x) ≥ 1} is nonempty.

We denote the set of all normal upper semi-continuous fuzzy subsets of X by FU (X).
In particular FU (R) is the set of all normal upper semi-continuous mappings of R (with the
normal topology) into [0, 1].

We now prove a representation theorem for members of FU (X), X being a topological
space.

Theorem 2.1. Let (X, τ) be a topological space and u ∈ FU (X), the set of all normal
upper semi-continuous fuzzy subsets of X. For each α ∈ I = [0, 1], let Cα = [u]α = {x ∈
X : u(x) ≥ α}. Then

(i) for each α ∈ I, Cα is a nonempty closed subset of X;

(ii) Cβ ⊆ Cα for 0 ≤ α ≤ β ≤ 1;

(iii) Cα =
⋂∞

i=1 Cαi , for each sequence αi increasing to α in I.

Conversely, if in a topological space (X, τ), there is a family of nonempty closed subsets
{Cα : α ∈ I = [0, 1]} satisfying properties (i), (ii) and (iii) above, then there is a unique
u ∈ FU (X) such that [u]α = Cα for each α ∈ [0, 1].

Proof. Since u ∈ FU (X) in an upper semi-continuous map of X into [0, 1], Cα = [u]α in a
closed subset of X for each α ∈ [0, 1]. Since C1 = {x : u(x) ≥ 1} is nonempty, Cα(⊇ C1) is
nonempty for each α ∈ [0, 1]. For 0 ≤ α ≤ β ≤ 1, Cβ ⊆ Cα is obvious. Thus for u ∈ FU (X),
(i), (ii) and (iii) are true.

Conversely, suppose {Cα : α ∈ I = [0, 1]} is a family of subsets of X satisfying (i)-(iii).
Define u : X → [0, 1] by

u(x) = sup{α ∈ I : x ∈ Cα}

Clearly u is a well-defined map of X into [0, 1], since C0 = X. Since C1 �= ∅, u(x) = 1 for
some x ∈ X and so u is normal. For α ∈ I, if x ∈ [u]α, then u(x) ≥ α. Let Ix = {β ∈ I :
x ∈ Cβ} and α

′
= sup Ix, so that α

′
= u(x). Clearly α

′
(= u(x)) ≥ α and by hypothesis

x ∈ Cα′ ⊆ Cα. So [u]α ⊆ Cα. On the other hand if x ∈ Cα, then u(x) = sup Ix = α
′ ≥ α

and consequently x ∈ [uα], so that Cα ⊆ [u]α. Thus each [u]α = Cα for α ∈ I and hence u
is an upper semi-continuous function.

For topological spaces which are sums of an increasing family of proper closed subsets
this representation theorem can be stated in a different form. For this we need the following

Definition 2.2. A topological space (X, τ) is called F− summable if X =
⋃
{Ft : t ∈ P}

satisfying the following conditions:

(i) (P,≤) is a totally ordered set with a least element ô ;

(ii) every nonempty subset of P has a greatest lower bound in P ;

ON THE SPACE OF FUZZY NUMBERS 3

(iii) each Ft is a nonempty proper closed subset of X and Ft ≥ Fs for t ≥ s, t, s ∈ P .
Further Ft �= Fs for t > s.

Theorem 2.2. Let X be an F− summable topological space as in Definition 2.2 and u ∈
FU (X). Then for each t ∈ P and α ∈ I = [0, 1], the sets Cα,t = u[α] ∩ Ft satisfy the
following:

(i) Cα,t is a nonempty closed subset of X for all t ≥ t0 ∈ P for all α ∈ [0, 1];

(ii) Cβ,t ⊆ Cα,t for all 0 ≤ α ≤ β ≤ 1 for all t ∈ P ;

(iii) If Cα,t �= ∅ and αi(∈ [0, 1]) ↑ α then Cα,t′ = ∩∞
i=1Cαi,t

′ for all t
′ ≥ t;

(iv) [u]α = ∪t∈P Cα,t is closed for each α ∈ I.

Conversly, if X is an F− summable topological space (as in Definition 2.2) and Cα,t,
α ∈ [0, 1], t ∈ P is a family of closed subsets of X satisfying (i) − (iv) above. Then
there exists a unique u ∈ FU (X) such that for each α ∈ I and t ∈ p, [ u ]α∩Ft = Cα,t.

Proof. While the proof of necessity part of the theorem is straight-forward, for proving the
sufficiency part, define u : X → [0, 1] by u(x) = sup{α ∈ [0, 1] : x ∈ Cα,t for least t ∈ P}.
Since x ∈ X = ∪t∈P Ft, x ∈ Ft for smallest t ∈ P and 1 ≥ u(x) ≥ 0. Let α0 = u(x).
Then x ∈ Cα0,t0 clearly [u]α ∩ Ft0 = Cα0,t0 . Further [u]α = ∪t≥t0Cα,t is closed, by (iv).
Thus u is upper semi-continuous. Since C1,t is a nonempty closed subset of X for some t0,
[u]1 = ∪t≥t0C1,t is a closed set by (iv) and u is normal. Thus u ∈ FU (X).

3 A topology on a subspace of FU (R) Let (X, d) be a metric space and FU (X) the
set of all normal upper semi-continuous fuzzy subsets of X. For a fixed element a of X, let
Bn denote the closed ball in X centered at a and radius rn and Hn be the Hausdorff metric
on the nonempty closed subsets of Bn for each n ∈ N. As Bn is bounded, the Hausdorff
distance Hn induced by d is well-defined on the family of nonempty closed subsets of Bn.
We recall the following

Definition 3.1. Let dλ be a pseudometric on a nonempty set X for each λ ∈ Λ. The family
D = {dλ : λ ∈ Λ} is called separating if for x, y ∈ X with x �= y, there exists λ0 ∈ Λ such that
dλ0(x, y) > 0. The topology τ(D) with the subbase {B(x; dλ, t) : x ∈ X,λ ∈ Λ and � > 0}
is called the topology on X induced by the family D. D is called a gauge and a topological
space whose topology admits a gauge structure is called a gauge space.

Definition 3.2. Let (X,D) be a gauge space and (xn), a sequence in D is called Cauchy if
limn,m→∞dλ(xn, xm) = 0 for each dλ ∈ D. If every Cauchy sequence in (X,D) converges
to a limit, (X,D) is called sequentially complete.

We also recall the following

Theorem 3.1. (see Dugundji [5]) A topological space is a gauge space if and only if it
is completely regular (or Tychonoff). A gauge space is metrizable if and only if it has a
countable gauge.

With these preliminaries, we can provide a metric topology on CL1(X) for any metric
space (X, d), that have a non-void intersection with B(a; r1).
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Bn denote the closed ball in X centered at a and radius rn and Hn be the Hausdorff metric
on the nonempty closed subsets of Bn for each n ∈ N. As Bn is bounded, the Hausdorff
distance Hn induced by d is well-defined on the family of nonempty closed subsets of Bn.
We recall the following

Definition 3.1. Let dλ be a pseudometric on a nonempty set X for each λ ∈ Λ. The family
D = {dλ : λ ∈ Λ} is called separating if for x, y ∈ X with x �= y, there exists λ0 ∈ Λ such that
dλ0(x, y) > 0. The topology τ(D) with the subbase {B(x; dλ, t) : x ∈ X,λ ∈ Λ and � > 0}
is called the topology on X induced by the family D. D is called a gauge and a topological
space whose topology admits a gauge structure is called a gauge space.

Definition 3.2. Let (X,D) be a gauge space and (xn), a sequence in D is called Cauchy if
limn,m→∞dλ(xn, xm) = 0 for each dλ ∈ D. If every Cauchy sequence in (X,D) converges
to a limit, (X,D) is called sequentially complete.

We also recall the following

Theorem 3.1. (see Dugundji [5]) A topological space is a gauge space if and only if it
is completely regular (or Tychonoff). A gauge space is metrizable if and only if it has a
countable gauge.

With these preliminaries, we can provide a metric topology on CL1(X) for any metric
space (X, d), that have a non-void intersection with B(a; r1).
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Hausdorff distance induced by d. Then CL1(X) is a gauge space with the gauge {Hn : x ∈
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∑ rn

2n converges. If X is complete
then CL1(X) is also complete.

Proof. Since Hn is the Hausdorff metric on CL(Bn), Hn is a pseudo-metric on CL(X) for
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∑∞
1

rn

2n converges. H(A, B) =
∑∞

1
Hn(A,B)

2n defines a
metric on CL1(X). Further, this metric topology is the same as the gauge topology (we
take Hn(A,B) = 0 whenever Fn ∩ A or Fn ∩ B = φ).

Let {Cn} be a Cauchy sequence in CL1(X). Without loss of generality, we can assume
that

∑∞
1 H(Ci, Ci+1) < ∞. For C1 and C2 we can find n1 so that C1∩Fn1 and C2∩Fn1 �= φ.

So for x1 ∈ C1 ∩ Fn1 , noting that Hn1
2n1 is the Hausdorff metric on Fn1 induced by d

2n1 , we
can find x2 ∈ C2 ∩ Fn1 such that

d(x1,x2)
2n1 < 1

2n1 (Hn1(C1, C2) + 1).

For this n1, we can find n2 > n1 so that C2 ∩ Fn2 and x3 ∈ C3 ∩ Fn2 �= φ. Since 1
2n2 d

induces 1
2n2 Hn2 , a Hausdorff metric on Fn2 , we can find C3 ∩ Fn3 so that

d(x2,x3)
2n2 < 1

2n2 (Hn2(C2, C3) + 1
2 ).

Thus proceeding we get a sequence of elements (xk) ∈ Cn ∩ Fnk
so that

(1)
d(xk, xk+1)

2nk
<

1
2nk

(Hnk
(Ck, Ck+1) +

1
2k

).

Since
∑∞

i=1 H(Ci, Ci+1) is convergent,
∑∞

k=1 Hnk
(Cnk

, Cnk+1) + 1
2k

converges. From (1) it follows that d(xk, xk+1) < Hnk
(Cnk

, Cnk+1)+
1
2k and so

∑∞
k=1 d(xk, xk+1)

is finite. Hence {xn} is a Cauchy sequence that converges to some element x by the com-
pleteness of X. Since xk ∈ Ck for each k, xn ∈ ∪n≥kCn for all n ≥ k. So x∗ = limn>kxn,
x∗ ∈

⋃
k≥n Ck for all k. Thus x∗ ∈ ∩∞

n=1(
⋃∞

k≥n Ck).

Define C = ∩∞
n=1(

⋃∞
k≥n Ck). Then C is nonempty and closed and is the closure of the

set of all limit points of {xn}. We now show that H(C,Cn) → 0 as n → ∞. For any
� > 0 given, let n = N(�) be chosen so that

∑∞
n=N(�)[H(Cn, Cn+1) + 1

2n ] < �
2 . Let x∗ ∈ C

and x0 be the limit of sequence (xn) so that d(x∗, x0) < �
2 . Then the distance of x∗ from

Ck = d(x∗, Ck) is

≤ d(x∗, x0) +
∑∞

n=k d(xn, xn+1)

< d(x∗, x0) +
∑∞

n=k[H(Cn, Cn+1) + 1
2n ]

< �
2 + �

2 = � for k ≥ N(�).

Since any xk ∈ Ck can be the starting point of such a convergent sequence (xn) converging
to x0,

d(xk, x0) ≤
∑∞

n≥k d(xn, xn+1) <
∑∞

n≥k[H(Cn, Cn+1) + 1
2n ]
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< �
2 , for all k ≥ N(�).

So it follows that H(C,Ck) = max{supx∗∈Cd(x∗, Ck), supxk∈Ck
d(xk, C)} < � for k ≥ N(�).

Thus limk→∞Ck = C in CL1(X). Thus for a complete metric space (X, d) that is the
countable union of closed spheres B(a; rn) where (rn) increases to ∞ with

∑ rn

2n < ∞, the
set of all non-void closed subsets of X that intersect B(a; r1) (and hence B(a; rn) for all
n) can be given a complete metric using the Hausdorff metric on ⊂ B(a; rn). Consider a
subclass F 1

U (R) of FU (R) comprising upper semicontinuous functions u : R → [0, 1] such
that [u]1 ⊆ [−r1, r1] where R = ∪∞

n=1[−rn, rn], 0 < rn, limn→∞rn = ∞ and
∑ rn

2n < +∞.
Clearly for such functions the level sets need not be compact nor convex. Although for such
functions, the level of normality has to lie in [−r1, r1], by choosing r1 sufficiently large many
fuzzy numbers with compact support can be found in F 1

U (R). The following theorem shows
that F 1

U (R) and more generally F 1
U (X) admits a complete metric so that analysis can be

carried out in F 1
U (X).

Theorem 3.3. Let (X, d) be a complete metric space. Suppose X = ∪∞
n=1 B(a; rn) where

B(a; rn) is the closed sphere centered at a and radius rn with limn→∞rn = + ∞ and∑∞
1

rn

2n < ∞. Let F 1
U (X) be the set u of all normal upper semicontinuous fuzzy subsets of

X, so that [u]1 ∩B(a, r1) �= ∅. Then F 1
U (X) is a complete metric space under the metric �

defined by �(u, v) = sup0≤α≤1H([u]α, [v]α) where H(A,B) =
∑∞

n=1
Hn(A,B)

2n (as defined
in Theorem 3.2), for A,B ∈ CL1(X).

Proof. Clearly F 1
U (X) is nonempty, as the characteristic function of B(a, r1) is in F 1

U (X).
For u ∈ F 1

U (X), for all α ∈ [0, 1], the closed sets [u]α ⊇ [u]1 and the nonempty set [u]1 ⊆
B(a, r1). So for u, v ∈ F 1

U (X), for 0 ≤ α ≤ 1,

H([u]α, [v]α) =
∑∞

n=1
Hn([u]α,[v]α)

2n ≤
∑∞

n=1
rn

2n = k < ∞,

for sup0≤α≤1H([u]α, [v]α) = �(u, v) ≤ k is well-defined. Also for 0 ≤ α ≤ 1, u, v, w ∈
F 1

U (X)

H([u]α, [v]α) ≤ H([u]α, [w]α) + H([w]α, [v]α)

and so �(u, v) ≤ �(u,w) + �(w, v). Thus (F 1
U (X),�) is a metric space.

For proving the completeness of F 1
U (X) under �, consider a Cauchy sequence un in

F 1
U (X). So given � > 0, we can find M(�) ∈ N such that �(uk, um) < � for all k,m ≥ M(�).

Let H1
n(u, v) = sup0≤α≤1Hn([u]α, [v]α) for each n ∈ N. Since the gauge {H1

n : n ∈ N}
generates � and {un} is Cauchy with respect to {H1

n : n ∈ N}, it follows that {[u]αn ∩ Bn}
is uniformly Cauchy in α for a fixed n and being a Cauchy sequence of closed sets in the
complete space CL(Bn), [u]αn∩Bn converges to Cα∩Bn for each n uniformly in α in CL(Bn).
Clearly the family of closed sets {Cα ∩ Bn : α ∈ [0, 1], n ∈ N} satisfies the conditions of
Theorem 2.2 and so there exists a function u in F 1

U (X) for which [u]α = ∪∞
n=1C

α∩Bn = Cα

is closed for 0 ≤ α ≤ 1. Further H1
n(u, um) → 0 as m → ∞ for each n ∈ N. Thus F 1

U (X) is
complete.

Remark 3.1. If we specialise X to R or Rn (n > 1), the F 1
U (X) is a special space of

fuzzy numbers whose support can be unbounded. It will also contain all fuzzy numbers with
support lying in a prescribed interval. In a sense this can supplement the space (En, d∞)
considered notably by Kaleva [10] and Kloeden and Diamond [3].
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4 An alternative approach While the space F 1
U (X) complements E1 or En with

d∞ for X = R1 or Rn respectively, F 1
U (R) or F 1

U (Rn) does not contain E1 or En. However,
this situation can be remedied in the following manner: for a metric space (X, d), the metric
topology induced is the same as the topology induced by the bounded metric d∗ defined by
d∗ = min{1, d(x, y)} for x, y ∈ X so that (X, d∗) is complete whenever (X, d) is complete.
The following theorem is easy to prove.

Theorem 4.1. Let (X, d) be a metric space and d∗ be defined by d∗(x, y) = min{1, d(x, y)}
for x, y ∈ X. Then (X, d∗) is a metric space and H∗ be the Hausdorff metric induced by d∗

on CL(X), the set of all non-void closed subsets of X. If d is complete, then d∗ is complete,
Further (CL(X),H∗) is also complete.

This enables us to define a metric on FU (X), the space of normal upper semi-continuous
fuzzy subsets of metric space (X, d) into [0, 1]. Again the proof of the following theorem is
straight forward.

Theorem 4.2. Let (X, d) be a complete metric space. Then FU (X), the space of all normal
upper semi-continuous fuzzy subsets of X is a complete metric space with the metric D∗

defined by D∗ = sup0≤α≤1H
∗([u]α, [v]α) for u, v ∈ FU (X), H∗ being the Hausdorff metric

on CL(X) induced by d∗ = min{1, d}.

Remark 4.1. Besides D∗, other bounded metrics homeomorphic to d can be used to gen-
erate Hausdorff metrics on CL(X). This, in turn can be used to metrize FU (X), the space
of normal upper semi-continuous fuzzy subsets of X.

Remark 4.2. If (X, d) is a real normed linear space, then taking rn = n ∈ N and a = 0,
the zero vector, it can be seen that the maps φt defined by

(2) φt(x) =




1 x = 1,

t x ∈ [0, 1),
0 otherwise

are in F 1
U (R) and �(φt, φs) ≥ 1

2 . Consequently F 1
U (X) containing an isometric copy of

F 1
U (R) is not separable.
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Abstract.

Nowadays one of the most studied issues in economic or finance field is to get the
best possible return with the minimum risk. Therefore, the objective of the paper is to
select the optimal investment portfolio from SP500 stock market and CBOE Interest
Rate 10-Year Bond to obtain the minimum risk in the financial market.

For this purpose, the paper consists of: 1) the marginal density distribution of the
two financial assets is described with kernel density estimation to get the ”high-picky
and fat-tail” shape; 2) the relation structure of assets is studied with copula function
to describe the correlation of financial assets in a nonlinear condition; 3) value at
Risk (VaR) is computed through the combination of Copula method and Monte Carlo
simulation to measure the possible maximum loss better.

Therefore, through the above three steps methodology, the risk of the portifolio is
described more accuratly than the conventional method, which always underestimates
the risk in the finicial market.

So it is necessary to pay attention to the happening of extreme cases like ”Black
Friday 2008” and appropriate investment allocation is a wise strategy to make diver-
sification and spread risks in financial market.

uzzy regression model, fuzzy random variable, expected value, variance, confidence in-
terval.

1 Introduction In finance market, with fierce volatility, the risk management has be-
come a hot research issue in the study. Especially after the accident happened such as the
closing down of Barings Bank and the bankrupt of Enron Corp, in the analysis of portfolio
the emphasis has moved on the balance between profit and safety.

For the conventional methods, person coefficient is used to measure the correlation
of variables and Risk metrics are common ways to calculate VaR. However, due to the
assumption of the methods are based on normal distribution, the methods deviate from the
real situation more or less.

Therefore, it is necessary to propose a new assets allocation method to evaluate the risk
of portfolio in the financial market.

Firstly, according to Markowitz 1987[17]; Terrance. C. Mills 2002[18], the assumption
that the distribution of assets return rate submits normal distribution always neglects the
happening of extreme conditions, which results in lack of precaution and huge losses in the
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Table 1: Tabe l
Distribution Theory Relation Structure Risk at Value

Conventional Normal Distribution Central Limit Theorem Person Coefficient Risk Metrics
Burgeoning High-picky; Fat-tail Kernel Density Estimation Copula Function Monte Carlo Simulation

end. Meanwhile, lots of experiments have indicated the return curve presents ”high-picky”
and ”fat-tail”. So it is necessary to estimate the probability distribution density of asset
return with kernel smoothing under a wide precondition.

Secondly, from Embrechts 1999[7], based on figuring out the marginal density distribu-
tion of financial assets, the study of relation structure between two financial assets is an
important step in the asset allocation and risk management. In the premise of normal distri-
bution, Pearson correlation is a common option to describe the linear relationship. However,
some defects such as restricted variance, and easy to be distorted show its bounded-ness in
the nonlinear application.

Therefore, from Sklar1959 [30]; Nelsen 1999[19], Copula model is introduced and widely
used as a link function C(u1, u2, · · · , uN ) to define the simultaneous distribution F (x1, x2, · · · , xN )
according to the marginal distribution FX1(x1), FX2(x2), · · · , FXN

(xN ) of random variables
X1, X2, · · · , XN . Namely,

F (x1, x2, · · · , xN ) = C[FX1(x1), FX2(x2), · · · , FXN
(xN )](1)

Copula function is not only the tool to build the joint probability of multi-dimensional
random variables, but also the one to explore the relation structure among random variables.

Thirdly, after better fitting the joint distribution and describing the relation structure,
we can obtain the value in risk of portfolio return more accurately, which has become main
qualitative technology in risk degree.

From the definition of Philippe Jorion [13], Value at Risk (VaR) is aimed to compute
the potential loss of financial assets using distribution function in a certain holding period
and confidence level c. If z and VaR indicate the value of financial assets and the risk value
respectively, then

P (z ≤ V aR) = 1− c(2)

Here Monte Carlo simulation is applied to reckon the yield distribution of portfolio risk
factors, hence the gains and losses could be constructed in the portfolio and the risk value
is estimated in the light of given confidence level.

To sum up, the comparison of the conventional and burgeoning methodologies follows
the next table:

Recently, from C.Perignon2010 [], D.Fantazzini2009 [] and J.Shin2009 [], the burgeoning
methodology has an obvious effect on analyzing the risk of portfolio in the financial market.

The paper is organized as follows. Section 2 presents the kernel density estimation, the
relation structure based on copula model and VaR calculation by Montel Carlo simulation.
The combination of the three methods has an obvious advantage compared with the con-
ventional one with linear premise. Section 3 discusses empirical results according to the
past and present one, respectively. Section 4 discusses the empirical results. Section 5 is
the conclusion.
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2.1 kernel density estimation (KDE) Experiences show that a large gap is formed
between premises of the distribution of financial assets and the complexity in practice. So
an approach like the kernel density estimator mitigates the rigidity of the function that
belongs to a certain group and hence deserves to be applied in the financial issue.

Let X1, X2, · · · , Xn be independent samples obtained from an unknown density function
f(x). f(x) is the formula of kernel density estimator (KDE) (M. Rosenblatt)[28]:

Figure 1: Kernel Density Function

Kernel Density Estimator:

PKDE(x) : f̂(x, h) = (nh)−1
n∑

i=1

K(
x− xi

h
)(3)

K denotes kernel and h is bandwidth; The smooth kernel estimate is a sum of “bumps”
and the kernel function K determines the shape of the bumps. Because of higher efficiency,
Gaussian kernel

KG(u) = (
√
2π)−1exp(−z2

2
) is adopted; the parameter h, also called the “bandwidth,”

determines their width. (M.P.Wand; M.C.Johns)[31]
The bandwidth h plays the role of a scaling factor in determining the spread of the kernel.

And it determines the amount of smoothing applied in estimating f(x). The following is
the “rule of thumb,” which is the most widely used method. (Silveman)[29]

If f(x) is a normal dessity function, then:

∫
(f(x)2dx =

3

8
π−0.5σ−5 ≈ 0.212σ−5(4)

normal kernel

K(u) = (
√
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−1
exp(

−u2
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) exp : h = 1.06σn

−1
5(5)

Hjort and Jones (1996)[10] proposed an improved rule obtained by using an Edgeworth
expansion for f(x) around the Gaussian density. Such a rule is given by:
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2.2 Relation structure based on Copula function According to Sklar theorem, a
multiple joint distribution function could be described with marginal distribution and Cop-
ula model. To portray the relation structure of financial assets, a kind of two phases
method, which is named as kernel density estimation-maximum likelihood method, is used
here. (Bouye 2000)[1]

When random variables are two financial assets A and B, whose observation series of
return rate (rA, rB) is {(rtA, rtB)}Tt=1, the simultaneous distribution function is F (x, y) and
the probability density and distribution function of rA and rB are fA(x), FA(x), and gB(x),
FB(x), and the Copula C : Cα(ut, vt) = C(FA(r

′
A), FB(r

′
B)) = F (r′A, r

′
B).

1) Primarily, kernel density estimation is used to measure the unknown marginal density
of the financial assets. (Devroye 1983[4]; Fan Yao 2003[32])

fA(x) = 1
ThA

∑T
t=1 KA(

x−r′A
hA

);

gB(x) = 1
ThB

∑T
t=1 KB(

y−r′B
hB

);
(7)

When K(·) is the normal kernel:

ui = 1
T

∑T
j=1 ϕ(

rtA−rj
A

hA
);

vi = 1
T

∑T
j=1 ϕ(

rtB−rj
B

hB
);

(8)

2) Next the unknown parameter a in Copula is estimated by maximum likelihood and
examined by frequency histogram graph and Minimum Variance Test to choose a optimal
copula function. (Genest, Rivest 1993)[23]

The partial derivative is taken to the two sides of formula 1

f(x, y) = cα(FX(x; θx), FY (y; θy))fX(x; θx)fY (y; θy),(9)

fX(x; θx) and fY (y; θy) are the marginal density function of f(x, y), θx and θy are the
parameters of marginal density fX(x) and fY (y), α is the parameter of Copula, calpha is

the density function of Copula: calpha(u, v) =
∂2C(u, v)

∂u∂v
Then the formula 8 is taken logarithm:

lnL(θx, θy : α) = ln cα(FX , FY ) + ln fX(x, θx)+
ln fY (y; θy)

(10)

From maximum likelihood (ML) conception, the log-likelihood function is:

l(v) =
∑T

t=1 ln c(FX(Xt; θx), FY ) + ln fx(X; θx)

+
∑T

t=1 ln fY (Yt; θy)
(11)

(V. Durrleman 2000[6]; Roberto De Matteis 2001[3]; Claudio Romano 2002[27])
Then, the parameter of Copula C is estimated with ML method:

α̂ = argmax
T∑

t=1

ln c(ut, vt;α),(12)

c(u, v) is the density of Copula,
To sum up, in the above two illustrated steps of the method, the density distribution of

financial assets could be estimated in a wide postulated condition and a relation structure
especially the tail dependence between them could be described effectively.

5

2.3 VaR Calculation Analytical Methods such as Variance-Covariance Approach offer
an instinctive comprehension of the driving factors of risk in a portfolio, which derives from
the risk metrics and obeys the normal distribution. When there are only two assets, the
portfolio variance is: (Harry Markowitz, 1952[15]; Peter Zangari, 1996[33])

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2(13)

And the portfolio VAR is then:

V aRp = ασpW

= α
√

w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2ρ12σ1σ2W

(14)

where α is quantile of confidence, w weight, σ the variance of assets, ρ correlation coefficient,
W the original value, respectively.

Withal, for Monte Carlo simulation based on Copula-VaR, on the one hand, Copula
function has the advantage of depicting nonlinear and asymmetric and especially capturing
the tail dependence; on the other hand, an abundance of random data that conform to
historical distribution is generated to simulate the behavior of the return rate of financial
assets by Monte Carlo method.

So the process of portfolio VaR of two assets X and Y based on Copula model and
Monte Carlo simulation is followed: (Rank J, Siegl T, 2003[22]; Romano C, 2002[27])

1) The copula model is chosen to describe the marginal distribution of assets and related
structure C(∗, ∗).

2) The parameter of Copula model is estimated according to the historical data of return
rate of asset X and Y , and hence the distribution function of assets return F (∗), G(∗) and
C(u, v) that are to demonstrate the relation structure between assets could be confirmed.
Thereinto, u = F (Rx), v = G(Ry), which submit to (0, 1) even distribution.

3) Two independent random numbers u and v, which submit (0, 1) even distribution,
are generated. u is the first simulated pseudo random numbers (PRN). For another thing,
Cu(v) = w, another PRN v could be calculated through the reversion function of Cu(v):
v = C−1

u (w).
4) The values of corresponding assets return RX = F−1(u), RY = G−1(v) are obtained

according to the distribution function of assets return F (·), G(·) and u, v;
5) The weight w is given in the portfolio and the return Z of portfolio is calculated:

z = wRX + (1 − w)RY , which provides a possible perspective to the future yield of the
portfolio.

6) (3)-(5) steps are repeated through K times, which means the k kinds of possible
scenarios of the future yield of the portfolio are generated through simulation, which is
amied to obtain the empirical distribution of the future return of the portfolio. For the
given confidence 1− α, the VaR in the portfolio is confirmed from P [Z < −V aRα] = α.

3 Numerical Experiment In the empirical experiment, it is assumed that the portfolio
just includes stock and bond. The analyzed data of the two selected financial assets is from
Standard&Poor’s500 and CBOE Internet Rate 10-Year Bond (2008.7.1-2012.7.3), and the
following is the graph of return rate r: rAt = log[PAt/PAt−1]

First, Kolmogorov-Smirnov test is used to make the test of normality in SPSS, which
shows they don’t satisfy normality; Augmented Dickey-Fuller (ADF) unit root test is aimed
to demonstrate whether it is the stationary time series data, which demonstrates the time
series are the stationary ones.

1) According to the formula 5 6, the bandwidths of SP500 and 10-year bond are 0.0012
and 0.0024, respectively. Through the optimal bandwidth and default Gaussian kernel
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Figure 2: The time series of SP500 return rate

Figure 3: The time series of CBOE Internet Rate 10-Year Bond return rate

function, the density function and cumulative distribution function of the financial assets
could be estimated through invoking KS density function in Matlab.

The following is the comparison of kernel density, frequency histogram and normal
distribution density:

Figure 4: Frequency histogram, kernel density estimation and normal distribution density
of the yield of SP500 stock and 10-year bond

The following is the comparison of the empirical, estimated and theoretical normal
distribution function under the same conditions:

On the basis of the kernel density estimation to the unknown marginal density of the
two financial assets, the parameter of copula model could be estimated.

2) The construction of the bi-variant copula model
Conventionally, Person correlation coefficient is written in the following:

ρxy =
cov(x, y)

(σx, σy)
=

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
(15)

[25]
It assumes the variables submit to the multi-variant normal distribution. Then, the

correlation coefficient of SP500 and 10-year bond is 41.97%.
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return rate of SP500 and 10-year bond

According to the kernel density estimation-maximum likelihood method (8)-(11) and
Minimum Variance Test Method

V ar(α) ∼=
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α

3
2 (1 +

√
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(Kendall and Stuart (1967)[14]; Mardia (1970)[16]), Gumbel and Clayton are adopted
[19] and the corresponding Copula parameters are 1.4173 and 0.7515.

Then, the correlations of stock and bond could be obtained from function relationship
between Kendall and Copula parameter: 29.44% and 27.3% respectively here, which is
similar to 31.26% from Kendall rank correlation.

Then, through the parsing expression of the correlation coefficient in tail, the correlation
coefficient in up-tail and low-tail could be measured according to Gumbel and Clayton
function:

Gumbel : λup = 2− 2
1
α = 0.37(17)

Clayton : λlo = 2− 2
1
α = 0.40(18)

Fig 6 also shows the similar characteristic in the end of the diagonal.
Then, the VaR value could be computed by the combination of copula model and Montel

Carlo simulation like the algorithm step (1)-(6) in 2.3.
3) VaR computation
For the analytical formula (13), the assumption is that c = 95%(a = 1.65) and the

original value W is set to 1:
When W1 = W2 = 0.5(c = 95%, a = 1.65),

VaR value is equal to 0.01336;(19)

When VaR is minimum, the proportion ofW1 SP500 andW2 10-year bond is respectively
equal to 80.5% and 19.5%, and

VaR is 0.000055(20)

According to the Monte Carlo simulation (1)-(6), when W1 = W2 = 0.5, from Gumble
or Clayton model:

VaR=0.0135;(21)
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Figure 6: Bibariate frequency histogram

From the following graph, it is concluded that the ratio of stock and bond reaches 85%
to 15%, the value at risk could be minimum,

which is about 0.0122;(22)

Figure 7: Stock weight-VaR

4 Discussions 1) From the time series graph Figs 2 and 3, the volatility of the two return
rate series have the obvious ”cluster” phenomenon, which means big fluctuations follow big
ones and small fluctuation follow small ones, and there is a certain similarity between them,
which shows some interaction exists in it.

From Figs 4 and 5, we can get the negative skewness and high kurtosis, which demon-
strates falling days are less than rising days, but the falling average range is higher than

9

Table 2: VaR of different portions
W1 W2

(stock weight) (bond weight) VAR
0.00 1.00 0.0191
0.10 0.90 0.0178
0.20 0.80 0.0165
0.30 0.70 0.0154
0.40 0.60 0.0143
0.50 0.50 0.0135
0.60 0.40 0.0128
0.70 0.30 0.0124
0.80 0.20 0.0123
0.85 0.15 0.0122
0.90 0.10 0.0123
1.00 0.00 0.0126

the rising one and return rate happen near the separate average value. So compared with
normal distribution, kernel density estimation is a better way to describe the feature of ”fat
tail and high picky” in the real situation.

2) Through the comparison between Person correlation coefficient and correlation coef-
ficient from copula model, the value of Person one is higher than the one from copula model
and Kendall correlation, which shows that the former overestimates the relation between
stock market and bond

Contrary to the inability to capture the relevance in tail from linear perspective, the
correlation coefficient in tail well describes the possibility of consistency in bond market
when the exception situations happen in stock market such as boom or slump.

3) In the VaR comparsion part, it implies that 50% stock-50% bond portfolio has a 95%
chance of losing the maximum value 0.01336 and 0.0135 under the above two methods when
1 is invested.

Through the contrast of the VaR results from analytical method and Monte Carlo sim-
ulation, it is found that the VaR value in assumption of the normal distribution is less than
the one by Monte Carlo, which means the former underestimates the financial risk easily.

Meanwhile, to obtain the safest asset security, it is a wise strategy for a robust investor to
allocate 80%−85% capital to stock market and 15%−20% one to 10-year bond theoretically
according to results of the minimum VaR computation.

5 Conclusions In the analysis of portfolio, there is an importance in the study of relation
structure between financial assets, which results in how to capture the principal of change
between them especially in the tail with better correlation model.

In this paper, through kernel density estimation-maximum likelihood two steps, Gumbel
and Clayton copula model are adopted to model the correlation between stock and bond.
Then, VaR is analyzed based on it and the optimal allocation in the portfolio could be
confirmed by Montel Carlo simulation.

By comparison between the present methods introduced in this paper and the conven-
tional methods which is based on the normal distribution, it is concluded that the latter one
always underestimate the happening of risk and the value of risk, which should be brought
to the forefront.
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Hesitant Fuzzy Geometric Heronian Mean Operators and Their Application to
Multi-Criteria Decision Making
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ABSTRACT. Aggregation is the process of fusing a large data in one representative
value. This is done in different ways, through what may be called ‘operators’, every opera-
tor having special characteristics. Expanding study of vague phenomena, through hesitant
fuzzy information of hesitant fuzzy set (HFS) theory and their applications has attracted
useful aggregation techniques. Paper explores the geometric Heronian mean (GHM) un-
der hesitant fuzzy environment and defines some new geometric Heronian mean operators
such as the hesitant fuzzy generalized geometric Heronian mean (HFGGHM) operator and
the weighted hesitant fuzzy generalized geometric Heronian mean (WHFGGHM) opera-
tor. Further, we give definition of hesitant fuzzy geometric Heronian element (HFGHE),
which is a basic calculation unit in HFGGHM and reflects the conjunction between two
aggregated arguments. Properties of the new aggregation operators are reported and their
special cases are considered. Furthermore, based on the WHFGGHM operator, an approach
to deal with multi-criteria decision-making problems under hesitant fuzzy environment is
developed. Finally, a practical example is provided to illustrate the multi-criteria decision-
making process.
Keywords: fuzzy sets; fuzzy multi-sets; intuitionistic fuzzy set; hesitant fuzzy sets.

1. Introduction

Mathematics is known for its quantitative and logically sound foundations. It started
with study of deterministic phenomena. However, the wider world phenomena, all the more
those in man-made world, are not deterministic in nature. Ingenuity of mathematicians
expanded mathematical study to a class of in-deterministic/uncertain phenomena that are
statistical/probabilistic nature. Without sacrificing its quantitative and logically sound
basis, a vast discipline of statistics developed. Moving thus a major step forward in the
study of uncertain phenomena, it was observed that there are uncertain phenomena that
are not statistically stable in which chances of happening of an event can be quantified
in terms of probabilities and distribution-patterns. This presented mathematicians with a
challenge to define phenomena that are uncertain in non-statistical ways. In general these
may be called vague or imprecise. Zadeh [44] was the first to capture this idea in defining
fuzzy sets. Several extensions and generalizations of Zadeh’ fuzzy-sets have since been made
as intuitionistic fuzzy sets [1, 2], interval-valued fuzzy sets [10, 19], type-2 fuzzy sets [45],
type-n fuzzy sets [45], fuzzy multisets [6, 35], vague sets [9], and hesitant fuzzy sets [17, 18],
etc. In a rather natural way, set operations were defined and it was found that these present
a panorama of laws as the defining terms in these sets involve functions, which was not the
case with theory of crisp sets. These studies enriched areas of applications in different ways
[4, 5, 7, 8, 11-16, 20-34, 38-41, 45-50].

The vagueness/fuzziness that appeared to be diluting/loosing precise quantitative tenor
of things in the process, Zadeh and thereafter others defined measures of fuzziness of various
shades over family of fuzzy-sets. These measures of fuzziness are quantitative in nature and
follow the pattern of measures defined in place Shannon’s probabilistic information theory.
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may be called vague or imprecise. Zadeh [44] was the first to capture this idea in defining
fuzzy sets. Several extensions and generalizations of Zadeh’ fuzzy-sets have since been made
as intuitionistic fuzzy sets [1, 2], interval-valued fuzzy sets [10, 19], type-2 fuzzy sets [45],
type-n fuzzy sets [45], fuzzy multisets [6, 35], vague sets [9], and hesitant fuzzy sets [17, 18],
etc. In a rather natural way, set operations were defined and it was found that these present
a panorama of laws as the defining terms in these sets involve functions, which was not the
case with theory of crisp sets. These studies enriched areas of applications in different ways
[4, 5, 7, 8, 11-16, 20-34, 38-41, 45-50].

The vagueness/fuzziness that appeared to be diluting/loosing precise quantitative tenor
of things in the process, Zadeh and thereafter others defined measures of fuzziness of various
shades over family of fuzzy-sets. These measures of fuzziness are quantitative in nature and
follow the pattern of measures defined in place Shannon’s probabilistic information theory.
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Another age old idea is that of ‘aggregation,’ a process of meaningfully fusing a collection
of values into one representative value. It is, in fact, a multi-faceted avtar of the simple
idea of arithmetical and other means/averages of a given set of numbers. In probabilistic-
statistics, one encounters it at several places – ‘statistical expectations,’ correlation and
regression analysis, etc.

Shannon’s entropy of a probability distribution being average of self-information ar-
guments of its elements is, generally speaking, an aggregation of self-information elements.
With this background, information aggregation in hesitant fuzzy set theory has been studied
with quite some interest by researchers and practitioners in recent years. Xia and Xu [27]
developed some arithmetic and geometric aggregation operators under hesitant fuzzy envi-
ronment, investigated the connections of these operators and applied them to multi-criteria
decision making. To aggregate the hesitant fuzzy information under confidence levels, Xia
et al. [26] developed a series of confidence-induced hesitant fuzzy aggregations operators.
Xu et al. [30] developed several series of aggregation operators for hesitant fuzzy informa-
tion using the quasi-arithmetic means. Gu et al. [11] utilized the hesitant fuzzy weighted
average (HFWA) operator to investigate the evaluation model for risk investment with hes-
itant fuzzy information. Based on the prioritized weighted average (PWA) operator [37,
38], Yu [40] proposed the hesitant fuzzy prioritized weighted average (HFPWA) operator
and the hesitant fuzzy prioritized weighted geometric (HFPWA) operator to aggregate the
hesitant fuzzy information. Wei [22] also developed some prioritized aggregation operators
for aggregating hesitant fuzzy information and then applied them to develop models for
hesitant fuzzy multiple attribute decision making.

Reflecting on the concept of aggregation, it may be noted that the above discussed ag-
gregation operators with hesitant fuzzy information are based on the assumption that all
aggregating arguments are independent However, in real world situations there are always
some degrees of interrelationships between arguments. To deal with this issue, Yu et al.
[39] and Wei et al. [21] developed some hesitant fuzzy correlative operators, such as the
hesitant fuzzy Choquet integral (HFCI) operator, the hesitant fuzzy Choquet ordered aver-
age (HFCOA) operator, the hesitant fuzzy Choquet ordered geometric (HFCOG) operator,
the generalized hesitant fuzzy Choquet ordered average (GHFCOA) operator and the gen-
eralized hesitant fuzzy Choquet ordered geometric (GHFCOG) operator and found their
application to multiple attribute decision making. Motivated by the idea of power aver-
age (PA) operator [36], Zhang [48] developed some hesitant fuzzy power average (HFPA)
operators and hesitant fuzzy power geometric (HFPG) operators for aggregating hesitant
fuzzy correlative information. Further, Zhu et al. [51] and Zhu and Hu [52] extended
the Bonferroni mean (BM) to hesitant fuzzy environment and introduced some hesitant
fuzzy Bonferroni means such as the hesitant fuzzy Bonferroni mean (HFBM), the weighted
hesitant fuzzy Bonferroni mean (WHFBM), the hesitant fuzzy geometric Bonferroni mean
(HFGBM), the weighted hesitant fuzzy geometric Bonferroni mean (WHFGBM) and the
hesitant fuzzy Choquet geometric Bonferroni mean (HFCGBM).

The Heronian mean (HM) is another aggregation technique, which is better suited to
aggregate the exact numerical values [3]. A prominent characteristic of HM is its capability
to capture interrelationships between input arguments. This makes HM useful in various
application fields, such as decision making, information retrieval, pattern recognition, and
data mining etc. The HM is different from power average or Choquet integral. The HM
operator focuses on the aggregated arguments while the Choquet integral or power average
on changing the weight vector of the aggregation operators. Based on HM operator, Yu
[43] defined some generalized HM operators such as generalized geometric Heronian mean
(GGHM), the generalized geometric intuitionistic fuzzy Heronian mean (GGIFHM) and the

2

weighted generalized geometric intuitionistic fuzzy Heronian mean (WGGIFHM).

In this paper, we extend the idea of generalized geometric Heronian mean operator to
hesitant fuzzy environment. In order to do so, we propose the hesitant fuzzy generalized
geometric Heronian mean (HFGGHM) operator and the weighted hesitant fuzzy general-
ized geometric Heronian mean (WHFGWBM) operator for aggregating the hesitant fuzzy
correlative information. We study their properties and discuss special cases. We show that
several aggregation operators on hesitant fuzzy sets studied earlier are special cases of our
generalized operator. Also, there are others interesting particular cases that as well arise
from it. Further, we develop an approach for multi-criteria decision making under hesitant
fuzzy information environment.

The paper is organized as follows: In Section 2 some basic concepts related to fuzzy sets,
hesitant fuzzy sets and Heronian mean operators are briefly given. In Section 3 we propose
the hesitant fuzzy generalized geometric Heronian mean (HFGGHM) operator and study
some of their properties. Some special cases of HFGGHM are also discussed in this section.
In Section 4 we introduce the weighted hesitant fuzzy generalized geometric Heronian mean
(HFGGHM) operator and develop an approach for solving multi-criteria decision making
under hesitant fuzzy environment. In Section 5 finally, a numerical example is presented to
illustrate the proposed approach to multi-criteria decision-making and our conclusions are
presented in Section 6.

2. Preliminaries

Definition 1. Fuzzy set [44]: A fuzzy set A in a finite universe of discourse X =
{x1, x2, ..., xn} is defined as

(1) A = {⟨x, µA(x)⟩ |x ∈ X} ,

where µA(x) : X → [0, 1] is the membership function of A and the number µA(x) describing
the degree of membership of x ∈ X in the set A.

An step further, the concept of hesitant fuzzy sets (HFSs) was introduced by Torra and
Narukawa [17] and Torra [18]. An HFS permits the membership degree of an element to
be a set of several possible membership values between 0 and 1. This better describes the
situations where a set of people have hesitancy in providing their preferences over objects
in the process of decision making.

Definition 2. Hesitant Fuzzy Set [18]: Let X = {x1, x2, ..., xn} be a reference set, a set
E defined in X given by

(2) E = {⟨x, hE(x)⟩ |x ∈ X}

where hE (x) is a set of some different values in [0, 1], denoting the possible membership
degrees of the element x ∈ X to the set E, is called a hesitant fuzzy set.

Further, Torra [18] defined the ‘empty hesitant fuzzy set’ and the ‘full hesitant fuzzy set’
as follows:

E◦ = {⟨x, hE◦(x)⟩ |x ∈ X}, where hE◦(x) = {0} ∀x ∈ X,

E∗ = {⟨x, hE∗(x)⟩ |x ∈ X}, where hE∗(x) = {1} ∀x ∈ X.
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where hE (x) is a set of some different values in [0, 1], denoting the possible membership
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For convenience, Xia and Xu [27] named the set h = hE(x) as the hesitant fuzzy element
(HFE) and let HFE(X) represent the family of all hesitant fuzzy elements defined in X.

Definition 3.Algebraic Operations on HFEs: Let h, h1, h2 ∈ HFE(X), Xia and Xu
[26] defined the following operations:

1. hλ =
∪

γ∈h

{
γλ

}
, λ > 0;

2. λh =
∪

γ∈h

{
1− (1− γ)λ

}
, λ > 0;

3. h1 ⊕ h2 =
∪

γ1∈h1,γ2∈h2
{γ1 + γ2 − γ1γ2};

4. h1 ⊗ h2 =
∪

γ1∈h1,γ2∈h2
{γ1γ2}.

Definition 4. Score Function [27]: Let h be a hesitant fuzzy element, the score function
S of an HFE is defined as follows:

(3) S(h) =
1

#h

∑
γ∈h

γ,

where #h is the number of elements in h.

To ranking any two hi, i = 1, 2, we shall use the following definition of Xia & Xu [27]:

Definition 5: Let h1and h2 be two hesitant fuzzy elements with their respective scores
S(h1) and S(h2), then

1. h1 is larger than h2, denoted by h1 > h2 if S(h1) > S(h2).

2. h1 = h2, if S(h1) = S(h2).

Heronian mean (HM), which is one of the aggregation methods, is characterized by the
ability to capture the relevance between the input arguments. The definition of HM is as
follows:

Definition 6. Heronian Mean [3]: For a collection ai, i = 1, 2, · · · , n, of nonnegative real
numbers, their Heronian mean (HM) is defined as:

(4) HM(a1, a2, · · · , an) =
2

n(n+ 1)

n∑
i,j=1

√
aiaj

Based on Definition 6, Yu [42] proposed the geometric Heronian mean (GHM) as follows:

Definition 7. Geometric Heronian Mean [43]: For a collection ai, i = 1, 2, · · · , n, of
nonnegative real numbers, their the geometric Heronian mean (GHM) is defined by:

(5) GHM(a1, a2, · · · , an) =
n∏

i,j=1

(ai + aj
2

) 2
n(n+1)

Further, using the idea of geometric Bonferroni mean [31], Yu [43] also proposed the gener-
alized geometric Heronian mean (GGHM) as follows:

4

Definition 8. Generalized Geometric Heronian Mean [43]: Let p, q ≥ 0, p, q do not
take the value 0 simultaneously and let ai, i = 1, 2, · · · , n, be a collection of nonnegative
real numbers, then generalized geometric Heronian mean (GGHM) is given by:

(6) GGHMp,q(a1, a2, · · · , an) =
1

p+ q

n∏
i,j=1

(pai + qaj)
2

n(n+1)

It may be noted that GGHMp,q have the following properties.

1. GGHMp,q(0, 0, · · · , 0) = 0 and GGHMp,q(1, 1, · · · , 1) = 1;

2. GGHMp,q(a1, a2, · · · , an) = a if ai = a, ∀i;

3. If ai ≤ bi ∀i, thenGGHMp,q(a1, a2, · · · , an) ≤ GGHMp,q(b1, b2, · · · , bn) i.e., GGHMp,q

is monotonic;

4. min
i

{ai} ≤ GGHMp,q(a1, a2, · · · , an) ≤ max
i

{ai}.

In the next section, in respect of hesitant fuzzy environment, we extend the GGHM to
hesitant fuzzy environment and propose:

(i) The hesitant fuzzy generalized geometric Heronian mean (HFGGHM);
(ii) The weighted hesitant fuzzy generalized geometric Heronian mean (WHFGGHM).

3. Hesitant Fuzzy Generalized Geometric Heronian Means

We propose the following definition:

Definition 9.Hesitant Fuzzy Generalized Geometric Heronian Mean : Let p, q > 0
and hi i = 1, 2, · · · , n be a collection of HFEs, the hesitant fuzzy generalized geometric
Heronian mean (HFGGHMp,q) is given by:

(7) HFGGHMp,q(h1, h2, · · · , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2

n(n+1)

Next, based on the operational laws of HFEs, we have the following theorem:

Theorem 1: Let p, q > 0 and hi i = 1, 2, · · · , n be a collection of hesitant fuzzy elements,
then the aggregated value by using the HFGGHMp,q operator is also a hesitant fuzzy
element, and

HFGGHMp,q(h1, h2, · · · , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2

n(n+1) ,

(8) =
∪

ηi,j∈σi,j;i≤j





1−



1−

n∏

i, j = 1
i ≤ j

(ηi,j)
2

n(n+1)




1
p+q



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Next, based on the operational laws of HFEs, we have the following theorem:
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then the aggregated value by using the HFGGHMp,q operator is also a hesitant fuzzy
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HFGGHMp,q(h1, h2, · · · , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j
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


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
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
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
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where σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi)) reflects the interrelationship between hi and
hj , i, j = 1, 2, ... , n.

Proof: Since

(9) σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi)) =
∪

ηi,j∈σi,j;i≤j

{ηi,j}

which is also a HFE, then Equation (8) can be written as:

(10) HFGGHMp,q (h1, h2, ..., hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σi,j

) 2
n(n+1)

Furthermore, we have

n
⊗

i, j = 1
i ≤ j

(σi,j)
2

n(n+1) =




n
⊗

i, j = 1
i ≤ j

(
σi,j

)




2
n(n+1)

=
∪

ηi,j∈σi,j;i≤j







n∏

i, j = 1
i ≤ j

ηi,j




2
n(n+1)




=
∪

ηi,j∈σi,j;i≤j







n∏

i, j = 1
i ≤ j

(ηi,j)
2

n(n+1)







and then

(11)
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σi,j

) 2
n(n+1) =

∪
ηi,j∈σi,j;i≤j




1−



1−

n∏

i, j = 1
i ≤ j

(ηi,j)
2

n(n+1)




1
p+q




.

This completes the proof of the Theorem 1.

It is noted that, in Theorem 1, σi,j is a basic element in (8), which we call a hesitant fuzzy
geometric Heronian element (HFGHE). Apparently, σi,j represents the interrelationship
between the HFEs hi and hj by two types of conjunction calculations, i.e., “⊕” and “⊗”.
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Further, we discuss some properties of the HFGGHMp,q:

1. Let hi, i = 1, 2, · · · , n, be collection of HFEs. If hi = h for all i, then

(12) HFGGHMp,q(h1, h2, · · · , hn) =
1

p+ q
((p+ q)h)2.

Proof: Since hi = h for all i, we have

HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h, h, · · · , h)

=
1

p+ q

n
⊗

i, j = 1
i ≤ j

((ph⊕ qh)⊗ (ph⊕ qh))
2

n(n+1)

=
1

p+ q
((ph⊕ qh)⊗ (ph⊕ qh))

=
1

p+ q
((p⊕ q)h)2.(13)

This proves the property.

Corollary 1: If hi, i = 1, 2, · · · , n, is a collection of the empty HFEs, i.e., hi = h◦ = {0},
then

(14) HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h◦, h◦, · · · , h◦) = {0} .

Corollary 2: If hi, i = 1, 2, · · · , n is a collection of the full HFEs, i.e., hi = h∗ = {1},
then

(15) HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h∗, h∗, · · · , h∗) = {1} .

2. (Monotonicity). Let hα = (hα1
, hα2

, · · · , hαn
) and hβ = (hβ1

, hβ2
, · · · , hβn

) be two
collections of HFEs, σαi,j = ((phαi ⊕ qhαj ) ⊗ (phαj ⊕ qhαi)) and σβi,j = ((phβi ⊕ qhβj ) ⊗
(phβj

⊕ qhβi
)), if for any γαi

∈ hαi
, γβi

∈ hβi
, we have γαi

≤ γβi
and γαj

≤ γβj
for all

i, j = 1, 2, . . . , n, then

(16) HFGGHMp,q(hα1 , hα2 , . . . , hαn) ≤ HFGGHMp,q(hβ1 , hβ2 , . . . , hβn).

Proof: Since γαi ≤ γβi and γαj ≤ γβj for all i, j = 1, 2, . . . , n, we have

(17) (1− (1− γαi)
p(1− γαj )

q) ≤ (1− (1− γβi)
p(1− γβj )

q),

(18) (1− (1− γαj )
p(1− γαi)

q) ≤ (1− (1− γβj )
p(1− γβi)

q).

Additionally, we obtain

σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi))

(19)

=
( ∪

γαi
∈hαi

,γαj
∈hαj

{1− (1− γαi)
p + 1− (1− γαj )

q − (1− (1− γαi)
p)(1− (1− γαj )

q)}
)

⊗
( ∪

γαi
∈hαi

,γαj
∈hαj

{1− (1− γαj )
p + 1− (1− γαi)

q − (1− (1− γαj )
p)(1− (1− γαi)

q)}
)
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=
1

p+ q
((ph⊕ qh)⊗ (ph⊕ qh))

=
1

p+ q
((p⊕ q)h)2.(13)

This proves the property.

Corollary 1: If hi, i = 1, 2, · · · , n, is a collection of the empty HFEs, i.e., hi = h◦ = {0},
then

(14) HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h◦, h◦, · · · , h◦) = {0} .

Corollary 2: If hi, i = 1, 2, · · · , n is a collection of the full HFEs, i.e., hi = h∗ = {1},
then

(15) HFGGHMp,q(h1, h2, · · · , hn) = HFGGHMp,q(h∗, h∗, · · · , h∗) = {1} .

2. (Monotonicity). Let hα = (hα1
, hα2

, · · · , hαn
) and hβ = (hβ1

, hβ2
, · · · , hβn

) be two
collections of HFEs, σαi,j = ((phαi ⊕ qhαj ) ⊗ (phαj ⊕ qhαi)) and σβi,j = ((phβi ⊕ qhβj ) ⊗
(phβj

⊕ qhβi
)), if for any γαi

∈ hαi
, γβi

∈ hβi
, we have γαi

≤ γβi
and γαj

≤ γβj
for all

i, j = 1, 2, . . . , n, then

(16) HFGGHMp,q(hα1 , hα2 , . . . , hαn) ≤ HFGGHMp,q(hβ1 , hβ2 , . . . , hβn).

Proof: Since γαi ≤ γβi and γαj ≤ γβj for all i, j = 1, 2, . . . , n, we have

(17) (1− (1− γαi)
p(1− γαj )

q) ≤ (1− (1− γβi)
p(1− γβj )

q),

(18) (1− (1− γαj )
p(1− γαi)

q) ≤ (1− (1− γβj )
p(1− γβi)

q).

Additionally, we obtain

σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi))

(19)

=
( ∪

γαi
∈hαi

,γαj
∈hαj

{1− (1− γαi)
p + 1− (1− γαj )

q − (1− (1− γαi)
p)(1− (1− γαj )

q)}
)

⊗
( ∪

γαi
∈hαi

,γαj
∈hαj

{1− (1− γαj )
p + 1− (1− γαi)

q − (1− (1− γαj )
p)(1− (1− γαi)

q)}
)
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Let ηαi,j
∈ σαi,j;i≤j

and ηβi,j
∈ σβi,j;i≤j

, for all i, j = 1, 2 . . . , n; i ≤ j, then from Equations
(17)-(19), we have

(20)

ηαi,j =
(( ∪

γαi
∈hαi

,γαj
∈hαj

{1−(1−γαi)
p+1−(1−γαj )

q−(1−(1−γαi)
p)(1−(1−γαj )

q)}
)

⊗
( ∪

γαj
∈hαj

,γαi
∈hαi

{1− (1− γαj )
p + 1− (1− γαi)

q − (1− (1− γαj )
p)(1− (1− γαi)

q)}
))

≤ ηβi,j =
(( ∪

γβi
∈hβi

,γβj
∈hβj

{1−(1−γβi)
p+1−(1−γβj )

q−(1−(1−γβi)
p)(1−(1−γβj )

q)}
)

⊗
( ∪

γβj
∈hβj

,γβi
∈hβi

{1− (1− γβj )
p + 1− (1− γβi)

q − (1− (1− γβj )
p)(1− (1− γβi)

q)}
))

thus

(21)



1−

n∏

i, j = 1
i ≤ j

(
ηαi,j

) 2
n(n+1)




1
p+q

≥



1−

n∏

i, j = 1
i ≤ j

(
ηβi,j

) 2
n(n+1)




1
p+q

.

According to Definition 9 and Equation (21), we get

HFGGHMp,q(hα1 , hα2 , . . . , hαn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

(σαi,j )
2

n(n+1)

=
∪

ηαi,j
∈σαi,j;i≤j




1−



1−

n∏

i, j = 1
i ≤ j

(
ηαi,j

) 2
n(n+1)




1
p+q




≤
∪

ηβi,j
∈σβi,j,i≤j





1−



1−

n∏

i, j = 1
i ≤ j

(
ηβi,j

) 2
n(n+1)




1
p+q





=
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σβi,j

) 2
n(n+1)

= HFGHMp,q(hβ1 , hβ2 , . . . , hβn).(22)

This proves the property.
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3. (Commutativity). Let hi, i = 1, 2, . . . , n, be collection of HFEs, and (ḣ1, ḣ2, . . . , ḣn) be
any permutation of (h1, h2, . . . , hn), then

(23) HFGGHMp,q(h1, h2, . . . , hn) ≤ HFGGHMp,q(ḣ1, ḣ2, . . . , ḣn).

Proof: Since (ḣ1, ḣ2, . . . , ḣn) is a permutation of (h1, h2, . . . , hn), then

HFGGHMp,q
(
hα1

, hα2
, ..., hαn

)
=

1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σαi,j

) 2
n(n+1)

=
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σ̇αi,j

) 2
n(n+1)

= HFGGHMp,q(ḣ1, ḣ2, . . . , ḣn),(24)

where σi,j; i≤j = ((phi ⊕ qhj) ⊗ (phj ⊕ qhi)) and σ̇i,j; i≤j = (pḣi ⊕ qḣj) ⊗ (pḣj ⊕ qḣi),
i, j = 1, 2, . . . , n.

This proves the property.

4. (Boundedness). Let hi, i = 1, 2, . . . , n be collection of HFEs, h+
i =

∪
γi∈hi

max {γi},
h−
i =

∪
γi∈hi

min {γi}, γ+ ∈ h+
i , γ

− ∈ h−
i , and σi,j = (phi ⊕ qhj) =

∪
ηi,j∈σi.j

{
ηi.j

}
=∪

γi∈hi,γj∈hj
{1− (1− γi)

p
(1− γj)

q}, then

(25)
∪

γ−∈h−
i

{
1−

(
1−

(
1−

(
1− γ−)p+q

)2
) 1

p+q

}

≤ HFGGHMp,q(h1, h2, . . . , hn)

≤
∪

γ−∈h−
i

{
1−

(
1−

(
1−

(
1− γ+

)p+q
)2

) 1
p+q

}
.

Proof: Since γ− ≤ γi ≤ γ+ and γ− ≤ γj ≤ γ+ ∀ i, j = 1, 2, . . . , n, then

(26) 1−
(
1− γ−)p+q ≤ 1− (1− γi)

p
(1− γj)

q ≤ 1−
(
1− γ+

)p+q

(27) 1−
(
1− γ−)p+q ≤ 1− (1− γj)

p
(1− γi)

q ≤ 1−
(
1− γ+

)p+q

and
σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi))

=




∪
γ
i
∈h

i
,γ

j
∈h

i

{1− (1− γi)
p
(1− γj)

q}


 ⊗




∪
γ
i
∈h

i
,γ

j
∈h

i

{1− (1− γj)
p
(1− γi)

q}




(28) ≥


 ∪

γ−∈h−
i

{(
1−

(
1− γ−)p+q

)2
}

 .
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3. (Commutativity). Let hi, i = 1, 2, . . . , n, be collection of HFEs, and (ḣ1, ḣ2, . . . , ḣn) be
any permutation of (h1, h2, . . . , hn), then

(23) HFGGHMp,q(h1, h2, . . . , hn) ≤ HFGGHMp,q(ḣ1, ḣ2, . . . , ḣn).

Proof: Since (ḣ1, ḣ2, . . . , ḣn) is a permutation of (h1, h2, . . . , hn), then

HFGGHMp,q
(
hα1

, hα2
, ..., hαn

)
=

1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σαi,j

) 2
n(n+1)

=
1

p+ q

n
⊗

i, j = 1
i ≤ j

(
σ̇αi,j

) 2
n(n+1)

= HFGGHMp,q(ḣ1, ḣ2, . . . , ḣn),(24)

where σi,j; i≤j = ((phi ⊕ qhj) ⊗ (phj ⊕ qhi)) and σ̇i,j; i≤j = (pḣi ⊕ qḣj) ⊗ (pḣj ⊕ qḣi),
i, j = 1, 2, . . . , n.

This proves the property.

4. (Boundedness). Let hi, i = 1, 2, . . . , n be collection of HFEs, h+
i =

∪
γi∈hi

max {γi},
h−
i =

∪
γi∈hi

min {γi}, γ+ ∈ h+
i , γ

− ∈ h−
i , and σi,j = (phi ⊕ qhj) =

∪
ηi,j∈σi.j

{
ηi.j

}
=∪

γi∈hi,γj∈hj
{1− (1− γi)

p
(1− γj)

q}, then

(25)
∪

γ−∈h−
i

{
1−

(
1−

(
1−

(
1− γ−)p+q

)2
) 1

p+q

}

≤ HFGGHMp,q(h1, h2, . . . , hn)

≤
∪

γ−∈h−
i

{
1−

(
1−

(
1−

(
1− γ+

)p+q
)2

) 1
p+q

}
.

Proof: Since γ− ≤ γi ≤ γ+ and γ− ≤ γj ≤ γ+ ∀ i, j = 1, 2, . . . , n, then

(26) 1−
(
1− γ−)p+q ≤ 1− (1− γi)

p
(1− γj)

q ≤ 1−
(
1− γ+

)p+q

(27) 1−
(
1− γ−)p+q ≤ 1− (1− γj)

p
(1− γi)

q ≤ 1−
(
1− γ+

)p+q

and
σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi))

=




∪
γ
i
∈h

i
,γ

j
∈h

i

{1− (1− γi)
p
(1− γj)

q}


 ⊗




∪
γ
i
∈h

i
,γ

j
∈h

i

{1− (1− γj)
p
(1− γi)

q}




(28) ≥


 ∪

γ−∈h−
i

{(
1−

(
1− γ−)p+q

)2
}

 .
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Similarly, we have

(29) σi,j; i≤j ≤


 ∪

γ+∈h+
i

{(
1−

(
1− γ+

)p+q
)2

}
 .

According to Definition 9, Equations (28) and (29), we obtain

∪

γ−∈h−
i

{
1−

(
1−

(
1−

(
1− γ−)p+q

)2
) 1

p+q

}
≤ HFGGHMp,q (h1, h2, . . . , hn)

(30) ≤
∪

γ+∈h+
i

{
1−

(
1−

(
1−

(
1− γ+

)p+q
)2

) 1
p+q

}
.

This proves the property.

Some special cases of HFGGHMp,q for different values of parameters p and q.

(i) If q → 0 (or p → 0), then the HFGGHMp,q reduces to

lim
q→0

HFGHMp,q (h1, h2, . . . , hn) =
1

p

n
⊗

i, j = 1
i ≤ j

(phi ⊗ phj)
2

n(n+1) ,

(31) =
∪

γ
i
∈h

i
,γ

j
∈h

i




1−



1−

n∏

i, j = 1
i ≤ j

((1− (1− γi)
p
) (1− (1− γj)

p
))

2
n(n+1)




1
p




,

which we call the generalized hesitant fuzzy geometric Heronian mean (GHFGHM).

(ii) If p = 1 and q → 0, then the HFGGHMp,q reduces to

lim
q→0

HFGHM1,q(h1, h2, . . . , hn) =
n
⊗

i, j = 1
i ≤ j

(hi ⊗ hj)
2

n(n+1) ,

(32) =
∪

γ
i
∈h

i
,γ

j
∈h

i





n∏

i, j = 1
i ≤ j

((1− (1− γi)) (1− (1− γj)))
2

n(n+1)





,

which we call the hesitant fuzzy geometric Heronian mean (GHFGHM).
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(iii) If p = 2 and q → 0, then the HFGGHMp,q reduces to

lim
q→0

HFGHM2,q (h1, h2, ..., hn) =
1

2

n
⊗

i, j = 1
i ≤ j

(2hi ⊗ 2hj)
2

n(n+1) ,

(33) =
∪

γ
i
∈h

i
,γ

j
∈h

i




1−



1−

n∏

i, j = 1
i ≤ j

((
1− (1− γi)

2
)(

1− (1− γj)
2
)) 2

n(n+1)




1
2




,

which we call the hesitant fuzzy square geometric Heronian mean (HFSGHM).

(iv) If p = q = 1, let σ1,1
i,j; i≤j = ((hi ⊕ hj)⊗ (hj ⊕ hi)) =

∪
εi,j∈σ1,1

i,j;i≤j
{εi,j}, theHFGGHMp,q

reduces to

HFGHM1,1 (h1, h2, ..., hn) =
1

2

n
⊗

i, j = 1
i ≤ j

((hi ⊕ hj)⊗ (hj ⊕ hi))
2

n(n+1)

(34) =
∪

εi,j∈σ1,1
i,j;i≤j




1−



1−

n∏

i, j = 1
i ≤ j

(εi,j)
2

n(n+1)




1
2




which we call the hesitant fuzzy interrelated square geometric Heronian mean (HFISGHM).

Further, to consider the importance of aggregated arguments, we define a weighted hesitant
fuzzy generalized geometric Heronian mean (WHFGGHM) operator as follows:

Definition 10: Let hi, i = 1, 2, . . . , n, be a collection of HFEs, and w = (w1, w2, . . . , wn)
T

be the weight vector of hi where wi indicates the importance degree of hi, satisfying wi ≥
0, i = 1, 2, . . . , n and

∑n
i=1 wi = 1. For any p, q > 0, the weighted hesitant fuzzy generalized

geometric Heronian mean (WHFGGHMp,q) is given by:

(35)

WHFGGHMp,q(h1, h2, . . . , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2wiwj

(1+wi) .

In view of Equation (35), we prove a result in the following theorem:

Theorem 2. Let p, q > 0, and hi, i = 1, 2, . . . , n be a collection of HFEs with weight
vector w = (w1, w2, . . . , wn)

T satisfying wi ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 wi = 1. Then the
aggregated value using the WHFGGHM is also an HFE, and

WHFGGHMp,q (h1, h2, ..., hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2wiwj

(1+wi) ,
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(iii) If p = 2 and q → 0, then the HFGGHMp,q reduces to

lim
q→0

HFGHM2,q (h1, h2, ..., hn) =
1

2

n
⊗

i, j = 1
i ≤ j

(2hi ⊗ 2hj)
2

n(n+1) ,

(33) =
∪

γ
i
∈h

i
,γ

j
∈h

i




1−



1−

n∏

i, j = 1
i ≤ j

((
1− (1− γi)

2
)(

1− (1− γj)
2
)) 2

n(n+1)




1
2




,

which we call the hesitant fuzzy square geometric Heronian mean (HFSGHM).

(iv) If p = q = 1, let σ1,1
i,j; i≤j = ((hi ⊕ hj)⊗ (hj ⊕ hi)) =

∪
εi,j∈σ1,1

i,j;i≤j
{εi,j}, theHFGGHMp,q

reduces to

HFGHM1,1 (h1, h2, ..., hn) =
1

2

n
⊗

i, j = 1
i ≤ j

((hi ⊕ hj)⊗ (hj ⊕ hi))
2

n(n+1)

(34) =
∪

εi,j∈σ1,1
i,j;i≤j




1−



1−

n∏

i, j = 1
i ≤ j

(εi,j)
2

n(n+1)




1
2




which we call the hesitant fuzzy interrelated square geometric Heronian mean (HFISGHM).

Further, to consider the importance of aggregated arguments, we define a weighted hesitant
fuzzy generalized geometric Heronian mean (WHFGGHM) operator as follows:

Definition 10: Let hi, i = 1, 2, . . . , n, be a collection of HFEs, and w = (w1, w2, . . . , wn)
T

be the weight vector of hi where wi indicates the importance degree of hi, satisfying wi ≥
0, i = 1, 2, . . . , n and

∑n
i=1 wi = 1. For any p, q > 0, the weighted hesitant fuzzy generalized

geometric Heronian mean (WHFGGHMp,q) is given by:

(35)

WHFGGHMp,q(h1, h2, . . . , hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2wiwj

(1+wi) .

In view of Equation (35), we prove a result in the following theorem:

Theorem 2. Let p, q > 0, and hi, i = 1, 2, . . . , n be a collection of HFEs with weight
vector w = (w1, w2, . . . , wn)

T satisfying wi ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 wi = 1. Then the
aggregated value using the WHFGGHM is also an HFE, and

WHFGGHMp,q (h1, h2, ..., hn) =
1

p+ q

n
⊗

i, j = 1
i ≤ j

((phi ⊕ qhj)⊗ (phj ⊕ qhi))
2wiwj

(1+wi) ,
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(36) =
∪

ηi,j∈σi,j;i≤j




1−



1−

n∏

i, j = 1
i ≤ j

(ηi,j)

2wiwj

(1+wi)




1
p+q




and σi,j; i≤j = ((phi ⊕ qhj)⊗ (phj ⊕ qhi)) reflects the interrelationship between hi and hj ,
i, j = 1, 2, . . . , n.

Proof : This theorem is easy to prove on lines similar to that of Theorem 1.

Note: If w = ( 1n ,
1
n , . . . ,

1
n )

T then WHFGGHMp,q in (36) reduces to HFGGHM in (8).

In the following section, we suggest application of the proposed WHFGGHMp,q operator
to multi criteria decision making problems with hesitant fuzzy information and give an il-
lustrative numerical example.

4. An Approach to Multi Criteria Decision Making under Hesitant Fuzzy
Environment

For a multi criteria decision making problem, let A = (A1, A2, . . . , Am) be a set of m
alternatives and C = (C1, C2, . . . , Cn) be a set of n criteria, whose weight vector is w =
(w1, w2, . . . , wn)

T such that wj ∈ [0, 1] and
∑n

j=1 wi = 1. The decision makers provide all
the possible values that the alternative Ai satisfies the criterion Cj represented by HFEs
hij =

∪
γij∈hij

{γij}, and all hij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n , construct the hesitant fuzzy

decision matrix H = [hij ]m×n:

Table 1: Hesitant fuzzy decision matrix H = [hij ]m×n

C1 C2 . . . Cn

A1 h11 h12 . . . h1n

A2 h21 h21 . . . h2n

. . . . . . . . . . . . . . .
Am hm1 hm2 . . . hmn

To harmonize the data,first step is to look at the criteria.These in general can be of different
types. If all the criteria C = (C1, C2, . . . , Cn) are of the same type, then the criteria values
do not need harmonization. However if these involve different scales and /or units, there is
need to be convert them all to the same scale and/or unit. Just to make this point clear, let
us consider two types of criteria, namely, (i) cost type and the (ii) benefit type. Considering
their natures, a benefit criterion (the bigger the values better is it) and cost criterion (the
smaller the values the better is it) are of rather opposite type. In such cases, we need to
first transform the criteria values of cost type into the criteria values of benefit type. So,
transform the hesitant fuzzy decision matrix H = [hij ]m×n into the normalized hesitant
fuzzy decision matrix B = [bij ]m×n by the method given by Zhu and Xu [52], where

(37) bij =

{
hij for benefit criterion Cj

hc
ij , for cost criterion Cj

, i = 1, 2, ..., m ; j = 1, 2, ..., n,

where hc
ij =

∪
γij∈hij

{1− γij} is the complement of hij .
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With criteria harmonized and using the WHFGGHM operator, we now formulate an al-
gorithm to solve multi criteria decision making problem with hesitant fuzzy information:

Algorithm:

Step 1: Use the WHFGGHM operator to aggregate all the performance values bij , j =
1, 2, . . . , n, of the ith row, and get the overall performance value bi corresponding to the
alternative Ai, i = 1, 2, . . . ,m:

(38) bi = WHFGGHMp,q
w (hi1, hi2, . . . , hin).

Step 2: By Definition 3, calculate the scores S(bi) of bi and rank the overall performance
values bi, i = 1, 2, . . . ,m.

Step 3: Rank the alternativesAi, i = 1, 2, . . . ,m, in accordance with bi, i = 1, 2, . . . ,m, in
descending order and select the most desirable alternative(s).

We demonstrate the above proposed algorithm to a real life multi-criteria decision making
through following illustrative example.

Example[52]: Consider a factory site selection problem for new buildings. After pre-
elimination process, only three alternatives Ai, i = 1, 2, 3, are being considered for further
evaluation and selection. The decision makers take into account three criteria to decide
the best site: C1: price, C2: environment, and C3: location. The weights of criteria are
w = (0.5, 0.3, 0.2)T . Next let the characteristics of the alternative Ai, i = 1, 2, 3, with
respect to the criteria Cj , j = 1, 2, 3, be represented by the HFEs hij =

∪
γij∈hij

{γij},
where γij indicates that the alternative Ai satisfies the criterion Cj . All hij , i, j = 1, 2, 3,
are contained in shown in the following hesitant fuzzy decision matrix H = [hij ]3×3:

Table 2: Hesitant fuzzy decision matrix H = [hij ]3×3

C1 C2 C3

A1 {0.6, 0.7, 0.8} {0.25} {0.4, 0.5}
A2 {0.4} {0.4, 0.5} {0.3, 0.55, 0.6}
A3 {0.2, 0.4} {0.6, 0.5} {0.7, 0.5}

Considering that all the criteria Cj , j = 1, 2, 3, are of the benefit type, then the pref-
erence values of the alternatives Ai, i = 1, 2, 3, do not need harmonization, therefore,
B = [bij ]m×n = [hij ]3×3.

Step 1: Using the WHFGGHM operator (here, we take p = q = 1) to aggregate all the
preference values bij , j = 1, 2, 3 of the ith row and get the overall performance values bi
corresponding to the alternative Ai as

b1 = {0.2795, 0.2836, . . . , 0.3803, 0.3849} ,

b2 = {0.2052, 0.2145, . . . , 0.2902, 0.2913} ,

b3 = {0.2066, 0.2045, . . . , 0.2941, 0.2883} .
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Step 2: We calculate the scores of all the alternatives according to bi, i = 1, 2, 3:

S (b1) = 0.3325, S (b2) = 0.2542, S (b3) = 0.2538.

Step 3: Since S(b1) > S(b2) > S(b3), by Definition 4, the ranking of the HFEs bi, i =
1, 2, 3, that is, b1 > b2 > b3, and thus, the ranking of the alternatives Ai, i = 1, 2, 3, is
A1 > A2 > A3. Hence A1 is the best alternative.

Next, if we take p = 1 and q = 3 in WHFGGHM operator, then

b1 = {0.2805, 0.2911, . . . , 0.3687, 0.3722} ,

b2 = {0.2805, 0.2911, . . . , 0.3644, 0.3644} ,

b3 = {0.2262, 0.2254, . . . , 0.3552, 0.3512} .

and the scores of all the alternatives are

S (b1) = 0.3449, S (b2) = 0.3292, S (b3) = 0.2907.

Thus, the ranking of the alternatives Ai, i = 1, 2, 3, now is A1 > A2 > A3. Hence A1 is still
the best alternative.

4. Conclusions

In this paper, we extended the idea of aggregation and considering a wider range of aggre-
gating operators, introduced Hesitant Fuzzy Generalized Geometric Heronian Mean (HFG-
GHM) operator and also that of Weighted Hesitant Fuzzy Generalized Geometric Heronian
Mean (WHFGGHM) operator. Properties of the proposed operators are studied and their
special cases are examined. Furthermore, we have applied the WHFGGHM operator to
multi criteria decision making with hesitant fuzzy numbers. Finally, an illustrative example
is given to verify the developed method and to demonstrate its practicality and effectiveness.
The work has scope for extensive further application and results on these new measures.
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Abstract.

This paper proposes homological analysis of statistical dependency graph. If a de-
pendency graph model satisfy the condition of a chain complex, homological algebra
can be applied. Especially, the degree of freedom can be viewed as a dual space of an
original complex.

Keywords: Statistical Independence, Pearson Residual, Homology, Cohomology

1 Introduction Analysis of a contingency analysis has a long history [1], where χ2-test
play a central role in detecting statistical independence of two variables. The key idea of
χ2-test is a degree of freedom of χ2-test statistics, the number of independent cells in a given
table. If we assume that the marginal distributions of a column and a row are fixed, all
the numbers in the cell will be determined by the values of independent cells. For example,
since the degree of freedom of a 2 × 2 contingency table is equal to 1, if one cell is given,
other three cells will be obtained under the given marginal distribution.

One interesting observation is that the formula of chi-square test statistics of a 2 × 2
contingency table includes the form of a determinant when a table is regarded as a 2×2 ma-
trix. Tsumoto focuses on this observation and finds the interesting relations between linear
algebra and statistical independence. from the viewpoint of granular computing[5, 6, 8, 7].
The important result is that a degree of freedom is equal to the number of 2 × 2 sub-
matrices in a contingency table, which can be viewed as a granule of statistical indepen-
dence. Interestingly, the results are generalized into mulivariate contingency tables [10],
where combinatorics of independent variables is important to determine the degree of free-
dom [9, 11, 12]. Furthermore, symmetry of dependent variables gives classificaiton of a
contingency table[13]. This paper gives further extension of this analysis, which shows that
the degree of freedom corresponds to the number of outer products of dependent variables,
which shows that the degree of freedom will give a dual space of statistical dependency
graph when a graphical model satisfies the condition of a chain complex.

The paper is organized as follows: Section 2 gives the results of previous studies on
Pearson residuals. Section 3 gives some mathematical discussions on geometrical and com-
binatorial structure of the above theory. Section 4 introduces homological algera as a
tool for the analysis of statistical dependence. Section 5 discusses correspondence between
boundary and coboundary operators and table operations. Finally, Section 6 concludes this
paper.
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2.1 Multiway Contingency Table

Definition 2.1 Let R1, R2, · · · , Rn denote n(∈ N) multinominal attributes in an attribute
space A which have m1,m2, · · · ,mn values Let |Rj = Aji | denote the set of data whose
jth-attribute is equal to Aji (ith-partition of j). Then, an element of a multiway contigency
table, which has n attributes, is defined as:

xi1i2···in = #{x ∈ |R1 = Ai1 | ∧ |R2 = Ai2 | · · · ∧ |Rn = Ain |},

where their marginal sums are not included as elements. ��
For example, in the two dimensional case, this table is arranged into the form shown

in Table 1, where: |[R1 = Aj ]A| =
∑m

i=1 x1i = x·j , |[R2 = Bi]A| =
∑n

j=1 xji = xi·,
|[R1 = Aj ∧R2 = Bi]A| = xij , |U | = N = x·· (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).

Table 1: Contingency Table (m× n)

A1 A2 · · · An Sum

B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

Let us denote the sum over one attribute a contingency table by “•”. Then, marginal
sums over one attribute is defined as follows.

Definition 2.2 Let a contigency table have m attributes. The marginal sum over ik(1 ≤
k ≤ m) is:

xi1···ik−1•ik···im =

qk∑
j=1

xi1···ik−1ijik+1···im ,(1)

where qk is the number of equivalence classes of ik. ��
Then, marginal sums over all the attributes is equal to the sample size:

x•···• = N,

2.2 Information Granule in a Contingency Table

2.2.1 Pearson Residual

Definition 2.3 Pearson residual of the cell i1 · · · im(m ≥ 2), denoted by σi1···im , is defined
as the difference between the observed value xi1···im and its expected value:

σi1···im =xi1···im

− xi1•···• × x•i2···• · · · × x••···im
xm−1•••

.
(2)

��
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“Partial residuals” in which one of three attributes are summarized (marginalized) are
defined as follows:

σ•i2···im = x•i2···im

− x•i2···• × x••i3···• · · · × x••···im
xm−2•••

.
(3)

Therefore, we obain the following theorem [12, 13]:

Theorem 2.1 The Pearson residual of a m-way contingency table is reformulated as:

σi1···im =
xi1•···•
x••···•

σ•i2···im

+
1

x••···•
(xi1···imx••···• − xi1•···•x•i2···im)

(4)

��
In the subsequent sections, the second part of Equation (4), xi1···imx••···•−xi1•···•x•i2···im

is denoted by σi1
i2···im . More detailed examples are shown in [12].

2.3 Degree of Freedom

2.3.1 Formula of Degree of Freedom From Equation (4),

σi1···im =
xi1•···•
x••···•

σ•i2···im

+
1

x••···•
(xi1···imx••···• − xi1•···•x•i2···im)

Although the first part includes the same number of the determinants as σi2·ım multiplied
by the size of the first attribute, the weight:

xi1•···•
x••···•

=
1

size of the first attribute

should be considered for estimation of the degree of freedom. In other words, the number of
the subdeterminants can be estimated as the number of the subdeterminants of (m−1)-way
contingency table. On the other hand, the second part is equal to:

σi1
i2···im = xi1···imx••···• − xi1•···•x•i2···im

=
∑
j1 �=i1

(xi1···imxj1•···• − xi1•···•xj1i2···im)

(5)

If the other terms ik(k = 2, · · · ,m) are not equal to jk, the subdeterminant is not equal
to 0 and the subscript of the summation of Equation (5) is equivalent to:

m∨
k=2

(ik �= jk),

Therefore, the following theorem is obtained [13]:

3
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Theorem 2.2 Let INDm
p denote a set of index which is a p out of m attributes. Then,

the total number of determinants of 2× 2 submatrices in a residual of a m-way contingency
table is given by:

(6) ζ(1, 2, · · · ,m) =

m∑
p=2

∏
t∈INDm

p

(nt − 1),

where nt denote the number of partitions of an attribute t. ��

Corollary 2.3 The total numbers of determinants of 2 × 2 submatrices in m-way contin-
gency table, denoted by ζ(1, 2, ·,m) are equal to

ζ(1, 2, · · · ,m) = n1n2 · · ·nm −
m∑
i=1

ni + (m− 1).

��

In this way, the degree of freedom summarizes information on combinatorial nature of
Pearson residuals:

Corollary 2.4 Let INDm
p denote a set of index which is a p out of m attributes The degree

of freedom of a m-way contingency table is given by:

ζ(1, 2, · · · ,m) =

m∑
p=2

∏
t∈INDm

p

(nt − 1),

where nt is the number of partitions in an attribute t, if all the variables are assumed to be
independent. ��

When some of attributes are dependent, the corresponding term will be eliminated.
For example, m2 and m3 of three-way attribute is dependent, but m1 is conditionally
independent of this pair:

ζ(1, 2, 3) = (n1 − 1)(n2 − 1)(n3 − 1)

+(n3 − 1)(n1 − 1)

+(n1 − 1)(n2 − 1)

= n1n2n3 − n2n3 − n1 + 2,(7)

which is the same formula given in [1].

3 Symmetry in Pearson Residuals

3.1 Determinants as Pencil of Lines Equation (5) shows that 2× 2-subdeterminants
are information granules of statistical independence. Since a 2 × 2-subdeterminant gives a
line in a projective plane in classic projective geometry, a set of the subdetermiants can be
viewed a pencil of lines in a space of projective plane whose coordinates are given as a cell
in a given contingency table: dependence and independence can be captured as geometrical
structure of a pencil in a projective space. Thus, dependent or independent relations of a
multivariate table gives complex geometrical structure, which suggests that a tool of algebra
can be applied to analysis

4
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3.2 Symmetry Let a1, a2, · · · , am denote m attributes in a m-way contingency table and
ei be equal to ni − 1 where ni is a number of partition in attribute ai. Then, ejek gives the
number of 2 × 2subdeterminants when aj and ak are dependent. In general, ej1ej2 · · · ejl
gives the number of l − way subdeterminants when these l attributes are dependent.

Let El
12···m denote a set of ej1ej2 · · · ejl , each element of which is a product of l selected

from m attributes. For each l dimension, a polynomial symmetric over Sm can be derived
as:

slm =
∑

E12···m

ej1ej2 · · · ejl ,

Then, a polynomial symmetric over Sm is represented as:

(8)
l⊕

k=2

skm =

l⊕
k=2

∑
E12···m

ej1ej2 · · · ejl

Then, relations between symmetric group and geometrical structure can be discussed [13].
For example, since conditional dependence is defined as statistical dependence of a set of
variables, denoted by V1 under the assumptions where the values of the set of other variables
(V2) are fixed, the symmetry of V2 will be lost, that is , ”breakdown of symmetry”.

Theorem 3.1 Let a1, a2, · · · , am denote m attributes in a m-way contingency table and ei
be equal to ni−1 where ni is a number of partition in attribute ai. A formula ej1ej2 · · · ejl is
equal to the number of l − way subdeterminants when these l attributes are dependent. Let
El

12···m denote a set of ej1ej2 · · · ejl , each element of which is a product of l selected from m
attributes. Then, a polynomial symmetric over Sm is given as:

(9)
l⊕

k=2

skm =
l⊕

k=2

∑
E12···m

ej1ej2 · · · ejl .

��
Then,

Corollary 3.2 A model with partial independence can be derived by removal of attributes
whose values a fixed. For example,

(10)
l⊕

k=2

skm −
m∑

k=2

∑
Tm
k

ej1ej2 · ejk

gives the number of subdeterminants where Tm
k gives a set of k-pair statistical independent

attributes out of m attributes. ��
Tsumoto [13] shows that structure of symmetric group will give some global information

on statistical dependency model in a multivariate contingency table. However, this tool fo-
cuses on interchangeability of dependence relations among variables. In order to investigate
other properties of geometrical structure, other tool is needed as shown in the next section.

4 Degree of Freedom and Homological Calculus Equation (10) is a little compli-
cated and it is difficult to see the meaning except for the action of symmetric group. The
most import problem is that we have to eliminate independence variables explicitly, which
makes the representation power weak. The other point is that we may have a situation when
three variables are statistical dependent (independent) although all the combinations of two
of three variables are statistical independent (dependent), which analysis based on symmet-
ric group cannot capture. Thus, by investigating the nature of statistical dependence much
further, new representation should be explored.

5
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4.1 Main Ideas The main idea is that geometrical structure of a statistical dependence
model corresponds to its degree of freedom of a contingency table as shown in Figure 1. Let
us assume three variables provided in a contingency table. In the case of one dimension, the
degree of freedom of one attribute will be the number of its partition minus 1 if the number
of examples is fixed. If we add one more dependent attribute, the degree of freedom is equal
to (n1−1)(n2−1), where n1 and n2 denote the number of partitions of the first and second
attribute. In the same way, dependency graph of three attribute has (n1−1)(n2−1)(n3−1)
as its degree of freedom. If we consider dependency of three attributes with full dependency,
the degree of freedom is equal to:

(n1 − 1)(n2 − 1)(n3 − 1) +(n1 − 1)(n2 − 1)

+(n2 − 1)(n3 − 1)

+(n3 − 1)(n1 − 1).

The main idea is that decomposition of a dependency graph gives a homological sequence

• �
�
��

Elements of Dependence Graph: Complex

��
�
��� ��

�
���

��
�
��� ��

�
��� ��

�
���

Figure 1: Correspondence between Dependency Graph and its Degree of Freedom

shown in Figure 2. Formal definition of mappings will be given in subsequent subsections.

4.2 Basic Definition The key components of the above section are the degree of freedom
of each attribute. When two attributes are dependent, the degree of freedom is obtained
by their product of the degree of freedom. Furthermore, the product is invariant over
permutation.

Definition 4.1 Let A = {a1, a2, · · · , am} denote a set of m attributes in a m-way contin-
gency table and ei be equal to ni−1 where ni is a number of partition in attribute ai. Then,
a linear sum of m attributes gives a vector space spanned by A:

vec(A) =
m∑
i=1

kiai,

where ki ∈ Z. Thus, vec(A) can be viewed as Z-module. ��
As a different type of operation, we define a1 ∧ a2 as a matrix generated by a1 and a2:

a1 ∧ a2 = Mat(a1, a2).

6
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•

• •

Hom( , )

�
�
����

�
��� ��

�
�����

�
��� ��

�
��� ��

�
���

Figure 2: Homological Sequence of Three Attributes

It is notable that a1 and a2 are reversibly obtained by Mat(a1, a2) as marginal sums. For
example, when a matrix is given as:

(
2 2
1 3

)
,

corresponding two vectors are: a1 = (2 + 2, 2 + 3) = (4, 4) and a2 = (2 + 1, 2 + 3) = (3, 5).
It is notable that this transformation is linear and can be represented as a matrix. In

the above example, the transformation is given by:

(
4 3
4 5

)
= X

(
2 2
1 3

)
,

In this case,

(
2 2
1 3

)
has a reverse, so X is obtained as:

X =
1

4

(
9 −2
7 2

)

However, if the determinant of original table is equal to 0, the situation is much more
complex: we should use the generalized inverse for calculation. But, since this case is
corresponding to statistical independence, let say Mat(•∧•) = 0. That is, for two attributes
ai, aj (i, j = 1, · · · ,m),

(11) ai ∧ aj =

{
Mat(ai, aj) det(ai, aj) �= 0

0 det(ai, aj) = 0,

where det(ai, aj) gives a determinant of a matrix (ai, aj) and Mat is a corresponding matrix
operation. Thus, although there are many ways to make a matrix from a1 and a2, for a
given table, a matrix corresponds to one function which partitions a1 and a2 as shown the
above. Thus, a matrix can be viewed as a partition function of Z× Z.

Since a vector and matrix can be viewed as a specific form of tensor, the above discussion
can be discussed in the context of tensor calculus: it is easy to see that this framework
satisfies the axiom of tensor space. Moreover, a space have elements of different grades,
since a1 and a1 ∧ a2 are the first and second grade, respectively.

7
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4.3 Degree of Freedom as a Mapping Since the degree of freedom of ai is the number
of elementary partition of ai minus 1, it can be viewed as a function of ai:

df(ai) = ei.

It can be rewritten as:
df = Hom(ai,Z),

which is a homomorphism under addition. In the above example of matrix, df(a1 ∧ a2) =
(2− 1) ∗ (2− 1) = 1 and df(a1) = df(a2) = 1− 1 = 0 because the second element of a1 and
a2 can be described as a linear sum of the first element: 4 = 1× 4, 5 = 5

3 × 3.
It is notable that df will give a dual space of ai. Let us denote df(ai) by a∗i . Then, it is

easy to show that A∗ = df(A) = {df(a1), df(a2), · · · , df(am)} gives a dual (tensor) space of
A = a1, a2, · · · , am.

Thus, dependence and independence can be easily described as an outer product, al-
ternating tensor product of df(ai) (i = 1, 2, · · · ,m). Since the calculation of the degree of
freedom starts from two attributes as a matrix calculus, let us select two attributes first. If
we take two dependent attributes ai and aj , then ai ∧ aj gives:

ai ∧ aj = det(M(ai, aj))ei ∧ ej ,

where a rectangular matrix M(ai, aj) is generated by {ai, aj} and ei and ej denote the
orthonormal basis generated by ai and aj . Here, the determinant is given by Cullin’s
determinant, which is an extension of ordinary matrix.[2, 4] Then, when two attributes a1
and a2 are independent, since the rank of matrix is equal to 1, M(ai, aj) is represented as
(vi, kvi)[5].

Thus,

df(a1 ∧ a2) = df(a1 ∧ ka1) = 0,

where k ∈ Z. On the other hand, if both are dependent:

df(a1 ∧ a2) = df(a1)df(a2) = (n1 − 1) ∗ (n2 − 1),

where n1− and n2 − 1 denote the degree of freedom of a1 and a2.
When we take 3 attributes, we can append this attribute as a1 ∧ a2 ∧ a3. Then, full

dependence can be described as:

a1 ∧ a2 ∧ a3 + a1 ∧ a2 + a2 ∧ a3 + a3 ∧ a1.

The formula shown in Equation 7 is given by:

df(a1 ∧ a2 ∧ a3) = df(a1 ∧ a2 ∧ a3 + a1 ∧ a2

+a2 ∧ a3 + a3 ∧ a1)

= df(a1 ∧ a2 ∧ a3) + df(a1 ∧ a2)

+df(a2 ∧ a3) + df(a3 ∧ a1)

= (n1 − 1)(n2 − 1)(n3 − 1)

+(n1 − 1)(n2 − 1)

+(n2 − 1)(n3 − 1)

+(n3 − 1)(n1 − 1)

8

If a1 and a2 is independent, since df(a1 ∧ a2) = 0, we should remove this term from the
above equation.

Since the df(ai) can ve viewed as a dual vector, we can rewrite the above equation as:

a∗1 ∧ a∗2 ∧ a∗3 = a∗1 ∧ a∗2 ∧ a∗3 + a∗1 ∧ a∗2 + a∗2 ∧ a∗3
+a3 ∧ a∗1

= a∗1 ∧ a∗2 ∧ a∗3 + a∗1 ∧ a∗2 + a∗2 ∧ a∗3
+a∗3 ∧ a∗1

= (n1 − 1)(n2 − 1)(n3 − 1)

+(n1 − 1)(n2 − 1)

+(n2 − 1)(n3 − 1)

+(n3 − 1)(n1 − 1)

By using these ideas, Theorem 3.1 can be reformulated as follows.

Theorem 4.1 Let A = {a1, a2, · · · , am} denote a set of m attributes in a m-way contin-
gency table and ei be equal to ni − 1 where ni is a number of partition in attribute ai. Let
DEPm denote a set of dependent variables of A. Then, since the correspondence between
ai and ei is given as a function: f(ai) = ei, dual tensor space can be defined by df(A),
which can be denoted by A∗ = {a∗1, a∗2, · · · , a∗m} Then, a polynomial symmetric over Sm is
represented as:

(12)

l⊕
k=2

skm =

l⊕
k=2

∑
DEPk

(−1)σ(j)a∗j1 ∧ a∗j2 ∧ · · · ∧ a∗jk ,

where σ(j) denotes the the number of substitutions over j1, j2, · · · jk. ��
4.4 Chain Complex Let A∗

n denote a space spanned by a set of dual of outer prod-
uct of n attributes. Since this space is an Abelian group, we can consider a sequence
An, An−1, · · · , A2, A1. Let us define the boundary map from A∗

n to A∗
n−1 as:

∂n : A∗
n → A∗

n−1 : a∗1 ∧ a∗2 · · · ∧ a∗n �→
n∑

i=1

(−1)i−1σ([a∗1 ∧ a∗2 ∧ . . . â∗i . . . ∧ a∗n]),(13)

where the hat denotes the omission of an attribute. Then, the following theorem is obtained.

Theorem 4.2
∂n∂n−1A∗

n = 0

9
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4.3 Degree of Freedom as a Mapping Since the degree of freedom of ai is the number
of elementary partition of ai minus 1, it can be viewed as a function of ai:

df(ai) = ei.

It can be rewritten as:
df = Hom(ai,Z),

which is a homomorphism under addition. In the above example of matrix, df(a1 ∧ a2) =
(2− 1) ∗ (2− 1) = 1 and df(a1) = df(a2) = 1− 1 = 0 because the second element of a1 and
a2 can be described as a linear sum of the first element: 4 = 1× 4, 5 = 5

3 × 3.
It is notable that df will give a dual space of ai. Let us denote df(ai) by a∗i . Then, it is

easy to show that A∗ = df(A) = {df(a1), df(a2), · · · , df(am)} gives a dual (tensor) space of
A = a1, a2, · · · , am.

Thus, dependence and independence can be easily described as an outer product, al-
ternating tensor product of df(ai) (i = 1, 2, · · · ,m). Since the calculation of the degree of
freedom starts from two attributes as a matrix calculus, let us select two attributes first. If
we take two dependent attributes ai and aj , then ai ∧ aj gives:

ai ∧ aj = det(M(ai, aj))ei ∧ ej ,

where a rectangular matrix M(ai, aj) is generated by {ai, aj} and ei and ej denote the
orthonormal basis generated by ai and aj . Here, the determinant is given by Cullin’s
determinant, which is an extension of ordinary matrix.[2, 4] Then, when two attributes a1
and a2 are independent, since the rank of matrix is equal to 1, M(ai, aj) is represented as
(vi, kvi)[5].

Thus,

df(a1 ∧ a2) = df(a1 ∧ ka1) = 0,

where k ∈ Z. On the other hand, if both are dependent:

df(a1 ∧ a2) = df(a1)df(a2) = (n1 − 1) ∗ (n2 − 1),

where n1− and n2 − 1 denote the degree of freedom of a1 and a2.
When we take 3 attributes, we can append this attribute as a1 ∧ a2 ∧ a3. Then, full

dependence can be described as:

a1 ∧ a2 ∧ a3 + a1 ∧ a2 + a2 ∧ a3 + a3 ∧ a1.

The formula shown in Equation 7 is given by:

df(a1 ∧ a2 ∧ a3) = df(a1 ∧ a2 ∧ a3 + a1 ∧ a2

+a2 ∧ a3 + a3 ∧ a1)

= df(a1 ∧ a2 ∧ a3) + df(a1 ∧ a2)

+df(a2 ∧ a3) + df(a3 ∧ a1)

= (n1 − 1)(n2 − 1)(n3 − 1)

+(n1 − 1)(n2 − 1)

+(n2 − 1)(n3 − 1)

+(n3 − 1)(n1 − 1)
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If a1 and a2 is independent, since df(a1 ∧ a2) = 0, we should remove this term from the
above equation.

Since the df(ai) can ve viewed as a dual vector, we can rewrite the above equation as:

a∗1 ∧ a∗2 ∧ a∗3 = a∗1 ∧ a∗2 ∧ a∗3 + a∗1 ∧ a∗2 + a∗2 ∧ a∗3
+a3 ∧ a∗1

= a∗1 ∧ a∗2 ∧ a∗3 + a∗1 ∧ a∗2 + a∗2 ∧ a∗3
+a∗3 ∧ a∗1

= (n1 − 1)(n2 − 1)(n3 − 1)

+(n1 − 1)(n2 − 1)

+(n2 − 1)(n3 − 1)

+(n3 − 1)(n1 − 1)

By using these ideas, Theorem 3.1 can be reformulated as follows.

Theorem 4.1 Let A = {a1, a2, · · · , am} denote a set of m attributes in a m-way contin-
gency table and ei be equal to ni − 1 where ni is a number of partition in attribute ai. Let
DEPm denote a set of dependent variables of A. Then, since the correspondence between
ai and ei is given as a function: f(ai) = ei, dual tensor space can be defined by df(A),
which can be denoted by A∗ = {a∗1, a∗2, · · · , a∗m} Then, a polynomial symmetric over Sm is
represented as:

(12)

l⊕
k=2

skm =

l⊕
k=2

∑
DEPk

(−1)σ(j)a∗j1 ∧ a∗j2 ∧ · · · ∧ a∗jk ,

where σ(j) denotes the the number of substitutions over j1, j2, · · · jk. ��
4.4 Chain Complex Let A∗

n denote a space spanned by a set of dual of outer prod-
uct of n attributes. Since this space is an Abelian group, we can consider a sequence
An, An−1, · · · , A2, A1. Let us define the boundary map from A∗

n to A∗
n−1 as:

∂n : A∗
n → A∗

n−1 : a∗1 ∧ a∗2 · · · ∧ a∗n �→
n∑

i=1

(−1)i−1σ([a∗1 ∧ a∗2 ∧ . . . â∗i . . . ∧ a∗n]),(13)

where the hat denotes the omission of an attribute. Then, the following theorem is obtained.

Theorem 4.2
∂n∂n−1A∗

n = 0

9
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Thus, (A·, ∂·) is a chain complex. Proof

∂n∂n−1A
∗
n = ∂∂a∗1 ∧ a∗2 · · · ∧ a∗n

= ∂

(
n∑

i=1

(−1)i−1a∗1 . . . ∧ â∗i . . . ∧ a∗n

)

=

n∑
j=1

(−1)j−1

(
n∑

i=1

(−1)i−1a∗1 . . . ∧ â∗i

∧ . . . ∧ â∗j . . . ∧ a∗n
)

=

n∑
i,j=1

(
a∗1 . . . ∧ â∗i . . . ∧ â∗j . . . ∧ a∗n

− a∗1 . . . ∧ â∗i . . . ∧ â∗j . . . ∧ a∗n
)

= 0

��

Example 4.1

∂3∂2(a∗1 ∧ a∗2 ∧ a∗3) = ∂∂(n1 − 1)(n2 − 1)(n3 − 1)

= ∂ ((n2 − 1)(n3 − 1)

−(n1 − 1)(n3 − 1)

+(n1 − 1)(n2 − 1))

= (n2 − 1)− (n3 − 1)− (n1 − 1)

+(n3 − 1) + (n1 − 1)− (n2 − 1)

= 0

Since it is easy to see that the outer space of ai gives a chain complex, the dual space a∗i is
its dual space. Thus, homology of a sequence Hn(A)can be considered:

Hn(A) = ker ∂n/im∂n+1.

Hn(A) = ker ∂n+1/im∂n

Example 4.2 In the above example,

C2 = {(n1 − 1)(n2 − 1)(n3 − 1)}
C1 = {(n1 − 1)(n2 − 1), (n2 − 1)(n3 − 1),

(n1 − 1)(n3 − 1)}
C0 = {(n1 − 1), (n2 − 1), (n3 − 1)}

im∂2(A) = (n2 − 1)(n3 − 1)

−(n1 − 1)(n3 − 1) + (n1 − 1)(n2 − 1)

10

Then, ∂2(A) , ∂1(A) , and ∂0(A) can be represented in a matrix form shown as below.

∂2(n1 − 1)(n2 − 1)(n3 − 1)

=
�
1 − 1 1

�
⎛
⎝

(n1 − 1)(n2 − 1)
(n2 − 1)(n3 − 1)
(n1 − 1)(n3 − 1)

⎞
⎠

∂1

⎛
⎝

(n1 − 1)(n2 − 1)
(n2 − 1)(n3 − 1)
(n1 − 1)(n3 − 1)

⎞
⎠

=

⎛
⎝

−1 1 0
0 −1 1
−1 0 1

⎞
⎠

⎛
⎝

(n1 − 1)
(n2 − 1)
(n3 − 1)

⎞
⎠

∂0

⎛
⎝

(n1 − 1)
(n2 − 1)
(n3 − 1)

⎞
⎠

=

⎛
⎝

0 0 0
0 0 0
0 0 0

⎞
⎠

⎛
⎝

1
1
1

⎞
⎠

(14)

Since the rank of each matrix gives the dimension of ∂, the difference between matrix
size and its rank is equivalent of the dimension of ker ∂ From these equations, we obtained
the ranks of im and ker as follows.

Im Ker
∂3 0 0
∂2 1 0
∂1 2 1
∂0 0 3

Thus, H0, H1 and H2 is obtained as follows.

H2 =
0

1
= 0

H1 =
0

Z⊕ Z
= 0

H0 =
Z
0
= Z

Thus, the cohomological sequence is obtained as follow.

0 → Z → 0 → 0

In a dual way, homological sequence of the outer product of dependency relations can be
obtained as follows: since ∂n is given as the transpose of ∂n in a matrix representation, the
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Thus, (A·, ∂·) is a chain complex. Proof

∂n∂n−1A
∗
n = ∂∂a∗1 ∧ a∗2 · · · ∧ a∗n

= ∂

(
n∑

i=1

(−1)i−1a∗1 . . . ∧ â∗i . . . ∧ a∗n

)

=

n∑
j=1

(−1)j−1

(
n∑

i=1

(−1)i−1a∗1 . . . ∧ â∗i

∧ . . . ∧ â∗j . . . ∧ a∗n
)

=

n∑
i,j=1

(
a∗1 . . . ∧ â∗i . . . ∧ â∗j . . . ∧ a∗n

− a∗1 . . . ∧ â∗i . . . ∧ â∗j . . . ∧ a∗n
)

= 0

��

Example 4.1

∂3∂2(a∗1 ∧ a∗2 ∧ a∗3) = ∂∂(n1 − 1)(n2 − 1)(n3 − 1)

= ∂ ((n2 − 1)(n3 − 1)

−(n1 − 1)(n3 − 1)

+(n1 − 1)(n2 − 1))

= (n2 − 1)− (n3 − 1)− (n1 − 1)

+(n3 − 1) + (n1 − 1)− (n2 − 1)

= 0

Since it is easy to see that the outer space of ai gives a chain complex, the dual space a∗i is
its dual space. Thus, homology of a sequence Hn(A)can be considered:

Hn(A) = ker ∂n/im∂n+1.

Hn(A) = ker ∂n+1/im∂n

Example 4.2 In the above example,

C2 = {(n1 − 1)(n2 − 1)(n3 − 1)}
C1 = {(n1 − 1)(n2 − 1), (n2 − 1)(n3 − 1),

(n1 − 1)(n3 − 1)}
C0 = {(n1 − 1), (n2 − 1), (n3 − 1)}

im∂2(A) = (n2 − 1)(n3 − 1)

−(n1 − 1)(n3 − 1) + (n1 − 1)(n2 − 1)

10

Then, ∂2(A) , ∂1(A) , and ∂0(A) can be represented in a matrix form shown as below.

∂2(n1 − 1)(n2 − 1)(n3 − 1)

=
�
1 − 1 1

�
⎛
⎝

(n1 − 1)(n2 − 1)
(n2 − 1)(n3 − 1)
(n1 − 1)(n3 − 1)

⎞
⎠

∂1

⎛
⎝

(n1 − 1)(n2 − 1)
(n2 − 1)(n3 − 1)
(n1 − 1)(n3 − 1)

⎞
⎠

=

⎛
⎝

−1 1 0
0 −1 1
−1 0 1

⎞
⎠

⎛
⎝

(n1 − 1)
(n2 − 1)
(n3 − 1)

⎞
⎠

∂0

⎛
⎝

(n1 − 1)
(n2 − 1)
(n3 − 1)

⎞
⎠

=

⎛
⎝

0 0 0
0 0 0
0 0 0

⎞
⎠

⎛
⎝

1
1
1

⎞
⎠

(14)

Since the rank of each matrix gives the dimension of ∂, the difference between matrix
size and its rank is equivalent of the dimension of ker ∂ From these equations, we obtained
the ranks of im and ker as follows.

Im Ker
∂3 0 0
∂2 1 0
∂1 2 1
∂0 0 3

Thus, H0, H1 and H2 is obtained as follows.

H2 =
0

1
= 0

H1 =
0

Z⊕ Z
= 0

H0 =
Z
0
= Z

Thus, the cohomological sequence is obtained as follow.

0 → Z → 0 → 0

In a dual way, homological sequence of the outer product of dependency relations can be
obtained as follows: since ∂n is given as the transpose of ∂n in a matrix representation, the

11

ALGEBRA IN COMBINATORICS OF STATISTICAL DEPENDENCE 51



table of rank of im and ker is equivalent. Thus, H0, H1 and H2 is obtained as follows.

H2 =
0

0
= 0

H1 =
Z
Z

= 0

H0 =
Z⊕ Z⊕ Z
Z⊕ Z

= Z

Thus, the homological sequence is obtained as follow.

0 → 0 → Z → 0

��
In the same way, both the homological and cohomology sequences for the model with only
two variables dependent are:

0 → Z → Z → 0

which corresponds to the homology of a corresponding dependency graph.

5 Discussion Figure 2 illustrates how boundary and coboundary operators are used in
the context of contingency table analysis. Boundary operators will reduce the degree of
freedom, which corresponds to marginalization as shown in Figure 3. On the other hand,
coboundary operators corresponds to partition as shown in Figure 4.

Although boundary and coboundary operators are dual to each other, corresponding
operations show that although boundary is one choice, but coboundary may give many
possible ways. In other words, partition or coboundary suffers from combinatorial problems.
Thus, cohomological analysis may give insights to formal discussions on partition.

e=0 e=1
b=0 1 1 2
b=1 2 1 3

3 2 5

Marginalization

Marginalization

2
3
5

3 2 5

b=0
b=1

e=0 e=1

Figure 3: Marginalization as Boundary Operator

6 Conclusion This paper focuses on the formula of degree of freedom and investigate
its nature. First, if we assume that a dependency graph satisfies the condition of a com-
plex, a boundary operator ∂ for the formula of degree of freedom can be defined and the
duplicated operation will be 0: ∂∂ = 0, which leads to the basic step to homological al-
gebra. Second, the formula can be viewed as a homomorphism from structure to integer,
denoted by Hom(Structure,Z), thus the hierarchy of the formula of degree of freedom,
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e=0 e=1
b=0 1 1 2
b=1 2 1 3

3 2 5

Partition

Partition

2
3
5

3 2 5

b=0
b=1

e=0 e=1

Figure 4: Partition as Coboundary Operator

which corresponds to the hierarchy of the dependency graph, generates a cocomplex. Thus,
cohomology of the formula can be considered. By using this framework, the complex nature
of dependency graph is translated into the algebraic structure of (co-)homological sequence,
and (co)homology groups characterize the dependency graph. Thus, several tools in homo-
logical algebra can be applied to analysis of statistical independence

This study is a preliminary step of the analysis of statistical (in)dependence based on
homological algebra. It will be our future work to investigate further the property a of
contingency table from the viewpoint of algebra.
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FUZZY LINEAR PROGRAMS WITH OCTAGONAL FUZZY NUMBERS

Felbin C. Kennedy ∗and S.U. Malini †

Abstract. Zimmermann [9] developed the decision making concept in a fuzzy environment which was
proposed and analysed by Bellman and Zadeh [3] in 1970. Its application in fuzzy linear programming
was well handled by Tanaka et al. [7] and by Maleki et.al in [6] . Later several kinds of fuzzy linear
programming problems have been dealt with and various methodologies have been adopted to solve such
problems using trapezoidal fuzzy numbers for example as in [4, 8]. The concept of octagonal fuzzy numbers
was introduced by the authors in an earlier paper [5]. In this paper the octagonal fuzzy numbers are used
to solve fuzzy linear programming problems (FLP) involving simplex method. A method for solving FLP
involving symmetric octagonal fuzzy numbers is developed and it may be noted that it is solved without
converting to crisp linear programming problem. The process is illustrated with a numerical example
involving a real life problem.

The distinguishing factor which is innovative in the present study is the use of a new arithmetic on
symmetrical octagonal fuzzy numbers. On this class is introduced a binary operation of multiplication
denoted by ∗ defined in Definition 1.2 that is more natural having the desired property Ã∗B̃ ≈ −(−Ã)∗B̃
and such a property is absent in the multiplication introduced by earlier authors in [4].

Keywords Fuzzy linear programming, symmetric octagonal fuzzy numbers, ranking.

1 Introduction We adhere to the concepts, notions and notations in [5]. Here we consider a subclass
of octagonal fuzzy numbers called symmetrical octagonal fuzzy numbers using which a method for solving
fuzzy linear programming problems without converting them to crisp linear programming problem has been
discussed. The ∗ multiplication defined in this paper is more natural as it coincides with multiplication of
real numbers in crisp case.

In section 1 octagonal fuzzy numbers that are symmetrical is considered and fuzzy arithmetic on this class
and fuzzy measure of octagonal fuzzy numbers are defined. In section 2, a general fuzzy linear programming
problem is cited and the theory related to simplex algorithm for solving FLP is dealt with. The same is
illustrated by using a numerical example in section 3.

Definition 1.1. A fuzzy number Ã is called a symmetric octagonal fuzzy number if there exist real numbers
a

1 , a2 , a1 < a2 and h > s > g > 0 such that

(1.1) µ
Ã
(x) =




k
[

x
h−s + h−a1

h−s

]
, x ∈ [a

1 − h, a1 − s]

k, x ∈ [a1 − s, a1 − g]

k + (1− k)
[
x
g + g−a1

g

]
, x ∈ [a

1 − g, a1 ]

1, x ∈ [a1 , a2 ]

k + (1− k)
[
a2+g

g − x
g

]
, x ∈ [a

2 , a2 + g]

k, x ∈ [a2 + g, a2 + s]

k
[
a2+h

h−s − x
h−s

]
, x ∈ [a

2 + s, a2 + h]

0, otherwise

We denote it by Ã ≈ (a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1) .When h = s = g = 0; Ã ≈
(a1, a1, a1, a1, a2, a2, a2, a2; k, 1) reduces to a trapezoidal fuzzy number. The set of all symmetric octagonal
fuzzy numbers is denoted by F(SO).

∗Felbin C. Kennedy is an .Associate Professor, Department of Mathematics, Stella Maris College (Autonomous), Chennai,
Tamilnadu, India. (felbinckennedy@gmail.com),

†S.U Malini is a Research Scholar, Department of Mathematics, Stella Maris College & Faculty, D.G. Vaishnav College,
Chennai,Tamilnadu, India. (malinisu14@gmail.com)
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Definition 1.2.

If Ã ≈ (a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1) and
B̃ ≈ (b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1) are two symmetric octagonal fuzzy numbers.

Then
(i) Addition:

Ã+ �B ≈ (a1 + b1 − (h+m), a1 + b1 − (s+ l), a1 + b1 − (g + f), a1 + b1,

a2 + b2, a2 + b2 + (g + f), a2 + b2 + (s+ l), a2 + b2 + (h+m); k, 1)

(ii)Subtraction:

Ã− �B ≈ (a1 − b2 − (h+m), a1 − b2 − (s+ l), a1 − b2 − (g + f), a1 − b2,

a2 − b1, a2 − b1 + (g + f), a2 − b1 + (s+ l), a2 − b1 + (h+m); k, 1)

(iii) Multiplication:

�A ∗ �B ≈
(((

a1 + a2
2

)(
b1 + b2

2

)
− p

)
−
(����

a1 + a2
2

����m+

����
b1 + b2

2

����h
)

,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
−
(����

a1 + a2
2

���� l +
����
b1 + b2

2

���� s
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
−
(����

a1 + a2
2

���� f +

����
b1 + b2

2

���� g
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

���� f +

����
b1 + b2

2

���� g
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

���� l +
����
b1 + b2

2

���� s
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

����m+

����
b1 + b2

2

����h
)
; k, 1

)

where p =
(

β−α
2

)
, α = min(a1b1, a1b2, a2b1, a2b2), β = max(a1b1, a1b2, a2b1, a2b2)

Also, it is clear from (iii) that for any real λ

λÃ ≈




(λ(a1 − h), λ(a1 − s), λ(a1 − g), λa1, λa2, λ(a2 + g),
λ(a2 + s), λ(a2 + h); k, 1) , for λ ≥ 0

(λ(a2 + h), λ(a2 + s), λ(a2 + g), λa2, λa1, λ(a1 − g),
λ(a1 − s), λ(a1 − h); k, 1) , for λ < 0

Remark 1.3. Any real number r ∈ R can be expressed as (r, r, r, r, r, r, r, r; k, 1). Continuing this view point
consider two real numbers r, s ∈ R expressed as symmetric octagonal fuzzy numbers (r, r, r, r, r, r, r, r; k, 1) ∗
(s, s, s, s, s, s, s, s; k, 1). Using the Definition 1.2 we obtain its product as (rs, rs, rs, rs, rs, rs, rs, rs; k, 1).

Definition 1.4. For any symmetric octagonal fuzzy number x̃, let us define x̃ ≽ 0̃ if there exist a ≥ 0 and
h ≥ s ≥ g ≥ 0 such that

x̃ ≽ (−(a+h),−(a+ s),−(a+ g),−a, a, (a+ g), (a+ s), (a+h); k, 1). Note that (−(a+h),−(a+ s),−(a+
g),−a, a, (a+ g), (a+ s), (a+ h); k, 1) is equivalent to 0̃.

2

Remark 1.5. x̃ is called zero symmetric octagonal fuzzy number if �x ≈ �0. x̃ is said to be a non-zero
symmetric octagonal fuzzy number, if x̃ ̸≈ 0̃. If x̃ is a non-negative symmetric octagonal fuzzy number and
x̃ is not equivalent to �0, then x̃ is called a positive symmetric octagonal fuzzy number denoted x̃ ≻ 0̃. If �x
is a non-positive symmetric octagonal fuzzy number and is not equivalent to �0, then x̃ is called a negative
symmetric octagonal fuzzy number denoted x̃ ≺ 0̃.

Definition 1.6. Two symmetrical octagonal fuzzy numbers Ã, �B are called equivalent denoted, Ã �≈ �B if and
only if for

Ã ≈ (a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1) and
B̃ ≈ (b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1),
we have

(a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1)

−(b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1)

≈ (−α− (h+m) ,−α− (s+ l) ,−α− (g + f) ,−α, α, α+ (g + f) ,

α+ (s+ l) , α+ (h+m) ; k, 1)

≈ �0

i.e.(a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1)
≈ (b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1)

Note that this is possible even if a1 ̸= b1 and a2 ̸= b2.

Remark 1.7. A particular case of Definition 1.2 taking h = s = g and m = l = f resulting in symmetric
trapezoidal fuzzy numbers whose ∗ multiplication will be as follows:

For Ã ≈ (a1 − g, a1, a2, a2 + g), B̃ ≈ (b1 − f, b1, b2, b2 + f)
Then

�A ∗ �B =

(((
a1 + a2

2

)(
b1 + b2

2

)
− P

)
−

(����
a1 + a2

2

���� f +

����
b1 + b2

2

���� g
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
,

(
a1 + a2

2

)(
b1 + b2

2

)
+ p,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

���� f +

����
b1 + b2

2

���� g
))

where p =
(

β−α
2

)
, α = min(a1b1, a1b2, a2b1, a2b2), β = max(a1b1, a1b2, a2b1, a2b2)

In this case, we note that Ã ∗ B̃ ≈ −(−Ã) ∗ B̃ is satisfied which falls in line with the classical problems
in the crisp case.

Remark 1.8.

(i) Symmetric Octagonal fuzzy numbers satisfy the distributive property i.e. Let ã, b̃ and c̃ be any three
symmetric octagonal fuzzy numbers, then

c̃ ∗ (ã+ b̃) ≈ (c̃ ∗ ã+ c̃ ∗ b̃) and c̃ ∗ (ã− b̃) ≈ (c̃ ∗ ã− c̃ ∗ b̃),
where addition, subtraction and multiplication is defined by Definition 1.2
(ii) Multiplication operation given by Definition 1.2 asserts that product of two symmetrical octagonal

fuzzy numbers is a symmetrical octagonal fuzzy number.
(iii) Insistence on a symmetric product is easier to handle for computational purposes.

Remark 1.9. In the literature the following fuzzy numbers are considered - triangular fuzzy numbers, trape-
zoidal fuzzy numbers and hexagonal fuzzy numbers. In this concept we have used octagonal fuzzy numbers
recently. The class of such numbers form a tower of subclasses. The last one namely octagonal fuzzy num-
bers forming the largest subclass. Therefore operations defined for the last class of octagonal fuzzy numbers
evidently apply to the smaller classes.
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Definition 1.2.

If Ã ≈ (a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1) and
B̃ ≈ (b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1) are two symmetric octagonal fuzzy numbers.

Then
(i) Addition:

Ã+ �B ≈ (a1 + b1 − (h+m), a1 + b1 − (s+ l), a1 + b1 − (g + f), a1 + b1,

a2 + b2, a2 + b2 + (g + f), a2 + b2 + (s+ l), a2 + b2 + (h+m); k, 1)

(ii)Subtraction:

Ã− �B ≈ (a1 − b2 − (h+m), a1 − b2 − (s+ l), a1 − b2 − (g + f), a1 − b2,

a2 − b1, a2 − b1 + (g + f), a2 − b1 + (s+ l), a2 − b1 + (h+m); k, 1)

(iii) Multiplication:

�A ∗ �B ≈
(((

a1 + a2
2

)(
b1 + b2

2

)
− p

)
−
(����

a1 + a2
2

����m+

����
b1 + b2

2

����h
)

,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
−
(����

a1 + a2
2

���� l +
����
b1 + b2

2

���� s
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
−
(����

a1 + a2
2

���� f +

����
b1 + b2

2

���� g
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

���� f +

����
b1 + b2

2

���� g
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

���� l +
����
b1 + b2

2

���� s
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

����m+

����
b1 + b2

2

����h
)
; k, 1

)

where p =
(

β−α
2

)
, α = min(a1b1, a1b2, a2b1, a2b2), β = max(a1b1, a1b2, a2b1, a2b2)

Also, it is clear from (iii) that for any real λ

λÃ ≈




(λ(a1 − h), λ(a1 − s), λ(a1 − g), λa1, λa2, λ(a2 + g),
λ(a2 + s), λ(a2 + h); k, 1) , for λ ≥ 0

(λ(a2 + h), λ(a2 + s), λ(a2 + g), λa2, λa1, λ(a1 − g),
λ(a1 − s), λ(a1 − h); k, 1) , for λ < 0

Remark 1.3. Any real number r ∈ R can be expressed as (r, r, r, r, r, r, r, r; k, 1). Continuing this view point
consider two real numbers r, s ∈ R expressed as symmetric octagonal fuzzy numbers (r, r, r, r, r, r, r, r; k, 1) ∗
(s, s, s, s, s, s, s, s; k, 1). Using the Definition 1.2 we obtain its product as (rs, rs, rs, rs, rs, rs, rs, rs; k, 1).

Definition 1.4. For any symmetric octagonal fuzzy number x̃, let us define x̃ ≽ 0̃ if there exist a ≥ 0 and
h ≥ s ≥ g ≥ 0 such that

x̃ ≽ (−(a+h),−(a+ s),−(a+ g),−a, a, (a+ g), (a+ s), (a+h); k, 1). Note that (−(a+h),−(a+ s),−(a+
g),−a, a, (a+ g), (a+ s), (a+ h); k, 1) is equivalent to 0̃.

2

Remark 1.5. x̃ is called zero symmetric octagonal fuzzy number if �x ≈ �0. x̃ is said to be a non-zero
symmetric octagonal fuzzy number, if x̃ ̸≈ 0̃. If x̃ is a non-negative symmetric octagonal fuzzy number and
x̃ is not equivalent to �0, then x̃ is called a positive symmetric octagonal fuzzy number denoted x̃ ≻ 0̃. If �x
is a non-positive symmetric octagonal fuzzy number and is not equivalent to �0, then x̃ is called a negative
symmetric octagonal fuzzy number denoted x̃ ≺ 0̃.

Definition 1.6. Two symmetrical octagonal fuzzy numbers Ã, �B are called equivalent denoted, Ã �≈ �B if and
only if for

Ã ≈ (a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1) and
B̃ ≈ (b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1),
we have

(a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1)

−(b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1)

≈ (−α− (h+m) ,−α− (s+ l) ,−α− (g + f) ,−α, α, α+ (g + f) ,

α+ (s+ l) , α+ (h+m) ; k, 1)

≈ �0

i.e.(a1 − h, a1 − s, a1 − g, a1, a2, a2 + g, a2 + s, a2 + h; k, 1)
≈ (b1 −m, b1 − l, b1 − f, b1, b2, b2 + f, b2 + l, b2 +m; k, 1)

Note that this is possible even if a1 ̸= b1 and a2 ̸= b2.

Remark 1.7. A particular case of Definition 1.2 taking h = s = g and m = l = f resulting in symmetric
trapezoidal fuzzy numbers whose ∗ multiplication will be as follows:

For Ã ≈ (a1 − g, a1, a2, a2 + g), B̃ ≈ (b1 − f, b1, b2, b2 + f)
Then

�A ∗ �B =

(((
a1 + a2

2

)(
b1 + b2

2

)
− P

)
−

(����
a1 + a2

2

���� f +

����
b1 + b2

2

���� g
)
,

((
a1 + a2

2

)(
b1 + b2

2

)
− p

)
,

(
a1 + a2

2

)(
b1 + b2

2

)
+ p,

((
a1 + a2

2

)(
b1 + b2

2

)
+ p

)
+

(����
a1 + a2

2

���� f +

����
b1 + b2

2

���� g
))

where p =
(

β−α
2

)
, α = min(a1b1, a1b2, a2b1, a2b2), β = max(a1b1, a1b2, a2b1, a2b2)

In this case, we note that Ã ∗ B̃ ≈ −(−Ã) ∗ B̃ is satisfied which falls in line with the classical problems
in the crisp case.

Remark 1.8.

(i) Symmetric Octagonal fuzzy numbers satisfy the distributive property i.e. Let ã, b̃ and c̃ be any three
symmetric octagonal fuzzy numbers, then

c̃ ∗ (ã+ b̃) ≈ (c̃ ∗ ã+ c̃ ∗ b̃) and c̃ ∗ (ã− b̃) ≈ (c̃ ∗ ã− c̃ ∗ b̃),
where addition, subtraction and multiplication is defined by Definition 1.2
(ii) Multiplication operation given by Definition 1.2 asserts that product of two symmetrical octagonal

fuzzy numbers is a symmetrical octagonal fuzzy number.
(iii) Insistence on a symmetric product is easier to handle for computational purposes.

Remark 1.9. In the literature the following fuzzy numbers are considered - triangular fuzzy numbers, trape-
zoidal fuzzy numbers and hexagonal fuzzy numbers. In this concept we have used octagonal fuzzy numbers
recently. The class of such numbers form a tower of subclasses. The last one namely octagonal fuzzy num-
bers forming the largest subclass. Therefore operations defined for the last class of octagonal fuzzy numbers
evidently apply to the smaller classes.
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Definition 1.10. [5] Let Ã be a normal octagonal fuzzy number. The value MOct
0 (Ã), called the measure of

Ã is calculated as follows:

MOct
0 (Ã) =

1

2

k∫

0

(l1(r) + l2(r))dr +
1

2

1∫

k

(s1(t) + s2(t))dt where 0 < k < 1

=
1

4
[k(a1 + a2 + a7 + a8) + (1− k)(a3 + a4 + a5 + a6)]

Remark 1.11. [5]

1) If a1 + a2 + a7 + a8 = a3 + a4 + a5 + a6 we would get the measure of an octagonal number same
for any value of k. (0 < k < 1)

2) In case of symmetric octagonal fuzzy numbers, the condition a1 + a2 + a7 + a8 = a3 + a4 + a5 + a6
holds and hence the measure is independent of the choice of k.

3) If Ã and B̃ are two normal octagonal fuzzy numbers, then as in [5] we adhere to the following
definitions:

i.If MOct
0 (Ã) ≤ MOct

0 (B̃) then Ã ≼ B̃
ii. If MOct

0 (Ã) = MOct
0 (B̃) then Ã ≈ B̃

iii. If MOct
0 (Ã) ≥ MOct

0 (B̃) then Ã ≽ B̃
4) Also Ã ≼ B̃ and B̃ ≼ Ã ⇏ Ã ≈ B̃

2 FUZZY LINEAR PROGRAM The mathematical model

(2.1)

min �z ≈
n∑

j=1

c̃j ∗ x̃j

Subject to constraints
n∑

j=1

aij x̃j ≼ b̃i, i = 1, 2, . . . ,m0

n∑
j=1

aij x̃j ⪰ b̃i, i = m0 + 1,m0 + 2, . . . ,m

and x̃j ≽ 0̃ for all j = 1, 2, . . . , n




where aij ∈ R, c̃j , x̃j , b̃i ∈ F(SO) i = 1, 2, . . . ,m, j = 1, 2, . . . , n andF(SO) the set of all symmetric
octagonal fuzzy numbers, is called a fuzzy linear programming problem.

Definition 2.1. Any x̃ = (x̃1, x̃2, . . . x̃n) ∈ Fn(SO)(= F(SO)×F(SO)× . . .×F(SO) : (n fold)), where each
x̃i ∈ F(SO), which satisfies 2.1 is said to be a fuzzy feasible solution to equation 2.1.

Definition 2.2. A fuzzy feasible solution is called a fuzzy optimum solution to equation 2.1, denoted (x̃o
1,

x̃o
2, . . . , x̃

o
n) ∈ Q if

n∑
j=1

c̃j x̃
o
j ≼

n∑
j=1

c̃j x̃j∀ elements of Q ,where Q is the set of all fuzzy feasible solutions of

equation 2.1 .

Definition 2.3. If x̃j ≈ (−(αj+hj),−(αj+sj),−(αj+gj ),−αj , αj , (αj+gj), (αj+sj), (αj+hj); k, 1) for some

αj ≥ 0 and hj ≥ sj ≥ gj ≥ 0, then x̃ is said to be a fuzzy basic solution, where x̃ solves Ax̃ ≈ b̃, A being the
appropriate Matrix (aij). If x̃j ̸≈ (−(αj+hj),−(αj+sj),−(αj+gj),−αj , αj , (αj+gj), (αj+sj), (αj+hj); k, 1)
for all αj ≥ 0 and hj ≥ sj ≥ gj ≥ 0, then �x has some non-zero components which can be reordered if required,

say x̃1, x̃2, . . . , x̃t, 1 ≤ t ≤ n.Then Ax̃ ≈ b̃ becomes

4

a1x̃1 + a2x̃2 + · · ·+ atx̃t + at+1[(−(αt+1 + ht+1),−(αt+1 + st+1),

−(αt+1 + gt+1),−αt+1, αt+1, (αt+1 + gt+1), (αt+1 + st+1),

(αt+1 + ht+1); k, 1] + at+2[(−(αt+2 + ht+2),−(αt+2 + st+2),

−(αt+2 + gt+2),−αt+2, αt+2, (αt+2 + gt+2), (αt+2 + st+2), (αt+2 + ht+2); k, 1]

+ · · ·+ an[(−(αn + hn),−(αn + sn),−(αn + gn),−αn,

αn, (αn + gn), (αn + sn), (αn + hn); k, 1]

≈ b̃

And x̃ will become a fuzzy basic solution if the columns a1,a2, . . . ,at corresponding to these non-zero
components x̃1, x̃2, . . . , x̃t are linearly independent.

Remark 2.4. Given a system of m simultaneous fuzzy linear equations involving symmetric octagonal fuzzy
numbers in n unknowns (m ≤ n) Ax̃ ≈ b̃; b̃ ∈ Fm(SO) where A is a (m×n) real matrix and rank of A is m.
Let B be any (m×m) matrix formed by m linearly independent columns of A. Then the fuzzy basic solution
is x̃B = B−1b̃, where x̃B ∈ Fm(SO). We will eventually prove that, if x̃B is a basic solution for the fuzzy
linear programming problem equation 2.1, then a solution to the given system is [x̃B , 0̃ ] where 0̃ ∈ Fn−m(SO)

i.e.x̃ = (x̃1, x̃2, . . . , x̃k, 0̃, 0̃, . . . 0̃). In this case we also say that x̃B is a fuzzy basic solution.
We shall now give the fuzzy analogues of some important linear programming results.
The standard form of any fuzzy linear programming problem is given by:

(2.2)
min �z ≈

n∑
j=1

c̃j ∗ x̃j

Subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃




where A = (aij) is an (m× n) real matrix, b̃, c̃, x̃ are (m× 1), (1× n), (n× 1) fuzzy matrices consisting of
symmetric octagonal fuzzy numbers.

Definition 2.5. We say that a fuzzy vector x̃ ∈ F(R)n is a fuzzy feasible solution to the problem given by
equation 2.2 if x̃ satisfies the constraints of the problem.

Definition 2.6. A fuzzy feasible solution x̃∗ ∈ F(R)n is a fuzzy optimal solution for equation 2.2, if for all
fuzzy feasible solution x̃ for equation 2.2, we have c̃x̃ ≼ c̃x̃∗

Improving a fuzzy basic feasible solution
Let the basis for the columns of A be B = (b1, b2, . . . , bm). Let a fuzzy basic feasible solution be x̃B ≈ B−1b̃

and the fuzzy value of z̃ is given by z̃0 ≈ c̃B ∗ x̃B , where
c̃B = (c̃B1 , c̃B2 , c̃B3 , . . . c̃Bm) is the corresponding cost vector of x̃B .
Suppose that

aj =
m∑
i=1

yijbi = yjB

and the symmetric octagonal fuzzy number z̃j =
m∑
i=1

c̃Biyij = c̃Byj are known for every column vector aj

in A, which is not in B. Let us now examine the possibility of finding another fuzzy feasible solution which
will improve the fuzzy value of z̃, by replacing one of the columns in B by aj .

Theorem 2.7. Let x̃B be a fuzzy basic feasible solution of equation 2.2 such that x̃B ≈ B−1b̃. If the condition
(z̃j − c̃j) ≻ 0̃ hold for any column aj in A which is not in B and yij > 0 for some i, i ∈ {1, 2, 3, . . . ,m} then
we can obtain a new fuzzy basic feasible solution by replacing one of the columns in B by aj.
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Definition 1.10. [5] Let Ã be a normal octagonal fuzzy number. The value MOct
0 (Ã), called the measure of

Ã is calculated as follows:

MOct
0 (Ã) =

1

2

k∫

0

(l1(r) + l2(r))dr +
1

2

1∫

k

(s1(t) + s2(t))dt where 0 < k < 1

=
1

4
[k(a1 + a2 + a7 + a8) + (1− k)(a3 + a4 + a5 + a6)]

Remark 1.11. [5]

1) If a1 + a2 + a7 + a8 = a3 + a4 + a5 + a6 we would get the measure of an octagonal number same
for any value of k. (0 < k < 1)

2) In case of symmetric octagonal fuzzy numbers, the condition a1 + a2 + a7 + a8 = a3 + a4 + a5 + a6
holds and hence the measure is independent of the choice of k.

3) If Ã and B̃ are two normal octagonal fuzzy numbers, then as in [5] we adhere to the following
definitions:

i.If MOct
0 (Ã) ≤ MOct

0 (B̃) then Ã ≼ B̃
ii. If MOct

0 (Ã) = MOct
0 (B̃) then Ã ≈ B̃

iii. If MOct
0 (Ã) ≥ MOct

0 (B̃) then Ã ≽ B̃
4) Also Ã ≼ B̃ and B̃ ≼ Ã ⇏ Ã ≈ B̃

2 FUZZY LINEAR PROGRAM The mathematical model

(2.1)

min �z ≈
n∑

j=1

c̃j ∗ x̃j

Subject to constraints
n∑

j=1

aij x̃j ≼ b̃i, i = 1, 2, . . . ,m0

n∑
j=1

aij x̃j ⪰ b̃i, i = m0 + 1,m0 + 2, . . . ,m

and x̃j ≽ 0̃ for all j = 1, 2, . . . , n




where aij ∈ R, c̃j , x̃j , b̃i ∈ F(SO) i = 1, 2, . . . ,m, j = 1, 2, . . . , n andF(SO) the set of all symmetric
octagonal fuzzy numbers, is called a fuzzy linear programming problem.

Definition 2.1. Any x̃ = (x̃1, x̃2, . . . x̃n) ∈ Fn(SO)(= F(SO)×F(SO)× . . .×F(SO) : (n fold)), where each
x̃i ∈ F(SO), which satisfies 2.1 is said to be a fuzzy feasible solution to equation 2.1.

Definition 2.2. A fuzzy feasible solution is called a fuzzy optimum solution to equation 2.1, denoted (x̃o
1,

x̃o
2, . . . , x̃

o
n) ∈ Q if

n∑
j=1

c̃j x̃
o
j ≼

n∑
j=1

c̃j x̃j∀ elements of Q ,where Q is the set of all fuzzy feasible solutions of

equation 2.1 .

Definition 2.3. If x̃j ≈ (−(αj+hj),−(αj+sj),−(αj+gj ),−αj , αj , (αj+gj), (αj+sj), (αj+hj); k, 1) for some

αj ≥ 0 and hj ≥ sj ≥ gj ≥ 0, then x̃ is said to be a fuzzy basic solution, where x̃ solves Ax̃ ≈ b̃, A being the
appropriate Matrix (aij). If x̃j ̸≈ (−(αj+hj),−(αj+sj),−(αj+gj),−αj , αj , (αj+gj), (αj+sj), (αj+hj); k, 1)
for all αj ≥ 0 and hj ≥ sj ≥ gj ≥ 0, then �x has some non-zero components which can be reordered if required,

say x̃1, x̃2, . . . , x̃t, 1 ≤ t ≤ n.Then Ax̃ ≈ b̃ becomes

4

a1x̃1 + a2x̃2 + · · ·+ atx̃t + at+1[(−(αt+1 + ht+1),−(αt+1 + st+1),

−(αt+1 + gt+1),−αt+1, αt+1, (αt+1 + gt+1), (αt+1 + st+1),

(αt+1 + ht+1); k, 1] + at+2[(−(αt+2 + ht+2),−(αt+2 + st+2),

−(αt+2 + gt+2),−αt+2, αt+2, (αt+2 + gt+2), (αt+2 + st+2), (αt+2 + ht+2); k, 1]

+ · · ·+ an[(−(αn + hn),−(αn + sn),−(αn + gn),−αn,

αn, (αn + gn), (αn + sn), (αn + hn); k, 1]

≈ b̃

And x̃ will become a fuzzy basic solution if the columns a1,a2, . . . ,at corresponding to these non-zero
components x̃1, x̃2, . . . , x̃t are linearly independent.

Remark 2.4. Given a system of m simultaneous fuzzy linear equations involving symmetric octagonal fuzzy
numbers in n unknowns (m ≤ n) Ax̃ ≈ b̃; b̃ ∈ Fm(SO) where A is a (m×n) real matrix and rank of A is m.
Let B be any (m×m) matrix formed by m linearly independent columns of A. Then the fuzzy basic solution
is x̃B = B−1b̃, where x̃B ∈ Fm(SO). We will eventually prove that, if x̃B is a basic solution for the fuzzy
linear programming problem equation 2.1, then a solution to the given system is [x̃B , 0̃ ] where 0̃ ∈ Fn−m(SO)

i.e.x̃ = (x̃1, x̃2, . . . , x̃k, 0̃, 0̃, . . . 0̃). In this case we also say that x̃B is a fuzzy basic solution.
We shall now give the fuzzy analogues of some important linear programming results.
The standard form of any fuzzy linear programming problem is given by:

(2.2)
min �z ≈

n∑
j=1

c̃j ∗ x̃j

Subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃




where A = (aij) is an (m× n) real matrix, b̃, c̃, x̃ are (m× 1), (1× n), (n× 1) fuzzy matrices consisting of
symmetric octagonal fuzzy numbers.

Definition 2.5. We say that a fuzzy vector x̃ ∈ F(R)n is a fuzzy feasible solution to the problem given by
equation 2.2 if x̃ satisfies the constraints of the problem.

Definition 2.6. A fuzzy feasible solution x̃∗ ∈ F(R)n is a fuzzy optimal solution for equation 2.2, if for all
fuzzy feasible solution x̃ for equation 2.2, we have c̃x̃ ≼ c̃x̃∗

Improving a fuzzy basic feasible solution
Let the basis for the columns of A be B = (b1, b2, . . . , bm). Let a fuzzy basic feasible solution be x̃B ≈ B−1b̃

and the fuzzy value of z̃ is given by z̃0 ≈ c̃B ∗ x̃B , where
c̃B = (c̃B1 , c̃B2 , c̃B3 , . . . c̃Bm) is the corresponding cost vector of x̃B .
Suppose that

aj =
m∑
i=1

yijbi = yjB

and the symmetric octagonal fuzzy number z̃j =
m∑
i=1

c̃Biyij = c̃Byj are known for every column vector aj

in A, which is not in B. Let us now examine the possibility of finding another fuzzy feasible solution which
will improve the fuzzy value of z̃, by replacing one of the columns in B by aj .

Theorem 2.7. Let x̃B be a fuzzy basic feasible solution of equation 2.2 such that x̃B ≈ B−1b̃. If the condition
(z̃j − c̃j) ≻ 0̃ hold for any column aj in A which is not in B and yij > 0 for some i, i ∈ {1, 2, 3, . . . ,m} then
we can obtain a new fuzzy basic feasible solution by replacing one of the columns in B by aj.

5
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Proof. Let x̃B ≈ (x̃B1 , x̃B2 , . . . , x̃Bm) be a fuzzy basic feasible solution with t positive components such that
Bx̃B = b̃ or x̃B = B−1b̃ where x̃Bi ≈ ((αi − hi), (αi − si), (αi − gi), αi, βi, (βi + gi), (βi + si), (βi +
hi); k, 1), αi ≤ βi, hi ≥ si ≥ gi ≥ 0, 0 < k < 1and

MOct
0 (x̃Bi) > 0 for i = 1, 2, . . . , t and MOct

0 (x̃Bi) = 0 for i = t+ 1, t+ 2, . . . ,m
i.e., x̃Bi ≻ 0̃ for i = 1, 2, . . . , t and
x̃Bi

≈ (−(βi+hi),−(βi+si),−(βi+gi),−βi, βi, (βi+gi), (βi+si), (βi+hi); k, 1) for i = t+1, t+2, . . . ,m; 0 <
k < 1 Then Bx̃B ≈ b̃ is written as

t∑
i=1

x̃Bibi + (−(βt+1 + ht+1),−(βt+1 + st+1),−(βt+1 + gt+1),−βt+1,

βt+1, (βt+1 + gt+1), (βt+1 + st+1), (βt+1 + ht+1); k, 1)bt+1 +

(−(βt+2 + ht+2),−(βt+2 + st+2),−(βt+2 + gt+2),−βt+2, βt+2, (βt+2 + gt+2),

(βt+2 + st+2), (βt+2 + ht+2); k, 1)bt+2 + · · ·
+(−(βm + hm),−(βm + sm),−(βm + gm),−βm, βm,

(βm + gm), (βm + sm), (βm + hm); k, 1)bm

≈ b̃

i.e.,

t∑
i=1

x̃Bi
bi +

m∑
i=t+1

(−(βi + hi),−(βi + si),−(βi + gi),−βi,

βi, (βi + gi), (βi + si), (βi + hi); k, 1)bi

≈ �b(2.3)

Now any column aj of A not in B can be written as

aj =
m∑
i=1

yijbi = y1jb1 + y2jb2 + · · ·+ yrjbr + · · ·+ ymjbm = yjB.

Also if the basis vector br for which yrj ̸= 0 is replaced by aj of A, then (b1, b2, . . . , br−1, aj , br+1, . . . , bm)
still forms a basis.

Now for yrj ̸= 0 and r ≤ t, we can write

br =
aj

yrj
−

m∑
i=1
i̸=r

yij

yrj
bi =

aj

yrj
−

t∑
i=1
i̸=r

yij

yrj
bi =

aj

yrj
−

m∑
i=t+1

yij

yrj
bi

Equation2.3 becomes

t∑
i=1
i̸=r

x̃Bibi + x̃Brbr +
m∑

i=t+1

(−(βi + hi),−(βi + si),−(βi + gi),−βi,

βi, (βi + gi), (βi + si), (βi + hi); k, 1)bi

≈ b̃

⇒
t∑

i=1
i̸=r

x̃Bibi +
x̃Br

yrj
aj −

x̃Br

yrj

t∑
i=1
i̸=r

yijbi −
x̃Br

yrj

m∑
i=t+1

yijbi +

m∑
i=t+1

(−(βi + hi),−(βi + si),

−(βi + gi),−βi, βi, (βi + gi), (βi + si), (βi + hi); k, 1)bi

≈ b̃

6

⇒
t∑

i=1
i̸=r

(
x̃Bi −

x̃Br

yrj
yij

)
bi +

x̃Br

yrj
aj +

m∑
i=t+1

(−(βi + hi),−(βi + si),−(βi + gi),−βi,

βi, (βi + gi), (βi + si), (βi + hi); k, 1)−
x̃Br

yrj
yij)bi

≈ b̃

Since x̃Bi ≈ (−(βi + hi),−(βi + si),−(βi + gi),−βi, βi, (βi + gi), (βi + si), (βi + hi); k, 1) for i = t+ 1, t+
2, . . . ,m, we have

t∑
i=1
i̸=r

(
x̃Bi −

x̃Br

yrj
yij

)
bi +

x̃Br

yrj
aj +

m∑
i=t+1

(
x̃Bi −

x̃Br

yrj
yij

)
bi ≈ b̃

⇒
m∑
i=1
i̸=r

(
x̃Bi −

x̃Br

yrj
yij

)
bi +

x̃Br

yrj
aj ≈ b̃

⇒
m∑
i=1
i̸=r

ˆ̃xBibi + ˆ̃xBraj ≈ b̃

where ˆ̃xBi ≈
(
x̃Bi −

x̃Br

yrj
yij

)
, i ̸= r and ˆ̃xBr =

x̃Br

yrj
which is a improved fuzzy basic solution to Ax̃ ≈ b̃.

We shall now prove that the improved solution is also feasible. That is to prove that(
x̃Bi −

x̃Br

yrj
yij

)
≽ 0̃, i ̸= r and

x̃Br

yrj
≽ 0̃. To this end, select yrj > 0 such that

x̃Br

yrj
≈ min

{
x̃Br

yrj
yij > 0

}
.

Then
x̃Br

yrj
≼ x̃Bi

yij

⇒
(
αr − hr

yrj
,
αr − sr
yrj

,
αr − gr
yrj

,
αr

yrj
,
βr

yrj
,
βr + gr
yrj

,
βr + sr
yrj

,
βr + hr

yrj

)

≼
(
αi − hi

yij
,
αi − si
yij

,
αi − gi
yij

,
αi

yij
,
βi

yij
,
βi + gi
yij

,
βi + si
yij

,
βi + hi

yij

)

⇒
(
αi

yij
− βr

yrj
−

(
hr

yrj
+

hi

yij

)
,
αi

yij
− βr

yrj
−

(
sr
yrj

+
si
yij

)
,
αi

yij
− βr

yrj
−

(
gr
yrj

+
gi
yij

)
,

αi

yij
− βr

yrj
,
βi

yij
− αr

yrj
,
βi

yij
− αr

yrj
+

(
gr
yrj

+
gi
yij

)
,

βi

yij
− αr

yrj
+

(
sr
yrj

+
si
yij

)
,
βi

yij
− αr

yrj
+

(
hr

yrj
+

hi

yij

))

≽ 0̃

⇒
(
αi − βr − (hr + hi)

yij
,
αi − βr − (sr + si)

yij
,
αi − βr − (gr + gi)

yij
,
αi − βr

yij
,

βi − αr

yij
,
βi − αr + (gr + gi)

yij
,
βi − αr + (sr + si)

yij
,
βi − αr + (hr + hi)

yij

)

≽ 0̃

7
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Proof. Let x̃B ≈ (x̃B1 , x̃B2 , . . . , x̃Bm) be a fuzzy basic feasible solution with t positive components such that
Bx̃B = b̃ or x̃B = B−1b̃ where x̃Bi ≈ ((αi − hi), (αi − si), (αi − gi), αi, βi, (βi + gi), (βi + si), (βi +
hi); k, 1), αi ≤ βi, hi ≥ si ≥ gi ≥ 0, 0 < k < 1and

MOct
0 (x̃Bi) > 0 for i = 1, 2, . . . , t and MOct

0 (x̃Bi) = 0 for i = t+ 1, t+ 2, . . . ,m
i.e., x̃Bi ≻ 0̃ for i = 1, 2, . . . , t and
x̃Bi

≈ (−(βi+hi),−(βi+si),−(βi+gi),−βi, βi, (βi+gi), (βi+si), (βi+hi); k, 1) for i = t+1, t+2, . . . ,m; 0 <
k < 1 Then Bx̃B ≈ b̃ is written as

t∑
i=1

x̃Bibi + (−(βt+1 + ht+1),−(βt+1 + st+1),−(βt+1 + gt+1),−βt+1,

βt+1, (βt+1 + gt+1), (βt+1 + st+1), (βt+1 + ht+1); k, 1)bt+1 +

(−(βt+2 + ht+2),−(βt+2 + st+2),−(βt+2 + gt+2),−βt+2, βt+2, (βt+2 + gt+2),

(βt+2 + st+2), (βt+2 + ht+2); k, 1)bt+2 + · · ·
+(−(βm + hm),−(βm + sm),−(βm + gm),−βm, βm,

(βm + gm), (βm + sm), (βm + hm); k, 1)bm

≈ b̃

i.e.,

t∑
i=1

x̃Bi
bi +

m∑
i=t+1

(−(βi + hi),−(βi + si),−(βi + gi),−βi,

βi, (βi + gi), (βi + si), (βi + hi); k, 1)bi

≈ �b(2.3)

Now any column aj of A not in B can be written as

aj =
m∑
i=1

yijbi = y1jb1 + y2jb2 + · · ·+ yrjbr + · · ·+ ymjbm = yjB.

Also if the basis vector br for which yrj ̸= 0 is replaced by aj of A, then (b1, b2, . . . , br−1, aj , br+1, . . . , bm)
still forms a basis.

Now for yrj ̸= 0 and r ≤ t, we can write

br =
aj

yrj
−

m∑
i=1
i̸=r

yij

yrj
bi =

aj

yrj
−

t∑
i=1
i̸=r

yij

yrj
bi =

aj

yrj
−

m∑
i=t+1

yij

yrj
bi

Equation2.3 becomes

t∑
i=1
i̸=r

x̃Bibi + x̃Brbr +
m∑

i=t+1

(−(βi + hi),−(βi + si),−(βi + gi),−βi,

βi, (βi + gi), (βi + si), (βi + hi); k, 1)bi

≈ b̃

⇒
t∑

i=1
i̸=r

x̃Bibi +
x̃Br

yrj
aj −

x̃Br

yrj

t∑
i=1
i̸=r

yijbi −
x̃Br

yrj

m∑
i=t+1

yijbi +

m∑
i=t+1

(−(βi + hi),−(βi + si),

−(βi + gi),−βi, βi, (βi + gi), (βi + si), (βi + hi); k, 1)bi

≈ b̃

6

⇒
t∑

i=1
i̸=r

(
x̃Bi −

x̃Br

yrj
yij

)
bi +

x̃Br

yrj
aj +

m∑
i=t+1

(−(βi + hi),−(βi + si),−(βi + gi),−βi,

βi, (βi + gi), (βi + si), (βi + hi); k, 1)−
x̃Br

yrj
yij)bi

≈ b̃

Since x̃Bi ≈ (−(βi + hi),−(βi + si),−(βi + gi),−βi, βi, (βi + gi), (βi + si), (βi + hi); k, 1) for i = t+ 1, t+
2, . . . ,m, we have

t∑
i=1
i̸=r

(
x̃Bi −

x̃Br

yrj
yij

)
bi +

x̃Br

yrj
aj +

m∑
i=t+1

(
x̃Bi −

x̃Br

yrj
yij

)
bi ≈ b̃

⇒
m∑
i=1
i̸=r

(
x̃Bi −

x̃Br

yrj
yij

)
bi +

x̃Br

yrj
aj ≈ b̃

⇒
m∑
i=1
i̸=r

ˆ̃xBibi + ˆ̃xBraj ≈ b̃

where ˆ̃xBi ≈
(
x̃Bi −

x̃Br

yrj
yij

)
, i ̸= r and ˆ̃xBr =

x̃Br

yrj
which is a improved fuzzy basic solution to Ax̃ ≈ b̃.

We shall now prove that the improved solution is also feasible. That is to prove that(
x̃Bi −

x̃Br

yrj
yij

)
≽ 0̃, i ̸= r and

x̃Br

yrj
≽ 0̃. To this end, select yrj > 0 such that

x̃Br

yrj
≈ min

{
x̃Br

yrj
yij > 0

}
.

Then
x̃Br

yrj
≼ x̃Bi

yij

⇒
(
αr − hr

yrj
,
αr − sr
yrj

,
αr − gr
yrj

,
αr

yrj
,
βr

yrj
,
βr + gr
yrj

,
βr + sr
yrj

,
βr + hr

yrj

)

≼
(
αi − hi

yij
,
αi − si
yij

,
αi − gi
yij

,
αi

yij
,
βi

yij
,
βi + gi
yij

,
βi + si
yij

,
βi + hi

yij

)

⇒
(
αi

yij
− βr

yrj
−

(
hr

yrj
+

hi

yij

)
,
αi

yij
− βr

yrj
−

(
sr
yrj

+
si
yij

)
,
αi

yij
− βr

yrj
−

(
gr
yrj

+
gi
yij

)
,

αi

yij
− βr

yrj
,
βi

yij
− αr

yrj
,
βi

yij
− αr

yrj
+

(
gr
yrj

+
gi
yij

)
,

βi

yij
− αr

yrj
+

(
sr
yrj

+
si
yij

)
,
βi

yij
− αr

yrj
+

(
hr

yrj
+

hi

yij

))

≽ 0̃

⇒
(
αi − βr − (hr + hi)

yij
,
αi − βr − (sr + si)

yij
,
αi − βr − (gr + gi)

yij
,
αi − βr

yij
,

βi − αr

yij
,
βi − αr + (gr + gi)

yij
,
βi − αr + (sr + si)

yij
,
βi − αr + (hr + hi)

yij

)

≽ 0̃
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⇒

MOct
0

(
αi − βr − (hr + hi)

yij
,
αi − βr − (sr + si)

yij
,
αi − βr − (gr + gi)

yij
,
αi − βr

yij
,

βi − αr

yij
,
βi − αr + (gr + gi)

yij
,
βi − αr + (sr + si)

yij
,
βi − αr + (hr + hi)

yij

)

≥ 0̃

⇒ 1

4

(
k

(
αi − βr − (hr + hi)

yij
+

αi − βr − (sr + si)

yij
+

βi − αr + (sr + si)

yij
+

βi − αr + (hr + hi)

yij

)

+ (1− k)

(
αi − βr − (gr + gi)

yij
+

αi − βr

yij
+

βi − αr

yij
+

βi − αr + (gr + gi)

yij

)

≥ 0

⇒ 1

4

(
αi − βr

yij
+

βi − αr

yij

)
≥ 0

⇒
(
αi + βi

yij

)
−

(
αr + βr

yij

)
≥ 0 ⇒

(
x̃Bi

yij
− x̃Br

yrj

)
≽ 0̃

and hence the improved solution is a fuzzy basic feasible solution and the theorem is proved.

Remark 2.8. The new basis matrix obtained after replacing the basis vectors is B̂ = (b̂1, b̂2, . . . , b̂m), where

b̂i = bi for i ̸= r and b̂r = aj. The new fuzzy basic feasible solution is ˆ̃xB, where ˆ̃xBi ≈
(
x̃Bi −

x̃Br

yrj
yij

)
, i ̸= r

and ˆ̃xBr =
x̃Br

yrj
are the basic variables.

Theorem 2.9. If x̃B and ˆ̃xB are the fuzzy basic feasible solutions of 2.2 having their objective values
z̃0 ≈ c̃B ∗ x̃B and ˆ̃z ≈ ˆ̃cB ∗ˆ̃xB respectively and if ˆ̃xB was the value obtained after admitting aj in the basis, it
being a non basic column vector and also for which (z̃j − c̃j) ≻ 0̃ and yij > 0 for some i, i ∈ {1, 2, 3, . . . ,m},
then ˆ̃z ≼ z̃0.

Proof. Given x̃B be a fuzzy basic feasible solution and z̃0 ≈ c̃B x̃B . Let br be the column vector removed from
the basis in place of which aj is introduced. Also given that ˆ̃xB is the new fuzzy basic feasible solution, then

ˆ̃xBi ≈
(
x̃Bi −

x̃Br

yrj
yij

)
, i ̸= r and ˆ̃xBr =

x̃Br

yrj
.

Since ˆ̃cBi ≈ c̃Bi , i ̸= r and ˆ̃cBr = c̃j , the modified fuzzy value of the objective function is

ˆ̃z ≈ ˆ̃cBˆ̃xB ≈
m∑
i=1

ˆ̃cBi
ˆ̃xBi ≈

m∑
i=1
i̸=r

ˆ̃cBi
ˆ̃xBi + ˆ̃cBr

ˆ̃xBr

≈
m∑
i=1
i̸=r

c̃Bi

(
x̃Bi −

x̃Br

yrj
yij

)
+ c̃j

x̃Br

yrj

≈
m∑
i=1

c̃Bi

(
x̃Bi −

x̃Br

yrj
yij

)
+ c̃j

x̃Br

yrj

≈
m∑
i=1

c̃Bi x̃Bi −
x̃Br

yrj

m∑
i=1

c̃Biyij + c̃j
x̃Br

yrj

≈ z̃0 −
x̃Br

yrj
z̃j + c̃j

x̃Br

yrj

8

(2.4) ≈ z̃0 −
x̃Br

yrj
(z̃j − c̃j)

Since yrj > 0, (z̃j − c̃j) ≻ 0̃ and
x̃Br

yrj
≽ 0̃, hence

x̃Br

yrj
(z̃j − c̃j) ⪰ 0̃.

So Equation 2.4 implies ˆ̃z ≼ z̃0. Hence the new fuzzy basic feasible solution gives the improved fuzzy
value of the objective function.

Condition of optimality

Similar to classical linear programming problem, we can prove that the process of inserting and removing
vectors from the basis matrix will lead to the following situations

i) unbounded solution
ii) infeasible solution
iii) optimal solution. In which case, (z̃j − c̃j) ≼ 0̃.
Hence we have the following theorem whose proof is immediate.

Theorem 2.10. If x̃B = B−1b̃ is a fuzzy basic feasible solution of 2.2 and if (z̃j − c̃j) ≼ 0̃ for every column
aj of A, then x̃B is a fuzzy optimal solution to 2.2.

Remark 2.11. Here we solve a fuzzy linear programming problem whose optimal function is to be minimised
and whose variables are non-negative. Hence we arrive at two situations and they are i) we obtain the
optimal solution or ii)we obtain an infeasible solution in sense the optimality will not be reached inspite of
repeated iterations.

Remark 2.12. Theorem2.9 and Theorem2.10 gives sufficient condition for existence of optimal solution. It
is to be seen whether this sufficient condition ensures convergence of the iteration problem. Condition for
convergence of iteration process needs to be studied separately.

Remark 2.13. If we consider the maximisation problem given by

max �z ≈
n∑

j=1

c̃j ∗ x̃j

Subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃

then this problem can be converted into a minimisation problem given by

maxz̃ ≈ −min(−z̃) ≈
n∑

j=1

(−c̃j) ∗ x̃j

Subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃

and solved as above.

3 Numerical Example Food A contains 20 units of Proteins and 40 units of minerals per gram. Food

B contains 30 units each of Proteins and minerals. The daily minimum human requirements of Protein and
Mineral are 900 units and 1200 units respectively. How many grams of each type of food should be consumed
so as to minimize the cost, if food A costs Rs.6 per gram and food B costs Rs.8 per gram.

Note that the daily minimum human requirements of proteins and minerals may vary from individual
to individual. Also the cost of food may vary depending on the market condition. Due to these uncertain

9
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⇒

MOct
0

(
αi − βr − (hr + hi)

yij
,
αi − βr − (sr + si)

yij
,
αi − βr − (gr + gi)

yij
,
αi − βr

yij
,

βi − αr

yij
,
βi − αr + (gr + gi)

yij
,
βi − αr + (sr + si)

yij
,
βi − αr + (hr + hi)

yij

)

≥ 0̃

⇒ 1

4

(
k

(
αi − βr − (hr + hi)

yij
+

αi − βr − (sr + si)

yij
+

βi − αr + (sr + si)

yij
+

βi − αr + (hr + hi)

yij

)

+ (1− k)

(
αi − βr − (gr + gi)

yij
+

αi − βr

yij
+

βi − αr

yij
+

βi − αr + (gr + gi)

yij

)

≥ 0

⇒ 1

4

(
αi − βr

yij
+

βi − αr

yij

)
≥ 0

⇒
(
αi + βi

yij

)
−

(
αr + βr

yij

)
≥ 0 ⇒

(
x̃Bi

yij
− x̃Br

yrj

)
≽ 0̃

and hence the improved solution is a fuzzy basic feasible solution and the theorem is proved.

Remark 2.8. The new basis matrix obtained after replacing the basis vectors is B̂ = (b̂1, b̂2, . . . , b̂m), where

b̂i = bi for i ̸= r and b̂r = aj. The new fuzzy basic feasible solution is ˆ̃xB, where ˆ̃xBi ≈
(
x̃Bi −

x̃Br

yrj
yij

)
, i ̸= r

and ˆ̃xBr =
x̃Br

yrj
are the basic variables.

Theorem 2.9. If x̃B and ˆ̃xB are the fuzzy basic feasible solutions of 2.2 having their objective values
z̃0 ≈ c̃B ∗ x̃B and ˆ̃z ≈ ˆ̃cB ∗ˆ̃xB respectively and if ˆ̃xB was the value obtained after admitting aj in the basis, it
being a non basic column vector and also for which (z̃j − c̃j) ≻ 0̃ and yij > 0 for some i, i ∈ {1, 2, 3, . . . ,m},
then ˆ̃z ≼ z̃0.

Proof. Given x̃B be a fuzzy basic feasible solution and z̃0 ≈ c̃B x̃B . Let br be the column vector removed from
the basis in place of which aj is introduced. Also given that ˆ̃xB is the new fuzzy basic feasible solution, then

ˆ̃xBi ≈
(
x̃Bi −

x̃Br

yrj
yij

)
, i ̸= r and ˆ̃xBr =

x̃Br

yrj
.

Since ˆ̃cBi ≈ c̃Bi , i ̸= r and ˆ̃cBr = c̃j , the modified fuzzy value of the objective function is

ˆ̃z ≈ ˆ̃cBˆ̃xB ≈
m∑
i=1

ˆ̃cBi
ˆ̃xBi ≈

m∑
i=1
i̸=r

ˆ̃cBi
ˆ̃xBi + ˆ̃cBr

ˆ̃xBr

≈
m∑
i=1
i̸=r

c̃Bi

(
x̃Bi −

x̃Br

yrj
yij

)
+ c̃j

x̃Br

yrj

≈
m∑
i=1

c̃Bi

(
x̃Bi −

x̃Br

yrj
yij

)
+ c̃j

x̃Br

yrj

≈
m∑
i=1

c̃Bi x̃Bi −
x̃Br

yrj

m∑
i=1

c̃Biyij + c̃j
x̃Br

yrj

≈ z̃0 −
x̃Br

yrj
z̃j + c̃j

x̃Br

yrj

8

(2.4) ≈ z̃0 −
x̃Br

yrj
(z̃j − c̃j)

Since yrj > 0, (z̃j − c̃j) ≻ 0̃ and
x̃Br

yrj
≽ 0̃, hence

x̃Br

yrj
(z̃j − c̃j) ⪰ 0̃.

So Equation 2.4 implies ˆ̃z ≼ z̃0. Hence the new fuzzy basic feasible solution gives the improved fuzzy
value of the objective function.

Condition of optimality

Similar to classical linear programming problem, we can prove that the process of inserting and removing
vectors from the basis matrix will lead to the following situations

i) unbounded solution
ii) infeasible solution
iii) optimal solution. In which case, (z̃j − c̃j) ≼ 0̃.
Hence we have the following theorem whose proof is immediate.

Theorem 2.10. If x̃B = B−1b̃ is a fuzzy basic feasible solution of 2.2 and if (z̃j − c̃j) ≼ 0̃ for every column
aj of A, then x̃B is a fuzzy optimal solution to 2.2.

Remark 2.11. Here we solve a fuzzy linear programming problem whose optimal function is to be minimised
and whose variables are non-negative. Hence we arrive at two situations and they are i) we obtain the
optimal solution or ii)we obtain an infeasible solution in sense the optimality will not be reached inspite of
repeated iterations.

Remark 2.12. Theorem2.9 and Theorem2.10 gives sufficient condition for existence of optimal solution. It
is to be seen whether this sufficient condition ensures convergence of the iteration problem. Condition for
convergence of iteration process needs to be studied separately.

Remark 2.13. If we consider the maximisation problem given by

max �z ≈
n∑

j=1

c̃j ∗ x̃j

Subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃

then this problem can be converted into a minimisation problem given by

maxz̃ ≈ −min(−z̃) ≈
n∑

j=1

(−c̃j) ∗ x̃j

Subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃

and solved as above.

3 Numerical Example Food A contains 20 units of Proteins and 40 units of minerals per gram. Food

B contains 30 units each of Proteins and minerals. The daily minimum human requirements of Protein and
Mineral are 900 units and 1200 units respectively. How many grams of each type of food should be consumed
so as to minimize the cost, if food A costs Rs.6 per gram and food B costs Rs.8 per gram.

Note that the daily minimum human requirements of proteins and minerals may vary from individual
to individual. Also the cost of food may vary depending on the market condition. Due to these uncertain
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variations the problem is modelled as a fuzzy linear programming problem and symmetrical octagonal fuzzy
numbers are used to describe these uncertain values.

Cost of Food A 6 is modeled as (2, 3, 4, 5, 7, 8, 9, 10; 0.3, 1)and the same is done for the other parameters
also . Hence the mathmatical formulation of the above problem is given by fuzzy linear programming problem
as

min �z ≈ (2, 3, 4, 5, 7, 8, 9, 10; 0.3, 1)x̃1 + (3, 4, 5, 7, 9, 11, 12, 13; 0.3, 1)x̃2

Subject to 20x̃1 + 30x̃2 ≽ (885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1)
40x̃1 + 30x̃3 ≽ (1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1)
x̃1 ≽ 0̃, x̃2 ≽ 0̃.

Hence the fuzzy linear programming problem in standard form is
minz̃ ≈ (2, 3, 4, 5, 7, 8, 9, 10; 0.3, 1)x̃1 + (3, 4, 5, 7, 9, 11, 12, 13; 0.3, 1)x̃2

Subject to 20x̃1 + 30x̃2 − S̃1 + Ã1 ≈ (885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1)
40x̃1 + 30x̃3 − S̃2 + Ã2 ≈ (1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1)
x̃1, x̃2, , S̃1, S̃2, Ã1, Ã2 ≽ 0̃

where S̃1, S̃2, are the surplus fuzzy variables and Ã1, Ã2, are artificial variables. That is
min z̃ ≈ c̃x̃ subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃, where

a1 a2 a3 a4 a5 a6
A =

(
20 30 −1 0 1 0

40 30 0 −1 0 1

)

b̃ ≈
( (885,886,888,890,910,912,914,915;0.3,1)
(1190,1191,1193,1195,1205,1207,1209,1210;0.3,1)

)
,x̃ ≈ (x̃1 x̃2 S̃1 S̃2 Ã1 Ã2)

And c̃ ≈ ((885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1),
(1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1), 0̃, 0̃, M̃ , M̃)

Initial Iteration: The initial fuzzy basic feasible solution is given by x̃B ≈ B−1b̃, where

B =

(
1 0
0 1

)
, x̃ =

Ã1

Ã2
, b̃ ≈

(
(885,886,888,890,910,912,914,915;0.3,1)

(1190,1191,1193,1195,1205,1207,1209,1210;0.3,1)

)
and

x̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), x̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), S̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1),
S̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), Ã1 ≈ (885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1),
Ã2 ≈ (1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1)
and the fuzzy objective value is
z̃ ≈ (2075M, 2077M, 2081M, 2085M, 2115M, 2119M, 2123M, 2125M ; 0.3, 1).
Now (z̃1 − c̃1) ≻ 0̃ is one among the highest positive value among all z̃j − c̃j
First Iteration: By Theorem 2.7 and Theorem 2.9, we get a new fuzzy basic feasible solution
x̃1 ≈

(
1190
40 , 1191

40 , 1193
40 , 1195

40 , 1205
40 , 1207

40 , 1209
40 , 1210

40 ; 0.3, 1
)
, x̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1),

S̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), S̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1)
Ã1 ≈

(
560
2 , 563

2 , 569
2 , 575

2 , 625
2 , 631

2 , 637
2 , 640

2 ; 0.3, 1
)
, Ã2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1)

with the improved fuzzy objective value
z̃ ≈ ( 11200M+2320

40 , 11260M+3532
40 , 11380M+4751

40 , 11500M+5970
40 ,

12500M+8430
40 , 12620M+9649

40 , 12740M+10868
40 , 12800M+12080

40 ; 0.3, 1).

Here (z̃2 − c̃2) ≻ 0̃ is the highest positive value among all z̃j − c̃j
Second Iteration: Proceeding in a similar way, we get a new fuzzy basic feasible solution
x̃1 ≈

(
550
40 , 554

40 , 562
40 , 570

40 , 630
40 , 638

40 , 646
40 , 650

40 ; 0.3, 1
)
,

x̃2 ≈
(
560
30 , 563

30 , 569
30 , 575

30 , 625
30 , 631

30 , 637
30 , 640

30 ; 0.3, 1
)
,

S̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), S̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1),
Ã1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), Ã2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1)
with the improved fuzzy objective value,
z̃ ≈

(
7830
120 , 12412

120 , 17186
120 , 24460

120 , 35540
120 , 42814

120 , 47588
120 , 52170

120 ; 0.3, 1
)
.

Here (z̃j − c̃j) ≼ 0̃ for all j. Here by Theorem 2.10, the feasible solution obtained now is a fuzzy optimal
solution.

Remark 3.1. The parameter k is involved in calculating the ratio between the minimum requirements and
the selected yij column elements.

Remark 3.2. The measure Moct
0 considered (as in Definition 1.10) is used in comparing the ratios mentioned

in Remark.3.1

10

Remark 3.3. The choice of trapezoidal, hexagonal or octagonal fuzzy numbers for minimum feasible solution
range seems to be dependent on the parameter k. Details of these investigations will be published after
completion.

Remark 3.4. In [1] the authors have proved the following theorem, For a fixed partition Pm, the set Fc,m(R)
is isomorphic to the convex closed cone C =

{
z ∈ R2(m+1) : Bz ⩾ 0

}
with

B =




−1 1 0 0 ... 0
0 −1 1 0 ... 0
0 0 1 1 ... 0
.
.
.

.

.

.
0 0 ... 0 −1 1



(2m+1)x(2m+2)

where Fc,m(R) is the space of real fuzzy subsets of R with level sets belonging to the space of compact
convex subsets of R endowed with suitable Hausdorff metric.This implies that trapezoidal fuzzy numbers
correspond to the case m = 4 and octagonal fuzzy numbers correspond to the case m = 8 in the mentioned
theorem. As these cones are distinct it is clear that these numbers also have distinct properties. Also
trapezoidal fuzzy numbers can be viewed as special case of octagonal fuzzy numbers.

4 Conclusion In this paper FLP is solved without converting it to crisp linear programming problem. If

this problem is solved using several steps with trapezoidal fuzzy numbers, then there is a sizeable difference
in the spread of the solution when compared to the solution obtained for octagonal fuzzy number problem and
this diference is dependent on the choice of k. The concept of octagonal fuzzy numbers enables using more
data relating to the problem and obtaining similarly more data about the solution. Also the ∗ multiplication
defined in this paper is more natural. Approximation of any fuzzy number by trapezoidal fuzzy numbers was
considered by Ban et.al. and symmetric trapezoidal approximation is cited as future work [2].We may have
to consider whether the data given in our problem can be approximated to trapezoidal fuzzy numbers given
in [2] which would give a solution, which is nearer to the solution given using octagonal fuzzy numbers as
such. Octagonal Approximations in a fuzzy environment may be considered for future work.

Acknowledgement The authors wish to thank Dr. M.S. Rangachari and Dr. P.V. Subrahmanyam
for their useful discussions and reviewers for their comments which were useful in shaping the paper.
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variations the problem is modelled as a fuzzy linear programming problem and symmetrical octagonal fuzzy
numbers are used to describe these uncertain values.

Cost of Food A 6 is modeled as (2, 3, 4, 5, 7, 8, 9, 10; 0.3, 1)and the same is done for the other parameters
also . Hence the mathmatical formulation of the above problem is given by fuzzy linear programming problem
as

min �z ≈ (2, 3, 4, 5, 7, 8, 9, 10; 0.3, 1)x̃1 + (3, 4, 5, 7, 9, 11, 12, 13; 0.3, 1)x̃2

Subject to 20x̃1 + 30x̃2 ≽ (885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1)
40x̃1 + 30x̃3 ≽ (1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1)
x̃1 ≽ 0̃, x̃2 ≽ 0̃.

Hence the fuzzy linear programming problem in standard form is
minz̃ ≈ (2, 3, 4, 5, 7, 8, 9, 10; 0.3, 1)x̃1 + (3, 4, 5, 7, 9, 11, 12, 13; 0.3, 1)x̃2

Subject to 20x̃1 + 30x̃2 − S̃1 + Ã1 ≈ (885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1)
40x̃1 + 30x̃3 − S̃2 + Ã2 ≈ (1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1)
x̃1, x̃2, , S̃1, S̃2, Ã1, Ã2 ≽ 0̃

where S̃1, S̃2, are the surplus fuzzy variables and Ã1, Ã2, are artificial variables. That is
min z̃ ≈ c̃x̃ subject to Ax̃ ≈ b̃ and x̃ ≽ 0̃, where

a1 a2 a3 a4 a5 a6
A =

(
20 30 −1 0 1 0

40 30 0 −1 0 1

)

b̃ ≈
( (885,886,888,890,910,912,914,915;0.3,1)
(1190,1191,1193,1195,1205,1207,1209,1210;0.3,1)

)
,x̃ ≈ (x̃1 x̃2 S̃1 S̃2 Ã1 Ã2)

And c̃ ≈ ((885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1),
(1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1), 0̃, 0̃, M̃ , M̃)

Initial Iteration: The initial fuzzy basic feasible solution is given by x̃B ≈ B−1b̃, where

B =

(
1 0
0 1

)
, x̃ =

Ã1

Ã2
, b̃ ≈

(
(885,886,888,890,910,912,914,915;0.3,1)

(1190,1191,1193,1195,1205,1207,1209,1210;0.3,1)

)
and

x̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), x̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), S̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1),
S̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), Ã1 ≈ (885, 886, 888, 890, 910, 912, 914, 915; 0.3, 1),
Ã2 ≈ (1190, 1191, 1193, 1195, 1205, 1207, 1209, 1210; 0.3, 1)
and the fuzzy objective value is
z̃ ≈ (2075M, 2077M, 2081M, 2085M, 2115M, 2119M, 2123M, 2125M ; 0.3, 1).
Now (z̃1 − c̃1) ≻ 0̃ is one among the highest positive value among all z̃j − c̃j
First Iteration: By Theorem 2.7 and Theorem 2.9, we get a new fuzzy basic feasible solution
x̃1 ≈

(
1190
40 , 1191

40 , 1193
40 , 1195

40 , 1205
40 , 1207

40 , 1209
40 , 1210

40 ; 0.3, 1
)
, x̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1),

S̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), S̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1)
Ã1 ≈

(
560
2 , 563

2 , 569
2 , 575

2 , 625
2 , 631

2 , 637
2 , 640

2 ; 0.3, 1
)
, Ã2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1)

with the improved fuzzy objective value
z̃ ≈ ( 11200M+2320

40 , 11260M+3532
40 , 11380M+4751

40 , 11500M+5970
40 ,

12500M+8430
40 , 12620M+9649

40 , 12740M+10868
40 , 12800M+12080

40 ; 0.3, 1).

Here (z̃2 − c̃2) ≻ 0̃ is the highest positive value among all z̃j − c̃j
Second Iteration: Proceeding in a similar way, we get a new fuzzy basic feasible solution
x̃1 ≈

(
550
40 , 554

40 , 562
40 , 570

40 , 630
40 , 638

40 , 646
40 , 650

40 ; 0.3, 1
)
,

x̃2 ≈
(
560
30 , 563

30 , 569
30 , 575

30 , 625
30 , 631

30 , 637
30 , 640

30 ; 0.3, 1
)
,

S̃1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), S̃2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1),
Ã1 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1), Ã2 ≈ (0, 0, 0, 0, 0, 0, 0, 0; 0.3, 1)
with the improved fuzzy objective value,
z̃ ≈

(
7830
120 , 12412

120 , 17186
120 , 24460

120 , 35540
120 , 42814

120 , 47588
120 , 52170

120 ; 0.3, 1
)
.

Here (z̃j − c̃j) ≼ 0̃ for all j. Here by Theorem 2.10, the feasible solution obtained now is a fuzzy optimal
solution.

Remark 3.1. The parameter k is involved in calculating the ratio between the minimum requirements and
the selected yij column elements.

Remark 3.2. The measure Moct
0 considered (as in Definition 1.10) is used in comparing the ratios mentioned

in Remark.3.1

10

Remark 3.3. The choice of trapezoidal, hexagonal or octagonal fuzzy numbers for minimum feasible solution
range seems to be dependent on the parameter k. Details of these investigations will be published after
completion.

Remark 3.4. In [1] the authors have proved the following theorem, For a fixed partition Pm, the set Fc,m(R)
is isomorphic to the convex closed cone C =

{
z ∈ R2(m+1) : Bz ⩾ 0

}
with

B =




−1 1 0 0 ... 0
0 −1 1 0 ... 0
0 0 1 1 ... 0
.
.
.

.

.

.
0 0 ... 0 −1 1



(2m+1)x(2m+2)

where Fc,m(R) is the space of real fuzzy subsets of R with level sets belonging to the space of compact
convex subsets of R endowed with suitable Hausdorff metric.This implies that trapezoidal fuzzy numbers
correspond to the case m = 4 and octagonal fuzzy numbers correspond to the case m = 8 in the mentioned
theorem. As these cones are distinct it is clear that these numbers also have distinct properties. Also
trapezoidal fuzzy numbers can be viewed as special case of octagonal fuzzy numbers.

4 Conclusion In this paper FLP is solved without converting it to crisp linear programming problem. If

this problem is solved using several steps with trapezoidal fuzzy numbers, then there is a sizeable difference
in the spread of the solution when compared to the solution obtained for octagonal fuzzy number problem and
this diference is dependent on the choice of k. The concept of octagonal fuzzy numbers enables using more
data relating to the problem and obtaining similarly more data about the solution. Also the ∗ multiplication
defined in this paper is more natural. Approximation of any fuzzy number by trapezoidal fuzzy numbers was
considered by Ban et.al. and symmetric trapezoidal approximation is cited as future work [2].We may have
to consider whether the data given in our problem can be approximated to trapezoidal fuzzy numbers given
in [2] which would give a solution, which is nearer to the solution given using octagonal fuzzy numbers as
such. Octagonal Approximations in a fuzzy environment may be considered for future work.

Acknowledgement The authors wish to thank Dr. M.S. Rangachari and Dr. P.V. Subrahmanyam
for their useful discussions and reviewers for their comments which were useful in shaping the paper.
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Abstract. The purpose of the present paper is to carry out reliability
and profit analysis of a single-unit system considering the concept of
inspection under warranty. Within warranty, failures are rectified by
the manufacturer at no cost to the users provided warranty does not
apply to product failure due to user-induced damage such as cracked
screen, accident, misuse, physical damage, damage due to liquid and
unauthorized modifications, etc. The cost to rectify failures beyond
the warranty is borne by the users. After failure, unit goes under in-
spection within warranty. There is single repairman, which is always
available with the system to do repair, inspection and replacement of
the unit. Repairman inspects the failed unit to see the feasibility of
its repair or replacement. If repair of the unit is not feasible, it is re-
placed by new one.The time to failure of the system follows negative
exponential distribution while inspection and repair time distributions
are taken as arbitrary. By using supplementary variable technique, var-
ious measures of system performance such as reliability, mean time to
system failure (MTSF), availability of the system and profit function
have been determined. The numerical results for reliability and profit
function are also obtained in the form of tables for particular values of
various parameters and repair cost.

1 Introduction: Warranty is a key promotional tool for the seller since it
has become an essentially compititive stretegy employed by sellers to boost
their market share, profitability and corporate image. Item sold under war-
ranty often require post sale support in terms of repair or replacement. Several
authors including Kadyan et al. [3], Kaur et al. [4], Kharoufeh et al. [5] and
Xiaoning Jin et al. [6] studied single unit systems without considering any
warranty of the systems. But, in the modern age, most products are sold with
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a warranty to gain some advantages in the highly competitive markets. Fur-
ther, warranty plays an important role to assure reliability of a sold product
and may increase sales. Also, repair of the failed unit is not always feasible
due to its excessive use and increased cost of maintenance. In such cases, the
failed unit may be replaced by new unit after getting necessary inspection in
order to avoid unnecessary expenses on repair. Yeh et al. [7] have studied an
inspection model with discount factor. But single-unit systems with warranty
and inspection have not appeared in the literature so far.

Keeping in view of the above facts, here we studied a single unit reliability
model with the concept of warranty and inspection. Within warranty, failures
are rectified by the manufacturer at no cost to the users provided failures are
not due to the negligence of users. After failure, unit goes under inspection
within warranty. There is single repairman, which is always available with the
system to do repair, inspection and replacement of the unit. Repairman in-
spects the failed unit to see the feasibility of repair. If repair of the unit is not
feasible, it is replaced by new one.The time to failure of the system follows neg-
ative exponential distribution while inspection and repair time distributions
are taken as arbitrary. The supplementary variable technique is adopted to
derive the expressions for some economic measures such as reliability, MTSF,
availability and profit function. The numerical results for reliability and profit
function are also obtained in the form of tables for particular values of various
parameters and repair cost.

2 Assumptions:

1. The system has a single unit.

2. There is single repairman, which is always available with the system to
do repair, inspection and replacement of the unit.

3. The cost of repair of the failed unit during warranty is borne by the
manufacturer provided failures are not due to the neglegence of users.

4. Under warranty, unit goes for inspection after failure.

5. Repairman inspects the failed unit to see the feasibility of repair or
replacement.

6. The unit works as new after repair.

7. The distribution of failure time is taken as negative exponential while
the inspection and repair time are considered as arbitrary.

3

3 State-Specification:

s0/s1 The unit is operative under warranty/ beyond warranty.

s3/s4 The unit is in failed state under warranty/ beyond warranty.

s2 The failed unit is under inspection.

4 Notations:

λ/λ1 Constant failure rate of the unit within warranty/beyond warranty.

α Constant rate of completion of warranty.

p/q Probability that repair is feasible/not feasible.

µ(x), s(x) Repair rate of the unit and probability density function, for the elapsed
repair time ‘x′ in warranty.

µ1(x), s1(x) Repair rate of the unit and probability density function, for the elapsed
repair time ‘x′ beyond warranty.

h(y), s2(y) Inspection rate of the failed unit and probability density function, for
the elapsed inspection time ‘y′.

p0(t)/p1(t) The Probability that at time t the system is in good state in war-
ranty/beyond warranty.

p3(x, t)∆ The Probability that at time t the system is in failed state in warranty,
the elapsed repair time lies in the interval [x, x+∆).

p4(x, t)∆ The Probability that at time t the system is in failed state beyond war-
ranty, the elapsed repair time lies in the interval [x, x+∆).

p2(y, t)∆ The Probability that at time t the failed unit is under inspection, the
elapsed inspection time lies in the interval [y, y +∆).

p(s) Laplace transform of function p(t)

s(x) = µ(x)e[−
∫ x
0 µ(x)dx]

s1(x) = µ1(x)e
[−

∫ x
0 µ1(x)dx]

s2(y) = h(y)e[−
∫ y
0 h(y)dy]
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5 Formulation of Mathematical Model: Using the probabilistic argu-
ments and limiting transitions, we have the following difference-differential
equations (Cox D.R. [2]):

(1)

[
d

dt
+ λ+ α

]
p0(t) =

∫ ∞

0

µ(x)p3(x, t)dx+

∫ ∞

0

qh(y)p2(y, t)dy

(2)

[
d

dt
+ λ1

]
p1(t) = αp0(t) +

∫ ∞

0

µ1(x)p4(x, t)dx

(3)

[
∂

∂t
+

∂

∂y
+ h(y)

]
p2(y, t) = 0

(4)

[
∂

∂t
+

∂

∂x
+ µ(x)

]
p3(x, t) = 0

(5)

[
∂

∂t
+

∂

∂x
+ µ1(x)

]
p4(x, t) = 0

Boundary conditions

(6) p2(0, t) = λp0(t)

(7) p3(0, t) =

∫ ∞

0

ph(y)p2(y, t)dy

(8) p4(0, t) = λ1p1(t)

Initial conditions

pi(0) = 1; when i = 0

(9) pi(0) = 0; when i �= 0

6 Model analysis: The state transtion diagrame of the model is:

5

Figure 1

6.1 Solution of the equations: Taking Laplace transforms of equations
(1)-(8) and using (9) we obtain

(10) [s+ λ+ α] p0(s) = 1 +

∫ ∞

0

µ(x)p3(x, s)dx+

∫ ∞

0

qh(y)p2(y, s)dy

(11) [s+ λ1] p1(s) = αp0(s) +

∫ ∞

0

µ1(x)p4(x, s)dx

(12)

[
∂

∂y
+ s+ h(y)

]
p2(y, s) = 0

(13)

[
∂

∂x
+ s+ µ(x)

]
p3(x, s) = 0

(14)

[
∂

∂x
+ s+ µ1(x)

]
p4(x, s) = 0
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(15) p2(0, s) = λp0(s)

(16) p3(0, s) =

∫ ∞

0

ph(y)p2(y, s)dy

(17) p4(0, s) = λ1p1(s)

Integrating equations (12), (13) and (14), we get

(18) p2(y, s) = p2(0, s)e
[−sy−

∫ y
0 h(y)dy]

(19) p3(x, s) = p3(0, s)e
[−sx−

∫ x
0 µ(x)dx]

and

(20) p4(x, s) = p4(0, s)e
[−sx−

∫ x
0 µ1(x)dx]

Using equations (15) and (18), equation (16) yield

p3(0, s) =

∫ ∞

0

ph(y)p2(0, s)e
[−sy−

∫ y
0 h(y)dy]

(21) p3(0, s) = pλp0(s)S2(s)

Using equation (21), equation (19) yields

(22) p3(x, s) = pλp0(s)S2(s)e
[−sx−

∫ x
0 µ(x)dx]

Using equations (15), (18) and (22), equation (10) yields

(23)

[s+ λ+ α]p0(s) = 1 + p3(0, s)

∫ ∞

0

µ(x)e[−sx−
∫ x
0 µ(x)dx]dx

+ p2(0, s)q

∫ ∞

0

h(y)e[−sy−
∫ y
0 h(y)dy]dy

= 1 + pλp0(s)S(s)S2(s) + qλS2(s)p0(s)

(24) p0(s) =
1

T (s)

7

where

(25) T (s) = s+ α + λ− λpS(s)S2(s)− qλS2(s)

Using equations (17) and (20), equation (11) yields

(26) [s+ λ]p1(s) = αp0(s) + p4(0, s)

∫ ∞

0

µ1(x)e
[−sx−

∫ x
0 µ1(x)dx]dx

= αp0(s) + λp1(s)S1(s)

(27) p1(s) =
A(s)

T (s)

where

(28) A(s) =
α

(s+ λ1 − λ1S1(s))

Now, the Laplace transform of the probability that the system is in the failed
state is given by

(29) p2(s) =

∫ ∞

0

p2(s, y)dy = λp0(s)
(1− S2(s))

s
=

λB(s)

T (s)

where

(30) B(s) =
1− S2(s)

s

Similarly

(31) p3(s) =

∫ ∞

0

p3(s, x)dx = λpS2(s)p0(s)
(1− S(s))

s
=

λpS2(s)C(s)

T (s)

where

(32) C(s) =
1− S(s)

s

similarly

(33) p4(s) =

∫ ∞

0

p4(s, x)dx = λ1p1(s)
(1− S1(s))

s
=

λ1A(s)D(s)

T (s)

where

(34) D(s) =
1− S1(s)

s

It is worth noticing that

(35) p0(s) + p1(s) + p2(s) + p3(s) + p4(s) =
1

s
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6.2 Evaluation of Laplace transforms of up and down state proba-
bilities: Let Av(t) is the probability that the system is operating satisfactorily
at time t. The Laplace transforms of Av(t) or probabilities that the system is
in up Pup(t) (i.e. good) and down Pdown(t) (i.e. failed) state at time “t” are
as follows

Av(s) or Pup(s) = p0(s) + p1(s)

(36) Av(s) =
1 + A(s)

T (s)

Pdown(s) = p2(s) + p3(s) + p4(s)

(37) Pdown(s) =
λB(s) + λpC(s)S2(s) + λ1A(s)D(s)

T (s)

6.3 Steady-State Behaviour of the System: In the long run as t tends
to infinity, the steady state behaviour of the system can be obtained by using
Abel′s Lemma in Laplace transforms, viz.
lim s[Av(s)]
s→0

= lim[Av(t)]
n→∞

= Av(say), Provided the limit on the right hand

side exists, the following time independent probabilities have been obtained.

(38) Av =
1

1− λ1S
′
1(0)

(39) Pdown =
−λ1S

′
1(0)

1− λ1S
′
1(0)

6.4 Reliability of the system: Let R(t) is the probability that the system
performs well in an interval (0, t]. Therefore in order to obtain R(t), the
differential-difference equations for reliability are:

(40)

[
d

dt
+ λ+ α

]
p0(t) = 0

(41)

[
d

dt
+ λ1

]
p1(t) = αp0(t)

Theorem 1. The reliability of the system is given by

R(t) = e−(λ+αt)

[
(λ− λ1)

(λ− λ1 + α)

]
+ e−(λ1t)

[
α

(λ− λ1 + α)

]

9

Proof. Taking Laplace transforms of (40), (41) and using (9), we get

(42) [s+ λ+ α]p0(s) = 1

(43) [s+ λ1]p1(s) = αp0(s)

The solution can be written as

(44) p0(s) =
1

(s+ λ+ α)

(45) p1(s) =
α

(s+ λ+ α)(s+ λ1)

R(s) = p0(s) + p1(s) =
1

(s+ λ+ α)
+

α

(s+ λ+ α)(s+ λ1)

Taking inverse Laplace transform, we get

(46) R(t) = e−(λ+αt)

[
(λ− λ1)

(λ− λ1 + α)

]
+ e−(λ1t)

[
α

(λ− λ1 + α)

]

Corollary 1. The mean time to system failure (MTSF) is:

MTSF =

[
(λ− λ1)

(λ− λ1 + α)(λ+ α)

]
+

[
α

(λ− λ1 + α)λ1

]

Proof. As MTSF is the expected time for which the system is in operation
before it completely fails.

∴ MTSF =

∫ ∞

0

R(t)dt

MTSF =

∫ ∞

0

{
e−(λ+α)t

(
(λ− λ1)

(λ− λ1 + α)

)
+ e−(λ1)t

(
α

(λ− λ1 + α)

)}
dt

(47) MTSF =

(
(λ− λ1)

(λ− λ1 + α)(λ+ α)

)
+

(
α

(λ− λ1 + α)λ1

)
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Proof. Taking Laplace transforms of (40), (41) and using (9), we get

(42) [s+ λ+ α]p0(s) = 1

(43) [s+ λ1]p1(s) = αp0(s)

The solution can be written as

(44) p0(s) =
1

(s+ λ+ α)

(45) p1(s) =
α

(s+ λ+ α)(s+ λ1)

R(s) = p0(s) + p1(s) =
1

(s+ λ+ α)
+

α

(s+ λ+ α)(s+ λ1)

Taking inverse Laplace transform, we get

(46) R(t) = e−(λ+αt)

[
(λ− λ1)

(λ− λ1 + α)

]
+ e−(λ1t)

[
α

(λ− λ1 + α)

]

Corollary 1. The mean time to system failure (MTSF) is:

MTSF =

[
(λ− λ1)

(λ− λ1 + α)(λ+ α)

]
+

[
α

(λ− λ1 + α)λ1

]

Proof. As MTSF is the expected time for which the system is in operation
before it completely fails.

∴ MTSF =

∫ ∞

0

R(t)dt

MTSF =

∫ ∞

0

{
e−(λ+α)t

(
(λ− λ1)

(λ− λ1 + α)

)
+ e−(λ1)t

(
α

(λ− λ1 + α)

)}
dt

(47) MTSF =

(
(λ− λ1)

(λ− λ1 + α)(λ+ α)

)
+

(
α

(λ− λ1 + α)λ1

)
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7 Particular cases:

7.1 Availability of the system: When repair and inspection time follows
exponential distribution i.e. setting

S(s) =
µ

(s+ µ)
, S1(s) =

µ1

(s+ µ1)
and S2(s) =

h

(s+ h)

where µ and µ1 are constant repair rates and h is constant inspection rate.
Putting these values in equations (24)-(28), we get

(48) p0(s) =
1

I(s)

where
(49)

I(s) =
s3 + s2(λ+ α + µ+ h) + s(µh+ λh+ λµ+ αh+ αµ− qλh) + αµh

(s+ µ)(s+ h)

(50) p1(s) =
E(s)

I(s)

where

(51) E(s) =

[
α(s+ µ1)

s(s+ λ1 + µ1)

]

Av(s) or Pup(s) = p0(s) + p1(s)

(52) Av(s) =

[
(s4 + b3s

3 + b2s
2 + b1s+ b0)

s(s+ λ1 + µ1)(s3 + a2s2 + a1s+ a0)

]

where b3 = (λ1+µ+α+µ1+h), b2 = (λ1µ+µα+αµ1+µ1h+µh+µµ1+λ1h+hα),
b1 = (µµ1h+ λ1µh+ αµµ1 + hαµ+ hαµ1) and b0 = (αµµ1h)
and a2 = (λ+µ+α+h), a1 = (λµ+µα+µh+λh+hα−qhλ) and a0 = µαh

11

Taking inverse Laplace transforms of equation (52), we get

(53)

Av(t) =
−b0

(λ1 + µ1)z1z2z3

+

{
(λ1 + µ1)

4 − b3(λ1 + µ1)
3 + b2(λ1 + µ1)

2 − b1(λ1 + µ1) + b0
(λ1 + µ1)(λ1 + µ1 + z1)(λ1 + µ1 + z2)(λ1 + µ1 + z3)

}
e−(λ1+µ1)t

+

{
(z41 + b3z

3
1 + b2z

2
1 + b1z1 + b0)

z1(λ1 + µ1 + z1)(z1 − z2)(z1 − z3)

}
ez1t

+

{
(z42 + b3z

3
2 + b2z

2
2 + b1z2 + b0)

z2(λ1 + µ1 + z2)(z2 − z2)(z2 − z3)

}
ez2t

+

{
(z43 + b3z

3
3 + b2z

2
3 + b1z3 + b0)

z3(λ1 + µ1 + z3)(z3 − z1)(z3 − z2)

}
ez3t

z1, z2 and z3 are three roots of the equation s3 + s2a2 + sa1 + a0 = 0 (E.
Balagurusamy [1])

7.2 Profit analysis of the user: Suppose that the warranty period of the
system is (0, w]. Since the repairman is always available with the system,
therefore beyond warranty period, it remains busy during the interval (w, t].
Let K1 be the revenue per unit time and K2 be the repair cost per unit time,
then the expected profit H(t) during the interval (0, t] is given by

(54) H(t) = K1

∫ t

0

Av(t)dt−K2(t− w)

= K1

[ −b0t

(λ1 + µ1)z1z2z3

+

{
(λ1 + µ1)

4 − b3(λ1 + µ1)
3 + b2(λ1 + µ1)

2 − b1(λ1 + µ1) + b0
(λ1 + µ1)2(λ1 + µ1 + z1)(λ1 + µ1 + z2)(λ1 + µ1 + z3)

}
(1

− e−(λ1+µ1)t) +

{
(z41 + b3z

3
1 + b2z

2
1 + b1z1 + b0)

z21(λ1 + µ1 + z1)(z1 − z2)(z1 − z3)

}
(ez1t − 1) +

{
(z42 + b3z

3
2 + b2z

2
2 + b1z2 + b0)

z22(λ1 + µ1 + z2)(z2 − z2)(z2 − z3)

}
(ez2t

− 1) +

{
(z43 + b3z

3
3 + b2z

2
3 + b1z3 + b0)

z23(λ1 + µ1 + z3)(z3 − z1)(z3 − z2)

}
(ez3t − 1)

]
−K2(t− w)
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8 Numerical Computations: In order to study the behaviours of relia-
bility R(t) and expected profit H(t) mentioned in equations (46) and (54)
respectively, some numerical results are presented in the form of tables for
R(t) and H(t) for particular values of various parameters w.r.t. time t as:

Table 1: Effect of failure rates (λ and λ1) on Reliability (R(t))
λ1 = 0.02, α = 0.003 λ = 0.01, α = 0.003

Time(t) R(t) R(t) R(t) R(t)
(for λ = 0.01) (for λ = 0.02) (for λ1 = 0.01) (for λ1 = 0.03)

10 0.90353744 0.8187308 0.9048374 0.9023208
11 0.89428347 0.8025188 0.8958341 0.8928418
12 0.88510119 0.7866279 0.8869204 0.8834209
13 0.87599061 0.7710516 0.8780954 0.8740593
14 0.86695174 0.7557837 0.8693582 0.864758
15 0.85798456 0.7408182 0.860708 0.8555182
16 0.84908904 0.726149 0.8521438 0.8463406
17 0.84026512 0.7117703 0.8436648 0.8372263

Table 2: Effect of rate of completion of warranty (α) on Reliability (R(t))
Time(t) λ λ1 R(t) R(t) R(t)

(for α = 0.005) (for α = 0.004) (for α = 0.003)
10 0.01 0.02 0.9026852 0.90310989 0.9035374
11 0.01 0.02 0.89326861 0.89377417 0.8942835
12 0.01 0.02 0.88391256 0.884504484 0.8851012
13 0.01 0.02 0.87461773 0.875301177 0.8759906
14 0.01 0.02 0.86538475 0.866164563 0.8669517
15 0.01 0.02 0.85621422 0.857094929 0.8579846
16 0.01 0.02 0.84710669 0.848092533 0.849089
17 0.01 0.02 0.83806267 0.838063 0.840265

13

Table 3: Effect of repair cost (K2) on Expected Profit (H(t))
λ = 0.01,λ1 = 0.02, h = 0.5, α = 0.003,µ = 0.2, µ1 = 0.1, q = 0.3

Time(t) K1 W H(t) H(t) H(t)
(for K2 = 150) (for K2 = 100) (for K2 = 50)

10 500 3 3799.487 4149.487 4499.487
11 500 3 4125.804 4525.804 4925.804
12 500 3 4451.44 4901.44 5351.44
13 500 3 4776.5 5276.5 5776.5
14 500 3 5101.066 5651.066 6201.066
15 500 3 5425.205 6025.205 6625.205
16 500 3 5748.973 6398.973 7048.973
17 500 3 6072.412 6772.412 7472.412

Table 4: Effect of repair cost (K2) and constant inspection rate (h) on Ex-
pected Profit (H(t))

λ = 0.01,λ1 = 0.02, α = 0.003, λ = 0.01,λ1 = 0.02, α = 0.003,
µ = 0.2, µ1 = 0.1, q = 0.3, h = 0.5 µ = 0.2, µ1 = 0.1, q = 0.3, h = 0.6

Time(t) H(t) H(t) H(t) H(t)
(for K2 = 150) (for K2 = 100) (for K2 = 150) (for K2 = 100)

10 3799.487 4149.487 3805.808 4155.808
11 4125.804 4525.804 4133.338 4533.338
12 4451.44 4901.44 4460.236 4910.236
13 4776.5 5276.5 4786.594 5286.594
14 5101.066 5651.066 5112.49 5662.49
15 5425.205 6025.205 5437.982 6037.982
16 5748.973 6398.973 5763.121 6413.121
17 6072.412 6772.412 6087.945 6787.945

9 Interpretation and Conclusion Tables 1 and 2 show the behavior of
system reliability. Table 1 indicates that the reliability of the system decreases
with the increase of failure rates (λ and λ1) with respect to (w.r.t.) time ‘t′

and for fixed values of other parameters. From table 2, it is analyzed that the
reliability of the system increases with the decrease of rate of completion of
warranty (α ) w.r.t. time ‘t′. It reveals that the system becomes more reliable
for users as we increase time duration of warranty because any failure during
warranty is rectified free of cost to the users. Table 3, shows that expected
profit H(t) during the interval (0, t] increases with the decrease of repair cost
(K2) w.r.t. time ‘t′ . Also, table 4 represents that the expected profit in-
crease with the increase of inspection rate (h) of the failed unit w.r.t time
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‘t′. This shows that inspection during warranty is profitable to manufacturer
because it protected manufacturer about unnecessary expenses on repair of a
continuously usage system or unit.

Hence, on the basis of the above discussion and the results obtained for a
particular case (as mentioned in section 7), it is concluded that the concept of
reliability and profit analysis of a single-unit system with inspection and war-
ranty can be made more reliable and profitable to user and manufacturer both
by decreasing the rate of completion of warranty, repair cost and increasing
inspection rate.
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Partial Differential Equations Method to Analyze Nonlinear Resilience Force in a Long
Clearance Seal and Rotor’s Dynamics.

Vitaliy Kalashnikov, Beda A. I., Simonowsky V. I.

Keywords: clearance seal, nonlinear elastic force, rotor, centrifugal machine, oscillation ampli-
tude, critical frequency.

Abstract. The authors have developed a method of calculating the non-linear elastic force that
arises in the clearance seal of a finite length. The authors have analyzed the force impact on the
dynamics of the rotor of a centrifugal machine. In this work authors studied impact of nonlinear
hydrostatic force in an arbitrary long seal, opposite to the previous literature where this force
assumed to be linear, and seals are short (e.g. the ratio of the length of the clearance seal to the
seal’s radius is less than 0.5).

1 Introduction

1.1 Metodological novelty. In this work authors present a model of the non-linear hydrostatic
force in an arbitrary long seal. After establishing the model authors present numerical experiments
in order to illustrate obtained results. Mainly, the novelty of presented work consists of relaxing the
linearity assumption made in previous works [1] and [2]. Also, authors generalized the model in order
to fit arbitrary seal length, and only so called “short seal” as previously (e.g. the ratio of the length
of the clearance seal to the seal’s radius is less than 0.5).

1.2 The partial differential equation role in the model. Basically, the usage of partial differ-
ential equation for dynamic processes was established by Newton by his famous relation F = m · a .
Rewriting this relation in terms of X and Y projections we will get the following system:

{
mẍ = Fx

mÿ = Fy

.

Solution of the system above will present rotor linear movements, or fractions. They should be
kept as low as possible in order to keep the rotor well balanced.

1.3 Historical background. One of the pioneer investigators in this area was Prof. Dr. Lomakin.
In 1953, he established a study of rotor seals frictions [1]. He has studied the problem connected with
fast rebalancing of CBP-220-280. He resolved the problem connected with vibration by using the
clearance seals of a different shape.

Similar problems encountered the NASA team headed by Dr. Childs, in [9] he mentioned that
dynamic instability of main engine of the shuttle was explained by vibrations due to hydrodynamic
forces in the rotor seal. Again, experimental change of the seals shape allowed resolving the issue.

1.4 Technical background. In the flow of the hydraulic machines, for the removal of significant
flows of fluid from the high pressure zone to a zone of the lower pressure, clearance seals are used.
Their sealing effect is determined by the large hydraulic resistance of the O-ring throttle with a small
(0.1-0.35 mm) radial clearance. In literature there are numerous publications, which demonstrate that
clearance seals of centrifugal machines significantly affect the rotor dynamic characteristics: arising
hydrodynamic forces in the seal, depending on the design and operating conditions of the seal, may
reduce vibroactivity of the rotor, or vice versa, lead to its dynamic imbalance. Most fully this problem
is indicated in [1, 2, 3]. However, they consider a model of so-called ”short” seals in which the
circumferential component of fluid velocity, due to the pressure field, is neglected. When using the
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seals, wherein the circumferential component of the axial fluid is comparable to, or even exceeds
it, the dynamic characteristics of the rotor vary significantly [4]. In [6, 7] they propose a model
of a clearance seal of a finite length, for which there are obtained analytical expressions for the
dimensionless coefficients of elastic and damping forces of the clearance seal.

It is shown that these coefficients depend only on two dimensionless parameters
l

r
,
r

h0
, which are

determined by geometry of the clearance ( l- length, r- radius, h0 - medium radial clearance). The
ratio of the coefficients of elastic (Kc ) and damping (Kb) forces, obtained by techniques of the short
and the finite length clearance seals, are shown in Figure 1.

Figure 1: Dependence of the ratio of the coefficients:
a) for elastic force; b) for damping force

Apparently, with level growth of
l

r
the rigidity and damping coefficients are significantly reduced

(due to influence of circumferential overflows of fluid in the annular channel due to pressure field).
That leads to significant deterioration of the vibratory state. Therefore, the problem of studying the
impact of the circumferential overflows of fluid on hydrodynamic forces in the clearance seal of finite
length is currently of great importance.

In this paper, we investigate the influence of fluid overflows in the circumferential gaps caused
by pressure field on the nonlinearity of the elastic force, and the influence of the latter on the rotor
dynamics.

The problem is solved with the following simplifying assumptions:

1) We considered the annular channels, for which the radial clearance is substantially less than the
diameter.

2) The flow pattern across the gap is a self-similar region of the turbulent flow.

3) We consider the isothermal flow.

Assumptions 1-3) are quite natural for solving engineering problems connected to power machinery
and rotor industry. Indeed, assumption 1) is applicable to general features of heavy industrial rotors.
Assumption 2) reflects the best existing way to describe the fluid movements under high pressure
and high rotation intensity. 3) Modern cooling systems give us abilities to assume that the fluid
temperature will not change through the process. The rest of the paper will be presented as follows:
in Part 2 authors will present and develop their model, Part 3 presents obtained numerical results and
part 4 (Conclusions) finishes the paper.

2 The Model.

2.1 The study of the elastic force. Fluid motion in the clearance seal without inertial compo-
nents is described by the system of equations introduced in [1]
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



∂p(z, ϕ)

∂ϕ
= − λr

2h0

ρw0

2
u(z, ϕ),

∂p(z, ϕ)

∂z
= − λl

2h(ϕ)

ρw2(z, ϕ)

2
,

∂(w(z, ϕ) · h(ϕ))
∂z

+
l

r

∂(u(z, ϕ) · h0)
∂ϕ

= 0

with boundary conditions




p(0, ϕ) = p10 − ξ1 · ρ · w

2(0, ϕ)

2
,

p(1, ϕ) = p20 − ξ2 · ρ · w
2(1, ϕ)

2
,

where
p(z, ϕ) - pressure of the fluid in the annular gap;
w(z, ϕ) - axial velocity caused by pressure field;
u(z, ϕ) - circumferential speed caused by pressure field;
h(ϕ) - the value of the radial clearance;
ρ - density of the fluid;
λ - coefficient of the hydraulic friction;
p10 - pressure of the fluid in front of the clearance seal;
p20 - pressure of the fluid behind the clearance seal;
ξ1 - coefficient of input losses;
ξ2 - recovery ratio of the axial velocity downstream of the seal.

This system is transformed to quasilinear elliptic equation

(1− ε · cosϕ)2
2 · l2r

· ∂
2p

∂z2
+

√
−(1− ε · cosϕ) · ξ0

ξ1 ·∆p
· ∂p
∂z

· ∂
2p

∂ϕ2
= 0

with boundary conditions




p(0, ϕ) = p10 + ξ1 · 1− ε · cosϕ
ξ1

· ∂p(0, ϕ)
∂z

,

p(1, ϕ) = p20 + ξ2 · 1− ε · cosϕ
ξ1

· ∂p(1, ϕ)
∂z

,

p(z, 0) = p(z, 2π),

where

lr =
l

r
, ε =

e

h0
- dimensionless parameters;

ξ1 - loss coefficient along the clearance seal;
ξ0 - the total loss coefficient in the clearance seal;
∆p - pressure drop across the gap.

To solve this equation we used the grid method applying the method of successive approximations.
The solution is the fluid pressure values at the mesh point at a predetermined relative eccentricity.
After interpolation of the obtained values by two-dimensional cubic spline, we got the distribution of
pressure in the gap. The elastic force is then determined by formula

F (ε) = −r · l ·
∫ 2π

0

∫ 1

0
p(z, ϕ, ε) · cosϕdzdϕ.

where
Pi(ε) - the ith Legendre polynomial;

ai =
2i+ 1

2

∫ 1
−1 f(ε) · Pi(ε)dε - are expansion coefficients;
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f(ε) - spline of the table data.

This result can be represented as

F (ε) = −kc(0) · h0 · ε · α(ε),

where
kc(0) - stiffness coefficient of linearized elastic force;
α(ε) = 1 + α1ε+ α2ε

2 + . . .+ αnε
n - dimensionless coefficient of nonlinear elastic force.

Figure 2 shows dependence of this ratio for some types of clearance seals. As one can see from
the figure, the amount of elastic force decreases with increasing eccentricity. At the same time, the

influence of parameter
r

h0
is irrelevant.

Analytical expression for stiffness of elastic force, depending on the displacement of the shaft is
determined by formula

kc(ε) =
dF (ε)

de
= kc(0) · β(ε),

where
β(ε) = 1 + 2α1ε+ 3α2ε

2 + . . .+ (n+ 1)αnε
n - dimensionless coefficient of nonlinear stiffness.

Dependence of coefficient β(ε) is shown in Figure 3. It’s evident that stiffness of elastic force
decreases with increasing displacement of the shaft, i.e. this system has a soft characteristic of stiffness.
As far as we know, this fact deteriorates the vibration characteristics of the rotor.

Figure 2: Dependence of nonlinearity coefficient of elastic force on relative eccentricity

Figure 3: Dependence of nonlinearity coefficient of stiffness on relative eccentricity

2.2 Investigation of dynamic characteristics of the rotor To study the effect of nonlinear
force on the dynamic characteristics of the rotor we consider a single-mass rotor model (Figure 4) with
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the parameters of the shaft: length l = 520 mm and diameter d = 25 mm; rotor mass m = 18 kg;
clearance seal geometry: length l = 48 mm and radius r = 25 mm; average radial clearance h0 = 0.3
mm, and pressure drop across the gap ∆p = 1.25 MPa.

Figure 4: A single-mass rotor model

The structure of hydrodynamic forces, arising in the gap sealing, can be assumed as

{
Fx = −b · ẋ− kc(0)α(r) · x− q · y,
Fy = −b · ẏ − kc(0)α(r) · y − q · x,

where
b - damping coefficient;
q = 0.5bω - circulation ratio;
x, y - displacement coordinates of the shaft center in the fixed coordinate system;
r =

√
x2 + y2 - radius of the shaft movement orbit.

The damping coefficient was determined according to [6], nonlinear elastic force projection on fixed
axes by the above method. For the considered clearance seals we have

b = 5079
H · c
M , kc(0) = 1, 035 · 106 HM ,

α(r) = 1+0, 057·r−0, 515·r2+0, 076·r3−0, 047·r4−0, 104·r5−0, 068·r6+0, 075·r7+0, 032·r8−0, 02·r9

Differential equations of motion of this model have the form

{
mẍ+ bẋ+ cbx+ kc(0)α(r) · x+ qy = me1ω

2 cos(ωt);

mÿ + bẏ + cby + kc(0)α(r) · y − qx = me1ω
2 sin(ωt);

(1)

where
m - rotor weight; cb - stiffness of the shaft; me1 - rotor imbalance; ω - speed of rotation.

Having entered the designations

τ = t · ω0,
d

dτ
= ω0

d

dt
, ω0 =

√
cb + kc(0)

m
, x =

x

h0
, y =

y

h0
, b =

bω0

cb + kc(0)
, ω =

ω

ω0
, e =

e1
h0

,

system (1) is written in the dimensionless form (hereinafter, for the convenience, x and y will be
written in the form x and y ).
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



ẍ+ bẋ+ x

(
1 +

kc(0)

cb + kc(0)

(
α1r + α2r

2 + . . .+ α9r
9
))

+ 0, 5bωy = eω2 cos(ωτ)

ÿ + bẏ + y

(
1 +

kc(0)

cb + kc(0)

(
α1r + α2r

2 + . . .+ α9r
9
))− 0, 5bωx = eω2 sin(ωτ)

(2)

3 Results of numerical experiments Numerical solution of (2) was performed using software
package Mathcad. We obtained the area of sustainable movement of the shaft, as well as its rotational
speed with boundary condition of stability. In this case the rotational speed with boundary condition
of stability was determined by the appearance of a subharmonic self-oscillating imposition when the
relative speed of the rotor ω varied.

As an example, Figure 5 shows the oscillation of the shaft center in a horizontal plane (a), the
orbit of the shaft center (b), and the relevant spectrum (c) at the speed of rotation ω = 1, 5 . As can
be seen, the shaft makes a steady circular motion with the rotational frequency.

Figure 6 shows the oscillation of the shaft center in the horizontal plane (a), the orbit of the
shaft center (b), and a corresponding spectrum (c) at the boundary of the unstable region of rotation
ω = 2, 01 . Thus, along with a synchronous component, there is a subharmonic one with an amplitude
which exceeds the amplitude of a synchronous component.

Figure 7 shows the oscillations of the shaft center in the horizontal plane (a) and the orbit of the
shaft center (b) in the unstable region of rotation. In this case, we observe a rapid growth of the shaft
displacement, leading to an emergency mode.

Figure 5: Oscillations of the shaft center in a horizontal plane (a), the orbit of the shaft movement
(b), and the oscillation spectrum (c) in the stable region of rotation ω = 1.5
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Figure 6: Oscillations of the shaft center in the horizontal plane (a), the orbit of the shaft movement
(b) and the oscillation spectrum (c) at the stable region of rotation ω = 2.01

Figure 7: Oscillations of the shaft center in the horizontal plane (a), the orbit of the shaft movement
(b) in the unstable region of rotation ω = 2.05
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Figure 8: Dependence of the relative amplitude of the synchronous component of the rotor oscillations
on the speed of rotation

Studies show that the differences between the calculations of the dynamic characteristics of the
rotor according to the procedures of short clearance seals and clearance seals of finite length can be
both quantitative and qualitative. For example, from Figure 8 we can see that in the unstable region
of rotation the rotor performs oscillations with steady amplitude. Moreover, the total vibration level
for speed of rotation above the boundary remains within acceptable limits. At the same time, Figures
6,7 and 8 show that for the investigated rotor model, which has a mild characteristic of stiffness, self-
oscillating mode takes place only on the stability boundary; then shaft displacement increases rapidly,
i.e. for the ”long clearance” model the ”emergency” effect occurs immediately after buckling.

4 Conclusions: There are two main points that make presented work different from previous ones,
as [1] and [2]: First, a new method of calculating the nonlinear quasi-elastic force in a relatively long
clearance seal is developed and some numerical results are presented. Assumption of linearity is too
general and may lead to substantial problems why applied to the real world machinery.

Second, the rotor dynamics is investigated, taking into account the nonlinearity of the quasi-elastic
force. It is shown that flows in the circumferential direction, due to the pressure field, reduce the elas-
tic force in the gap sealing, which leads to deterioration of the dynamic characteristics of the rotor,
which is quite interesting result and have some direct application in machinery industry involving
rotor systems.

As for future plans: authors will do theoretical investigation of nonlinear damper and circular
forces in short and long clearance seals, in order to evaluate rotor dynamics for these cases.
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Abstract

Exponential fuzzy entropy with a single fuzzy set has been considered. Here we consider
exponential information theoretic measures with pair of fuzzy sets. This leads to results
that parallel the results as Shannon’s joint, conditional and mutual information measures
between two fuzzy sets.
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1. Introduction

Fuzzy sets proposed by Zadeh [7] in 1965 have gained extensive applications in many areas
such as engineering, artificial intelligence, medical science, signal processing, decision mak-
ing and so on because of its capability to represent/ model non-statistical imprecision or
vague concepts.

In Fuzzy set theory, the entropy is defined as a measure of fuzziness which expresses the
amount of ambiguity or difficulty in making a decision whether an element belongs to a set
or not. The first measure of fuzziness associated with a fuzzy set also mentioned by Zadeh
[8] in 1968. In 1972, De Luca and Termini [2] formulated axioms for the entropy of fuzzy
sets and defined the measure of fuzzy entropy based on Shannon’s function [5].

In addition, Yager [6] defined a measure of fuzzy entropy in terms of a lack of distinction
between fuzzy set and its complement. In 1989, Pal and Pal [3] proposed a new measure
of fuzzy entropy based on exponential function called ‘exponential fuzzy entropy’. Recently,
Verma and Sharma [4] have introduced a parametric generalized entropy measure for fuzzy
sets called ‘exponential fuzzy entropy of order-α’. In 2007, Ding et al. [1] extended the
notion of fuzzy entropy to define conditional fuzzy entropy, joint fuzzy entropy and fuzzy
mutual information corresponding to De Luca and Termini’s fuzzy entropy and studied
their relations also.

In this paper, we extend the idea of measure of exponential fuzzy entropy on pairs of fuzzy
sets and propose some new exponential fuzzy entropy measures such as exponential fuzzy
joint entropy, exponential fuzzy conditional entropies. Further, a measure of exponential
fuzzy mutual information is defined here. Some relations among them are also studied.

This paper is organized as follows: In Section 2 basic definitions related to probability the-
ory, fuzzy sets, and fuzzy entropy measures are briefly reviewed. In Section 3 exponential
fuzzy joint entropy and exponential fuzzy conditional entropies are introduced and some of
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their properties are proved. In Section 4 the concept of exponential fuzzy mutual informa-
tion measure is proposed and studied their properties. Our conclusions are presented in the
final section.

2. Preliminaries

In this section we give some basic concepts and definitions related to probability theory,
fuzzy sets, which will be used in the following analysis.

Let ∆n =
{
P = (p1, p2, ..., pn) : pj ≥ 0,

∑n
j=1 pj = 1

}
, n ≥ 2 be a set of n-complete prob-

ability distributions. For any probability distribution P = (p1, p2, ..., pn) ∈ ∆n, Shannon’s

entropy [5], is defined as

(1) HS (P ) = −
n∑

j=1

pj log pj

After the pioneering work of De Luca and Termini [2], various measures of fuzzy entropy
have been proposed by many researchers and developed their applications in different areas.
In 1989, Pal and Pal [3] analyzed the classical Shannon’s entropy and proposed a new
measure of probabilistic entropy based on exponential function as follows

(2) eH (P ) =
n∑

j=1

pj
(
e1−pj − 1

)

Pal and Pal also pointed out that, the measure of exponential entropy has an advantage over
Shannon’s entropy. For the uniform probability distribution P =

(
1
n ,

1
n , ...,

1
n

)
, exponential

entropy has a fixed upper bound

(3) lim eH

(
1

n
,
1

n
, ...,

1

n

)
= (e− 1) as n → ∞.

which is not the case for Shannon’s entropy.

Definition 1. Fuzzy Set [5]: A fuzzy set A in a discrete universe of discourse X =
{x1, x2, ..., xn} is given by

(4) A = { ⟨x, µA (x)⟩ | x ∈ X} ,

where µA : X → [0, 1] is the membership function of A. The number µA (x) describes the
degree of membership of x ∈ X in A.

Definition 2. Set Operations on Fuzzy Sets [7]: Let FS (X) denote the family of all
FSs in X and let A,B ∈ FS (X) be given by

A = {⟨x, µA (x)⟩ |x ∈ X} ,

B = {⟨x, µB (x)⟩ |x ∈ X} ,

then set operations are defined as follows:

(i) Containment: A ⊆ B if and only if µA (x) ≤ µB (x) ∀ x ∈ X;

(ii) Equality: A = B if and only if A ⊆ B and B ⊆ A;

3

(iii) Complement: AC = { ⟨x, 1− µA (x)⟩ | x ∈ X};

(iv) Union: A ∪B = {⟨x, max (µA (x) , µB (x))⟩ |x ∈ X};

(v) Intersection: A ∩B = {⟨x, min (µA (x) , µB (x))⟩ |x ∈ X}.

Definition 3. Sharpened Fuzzy Set[2]: A fuzzy set A∗ is called a sharpened version of
fuzzy set A if the following conditions are satisfied:

µA∗ (xj) ≤ µA (xj), if µA (xj) ≤ 0.5 ∀ j

µA∗ (xj) ≥ µA (xj), if µA (xj) ≥ 0.5 ∀ j.

The first attempt to quantify the fuzziness was made in 1968 by Zadeh [8], who based
on probabilistic framework, introduced the fuzzy entropy by combining probability and
membership function of a fuzzy event as weighted Shannon entropy [5] given by

(5) HZ (A) = −
n∑

j=1

µA (xj) pj log pj

In 1972, De Luca and Termini [2] defined the measure of fuzzy entropy for a fuzzy set A
corresponding (1) by

(6) HDT (A) = − 1

n

n∑
j=1

[µA (xj) log (µA (xj)) + (1− µA (xj)) log (1− µA (xj))] .

Fuzzy exponential entropy for fuzzy set A corresponding to (2) has also been introduced by
Pal and Pal [3] as

(7) eH (A) =
1

n (
√
e− 1)

n∑
j=1

[
µA (xj) e

1−µA(xj) + (1− µA (xj)) e
µA(xj) − 1

]
.

In the next section, we define exponential fuzzy joint and exponential fuzzy conditional
entropies and study their properties.

3. Exponential fuzzy joint and exponential fuzzy conditional entropies

We proceed with the following formal definitions:

Definition 4: Let A and B be two fuzzy sets defined in X = {x1, x2, ..., xn} having the
membership values µA (xj) , j = 1, 2, ..., n, and µB (xj) , j = 1, 2, ..., n, respectively.
Let

X+ = {x|x ∈ X, µA (xj) ≥ µB (xj) } ,

X− = {x|x ∈ X, µA (xj) < µB (xj) } .

Based on the idea of Ding et al. [1], we propose the exponential fuzzy joint entropy and
exponential fuzzy conditional entropies as follows:

Exponential Fuzzy Joint Entropy (EFJE):

eH (A ∪B) =
1

n (
√
e− 1)

n∑
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]
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Definition 4: Let A and B be two fuzzy sets defined in X = {x1, x2, ..., xn} having the
membership values µA (xj) , j = 1, 2, ..., n, and µB (xj) , j = 1, 2, ..., n, respectively.
Let

X+ = {x|x ∈ X, µA (xj) ≥ µB (xj) } ,

X− = {x|x ∈ X, µA (xj) < µB (xj) } .

Based on the idea of Ding et al. [1], we propose the exponential fuzzy joint entropy and
exponential fuzzy conditional entropies as follows:

Exponential Fuzzy Joint Entropy (EFJE):

eH (A ∪B) =
1

n (
√
e− 1)

n∑
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]
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(8) =
1

n (
√
e− 1)

[ ∑
xj∈X+

(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj) − 1

)
+
∑

xj∈X−

(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj) − 1

)
]
.

Exponential Fuzzy Conditional Entropies (EFCE):

eH (A/B) =
1

n (
√
e− 1)

[ ∑
xj∈X+

(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj) − 1

)
−
∑

xj∈X+

(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj) − 1

)
]

(9) =
1

n (
√
e− 1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]
,

eH (B/A) =
1

n (
√
e− 1)

[ ∑
xj∈X−

(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj) − 1

)
−
∑

xj∈X−

(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj) − 1

)
]

(10) =
1

n (
√
e− 1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]
.

Some properties of these entropies are proved below:

Theorem 1: For A,B ∈ FS (X),

(i) eH (A/B) ≤ eH (A),

(ii) eH (B/A) ≤ eH (B),

with equality if and only if A = B i.e., µA (xj) = µB (xj) , ∀ xj ∈ X.

Proof: (i). Let us consider the expression

(11) eH (A) − eH (A/B)

= 1

n(
√
e−1)

∑n
j=1

[
µA (xj) e

1−µA(xj) + (1− µA (xj)) e
µA(xj) − 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

≥ 0.

This completes the proof.

(ii). Let us consider the expression

(12) eH (B)− eH (B/A)

= 1

n(
√
e−1)

∑n
j=1

[
µB (xj) e

1−µB(xj) + (1− µB (xj)) e
µB(xj) − 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]

5

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

≥ 0.

This completes the proof.

Remark 1: Note that eH (A/B) ̸= eH (B/A) in general. However eH (A)− eH (A/B) =

eH (B)− eH (B/A).

The naturalness of the definition of exponential fuzzy joint entropy and exponential fuzzy
conditional entropy is exhibited by the fact that the fuzzy entropy of a pair of fuzzy sets is
the fuzzy entropy of one plus the fuzzy conditional entropy of the other. This is proved in
the following theorem.

Theorem 2(Chain rule): For A,B ∈ FS (X),

(i) eH (A ∪B) = eH (A) + eH (B/A);

(ii) eH (A ∪B) = eH (B) + eH (A/B);

(iii) eH (A ∪B) = eH (A) + eH (B/A) = eH (B) + eH (A/B).

Proof :(i) Let us consider the expression

(13) eH (A) + eH (B/A)− eH (A ∪B)

= 1

n(
√
e−1)

∑n
j=1

[
µA (xj) e

1−µA(xj) + (1− µA (xj)) e
µA(xj) − 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]

− 1

n(
√
e−1)

∑n
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

= 0.

This proves (i).

(ii) Let us consider the expression

(14) eH (B) + eH (A/B)− eH (A ∪B)

= 1

n(
√
e−1)

∑n
j=1

[
µB (xj) e

1−µB(xj) + (1− µB (xj)) e
µB(xj) − 1

]

+ 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]

− 1

n(
√
e−1)

∑n
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]

= 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]
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= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

≥ 0.

This completes the proof.

Remark 1: Note that eH (A/B) ̸= eH (B/A) in general. However eH (A)− eH (A/B) =

eH (B)− eH (B/A).

The naturalness of the definition of exponential fuzzy joint entropy and exponential fuzzy
conditional entropy is exhibited by the fact that the fuzzy entropy of a pair of fuzzy sets is
the fuzzy entropy of one plus the fuzzy conditional entropy of the other. This is proved in
the following theorem.

Theorem 2(Chain rule): For A,B ∈ FS (X),

(i) eH (A ∪B) = eH (A) + eH (B/A);

(ii) eH (A ∪B) = eH (B) + eH (A/B);

(iii) eH (A ∪B) = eH (A) + eH (B/A) = eH (B) + eH (A/B).

Proof :(i) Let us consider the expression

(13) eH (A) + eH (B/A)− eH (A ∪B)

= 1

n(
√
e−1)

∑n
j=1

[
µA (xj) e

1−µA(xj) + (1− µA (xj)) e
µA(xj) − 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]

− 1

n(
√
e−1)

∑n
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

= 0.

This proves (i).

(ii) Let us consider the expression

(14) eH (B) + eH (A/B)− eH (A ∪B)

= 1

n(
√
e−1)

∑n
j=1

[
µB (xj) e

1−µB(xj) + (1− µB (xj)) e
µB(xj) − 1

]

+ 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]

− 1

n(
√
e−1)

∑n
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]

= 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]
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= 0.

This proves (ii).

(iii) It obvious follows (i) and (ii).

This completes the proof.

In the Shannon’s theory, another important concept is that of trans-information or mutual
information. It is the measure of the amount of information contains one random variable
about another. Based on the idea of fuzzy mutual information (FMI) [1], in the next section,
we propose the concept of exponential fuzzy mutual information (EFMI) and study their
properties.

4. Exponential fuzzy mutual information

Definition 5: LetX = {x1, x2, ..., xn} be a finite universe of discourse, and A,B ∈ FS (X),
then the difference value, eH (A) − eH (A/B), is called the EFMI between fuzzy set A and
B, denoted by eH (A ∩B) i.e.

(15) eH (A ∩B) = eH (A) − eH (A/B)

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]
.

Similarly, we define eH (B ∩A), given by

(16) eH (B ∩A) = eH (B) − eH (B/A)

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

] .

Some properties on lines parallel to Shannon’s mutual information are proved below:

Theorem 3: For A,B ∈ FS (X),

(i) eH (A ∩B) ≥ 0 and eH (B ∩A) ≥ 0;

(ii) eH (A ∩B) = eH (B ∩A);

(iii) eH (A ∩B) = eH (A) + eH (B)− eH (A ∪B);

(iv) eH (A ∩B) = eH (A ∪B)− eH (A/B) − eH (B/A);

(v) eH (A ∩A) = eH (A).

Proof: (i) It follows straight forwardly from Theorem 2.

(ii) It follows directly from Definition.

(iii) We consider the expression

(17) eH (A) + eH (B)− eH (A ∪B)

= 1

n(
√
e−1)

∑n
j=1

[
µA (xj) e

1−µA(xj) + (1− µA (xj)) e
µA(xj) − 1

]

+ 1

n(
√
e−1)

∑n
j=1

[
µB (xj) e

1−µB(xj) + (1− µB (xj)) e
µB(xj) − 1

]

− 1

n(
√
e−1)

∑n
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]

7

= 1

n(
√
e−1)

∑n
j=1

[
µA (xj) e

1−µA(xj) + (1− µA (xj)) e
µA(xj) − 1

]

+ 1

n(
√
e−1)

∑n
j=1

[
µB (xj) e

1−µB(xj) + (1− µB (xj)) e
µB(xj) − 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

= eH (A ∩B) .

This completes the proof.

(iv)Let us consider the following expression

(18) eH (A ∪B)− eH (A/B) − eH (B/A)

= 1

n(
√
e−1)

∑n
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

= eH (A ∩B) .

This completes the proof.

(v) eH (A ∩A) = eH (A) − eH (A/A) = eH (A).

Thus the mutual information of a fuzzy set with itself is the entropy of the fuzzy set.

5. Conclusions

This work introduces some new information measures on pair of fuzzy sets called exponential
fuzzy joint entropy, exponential fuzzy conditional entropy, and exponential fuzzy mutual
information measure in the setting of fuzzy set theory. Some properties and relations of
these measures have been studied.
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= 1

n(
√
e−1)

∑n
j=1

[
µA (xj) e

1−µA(xj) + (1− µA (xj)) e
µA(xj) − 1

]

+ 1

n(
√
e−1)

∑n
j=1

[
µB (xj) e

1−µB(xj) + (1− µB (xj)) e
µB(xj) − 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

= eH (A ∩B) .

This completes the proof.

(iv)Let us consider the following expression

(18) eH (A ∪B)− eH (A/B) − eH (B/A)

= 1

n(
√
e−1)

∑n
j=1

[(
µA∪B (xj) e

(1−µA∪B(xj)) + (1− µA∪B (xj)) e
µA∪B(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

− 1

n(
√
e−1)

∑
xj∈X+

[(
µA (xj) e

(1−µA(xj)) − µB (xj) e
(1−µB(xj))

+(1− µA (xj)) e
µA(xj) − (1− µB (xj)) e

µB(xj)

)]

− 1

n(
√
e−1)

∑
xj∈X−

[(
µB (xj) e

(1−µB(xj)) − µA (xj) e
(1−µA(xj))

+(1− µB (xj)) e
µB(xj) − (1− µA (xj)) e

µA(xj)

)]

= 1

n(
√
e−1)

∑
xj∈X+

[(
µB (xj) e

(1−µB(xj)) + (1− µB (xj)) e
µB(xj)

)
− 1

]

+ 1

n(
√
e−1)

∑
xj∈X−

[(
µA (xj) e

(1−µA(xj)) + (1− µA (xj)) e
µA(xj)

)
− 1

]

= eH (A ∩B) .

This completes the proof.

(v) eH (A ∩A) = eH (A) − eH (A/A) = eH (A).

Thus the mutual information of a fuzzy set with itself is the entropy of the fuzzy set.

5. Conclusions

This work introduces some new information measures on pair of fuzzy sets called exponential
fuzzy joint entropy, exponential fuzzy conditional entropy, and exponential fuzzy mutual
information measure in the setting of fuzzy set theory. Some properties and relations of
these measures have been studied.
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(http://www.jams.or.jp/hp/submission_f.html )and would like to take in 
charge of the paper for refereeing.  
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4. Corresponding author’s name, e-mail address and postal address (affiliation).  
5. Membership number in case the author is an ISMS member.   
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(2) Registration of Papers 

When the editorial office receives both a PDF file of a submitted paper and a 
Submission Form, we register the paper.  We inform the author of the 
registration number and the received date.  At the same time, we send the PDF 
file to the editor whom the author chooses in the Submission Form and request 
him/her to begin the process of refereeing. (Authors need not send their papers to 
the editor they choose.) 
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(3) Reviewing Process 
a. The editor who receives, from the editorial office, the PDF file and the request 

of starting the reviewing process, he/she will find an appropriate referee for 
the paper.   

b. The referee sends a report to the editor.  When revision of the paper is 
necessary, the editor informs the author of the referee’s opinion. 

c. Based on the referee report, the editor sends his/her decision (acceptance of 
rejection) to the editorial office. 

 
(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the  

editor’s decision, and informs it to the author. 
b. When the paper is accepted, we ask the author to send us a source file and 

a PDF file of the final manuscript.  
c. The publication charges for the ISMS members are free if the membership dues 

have been paid without delay. If the authors of the accepted papers are not the 
ISMS members, they should become ISMS members and pay ¥6,000 (US$75, 
Euro55) as the membership dues for a year, or should just pay the same 
amount without becoming the members. 

 
 
 
 

Items required in Submission Form 
1. Editor’s name who the authors wish will take in charge of the paper 
2. Title of the paper 
3. Authors’ names 
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Call for ISMS Members 
 

Call for Academic and Institutional Members 
 

Discounted subscription price: When organizations become the Academic and Institutional 
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the 
yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    

 
Invitation of two associate members: We would like to invite two persons from the 

organizations to the associate members with no membership fees. The two persons will enjoy 
almost the same privileges as the individual members.  Although the associate members 
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application form. 
 
----------------------------------------------------------------------------------------------------------- 
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Call for Individual Members 

 
We call for individual members.  The privileges to them and the membership dues are shown 

in “Join ISMS !” on the inside of the back cover. 
 

 
 Items required in Membership Application Form 
   

1. Name 
2. Birth date 
3. Academic background 
4. Affiliation 
5. 4’s address 
6. Doctorate 
7. Contact address 
8. E-mail address 
9. Special fields 
10. Membership category (See Table 1 in “Join ISMS !”) 
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Kunugi Prize, and ISMS Prize),  (2) to support the IVMS at Osaka University 
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(1)  Through a post office, remit to our giro account ( in Yen only ): 
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   or send International Postal Money Order (in US Dollar or in Yen) to our 
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UNESCO Coupons.  
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(1) Remittance through a post office to our giro account No. 00930-1-11872 or send 
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CORPORATION, Sakai, Osaka, Japan. 
All of the correspondences concerning subscriptions, back numbers, individual and 
institutional memberships, should be addressed to the Publications Department, 
International Society for Mathematical Sciences. 
 
 
 
 
 
 

55



 

Join ISMS ! 
ISMS Publications: We published Mathematica Japonica (M.J.) in print, 

which was first published in 1948 and has gained an international reputation in 
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online 
and in print. In January 2001, the two publications were unified and changed to 
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New 
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and 
published both online and in print.  Ahead of this, the online version of SCMJ 
was first published in September 2000.  The whole number of SCMJ exceeds 270, 
which is the largest amount in the publications of mathematical sciences in 
Japan. The features of SCMJ are: 
1) About 80 eminent professors and researchers of not only Japan but also 20 

foreign countries join the Editorial Board. The accepted papers are 
published both online and in print. SCMJ is reviewed by Mathematical 
Review and Zentralblatt from cover to cover. 

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ 
are introduced to the relevant research groups for the positive exchanges 
between researchers. 

3) ISMS Annual Meeting: Many researchers of ISMS members and 
non-members gather and take time to make presentations and discussions 
in their research groups every year. 

 
The privileges to the individual ISMS Members:  
(1) No publication charges 
(2) Free access (including printing out) to the online version of SCMJ 

 (3) Free copy of each printed issue  
 
The privileges to the Institutional Members:  
Two associate members can be registered, free of charge, from an institution.  

 
 
Table 1: Membership Dues for 2013 
Categories Domestic Overseas Developing 

countries 
1-year Regular 
member 

     ￥6,000  US$75 ,  €55 US$45,  €33 
 

1-year Student 
member 

     ￥4,000 US$50,  €37 US$30,  €22 
Life member* Calculated  

as below* 
       NA    NA 

 
Honorary member     Free        Free    Free 

 
 
* Regular member between 63 - 73 years old can apply the category. 
   (73－age ) × ¥3,000 
Regular member over 73 years old can maintain the qualification and the 
privileges of the ISMS members, if they wish. 
 
Categories of 3-year members were abolished. 
  
 

INTERNATIONAL SOCIETY FOR MATHEMATICAL SCIENCES
Scientiae Mathematicae Japonicae, Notices from the ISMS

The International Society for Mathematical Sciences (ISMS) is an international soci-
ety consisting of mathematical scientists throughout the world.

The main activities of the ISMS are to publish (1) the (print and online) journal
Scientiae Mathematicae Japonicae (SCMJ) and (2) Notices from the ISMS and to
hold assembly meeetings in Japan and international internet meetings (distance
symposium) of mathematical sciences (IVMS) accessible from all over the world.

SCMJ is the 21st Century New Unified Series of Mathematica Japonica (MJ) and
Scientiae Mathematicae (SCM). MJ was first published in 1948 and was one of the
oldest mathematical journals in Japan. SCM was an online and print journal started in
1998 in celebration of the semi-centurial anniversary and received 26000 visits per month
from 50 countries in the world. SCMJ contains original papers in mathematical sciences
submitted from all over the world and receives 38000 visits per month now. Not only
papers in pure and applied mathematics but those devoted to mathematical statistics,
operations research, informatics, computer science, biomathematics, mathematical eco-
nomics and other mathematical sciences are also welcome. The journal is published in
January, March, May, July, September, and November in each calendar year.

The ISMS has enhanced the journal, begining from July 1995, by including excel-
lent Research-Expository papers in the section “International Plaza for Mathematical
Sciences ” as well as original research papers. The section provides papers dealing with
broad overviews of contemporary mathmatical sciences, written by experts mainly at
our invitation. Papers shedding lights on open problems or new directions or new break-
throughs for future research are especially welcome.

As is shown in the Editorial Board of SCMJ, we have invited many distin-
guished professors of 20 countries as editors, who will receive and referee the papers
of their special fields with their high standard.

Beginning from 2007, we make the online version of SCMJ more readable and conve-
nient to the readers by adding the specialized contents. By this, the readers can access
to the online version, in which the papers appear in the order of acceptance, from (i)
the contents of the printed version, and (ii) the specialized contents of a volume. From
2007, the subscription fee of the printed version plus the online version of SCMJ becomes
lower and the same of the printed version only. Therefore, the subscribers of the printed
version can read the online version without no additional cost.

For benefit of the ISMS members, we publish ”Notices from the ISMS” 6 times a year.
We are enhancing it by adding interesting articles, including book reviewing, written by
eminent professors.

The ISMS has set up a videoconferencing system (IVMS) which can connect up
to twenty sites of a reserch group in the same or different countries in the world.
Using this system, speakers of the session can write on a white board or an OHP sheet
or use PowerPoint. On the other hand participants can ask questions or make comments
from any connected site in the world. All these are performed similarly to the traditional
meetings.

To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).

Copyright Transfer Agreement

A copyright transfer agreement is required before a paper is published in this journal.
By submitting a paper to this journal, authors are regarded to certify that the manuscript
has not been submitted to nor is it under consideration for publication by another journal,
conference proceedings or similar publication.

For more information, please visit http://www.jams.or.jp.

Copyright Copyright c©2014 by International Society for Mathematical Sciences.
All rights reserved.

Categories Domestic Overseas Developing 
countries

1-year� Regular
member ￥8,000  US$80 ，Euro75  US$50， Euro47

1-year� Students 
member ￥4,000  US$50 ，Euro47  US$30 ，Euro28

Life member* Calculated
as below*  US$750 ，Euro710  US$440， Euro416

Honorary member Free Free Free

Membership Dues for ２０１５

　(Regarding submitted papers,we apply above presented new fee after April 15 in 
2015 on registoration date.) * Regular member between 63 - 73 years old can apply 
the category.
(73－age ) × ￥3,000
Regular member over 73 years old can maintain the qualification and the privileges 
of the ISMS members, if they wish.

Categories of 3-year members were abolished.



Online ISSN 1346-0862

ISSN 1346-0447

Scientiae Mathematicae Japonicae

(Scientiae Mathematicae / Mathematica Japonica New Series)

Special Version Whole Number 279

August 2015

International Society for Mathematical Sciences

S
C

IE
N

T
IA

E
M

A
T

H
E
M

A
T

IC
A

E
JA

P
O

N
IC

A
E

V
ol.

78,
S
p
ecial

V
ersion

W
h
ole

N
u
m

b
er

279
�

A
u
gu

st
2015

1

S
C

IE
N

T
IA

E
M

A
T

H
E
M

A
T

IC
A

E
JA

P
O

N
IC

A
E

V
ol.

78,
S
p
ecial

V
ersion

W
h
ole

N
u
m

b
er

279
�

A
u
gu

st
2015

1

CONTENTS

FOREWORD : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

P.V.Subrahmanyam :
ON THE SPACE OF FUZZY NUMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Hao WU,Junzo WATADA,and Bing XU:
RISK ANALYSIS OF PORTFOLIO BASED ON KERNEL DENSITY
ESTIMASION-MAXIMUM LIKELIHOOD METHOD AND MONTE
CARLO SIMULATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rajkumar Verma and Bhu Dev Sharma:
HESITACT FUZZY GEOMETRIC HERONIAN MEAN OPERATORS AND THEIR
APPLICATION TO MULTI-CRITERIA DECISION MAKING . . . . . . . . . . . . . . . . . . . . . . . . .

Shusaku Tsumoto and Shoji Hirano:
AIGEBRA IN COMBINATORICS OF STATISTICAL DEPENDENCE. . . . . . . . . . . . . . . . .

Felbin C.Kennedy and S.U.Malini:
FUZZY LINEAR PROGRAMS WITH OCTAGONAL FUZZY NUMBERS . . . . . . . . . . . . .

M.S.Kadyan and Ram Niwas :
RELIABILITY AND PROFIT ANALYSIS OF A SINGLE-UNIT SYSTEM
WITH INSPECTION UNDER WARRANTY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vitaliy Kalashnikov,Beda A.I.,Simonowsky V.I:
PARTIAL DIFFERENTIAL EQUATIONS METHOD TO ANALYZE NONLINEAR
RESILIENCE FORCE IN A LONG CLEARANCE SEAL
AND ROTOR’S DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rajkumar Verma and Bhu Dev Sharma:
EXPONENTIAL INFORMATION MEASURES ON PAIRS OF FUZZY SETS . . . . . . . . .

Ms.Rumee Rani Savapandit and Dr.Bipin Gogoi:
BOOTSTRAP AND OTHER TESTS FOR GOODNESS OF FIT. . . . . . . . . . . . . . . . . . . . . . .

Notices from the ISMS

Call for Papers for SCMJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Call for ISMS Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2015

2015

N

281

1

3

11

23

41

55

67

81

91

99

    

1
 3

281


