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ABSTRACT. The aim of this paper is to study some topological properties, especially,
w-closed sets (in Sundaram-Sheik John’s sense) of digital lines and digital n-spaces
(n>2).

1 Introduction In 2000, the concept of w-closed sets (in Sundaram-Sheik John’s sense)
of topological spaces was introduced and investigated by P. Sundaram and M. Sheik John
[35] [36] [37] and some results on bitopological version were investigated by [12]. We note
that, in 1982, Hdeibe [14] had defined the same named concept: w-closed sets (e.g., [14]);
but their definitions are different. Throughout the present paper, we call the w-closed sets
[35] the w-closed sets in Sundaram-Sheik John’s sense (cf. Definition 2.1). The concept of
As-sets was introduced and investigated by [4]. In the present paper, for the digital n-space
(Z™, k™) (n > 1), we try to investigate properties on w-closed sets in Sundaram-Sheik John’s
sense and A;-sets. The concept of the digital line (Z, k) is initiated by Khalimsky [15], [16]
and sometimes it is called the Khalimsky line (cf. [17] and references there, [33], [19, p.905],
[20, p.175]; e.g., [11], [18]). We reference the naming of the digital n-space (Z™, k™) in [20,
Definition 4]; (Z™, k™) is the topological product of n copies of the digital line (Z, ) (cf.
Section 3).

The purpose of the present paper is to characterlize the w-closedness in Sundaram-
Sheik John’s sense in (Z", k™) (cf. Theorem 4.6). Namely, a subset A is an w-closed set in
Sundaram-Sheik John’s sense of (Z", £™) if and only if A is closed in (Z™, k™) (Theorem 4.6).
In order to prove the result, we investigate the concept of semi-kernels of subsets in (Z™, k™)
(cf. Theorem 4.5) after checking on some examples in (Z", k™) (cf. Example 4.2). In Section 2
we recall some definitions and properties on topological spaces which are used in the present
paper; moreover in Section 3 we recall the definitions of the digital lines and digital n-spaces
(n > 2) and we give a short survey of important properties which are used in the present
paper. In Section 4 we give some examples and we prove a characterization of w-closed
sets in Sundaram-Sheik John’s sense for (Z™, k™) (cf. Theorem 4.6). In order to prove
Theorem 4.6, we need the construction of semi-open sets containing a point of (Z", k™) (cf.
Theorem 4.4). In the end of Section 4, using Theorem 4.4 and Theorem 4.9, we give an
alternative and direct proof of [30, Theorem 4.2] which shows (Z", k™) is semi-T5.

Throughout the present paper, (X, 7) represents a nonempty topological space on which
no separation axioms are assumed, unless otherwise mentioned.

2 Preliminaries We recall some concepts and properties on topological spaces.
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Definition 2.1 (i) ([22, Definition 2.1]) A subset A of a topological space (X, 1) is called
generalized closed (shortly, g-closed) in (X, 7) if C1(A) C U whenever A C U and U is open
in (X, 7).

(ii) ([35], [36]) A subset A of a topological space (X, 7) is called w-closed in Sundaram-
Sheik John’s sense in (X, 7) if Cl(A) C V whenever A C V and V is semi-open in (X, 7).
The complement of an w-closed set is called an w-open set.

A subset B of (X, 7) is said to be semi-open [21, Definition 1] in (X, 7), if there exists an
open set U such that U ¢ B CCl(U). It is shown that [21, Theorem 1] a subset B is
semi-open if and only if B CCl(Int(B)) in (X, 7). A subset E of (X, 7) is said to be preopen
[25] in (X, 7), if E CInt(Cl(E)) holds in (X, 7). Every open set is semi-open and preopen
in (X, 7). The complement of a semi-open set (resp. preopen set) is said to be semi-closed
(resp. preclosed). In the present paper, the famly of all semi-open sets (resp. preopen sets)
of (X, ) is denoted by SO(X,7) (resp. PO(X,7)). Namely, for a topological space (X, 1),
as notation,

e SO(X,7):={B|B cCl(Int(B)),B C X}, PO(X,7) :={E|E CInt(Cl(E)), E C X}; and
7 C SO(X,7) and 7 C PO(X,7) hold for any topological space (X, 7).

The following concept of semi-kernels is due to [4] and the concept of kernels is well
known (e.g., [28]).

Definition 2.2 Let E be a subset of a topological space (X, 7).

(i) ([4, Definition 1]) The following set 7-sKer(E) (or shortly sKer(FE)) is called a semi-
kernel of E in (X, 7) (in [4], it is denoted by E%s):

o 7-sKer(E) = E* :=N{V|E C V and V is semi-open in (X, 7)}.
Note that, in the present paper, we use the symbol 7-sKer(E) or sKer(E).

(ii) (e.g., [28]) The following set 7-Ker(E) (or shortly Ker(E)) is called a kernel of E in
(X,7):

o 7-Ker(E):=(|{VIECV and V is open in (X, 7)}.
Note that, in [28] (resp. [24]), the set T-Ker(E) above is denoted by Ker, (FE) (resp. E™).

Definition 2.3 ([4, Definition 2]) In a topological space (X, T), a subset E is a Ag-set of
(X,7) if E = E* (ie., E =sKer(E)).

We recall the following property on semi-kernels.

Proposition 2.4 For a family {E;|i € Q} of subsets of a topological space (X,T), where §
is an index set,

(i) ([4, Proposition 3.1]) sKer(U{E;|i € Q}) = U{sKer(E;)|i € Q} holds; and

(ii) (e.g., [24, (2.5)]) Ker(U{E:li € }) = |U{Ker(E;)|i € Q} holds.

Theorem 2.5 t60 ([35], [36]) A subset A is w-closed (in Sundaram-Sheik John’s sense) in
a topological space (X, 7) if and only if C1(A) CsKer(A).

Proposition 2.6 (i) ([4, Proposition 3.7]) A topological space (X, T) is semi-Ty if and only
if every subset is a Ag-set.
(ii) ([4, Corollary 3.8]) Fvery semi-Ty-space is a semi-Rg-space.

We need the following notation.

Definition 2.7 (e.g., [10, p.166]; [39, Definition 2.1] [38, p.47] for the case where E := Z™)
For a subset E of (X, 7), we define the following subsets E, and Ez:
E.:={zxeFE|{x}isopenin (X,7),ie, {z} e };
Er :={ze E|{z}isclosed in (X,7)}.
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3 Preliminaries-2 In the present section, we recall some foundamental definitions and
topological properties on digital lines and digital n-spaces (n > 2); this includes a survey on
digital lines and digital n-spaces (n > 2) on our topics. And the notation of Definition 3.11
and (* 20) in (II) below are used in the proofs of results in Section 4.

(I) (digital lines):
e Let us recall some definitions and topological properties on digital lines (cf. (1) - (x11)
below).

Definition 3.1 (cf. [20, p.175], [19, p.905, p.908], [26, Section 2], [27, Example 4 in Section
2]; e.g., [11, Section 1], [33, Section 6 in p.9]) The digital line or so called the Khalimsky line
(Z, k) is the set Z of all integers, equipped with the topology « having {{2m — 1,2m, 2m +
1}|m € Z} as a subbase.

Remark 3.2 We put G := {{2m — 1,2m,2m + 1}|m € Z} in Definition 3.1.

(i) By the definition of x, a subset U of Z is open in (Z,k) (i.e., U € k) if and only if
there exists a family of subsets of (Z, k), say {BZ(U)| i € I} where IV) is an index set,
such that U = U{B-(U)| i€ I(U } and B(U NV, i)| j€{1,2,...,m}} for some positive
integer m and some subsets V. ) ¢ G(1 < j < m), here we assume that V(Z 7é 1fj £ j1,
where j,j1 € {1,2,...,m}).

(ii) For the set BZ.(U) = ﬂ{Vj(i)\ j€{1,2,...,m}} above, we note that:

(x)1 if m =1 (resp. m = 2), then Bi(U) = {2t —1,2t,2t + 1} (resp. ={2u+ 1} or @) for
some t € Z (resp. for some u € Z);
(x)2 if m > 3, then BY ﬂ{Vl)|j€{12 ,m}}=0.

e For examples, we first have some properties on singletons and two-pointed sets of (Z, k)
(cf. (%1) - (*3) below): for an integer s,

- (x1) a singleton {2s 4+ 1} is open in (Z,k); {2s + 1} is not closed in (Z, k).

- (%2) a singleton {2s} is not open in (Z,k); but {2s} is closed in (Z, k).

- (%3) subsets {2s,2s+ 1} and {2s — 1,2s} are not open in (Z, k), where s € Z (cf. (x8)(iii)
below).

(Proof of (x1)). (Proof of the opennness) It is shown that {2s + 1} = V4 N Va, where
Vi:={2s—-1,25,2s+1} € G and Vo := {25+ 1,25+ 2,25+ 3} € G. Thus, {25+ 1} is open
n (Z, k).

(Proof of the non-closedness) Suppose that {2s+1} is closed. Put U := Z\ {25+ 1}. Then,
U € £ and so there exists a family of subsets: {BZ(U)| i € IV}, where 1Y) is an index set,
such that U = U{B(U)| i€ I(U } and B(U ﬂ{VJ(z)| j €{1,2,...,m}} for some positive

integer m and some subsets V € G(1 < j <m) (cf. Definition 3.1,Remark 3.2(i)). Pick a
point 2s € U, where s € Z. Then we have
(%) 25 € Bi(,U) = ﬂ{Vj(i/)U € {1,2,..,m'}} and Bi(,U) C U for some 7' € I'V) and positive
integer m/.
By Remark 3.2(ii), it is shown that m’ = 1 and Bf,U) = ﬂ{Vj(il)Lj €{1,2,..m'}}
={2s—1,2s,2s+1}. Thus, using (*),, we have 2s+1 € U; but this contradicts the definition
of U in the first setting. Therefore, the singleton {2s + 1} is not closed in (Z, k). (o)
(Proof of (x2)). (Proof of the non-openness). Suppose that {2s} € k. We put U := {2s}.
By the definition of & (cf. Remark 3 2(1)), there exists subsets B( )(i e I1U), where I(V)
is an index set, such that 2s € B ﬂ{V | j€{L,2,...,m}} and B; () = U for some
positive integer m and V( RS G(1 < j < m). By using Remark 3.2(ii), it is shown that

m =1 and B(U) ﬂ{V()|j €{1,2,..m}} ={2s—1,25,2s+1} CU;and so 2s +1 € U.
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This contradicts the definition of U := {2s}. Therefore, any singleton {2s} is not open in

(Z,k).

(Proof of the closedness). It is shown that {2s} = Z \ E, where FE := [J{{2s —2j — 1,25 —

24,28 — 2§+ 1}|j € Z and j # 0}. Since E € &, Z \ E is closed; and so {2s} is closed in

(%), (o)
(Proof of (%3)) Suppose that {2s —1,2s} € k. Then, we have a contradiction. Put U :=

{25 —1,2s}. By Definition 3.1 (cf. Remark 3.2 (i)), there exists an index set (V) and some

subsets B{Y) such that U = U{Bi(U)\ i € I}, where Bl.(U) = ﬂ{Vj(z)| je{1,2,..,m}}

for some positive integer m and Vj(i) € G(1 < j <m) (cf. Remark 3.2). It is noted that
B,(CU) C U for any k € I'U). Then, we have:

(%)* 2s € B for some a € 1(V); (x)b 2s—1¢ BISU) for some b € 1(V);

(%) B U BIEU) C U, where U := {25 — 1,2s}.

Using ()%, (x)° and ()¢, we have: (x)¢ U = B U BISU).

Using Remark 3.2(ii), ()¢ and (x)® above, we have B{Y) = {25 —1,25,25+1} and BISU) =
{25 —1},{2s — 1,25,2s + 1} or {2s — 3,25 — 2,2s — 1}. Thus, using (x)¢ above, we have
U={2s-1,25,2s+ 1} or U = {2s — 3,25 — 2,25 — 1,2s,2s + 1}. These properties above
contradict the defininion of U = {2s — 1,2s}. Therefore, {2s — 1, 2s} is not open in (Z, ).
Similarly, it is proved that {2s+1,2s} is not open in (Z, ). In (x8)(iii) below, we note that
they are semi-open in (Z, k). (o)
e For the digital line (Z, k), the concept of the smallest open set, say U(x), containing a
point x of (Z, k) is very important; throughout the present paper, we put:

-U(28) :={2s—1,25,2s+ 1}; - U(2s + 1) := {25+ 1}, where s € Z.

We first recall the definition of the smallest open set containing a point x for a topological
space (X, 7).

Definition 3.3 (e.g., [29, Definition 2.4]) Let (X, 7) be a topological space and a point
x € X. A subset E is called the smallest open set containing x if x € FE,F € Tand A=F
holds for any open set A such that x € A and A C E.

For an open set E/ and = € F, E is the smallest open set containing « if and only if £ C G
holds for every open set G containing the point z (e.g., [29, Remark 2.5 (ii)]).

e For the digital line (Z,k), we recall the concept of the smallest open set, say U(x),
containing a point x of (Z, k). Obviously, every subset belonging to G =: {{2m—1, 2m, 2m+
1}|m € Z} is open in (Z, k). Then, we have the following important property on U(z), where
x €L

((x4) (1) U(2s) := {25 — 1,25,25 + 1} is the smallest open set containing 2s. Namely,
U(2s) is an open set containing the point 2s and if A is an any open set such that 2s € A
and A C U(2s), then A =U(2s). And, if G is any open set containing 2s in (Z,K), then
U(2s) C G.

(ii) U(2s+ 1) := {25+ 1} is the smallest open set containing 2s + 1.

(iii) For each point x of (Z, k), there exists the smallest open set U(x) containing the
point x (cf. [20, p.175]). Namely, for the point x € Z, U(x) is an open set containing the
point x and if A is an any open set such that x € A and A C U(z), then A =U(z). And,
if G is any open set containing x in (Z, k), then U(z) C G.

(Proof of (%4)). (i) By (x2) and (x3) above, it is shown that:

(x¢) U(2s) is open in (Z, k) and 2s € U(2s) (because of U(2s) € G); and

if A is any open subset of U(2s) such that 2s € A, then A = U(2s).

Indeed, if A; C U(2s) such that 2s € A; and A; # U(2s), then A; = {2s},{2s — 1,2s} or
{2s,2s + 1} and the subset A; is not open in (Z, k) (cf. (* 2), (x 3) above). Thus, we have
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A =U(2s) for any open subset A such that 2s € A and A C U(2s). Moreover, we show:
() U(2s) C G holds for any open set G containing the point 2s and 2s € U(2s). (Indeed,
let G be any open set containing the point 2s. Then, we have 2s € U(2s) NG and U(2s)NG
is an open set such that U(2s) N G C U(2s); thus we have U(2s) N G = U(2s) (cf. (x°)
above). Namely, we have U(2s) C G.)

Therefore, by (x¢) or (/), it is shown that U(2s) is the smallest open set containing 2s
(cf. Definition 3.3).

(ii) For an odd integer 2s + 1, where s € Z,U(2s 4+ 1) = {2s 4+ 1} is the smallest open
set containing the point 2s + 1 (cf. (x1)). (iii) Using (i) and (ii) above, the set U(x) is
the smallest open set containing the point x. (o)

e We have the form of the k-closure of {x}, the k-interior of {x} and the k-kernel of {z},
respectively, (cf. (x5), (x6) below): for an integer s,
- (%8) (1) k-Cl({2s + 1}) = {2s,25 + 1,25 + 2}, s-Cl({2s}) = {2s};

(ii) k-Int({2s + 1}) = {2s + 1}; k-Int({2s}) = 0;

(iii) k-Ker({2s + 1}) = {2s + 1}; s-Ker({2s}) = {25 — 1,2s,25 + 1} = U(2s).

(Proof of (x5)). (i) They are shown by (x4)(i), (x1) and (x2) above, respectively.  (ii)
They are shown by (x1) and (%2) above, respectively.  (iii) They are shown by (x1) and
(x4)(i) above. (o)
- (x6) (1) In the digital line (Z, k), a singleton {x} is open if and only if the integer x is odd
n 2.

(ii) A singleton {x} is closed in (Z, k) if and only if the integer x is even in Z.

(Proof of (x6)) (i). It is shown by (x5)(ii) above.  (ii) By the closure form in (x5)(i)

above, (ii) is shown. (o)
By (x6) above, it is shown that:
- (x7) (i) Fvery singleton of (Z, k) is open or closed (cf. (x6); or (1) and (%2) above). This
shows that (Z, k) is Ty /2 (e.g., [8, Example 4.6]; cf. [22, Definition 5.1], [9, Theorem 2.5]).
We recall some topological properties; in general, the class of T} jo-spaces is properly placed
between the classes of Tp-spaces and T3-spaces ([22, Corollary 5.6]). Furthermore, Dontchev
and Ganster [8, Example 4.6] proved that (Z, k) is T5,4; in general, the class of T5/4-spaces
is properly placed between the classes of Tj-spaces and T s-spaces ([8, Corollary 4.4 and
Corollary 4.7]). For the digital plane (Z?,x?) (cf. Definition 3.4 below), it is well known
that (Z2, k%) is not Ty /2 ([26, Section 3]).

e We recall the semi-openness (resp. semi-closedness) (cf. Section 2) of singletons in (Z, k)
and the semi-closure of {x}, the semi-interor of {z} and the semi-kernel (cf. Definition 2.2(i))
of {z} (cf. (x8) and (x9) below): for an integer s,

-(x8) (i) every open singleton {2s + 1} is semi-open and semi-closed in (Z, k);

(ii) every closed singleton {2s} is semi-closed in (Z,r); but {2s} is not semi-open in
(Z, K);

(iii) the subsets {2s,2s 4+ 1} and {2s — 1,2s} are semi-open on (Z, k).

(Proof of (x8)). (i) Every open set is semi-open and so {2s + 1} is semi-open in (Z, k)
(cf. (x6)(i) above). And, since k-Int(k-C1({2s+ 1}))= k-int({2s,2s + 1,25+ 2}) = {25+ 1}
hold, {2s + 1} is semi-closed (cf. (x5)(i)(ii) above). (ii) Since x-Int(k-Cl({2s})) = -
Int({2s}) = 0 C {2s},{2s} is semi-closed in (Z, k). And, we have Cl(Int({2s})) =Cl(D) =

0 2 {2s} and so {2s} is not semi-open in (Z, k). (iii) It is easily shown that x-Cl(k-
Int({2s,2s4+1})) = k-Cl({2s+ 1}) = {25,25+ 1,25+ 2} D {25,254 1}; and so {2s,2s+ 1}
is semi-open in (Z, k). Similarly, the subset {2s — 1, 2s} is semi-open in (Z, k). (o)

-(x9) For an integer s, we have the following properties:
(i) xk-sCl({2s + 1}) = {25+ 1}; k-sCl({2s}) = {2s};
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(ii) k-sInt({2s + 1}) = {2s + 1}; k-sInt({2s}) = 0;

(iii) k-sKer({2s + 1}) = {2s + 1}; x-sKer({2s}) = {2s}.

(Proof of (x9)). (i) (resp. (ii)) They are proved by (x8)(i) (resp. (x8)(ii)) above.  (iii)
By (*8)(iil) (resp. (*8)(i)), it is obtained that x-sKer({2s}) = {2s,2s + 1} N {25 — 1,25} =
{2s} (resp. k-sKer({2s + 1}) = {2s + 1}). (o)

e We recall more topological properties on (Z, x):

- (¥10) (i) For (Z,k), k = PO(Z, k), PO(Z,k) C SO(Z, k) and k* = K hold ([10, Theorem
2.1 (i)(a)(b)]), where k* := {V| V is a-open in (Z, k)}. For topological spaces, the concept
of the a-open set was introduced by Njastad [31] who called it the a-set. A subset A of a
topological space (X, 7) is said to be a-open in (X, 7) if A CInt(Cl(Int(A))) holds.

(ii) The digital line (Z, k) is submaximal. This fact may be known in folklore; however,
we are able to read one of the proof ([10, Theorem 1.1(i)]). Furthermore, it is noted that,
by [10, Theorem 1.1(ii)(iii)], the digital plane (Z?2,?) (cf. (II) below) is not submaximal
but it is quasi-submazimal. Al-Nashef [1, Definition 3.2] introduced the concept of quasi-
submazimal topological spaces which is weaker than one of submaximal spaces (e.g., [3,
Definition 1.1}, [13, p.137)).

(iii) The digital line (Z, k) is s-normal ([11, Section 3, Theorem B]). In 1978, Maheshwari
and Prasad [23] introduced the concept of s-normal topological spaces using semi-open sets.

The digital plane is also a geometric example of s-normal spaces ([11, Section 5, Theorem
DJ).

e Using Definition 2.7 for (X,7) = (Z, k), we can define the following subsets Z, := {x €
Z | {z} € k},Zy :={x € Z | {z} is closed in (Z,k)}; for a nonempty subset E of (Z, k),
E.={z e E|{z} €xr}and Er :={x € E| {z} is closed in (Z,x)}.

- (¥11) (i) Let A C Z. Then we have that Z, = {2m+1€Z | m € Z}; A, ={2m+1 €
A | meZ} (cf. (x6)(i) above);

Zr ={2meZ I melZ}; Ar ={2m e A | m e Z} (cf. (x6)(ii) above).

(il) A is open in (Z, k) for any subset A of (Z,k); and A, = Z, N A.

(i) Z=Z,UZr (Z;NZr=0) and A=A, UAr (Ac N Axr =0) for any subset A of
(Z, k) (cf. (%6) above).

(iv) For any subset A of (Z,k), Axr = A\ A, holds and Agx is closed in (Z,k); and
Ar=7ZrnNA.

(v)f EC F CZ,then E,, C F, and Exr C Fr hold in (Z, k).

(Proof of (x11)) (iv). (Proof of the closedness of Ar). Let x € Z \ Ar.

Case 1. x = 2s+ 1, where s € Z: for this case, we have x € Z,, (cf. (x6)(i) above); and
so {z} N Ax =0 (cf. (iii) above). Thus, there exists an open set {z}, say Uy, containing x
such that U, CZ \ Ar.

Case 2. x = 2t, where t € Z: for this case, we have € Zx and x ¢ A (cf. (iii) above and
(x6)(ii) above). Hence, for the point x € Zz \ Ar, there exists an open set {z —1,z, 2+ 1},
say U, containing z and {x — 1,2+ 1} C Z,; andso U, NAxr = {z— 1L,z, 2+ 1} N Ax =0,
ie, U, CZ \ Ar.

Thus, for each point z € Z\ Az, the subset U, above is an open set containing z such that
U, CZ\ Ar. We have Z\ Ar = |J{Uz|x € Z\ Ar} and so Z\ Ar € k. Namely, Ar is
closed in (Z, k). (o)

(IT) (digital n-spaces (n > 2)):
e In the final stage of the present section, we recall some structures of the digital n-space
(n > 2) ([20, Definition 4]; e.g., [26, Section 3], [39], [38], [11]; for n = 2, [10], [5, Section 6],
[34, Section 5], [7, Section 7], [6], [32, Section 6]).
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Definition 3.4 (|20, Definition 4]) Let n be an integer with n > 2. The digital n-space
or Khalimsky n-space is the Cartesian product of n-copies of the digital line (Z, k). This
topological space is denoted by (Z", k™), where Z" := [[}_, X;, where X; = Z for all integers
it with 1 <i <n, and k" := H:.L:l 7;, where 7; := k for all integers ¢ with 1 < ¢ < n. For
n =2, (Z*,k?) is called the digital plane or Khalimsky plane.

Since k™ is the product topology of m-copies of k, it is shown that: for a point = :=
(x1, 22, ..., 2y) of (Z™ k"),
- (+12) (a) £"-Cl({z}) = [T, #-Cl({z}); (b) w"-Int({x}) = [y m-Int({z:});

(¢) k™-Ker({z}) = [T, x-Ker({z;}).

(Note on (c)). Let (X,7) := [[;—,(Xi,7:) be a product topological space of topological
spaces (X;,7)(1 < i <n). In general, for a point = := (z1, z2, ..., z,) of (X, 7), it is shown
that 7-Ker({z}) = [\~ (7-Ker({;})), where 7 = [[/_, 7. o

We use the following well known property; we recall shortly the proof.

Proposition 3.5 Let x := (x1,x2,...,x,) be a point of (Z™, k™).

(i) If all the coordinates of the point x is odd, say x; = 2s; + 1 € Z (s; € Z) for each
integer © with 1 < i < n, then for the point v = (2s1 + 1,280 + 1,...,2s, + 1)

(a) k"-Cl({z})=[Ti= {25, 2s; + 1,2s; + 2}.

(b) ™Int({z})=[1i-,{2s; + 1} = {x}; and so the singleton {z} is open in (Z", k™).

() wn-Ker({z})= [1_ {25 + 1} = {a}.

(ii) If all the coordinates of the point x is even, say x; = 2s; € Z (s; € Z) for each
integer © with 1 < i < n, then for the point x = (251,259, ...,25,)

(a) k™-Cl({z})=T1"_,{2s:} = {z}; and so the singleton {x} is closed in (Z",K™).

(b) s Int({a})= 11y 0 = 0.

(c) k"-Ker({z})=T1/_{2si — 1,28;,2s; + 1} = [, U(2s;).

(iii) ( ) A singleton {x} is closed in (Z™, k™) if and only if all the coordinates of x, say
z;(1 <i<mn), are even.
(b) A smgleton {z} is open in (Z"™,K™) if and only if all the coordinates of z, say x;(1 <
i <n), are odd.

Proof. (i) (ii) The properties are shown by (+5) in (I), (¥12) in (II) and definitions.

(iii) (a) (Necessity) It follows from assumption that x”-Cl({z}) = {z}. Using (¥12)(a)
n (IT), it is shown that x-Cl({z;}) = {x;} for each integer ¢ with 1 < ¢ < n. Then, using
(%6)(ii) in (I), we have that x; is even for each ¢ with 1 < ¢ < n. (Sufficiency) It is
obtained by (ii)(a) above. (iii) (b) (Necessity) By using (x12)(b) in (II) and (x6)(i)
in (T) above, (iii)(b) is proved. (Sufficiency) It is obtained by (i)(b) above. O

Example 3.6 (i) Especially, for the case where n = 2, we have the following forms of
r2-closures of singletons: for integers s,t € Z,

K2-CL{(2s + 1,2t + 1)}) = {2s,25 + 1,25 + 2} x {2t,2t + 1,2t + 2};

R2-CI({(25,20)}) = {(25,20);

k2-Cl({(2s,2t + 1)}) = {2s} x {2t,2t + 1,2t + 2};

k2-Cl({(25 + 1,2t)}) = {2s,25 + 1,25 + 2} x {2t}.

(ii) By the following figure, the closure x2-C1({(2s+1, 2t+1)}) is illustrated; the singleton
{(2s+1,2t+1)} is denoted by a symbol o and the closure k2-C1({(2s+ 1,2t +1)}) contains
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the 9-points only denoted by the symbols o, x, e:

° * ° 2t+2
K2-Cl({(2s+ 1,2t + 1)})= Cl(o)= * o *x  2t+1
° * ° 2t

25 2s+1  2s42
(iii) By the following figure, the closures x2-C1({(2s,2t + 1)}) is illustrated:

o 2t42
k2-Cl({(2s,2t +1)})= Cl(x)= * 2t+1
) 2t
2s
(iv) By the following figure, the closure x2-C1({(2s + 1,2t)}) is illustrated:
k2-Cl{(2s + 1,2t)})= Cl(x)= e * o 2t

2s  2s+1 2s+2

We give the concept of the smallest open set containing a point of (Z™, k™).

Definition 3.7 (e.g., [39, p.602], [38, p.47], [11, p.47]) For a point x := (x1, x9,
., Tp) of (Z™, k™), the following subset U™ (x) is called the smallest open set containing the
point z (cf. Theorem 3.9, Definition 3.3):

Um(z) == []i—, U(x;), where U(x;) is the smallest open set (cf. (¥4) in (I)) in (Z, k)
containing the i-th coordinate x; of z(1 <i < n).

Example 3.8 (i) For examples, in the case where n = 2 of Definition 3.7, we have the
following forms U?(z) for the following points = € Z?:
U%((2s+ 1,2t +1)) ={(2s+ 1,2t + 1) };
U?((2s,2t)) = {2s — 1,25,2s + 1} x {2t — 1,2¢,2t + 1};
U?((25,2t +1)) = {25 — 1,25,25 + 1} x {2t + 1} and
U%((2s+ 1,2t)) = {2s 4+ 1} x {2t — 1,2¢, 2t + 1}.

(ii) In the figure below, a subset U?((2s,2t)) is illustrated; the singleton {(2s,2t)} is
denoted by a symbol e and U?((2s,2t)) is the set of the 9-points only denoted by the
symbols e, o, x:

o * o - 2t+1

U?((2s,2t))= U?(e) = o * -2t
o * o - 2t-1

2s—1 2s 2s+1
(iii) In the figure below, a subset U?((2s,2t+1)) is illustrated; the singleton {(2s,2t+1)}
is denoted by a symbol x and U?((2s,2t + 1)) is the set of the 3-points only denoted by the
symbols o and *:
. o * o - 2t+1
U%((2s,2t+1))= U%(%)= - : : . S 2t
. . . 2t-1

2s—1 25 2s+41
(iv) In the figure below, a subset U?((2s+1, 2t)) is illustrated; the singleton {(2s+1,2t)}
is denoted by a symbol x and U?((2s + 1,2t)) is the set of the 3-points only denoted by the
symbols o and *:
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o - 2t+1

U2((2s+1,2t))= U?*(x)= - : . * S2t
. . . o . 2t-1

2s—1 2s 2s+1

The following property is folklore, but we give its proof. The following theorem shows
the well definedness of U™ (x) of Definition 3.7.

Theorem 3.9 Let x be a point of (Z", k™) and U™(z) the subset defined by Definition 3.7.
Then, we have the following properties.

(i) z € U™(z) and U™ (x) € K".

(ii) If A is an open set containing the point x in (Z™,k"™) such that A C U™(x), then
A=U"(x).

(iii) If G is any open set containing the point x in (Z", k™), then U™(z) C G.

Proof. We put z := (21,22, ...,x,). (i) By Definition 3.7, (i) is shown.

(ii) Since z € A and A € ", there exist open sets A; € (1 <i < n) such that []]_, A, C A
and x; € A; for each integer ¢ with 1 < i < n. Since A; is open in (Z, k) such that x; € A;,
we have z; € U(x;) C A; for each integer ¢ with 1 < i < n (cf. (%4)(iii) in (I)); and
so U(z) = [[_,U(x;) C [[i=, Ai C A. Therefore, we have U"(z) C A. By using
assumption that A C U™(z), it is shown that A = U™(z) holds.  (iii) Since G € k™ and
Um(xz) € k™, we see GNU"™(z) € k™. Put A:= GNU"(x). Then, we have z € A, A € K"
and A C U"(x). By (ii) above, it is shown that A = G NU™(z) = U"(x) holds. Namely,
we have U"(x) C G. O

Remark 3.10 Using Theorem 3.9, we can investigate topological properties of k™-Cl(A), k™-
Int(A) and k"-Ker(A), where A is a subset of (Z", k™).

e (Some notation) In the present paper, we use the following notation (cf. Definition 3.11,
(%20) below) for (Z™,k™)(n > 2) (they are used in [39], [38], [11] for an integer n > 1); cf.
(11) in (I) for n = 1.

Definition 3.11 ([39, Definition 2.1], [38, Section 2], [11, Section 6])

(i) The following subsets (Z")xn,(Z")Fn and (Z")pizry of (Z", k™) are well defined,
where r € Z with 1 <r <n:
(i-1) (Z™)gn = {(z1,22,...., %) € Z"| z; is odd for each integer i with 1 < ¢ < n}; by
Proposition 3.5(i)(b) in (IT), it is shown that: (Z™).» = {a € Z"| {«} is open in (Z™, £k")}.
(i-2) (Z™)gn = {(z1,22,...,xn) € Z"| m; is even for each integer ¢ with 1 < i < n}; by
Proposition 3.5(ii)(a), it is shown that: (Z™)zn = {x € Z"| {x} is closed in (Z", k™)}.
(i-3) (Z")miw(r) = {(@1,22,...,2n) € Z"| #{i € {1,2,...,n}| 2; is even}= r }, where
1 <r <n and #A denotes the cardinality of a set A. Especially, for the case where r = n,
we note (Z")rn = (Z") pmiz(n) holds.

(ii) For a nonempty subset E of (Z", "), the following subsets Fyn, Exn and Ep, iz
of (Z™, k™) are well defined, where 1 <r < n:
(ii-1) Eyn == EN ((Z™)xn) (cf. (i-1) above);
(ii-2) Exn := EN((Z™)#n) (cf. (i-2) above);
(ii-3) Emizery = E N0 ((Z")mia(r)) (cf. (i-3) above); we note E,ip(n) = Exn.

o —

It is well known that: for any nonempty subset E of (Z™, k"),
- (%x20) (i) Exn = {x € E | {z} is open in (Z™, &™)} ={(z1,22,...,2n) € E | z; is odd for
each i € Z with 1 <i <n}.
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(ii) Exn = {z € E | {z} is closed in (Z",k™)} ={(x1,22,....,2,) € E | x; is even for
each i € Z with 1 <i < n}.

(iii) The subset (Z™)n and Exn are open in (Z™, k™).

(iv) We have the following decomposition of Z™ and one of a nonempty set E, respec-
tively, as follows (Note: n > 2),
S L = (L) jn U(Z) 7 U (U(Z™) mimry| 1 <7 < n—1}) (disjoint union);
+ E=FExUEzr U(U{Eniz@ 1 <7 <n—1}) (disjoint union).
(Note: in the above decomposition of Z" (resp. E), we should take (Z")iz(r) (€SP Epiz(r))
with 1 <r<n-1)

(v) Especially, forn =2 andr =1, Eppa) = {(21,22) € E | 21 is even and x5 is odd}
U{(z1,22) € E | 1 is odd and z2 is even}; we have the following decompositions:

72 = (Z%),2 U(Z2) p2 U (22 Jmiz(1) (disjoint union) and E = E.2 U Ez2 U Epyjp(1) (disjoint

union).

(vi) If EC F CZ", then Exn C Fyn, Exn C Frn and Eyyig(ry C Fjny(1 <7 <n—1)
hold in (Z™, k™).

In Section 4, we need the following property Theorem 3.12 (cf. Theorem 4.9, Corollary 4.10
below).

Theorem 3.12 ([39, Lemma 2.3]) Let x = (21,22, ..., Zn) € (Z")miz(ar) and y = (Y1, Y2, -,
Yn) € (Z™)miz(a), where a’ and a are integers such that o’ < a,1 <a' <n and1 <a <n.

Suppose that U™ (x)NU™(y) contains exactly the 29" open singletons, say {gM,q?), ..., q(za/)}.
Then, the following properties holds.

(1) {gM,4®,....¢*")} = (U™ () = (U™ (2) N
(ii) {i| =; is even (1 <i<n)} C{i| y; is even
(i)’ If o’ = a especially, then {i| z; is even (1
(
(

U™(y))wr € (U™ (y))xn-
i<n)}
n)} = {i| yi is even (1 <i < n)}.

(1<
<i<

iii) € U™(y) holds.
iii)’ If @’ = a especially, then © = y.

4 w-closed sets in Sundaram-Sheik John’s sense and A;-sets in (Z", k") In
the present section, we investigate the concept of w-closed sets (in Sundaram-Sheik John’s
sense) in (Z", k™) and we give a characterization of the w-closedness in the digital n-spaces
(cf. Theorem 4.6). In (Z™, k™), we first give an example of a A,-set, say B(n), where
n > 2, (cf. Definition 2.3, Example 4.2) which is not w-closed (in Sundaram-Sheik John’s
sense) (cf. Example 4.2(ii-1)); this example informs us general properties on (Z", k™) (cf.
Theorem 4.5). In order to explain the example, we prove the following proposition. We use
the notations of Definition 3.11 and (IT)(*20) etc in Section 3, i.e., some notation and well
known properties in (Z", k™).

Proposition 4.1 Let V be an open set of (Z™, k™).
(i) If n > 2, then Ve U (U{Viniz(m| 1 <7 <n—1}) C Cl(Vin).

Proof. (i) Let y € Ve U(U{Viniz(y| 1 <7 < n—1}) (cf. Definition 3.11(ii), (II)(*20) etc in
Section 3 above). Since y € V and V is open in (Z", k™), there exists the smallest open set
U"(y) (cf. Definition 3.7) containing y such that

(1) U™(y) C V (cf. Theorem 3.9(iii)) and so (U™ (y))xn C Vin (cf. Definition 3.11(ii)(ii-1),
(IT)(%20)(vi) above).
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Case 1. y € Vgn, ie., y = (281,289,...,28,) and y € V, where s; € Z (1 < i < n)
(cf. Definition 3.11(ii)(ii-2)): since U™(y) = [[i=,{2si — 1,2s;,2s; + 1} for this point y ,
we have [, {2s; — 1,2s;,2s; + 1} C V (cf. Definition 3.7, Theorem 3.9(iii) and (I)(x4)
in Section 3). We pick a point p(y) := (251 + 1,2s2 + 1,...,2s, + 1) € (U™(y))x» and so
p(y) € Vin (cf. Proposition 3.5(iii)(b)). Then, since Cl1({p(y)}) = [1;—,{2s:,2s; +1,2s; +2}
(cf. Proposition 3.5(i)(a)), we have y = (2s1,2s2,...,2s,) € Cl({p(y)}) C Cl(Vin). It is
proved that Ve C Cl(Vin). We note that the above proof is done for the case where n > 1
(cf. (T)(x1), (x4), (x11)(v) in Section3).

Case 2. y € Viyig(ry, where 1 <r < n —1 (n > 2) (cf. Definition 3.11(ii)(ii-3)): for
this point y, we set y = (y1,¥2, ..., Yn); then by definition, r = #{i | y; is an even integer
(1<i<n)}. Weput I, :={i | y; is even } = {e(1),e(2),...,e(r)}
(e(1) <e(2) < ...<e(r)) and Jp_p :={j | yj is odd } = {o(1),0(2),...,0(n —r)} (o(1) <
0(2) < ... <o(n—r)); then {1,2,...,n} = I, U J,,_, (disjoint union). For the present case,
we claim that y € Cl(Vin). Indeed, we recall that:
(+*) U™(y) = [1i=, U(y:), where U(ye) := {ye — 1,ye,ye + 1} if € € I;; and U(y,) = {yo}
if o € Jy—r (cf. (I)(%4) in Section 3, Definition 3.7).
For this point y € Vi,izr) (1 <7 <n—1and n > 2), we pick a point p(y) € U"(y) such
that p(y) € (U™(y))xn as follows:
(+3) let p(y) := (p1, P2, -y Pn), Where p. :=y. — lif e € I; po : =y, if 0 € Jp_,..
Then by (x2) and (x%) above, it is shown that the components of the point p(y) are odd
and so (x¥*) p(y) € (U™(y))xn, because the components have the forms of y. — 1 € U(y.)
or Yo € U(yo)-
Thus, using ('), (**) above and (II)(x20)(vi) above, we see that p(y) € Vin; and so
(+%) CL({p(y)}) SOV, ).
We note that : C1({p(y)}) =Cl({(p1,p2,---,pn)}) = [1;=;Cl({p;}) in (Z", k™), where C1({p. })
={pe—1,pe,pe+1} = {ye—2,9.—1,y.} if e € I,; and Cl({p,}) = {po—1,P0, Po+1} = {yo—
1, Yo, Yo+1} if 0 € Jp—, (ctf. Proposition 3.5). Thus, we have y = (y1, y2, ..., ¥n) EC1({p(y)}).
Moreover, using (+°) above, we conclude that y €Cl(Vyn) for a point y € Viy(r). Namely,
it is proved that Vi,,;5() CCl(Vien) for each r with 1 <r <n —1 (n > 2).

Therefore we have the required inclusion: Ve U ((U{Viniz(rm| 1 <7 <n—1}) CCl(Vin)

(i) For the case where n = 1, we may consider the case 1 only of the proof of (i) above;
the proof is omitted (cf. (I)(x1), (x4), (*11)(v) in Section3). O

Example 4.2 Throughout the present example, let B(n) := (Z")z~ U {z(1), z(2), ... ,
z(s)} be an infinite subset of (Z™, k™), where n > 1 and s is a positive integer, {z(j)} is
an open singleton of (Z™, ™) for each integer j with 1 < j < s. We have the following
properties on the subset B(n): namely,

(i) B(n) is a As-set of (Z", k™) for each n > 1 (cf. Proof of (i) below and Definition 2.3).

(i) (ii-1) Ifn > 2, then B(n) is not an w-closed set (in Sundaram-Sheik John’s sense)
of (Z™, k™) (cf. Proof of (ii-1) below and Definition 2.1);

(ii-2) Forn =1, B(n) is a closed set of (Z, k) and so it is an w-closed set (in Sundaram-
Sheik John’s sense) in (Z, ) (cf. Proof of (ii-2) below and Definition 2.1).

(iii) Let A be a subset of (Z™, k™) such that B(n) C A C Cl(B(n)). Then, A is not
semi-open in (Z"™,K™).

For the case where n = 2, the following figure illustrates the subset B = (Z2)z U
{z(1),2(2)} in (Z2%, k?); each symbol e means a point in (Z2)r> and two symbols o mean
(1) = (1,1) and z(2) = (3, 1) respectively.
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In order to prove (i) above, we need the following property (#x):

(%) Suppose n > 1. Let Fi(n) := B(n) U E1(n) and Fy(n) := B(n) U Ey(n), where
Ei(n) = {(s1,82,..,8n) €Z" | s, =1 mod 4 (1 <i <n)} and Es(n) := {(s1,$2,...,8n) €
Z" s; =3 mod 4 (1 < j <n)}. Then, E1(n)N Ex(n) =0 holds and Fy(n) and F>(n) are
semi-open sets including B(n) such that Fy(n) N Fy(n) = B(n).

Proof of (xx). We first recall the following expressions of (Z™) zn := {(x1,Z2, ..., xs)| T;
is even (1 <4 <mn)} as follows:

(k1) (Z") =TTz {wi}] @i is even (1 < i < n)p=U{TTimy{si — 1, si+ 1} (s1, 82, .., 80) €
Z"™ s; =1mod 4 (1 <i<n)}; and
(*1)/ (Zn)]:n: U{H?:l{si — 1781' + 1}|(81,827 ,Sn) S Zn,Si = 3 mod 4 (1 S 7 S ’I’L)}

We secondly claim that
(%2) CUE;(n)) D (Z™)F~ U E;(n) for each i € {1,2}.

Indeed, we have Cl(E;(n)) =ClU{ITi=,{si}| (s1,52,....,8,) € Z",s; =1 mod 4 (1 <i <
n)}) D U{CUTT  {si})| (s1,82,.0s8n) €Z™,s; =1mod 4 (1 < i <n)} =U{[T;~,Cl({s:})]
(81,82, 8n) € Z", 5, =1mod 4 (1 <4 <n)y=U{[Ti-;{si—1,8i, 8+ 1} (s1,82,....8n) €
Z",si=1mod 4 (1 <i<n)} DUl {si — 1,8 +1}| (s1,82,..., 8n) € Z™, 5, = 1 mod
4 (1 <i<n)}=(Z")gn (cf. (x1) above, (I)(x5)(i) in Section 3) and Cl(E;(n)) D Ei(n).
Hence, we have C1(E1(n)) D (Z™)#» U E1(n). In the same way, using (%1)’ in place of (*1),
we have Cl(E3(n)) D (Z™)z» U Es(n). Moreover, we claim that

(x3) Fj(n) is semi-open in (Z™, k™) for each i € {1,2}.

Indeed, by using () and definitions, it is shown that, for each i € {1, 2}, Cl (Int(F;(n))) DCI
(Int((B(n))xnUE;(n)))= Cl((B(n))xmUE;(n)) D (B(n))xmUCIHE;(n)) D {x(1),z(2), ..., z(s)
YU ((Z™)zn U Eij(n)) = B(n) U E;(n) = F;(n). Namely, F;(n) is semi-open in (Z", k™) for
each 7 € {1,2}.

Finally, (x4) Fi(n) N Fy(n) = B(n) U (E1(n) N E2(n)) = B(n) hold, because Fj(n) N
EQ(’I’L) = @ (O)

Proof of (i). We first claim that sKer(B(n)) C B(n). Indeed, we recall (xx) above
and so Fi(n) and Fy(n) are semi-open sets in (Z™,x™)(n > 1) such that B(n) C F;(n)
for each i € {1,2}. Thus, by definitions, it is shown that sKer(B(n)) C Fi(n) N Fz(n) (cf.
Definition 2.2(i)); and so sKer(B(n)) C B(n), because F(n)NFy(n) = B(n) (cf. (xx) above).
This concludes that sKer(B(n)) = B(n), because B(n) C sKer(B(n)) holds. Namely, B(n)
is a Ag-set of (Z", k™), where n > 1.

Proof of (ii)(ii-1). Suppose n > 2. We first show that:

(*5)  (CUB(N)))miz(ry # 0, for each integer r with 1 < r < n — 1.  Indeed, since
Cl(B(n)) = CI((Z"™)F») U (U{(C1({z(i)}))[1 < i < s}), it is shown that (C1(B(n)))miz(r) D
(Cl({z(1)}))mixz@r) (cf. (IT)(¥20) in Section 3). We can put x(1) := (t1,%2,...,1,), where ¢;
is odd for each j with 1 < j < n, because z(1) € (Z™),» (cf. Definition 3.11(i)(i-1)). Then,
we show Cl({z(1)}) = [T}, CI({t;}) = [1j_,{t; — 1,t;,t; + 1} (cf. Proposition 3.5(i)(a))
and so

(Cl({z(1)}))mix(r) # O for each integer r with 1 < r < n — 1, because we can take a point
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p = (p1,p2,...,Pn), Where p; :=t; — 1 is even for each j with 1 < j <r and p; :=t; is odd
for each j with r 41 < j < n; and hence p € (C1({#(1)}))miz(r) (cf. Definition 3.11(i)(i-3))
and so p € (CI(B(n)))miax(r) (cf. (I)(¥20) in Section 3). Thus, we prove the property (*s).

We secondly have the following property: (xg) Cl(B(n)) ¢ Fi(n) holds.

Indeed, for a contradiction, we suppose Cl(B(n)) C Fi(n); then (CL{(B(n)))miz(r)
C (F1(n))miz(ry and so (CH{(B(n)))mizry = 0 because of (F1(n))miz) = 0 for each integer
r with 1 <r < n — 1. This contradicts (x5) above.

For a contradiction, we finally suppose that B(n) is w-closed in Sundaram-Sheik John’s
sense, i.e., Cl(B(n)) CsKer(B(n)) (cf. Theorem 2.5). Then, using (*x) above, we have
sKer(B(n)) C Fi(n) and so Cl(B(n)) C Fi(n); this contradicts (%g) above. Therefore,
B(n) is not w-closed (in Sundaram-Sheik John’s sense) in (Z", k™), where n > 2.

Proof of (ii)(ii-2) Suppose n = 1. First, it is shown that B(n) = B(1) is closed in
Z", where n = 1. Indeed, we have Z \ B(1) = Z, \ {z(j)|1 < j < s} and so Z\ B(1) =
U{{z}|z € Z,; and z & {x(j)|1 < j < s}}, i.e., Z\ B(1) is the union of some open singletons
{z}, and hence Z \ B(1) € k (cf. Definition 3.1). Thus, the set B(1) is closed and so it is
w-closed in Sundaram-Sheik John’s sense.

Proof of (iii). For a contradiction, we suppose that A is semi-open in (Z", k™). Then,
there exists an open set V such that V' .C A C CI(V) and so V C Cl(B(n)). First we claim
that: (x7) CL(V) CCl(Vin) holds for each n > 1.

Proof of (x7). Case (I). n > 2: for this case, we have V = Vin UVrn U(U{Vinizm| 1 <7 <
n—1}) (cf. (I1)(%20)(iv) in Section 3). Since V is open, by Proposition 4.1(i), it is shown that
CUV) = CUVan ) UCUVn U Visaioy] 1 < 7 < m-1})) € CL (Vi JUCH(CU(Vin)) = C(Vr )
and so CI(V) CCl(Vyn).

Case (II). n = 1: for this case, we have V =V, U Vg (cf. (I)(x11)(iii) in Section 3). Since
V is open, by Proposition 4.1(ii), it is shown that

Cl(V) = Cl(V,,) UCL(VE) C Cl(V,,) UCI(CL(V,)) = CL(V,); and so CL(V) CCL(V,,). (o)

We proceed the proof of (iii). We put Vi := {p(k) € V| {p(k)} € ™, k € v}, where
v C Z is an index set (cf. Definition 3.11(i)(i-1)). Since p(k) € Vi C V C Cl(B(n)) and
so p(k) €Cl(B(n)), it is shown that {p(k)} N B(n) # ) and so p(k) € B(n) for each k € v.
Namely, we have:

(%) Vien C (B(n))un (cf. Definition 3.11(1)(i-1),(ii) (ii-1) and (I)(x11)(v), (II)

(¥20)(vi)). Then, using (x7) and (xg) above, we conclude that C1(V) C Cl(Vin) C C1((B(n)
Yun )=Cl({x(1), 2(2), ..., z(s)}) =U{Cl({z(j)})|1 < j < s}; and hence CI(V) is a finite subset
of (Z™, k™), because Cl({y}) is a finite subset of Z for every point y € Z (cf. (I)(x5)(i) in
Section 3) and so C1({z(j)}) is a finite subset of Z" for each j with 1 < j < s (cf. (II)(x12)(a)
in Section 3). Therefore, we have A is a finite subset of (Z", k™), because of V.C A CCI(V);
and so B(n) is also finite, because of B(n) C A; this contradicts the definition of the set
B(n) (i-e., B(n) is not finite). Therefore, A is not semi-open in (Z, k).

In order to state Theorem 4.4, we need the following definition on I,.(x) and J,,_,(x), where
x€L".

Definition 4.3 (cf. Definition 3.11(i)(i-3),(II)(*20)(iv) in Section 3; [39, Definiton 2.1(ii)])
Let x := (71,22, ..., Tn) € (Z")mix(r), Where n > 2 and r is the cardinality of a set {k| xy, is
even} with 1 <7 <n —1 (cf. Definition 3.11(i-3),(II)(%20)(iv) in Section 3; in the present
definition, we note the assumption that 1 <r <n—1and n > 2; and 50 (Z")iz(r) # 0). Let
Te(1)s Te(2), - Te(r) De all the components of z which are even; and x4(1), To(2)s -+, To(n—r)
be all the components of z which are odd, where e(k)(1 <k <r)and o(j)(1 <j<n-—r)
are positive integers with 1 < e(1) < e(2) < ... <e(r) <mnand 1 <o(l) < 0(2) < ... <
o(n —r) < n. Then, for this point = (1, 23, ..., x5, ), we define the following subsets I,.(x)
and J,_,(z) of {1,2,...,n} as follows:
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o I.(z) := {k| x) is even}; and so I.(z) = {e(1),e(2),...,e(r)} holds;

o J_r(x) :={j| »; is odd}; and so

Jn—r(z) = {0(1),0(2),....0(n — 1)}, {1,2,....n} = I.(z) U Jp_r(z) (Ip(z) N Jp_r(z) =
0), I.(x) # 0 and J,,_,(z) # 0 hold, where n > 2 and 1 <r <n—1.

We construct some semi-open sets containing a point of (Z", k™) where n > 1.

Theorem 4.4 Let © := (x1,22,...,2,) € Z".

(i) Supposen > 1. If & € (Z™)yn ,i.e., all the components x1, 2, ..., T, of the point x are
odd (cf. Definition 3.11(i)(i-1)), then {z} is a semi-open set containing x in (Z", k™).

(ii) Supposen > 1 and x := (x1, 22, ..., Tn) € (Z™) Fn, i.e., all the components x1,xa, ..., Tp
of the point x are even (cf. Definition 3.11(i)(i-2)). Then, we have the following properties.

(ii-1) We set A(x) := {(x1 + i1, 22 +i2y .o, Tn +in) € Z"|ix, € {+1,-1}(1 < k < n)} for
the point x = (x1,Ta,....,xn) € (Z™)gn. Then, #A(x) = 2™ holds. And, for each point of
A(z), say p(x,u)(1 < u < 2"), the singleton {p(x,u)} is open in (Z™, k™).

(ii-2) In (2", k™), {p(z,w)|l <u < 2"} = (U"™(x)).~ holds, where U™(z) is the smallest
open set (cf. Definition 3.7,Theorem 3.9) containing the point x € (Z™)zn.

(ii-3) The subset {x} U {p(z,u)} is a semi-open set containing the point x € (Z™)zn for
each v with 1 < u < 2",

(iii) Suppose n > 2 and x = (21,72, ...,%n) € (Z")mix) where 1T <7 < n —1 (cf.
Definition 3.11(i)(i-3),(II)(*20)(iv) in Section 3). Let I.(z) = {e(1), e(2),

e} and Jo—r(x) = {o(1),0(2),...,0(n — r)} (cf. Definition 4.3). Then, we have the
following properties.

(iii-1) We set B(z) := {(z1,22,..,2n) € Z"| ze(k) € {Zer) — Lizery +1} (1 <k <
), Zo(j) = To(jy) (1 < j < n—1)} for the point x = (x1,22,....%0) € (Z")mix(r). Then,
#B(x) = 2". And, for each point of B(x), say p(z,u)(1 < u < 27), the singleton {p(x,u)}
is open in (Z™,K").

(iii-2) In (Z™, k™), {p(z,u)|1 <u < 2"} = (U™(x))xn holds, where U™ (x) is the smallest
open set containing the point x € (Z")miz(r)-

(iii-3) The subset {x} U {p(w,u)} is a semi-open set containing the point x € (Z")miz(r)
for each v with 1 < u < 27,

Proof. (i) For the point © € (Z™).n, the singleton {z} is open in (Z",x™) (cf. Proposi-
tion 3.5(iii)(b)) ; and so it is semi-open.

(ii) (ii-1) Obviously, the cardinality of A(z) is 2". The point p(x, u), where 1 < u < 2",
is expressible as p(x,u) = (x1 + 41, T2 + 42, ..., Tp, + ip,) for some integers iy, € {+1, —1}(1 <
k < mn) and so all the components of p(x, u) are odd, because all the components x1, xa, ..., T,
are even. Thus, {p(x,u)} is open in (Z™, k™) (cf. Proposition 3.5(iii)(b)).

(ii-2) For the point = € (Z")zn, we set x = (251, 22, ..., 2s,,) for some integers s;(1 <
i < mn). Then, U(z) = [[\=,U(2s;) = [[;—,{2si — 1,2s;,2s; + 1} is the smallest open
set containing z (cf. Definition 3.7 and (I)(*4)(i) in Section 3). Since (U™(z))xn = {2z €
Um(z)|{z} is open in (Z™, ™)} = {(21, 22, ..., 2n) € [[1=1{28i — 1,25;,28; + 1}|21, 22, ..., 2,
are odd }, we have (U™(z))un = {(281 + 41,282 + 2, ..., 28, + in) € Z™|iy, € {+1,—1}(1 <
kE <n)} = A(x); and so we have (U™ (z)).n = {p(z,u)|1 <u < 2"} (cf. Definition 3.11(i)(i-
1),(ii)(ii-1) and (ii-1) above).

(ii-3) We first claim that x €Cl({p(z,u)}) for each u with 1 < u < 2™. Indeed, we have
Cl({p(z,u)}) = [Th—; Cl{zk +ir}) = [[oei{zr+ir— 1, 2k +ig, xp +ip+ 1} (cf. (I1)(x12)(a)
in Section 3, Proposition 3.5(i)(a)); and so & = (z1,22,...,xn) € [[1_; Cl{zk + ix}) =
Cl({p(z,u)}). Thus, we show that {z}U{p(x,u)} CCl({p(z,u)}) =Cl(Int({p(z,u)})) CCl(Int
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({x}U{p(z,u)})) (cf. (ii-1) above), i.e., {z} U {p(z,u)} C Cl(Int({z} U{p(x,u)})). Namely,
{z} U {p(x,u)} is semi-open in (Z", k™) for each u with 1 < u < 2".

(iii) (iii-1) By the definition of B(z), it is obviously shown that #B(z) = 2". A point
p(z,u) of B(x) is expressible as p(z,u) = (2(u)1, 2(u)2, ..., 2(u)n), where z(u) ey € {Tewr) —
Lizew +1} (1 <k <r)and z(u)o) = Togj) (1 <j <n—r). We recall that the » compo-
nents Te(1), Te(2), - Te(r) are all even and the n—r components z,(1y, To(2), - To(n—r) are all
odd, because we assume that x = (z1,22,...,2,) € (Z")miz(r) Where 1 <r <n —1(n > 2)
and I.(x) := {k| xy, is even}={e(1),e(2),...,e(r)} (e(1) < e(2) < ... < e(r)); and
In—r(x) == {jlz; is odd }= {o(1),0(2),...,0(n—7r)} (o(1) < 0(2) < ... < o(n—r)) (cf. Defini-
tion 3.11(1)(i-3),(II)(*20)(iv) in Section 3 and Definition 4.3 above). Then, since the integers
Tery — 1, ey + 1 and x,(;) are odd, all the components z(u)1, 2(u)2, ..., 2(u), are odd for
each v with 1 < u < 27. We have that the singleton {p(z,u)} = {(2(u)1, 2(u)2, ..., 2(u),)}
is open in (Z™, k™) (cf. Proposition 3.5(iii)(b)).

(iii-2) We recall that, for this point = € (Z")min(y, U™(x) = [lie; U(x;), where
U(@ek)) = {@e(h) = 1, Ter), Te(r) + 1HL < b < 1) and U(z,(5)) = {20y} (1 < j <n—r) (cf.
Definition 4.3,Definition 3.7,(I)(*4)(i)(ii) in Section 3). Thus, we have that (z1, 2o, ..., 2,) €
(U™())n if and only if zer) € {Zer) — 1, Ter) + 1} and zoj) = 24(;) for integers &, j with
1<k<randl<j<n-—r (cf. Proposition 3.5(iii)(b), Definition 4.3). Namely, we have
(U™(w))xn = B(x) for the point x € (Z")pizy and so (U™(x))xn = {p(z,u)[l < u < 27}
(cf. (iii-1) above).

(iii-3) We first claim that (x) {z} U {p(z,u)} CCl({p(z,u)}) holds in (Z", k™) for each
u with 1 < wu < 2". Indeed, for the point p(z,u), we set p(x,u) := (z(u)1, 2(u)2, ..., 2(u)n)
(cf. (ili-1) above). Then, for each positive integers k,j with 1 <k <rand1<j <mn-—r,
it is shown that: in (Z, k),
if Z(U)e(k) = Te(k) — 1, then Cl({z(u)e(k)}) = {xe(k) — 2,1‘6(k) — l,xe(k)} holds;
if 2(w)e(k) = Tery + 1, then Cl({z(w)er)}) = {Ze(r), Ter) + 1, Te(r) + 2} holds;
if 2(u)o() = To(j), then Cl({z(u)o(;)}) = {Zo(j) — 1, Zo(j), To(j) + 1} holds, (cf. (I)(*5)
Section 3). Thus, we show that z.) €Cl({z(w)er)}) and z4¢;) €CL({z(u)o;)}) (1 <
and 1 < j <n—r); and so {z} C [[;_,;Cl({z(u);}) holds in (Z", k™). Since Cl({p(x,u
[T, Cl({z(u);}) in (Z", k™) (cf. (II)(x12) in Section 3), we show that {z} CCL({p(z
and {z} U {p(z,u)} C
Cl({p(z,u)}) hold in (Z™, k™).

We finally finish the proof of (iii-3): there exists an open set {p(z,u)} such that
{p(z,u)} C {z} U{p(z,u)} CCl({p(z,u)}), i.e., {x} U{p(x,u)} is a semi-open in (Z", ")
for each v with 1 <o <27, O

i) in

Theorem 4.5 For the digital n-space (Z™, k™) where n > 1, we have the following proper-
ties.

(i) For any point x of (Z", k™), sKer({z}) = {z}.

(ii) For any subset E of (2", k™), sKer(E) = E.

Proof. (i) We first note that: for the case where n =1,

L = (Z")n U (Z™) gn (disjoint union) holds, where n = 1 (cf. (I)(x11)(iii) in Section 3);
for the case where n > 2,

CZ = (27 ) U(Z) 7o U (UL(Z ) ey 11 < 7 < n—1}) (disjoint union) and (Z")pmix(r) #
(1 <r <n-—1) hold, where n > 2 (cf. Definition 3.11, (II)(*20)(iv) in Section 3).

Let x € Z™. Tt is enough to consider the following three cases for the point x € Z™.
Case 1. z € (Z")n (cf. Definition 3.11(i)(i-1)): since {z} is open in (Z", k™), it is semi-
open. Then, it is obvious that sKer({z}) = {«} in (Z", k") (cf. Definition 2.2(i)). We note
this result is true for the case where n > 1.

Case 2. = € (Z")pn (cf. Definition 3.11(i)(i-2)): we put = = (2s1,2s9, ...,2s,) where
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s; € Z (1 < i <n). Note that, for the point z € (Z")zn, U"(z) =[], {2s:—1, 2s;, 25, +1}
is the smallest open set containing x (cf. Definition 3.7,(I)(x4)(i) in Section 3,Theorem 3.9).
Then, by Theorem 4.4(ii), there exist 2™ semi-open sets {z} U {p(z,u)}(1 < u < 27)
containing the point z € (Z™)z» such that {p(z,u)|]l < u < 2"} = (U™(x))xn ={(2s1 +
11,282 +i2, ..., 25 +in)|ix € {+1,—1}(1 <k <n)} and #((U™(z))xn) = 2™. Thus, we have
sKer({z}) c N{{z} U {p(z,u)}| 1 <wu < 2"}; moreover, (\{{z} U {p(z,u)} 1 <u<2"} =
{z}, because N{{p(z,u)}] 1 < u < 2"} = (). We conclude that sKer({z}) = {z} holds for
this case. We note the result above is true for the case where n > 1.

Case 3. = € (Z")pmiz) Where 1 < 7 < n —1(n > 2) (cf. Definition 3.11(i)(i-3)): for
this point z, we set © = (21,9, ..., z,); then by definition, r = #{i| x; is an even integer
(1 <i<n)}. Werecall the following subsets I,.(z) and J,,_,(z) as follows (cf. Definition 4.3
above):

I(2) = {k| 2 is even}={e(1),e(2), ..., e(r)} (e(1) <e(2) < ... <e(r)); and

Jnr(@) = {jla; is odd }= {0(1),0(2),...0(n — 1)} (o D) < 0(2) < . < ofn — 1)); and
{1,2,..,n} = L.(z) U J_(z) (disjoint unlon) (@) £ 0, Jp_r(x) # 0.

For the point @ € (Z")iz(ry, U™ (z) = [Tiz; U(x;) is the smallest open set containing z,

where U(Zery) = {Zer) = 1, Ze(r)s Te(r) + 111 <k < 1) and U(zo(5)) = {20 }(1 < j <n—
) (cf. Definition 3.7,(I)(x4) in Section 3,Theorem 3.9). Then, using Theorem 4.4(iii), there
exist the 2" semi-open sets {z} U {p(z,u)}(1 < u < 2") containing the point x € (Z" )iz (r)
such that {p(z,u)[1 < u < 2"} = (U"(2))wn ={(21, 22, e 2n)[2e(k) € {Ter) + 1, Teqry —
I <E<7),2005) = o) (1 < j <n—r)} and #((U"(x))xn) = 2". Thus, it is shown that
sKer({z}) € N{{z} U{p(z,u)}| 1 <u <2} = {z} U (N{{p(z,u)}| 1 < u <27}) = {a},
because ({{p(z,u)}| 1 <u < 2"} = (). Then, we show that sKer({z}) = {«} holds for this
case.

Therefore, for all cases above, we have proved that sKer({z}) = {«} holds in (Z", k™),
n>1.

(ii) Since E = | J{{z}|z € E}, by Proposition 2.4(i.e., [4, Proposition 3.1]) and (i), it is
shown that sKer(F) = [ J{sKer({z})|xz € E} = U{{z}|lxr € E} = E. O

The following result is a characterization of the w-closed sets in Sundaram-Sheik John’s
sense of (Z™, k™).

Theorem 4.6 For a subset A of (Z™, k™), where n > 1, A is closed in (Z™, k™) if and only
if A is an w-closed set in Sundaram-Sheik John's sense of (Z™, k™).

Proof. By Theorem 2.5, it is obtained that a subset A is an w-closed in Sundaram-Sheik
John’s sense of (Z™, k™) if and only if C1(A4) CsKer(A). Then, by Theorem 4.5 (ii), it is well
known that A=sKer(A) holds. Thus, A is w-closed in Sundaram-Sheik John’s sense if and
only if CI(A) C A (i.e., A is closed in (Z™, K™)). O

Remark 4.7 (i) Every subset of (Z", k™) is a As-set in (Z™, k™). Indeed, let E be a subset
of (Z™, k™). By Theorem 4.5 (ii) and Definition 2.3, it is shown that E=sKer(F) holds, i.e.,
E is a Ag-set of (Z™, k™).

(ii) By (i) and Proposition 2.6, it is obtained that (Z",x™) is a semi-T; topological
space. However, we note that, in 2004, S.I. Nada [30, Theorem 4.2, Theorem 4.1] proved
that (Z™, k™) is semi-Ts; the proof is very elegantly done, using the semi-Ty separation
property of (Z, k) and the product topology of k; and hence their product space (Z™, k™)
is semi-Ty; in 2006, present authors [11, Theorem 2.3, Theorem 4.8 (i)] proved that (Z, k)
and (Z?%, k?) are semi-Ty. But, in the end of the present paper (Corollary 4.10 below), we
shall mention an alternative proof of the result ([30, Theorem 4.2]) using Theorem 4.4 and
ideas in [39].
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Example 4.8 In general, w-closed sets in Sundaram-Sheik John’s sense of a topological
space are placed between closed sets and g-closed sets (cf. Definition 2.1(ii) (i.e.,[35])).
The following example shows that there is a g-closed sets which is not an w-closed set
in Sundaram-Sheik John’s sense of (Z", k™) (i.e., closed set in (Z™, k™), cf. Theorem 4.6).
Suppose n > 2. Let A :=Z" \ ((H{(Z")mizry| 1 <7 <n—1}),ie, A= (Z")Fn U (Z")xn
and A # (. We consider the following figure which is shown by the symbols e € (Z™)zn
and o € (Z") . in Z2. The figure shows the subset A above for n = 2.

Z
T
° . ° ° . . ° °
o o o o . o o - o o
° ° ° ° ° ° ° ° — Z
o o o o . o o o o
° ° ° ° ° ° ° °

Let V be an open set containing A. Then, in below, it is proved that V = Z"; and hence
the set A is g-closed in (Z™, k™) (cf. Definition 2.1(i), i.e., [22, Definition 2.1]).
(Proof of the property: V O Z™). Let x := (21,29, ...,x,) € Z" such that z ¢ A. For this
point x, we have x € (Z"),,iq(r) for some integer » with 1 <7 < n — 1. The component
Te(ry is even, where e(k) € I.(z) (1 < k < 7) and z,(;) is odd, where o(j) € Jp_r()
(1 <j<mn-—r) (cf. the notation in Definition 4.3, the proof (Case 3) of Theorem 4.5(i) or
in the proof (Case 2) of Proposition 4.1(i)). We pick a point y := (y1, Y2, ..., Yn) as follow:
Ye(k) = Teky(1 < k < 1) and yoj) = Ty + 1(1 < j <n—r). Then, y € (Z")rn C A
and x € U™(y). Since y € A C V and V is open, we have U"(y) C V (cf. Definition 3.7,
(I)(*4)(1)(ii) in Section 3,Theorem 3.9(iii)); and so z € V. (o)
Thus, we have CI(A) C Z™ = V for an open set V such that A C V ji.e., A is g-closed.
On the other hand, it is shown that Cl(A) = Z" and so A is not closed in (Z", k™) (cf.
Theorem 4.6).

We mention an alternative proof of the result [30, Theorem 4.2] (cf. Remark 4.7(ii)
above). For (Z",k™) (n > 2), we can construct directly two disjoint semi-open sets sep-
arating two given distinct points (cf. Corollary 4.10). We need the following property
Theorem 4.9 on the smallest open sets and Theorem 4.4.

Theorem 4.9 Let z,2’ € Z", where 1 < n. If v # o' in (Z™, k"), then (U™(z))un #
(U™(2'))n holds.

Proof. We first recall that Z™ = (Z")n U(Z™) 70 U (U{(Z™)miw(rm |1 < 7 < n—1}) (disjoint
union) holds and (Z") iz # 0(1 < r < n —1) if n > 2 (cf. (II)(*20)(iv) in Section 3).
Since {z,2'} C Z™, we should check the cases below, Case i (1 < i< 3), in order to prove
(U™(@))n # (U™(2'))xn. We secondly suppose, for a contradiction, that
(x1) (U™(x))xn = (U™(x")) k= holds.

Case 1. z € (Z™)n and 2’ € (Z™)xn (cf. Definition 3.11(i)(i-1)): for these points = and
x’, we have that {z} and {2} are open singletons and U™(z) = {z} and U™(2’) = {2/}
(cf. Definition 3.7, (I)(x4)(ii) in Section 3); and so, by (x1) above, {z} = (U™(x))x» =
(U™(@"))n = {2'}. This contradicts the first setting of the given points  and z’ (i.e.,
x' # x).

Case 2. © € (Z")x» and 2’ € (Z")7» U (U{(Z") izl < 7" < m—1}) (cf. Defini-
tion 3.11(i)): for this case, {x} = U™(z) holds (cf. Definition 3.7(I)(*4)(ii) in Section 3); and
by Theorem 4.4(ii) (iii), it is obtained that #(U™(2))xn = 28, where R’ := nif 2/ € (Z")5n
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and R’ :=r"if 2’ € (Z")pmizey(1 < 7" <n—1). And so, by (x1), we have that 2R =1
holds, i.e., 2" =1 or 27" = 1. These contradict the first setting of the given integers n with
n>1andr withl1 <7 <n-—1.

Case 3. {z,2'} C (Z")r» U(U{(Z")miz(|1 <7 <n—1}) (cf. Definition 3.11(i)(i-2) (i-

3)):

By Theorem 4.4(ii) and (iii) for the point x, there exist the open singletons {p(z,u)}(1 <
u < R) such that (U™(z))» = {p(z,u)|l1 < u < R} holds, where R := n if z € (Z™)zn
and R := 71 if 2 € (Z")mip(r) (1 <7 <n—1,n > 2). Moreover, for the point 2’, there exist
the open singletons {p(«’,v')}(1 < v’ < R’) such that (U™(z))x» = {p(2’,v')|]1 <u' < R'}
holds, where R’ := n if 2’ € (Z")n and R' := 1" if 2’ € (Z")miz(y(1 < 7" <n—1 and
n > 2). We may assume that R’ < R. Then, {p(z/,u/)|]1 < v’ < 28} = (U™(2'))un=
(U™(x))en N(U™(@"))n = (U™(x) NU™(2"))en C U™(x) NU™(2"). Namely, U™(x) N U™ (z')
contains exactly the 2% open singletons {p(z’,u/)} (1 < v’ < 2%). This shows that
the assumptions of Theorem 3.12 (i.e., [39, Lemma 2.3]) are satisfied. And, using (x1)
above, we have 2% = #((U™(z'))n) = #((U™(z))un) = 2% and so R" = R. Then,
under the assumption (x1) above, we do not have the case where that (R, R) = (r',n)
or (n,r), because r,7’ € {1,2,..,n — 1} hold. Namely, under (1), the following case
does not occurs : x € (Z")Fn and ' € (Z")mizry(1 < 77 < n—1) (or o' € (Z")Fn
and © € (Z")miz)(1 < 7 < n—1)). For other all cases where (R',R) = (n,n) (ie.,
{.’[,SU/} - (Zn)f"‘> or (RlvR) = (rlvr) (i'e'v T € (Zn)mzx(r) and 2’ € (Zn)mix(r’)> with
r,r’ € {1,2,...,n — 1}, using Theorem 3.12(iii)’ (i.e.,[39, Lemma 2.3 (iii)’]), we have 2’ = z;
this contradicts the first setting of the given points x and 2’ (i.e., 2’ # x).

Therefore, we show the required property that (x2) (U™(z))x» # (U™(z"))x» holds if
x #£ o in (2", k™). O

Corollary 4.10 (Namda [30, Theorem 4.2] for any n > 1; [11] for n = 1,2) The digital
n-space (2", k™) is a semi-Ta-space.

Proof. Suppose n > 2 in the present proof; and so we have (Z") iz (r) # () for each integer r
with 1 <7 <n —1 (cf. Definition 3.11(i)(i-3)). We use Theorem 4.4 on the construction of
semi-open sets in (Z", k™) and Theorem 4.9; and we prove that (Z", k™) is semi-T5, where
n > 2, as follows.

Let x and 2’ be any distinct points of (Z", k™). We set © = (x1,x2,...,2,) and z’ =
(), b, ..., x}), where z; € Z and 2} € Z(1 < i < n). Since {z,2'} C Z" = (Z")un U
(Z™) 7o U (UL(Z" ) iy |1 < v < n—1}) (disjoint union) (cf. (II)(%20)(iv) in Section 3), we
consider the required proof for the following cases.

For the points x and z’, we first use Theorem 4.9; we have that:

(x2) (U™())un # (U™(2"))4n holds, where U™ (y) is the smallest open set containing each
point y € {z,2'}. Namely, we have that:

e (xa) there exists a point z € (U"(z))wn and z & (U™ (x))xn; or,

e (xb) there exists a point 2’ € (U™(2'))x» and 2’ & (U™(x))n.

Case 1. z € (Z™)» and =’ € (Z™)n: it is obviouse that {x} and {2’} are the required
disjoint semi-open sets, because every open set is semi-open.

Case 2. {z,2"} C (Z")7» U (UH(Z") izl <7 <n —1}):

e For Case (xa) above, by Theorem 4.4(ii) and (iii) for the point z, it is shown that
z = p(x,up) holds for some point p(z,ug) € (U™(2))xn (1 < ug < 2F), where R := n if
x € (Z")pr and R:=r if € (Z")piz(r), because (U™ (z))en = {p(z,u)|1 < u < 28} holds.
Moreover, we have that {x}U{z} is a semi-open set containing the point z (cf. Theorem 4.4
(ii-3) and (iii-3)). Using Theorem 4.4 (ii) and (iii) for the point z’, we can take any semi-
open sets {z'} U {p(z/,u')} containing z’, where {p(z/,u')|1 < u' < 28} = (U™(z'))n and
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the integer R’ is defined by R :=n if ' € (U"(2'))» and R := 7" if ' € (U™(2"))miz(r)
with 1 <7/ <n — 1. Then, we have that ({z} U {z}) N {2’} U {p(z’,v")}) ={z} n{z'}) U
({z} 0 (o', o)1) U ({21 0 {2} U ({2} 0 o, o) }) € (V 0 (Z7)n) U (U () N V) U
{2} n(U™(@"))wn) = 0, where V := (Z") zn U (H{(Z" ) miz(r)|1 < 7 < n—1}), because of
the decomposition of Z™ and the property in (xa) (i.e., z € (U™(2'))xn). Thus, for Case
(xa), {z}U{z} and {2’} U{p(2’,u’)} are the required disjoint semi-open sets containing the
points z and z’, respectively.

e For Case (xb) above, by Theorem 4.4(ii) and (iii) for the point 2’ it is shown that
2" = p(a’,ug) for some point p(z’,uy) € (U™(2))xn, because (U™(z))xn = {p(a’,v)|1 <
u' < R’} holds, where R’ := n if 2’ € (Z")z» and R' := 7" if 2’ € (Z")nip() with
1 < ¢ < n—1. Here we note that 2/ & (U"(x))xn. It is shown that {z'} U {2’} (i.e.,
{z'} U {p(a’,uf)}) is the required semi-open set containing a’ (cf. Theorem 4.4(ii-3) and
(iii-3) for the point z’). Using Theorem 4.4 (ii) and (iii) for the point z, we can take any
semi-open sets {r} U {p(z,u)} containing x, where {p(z,u)]1 < u < 28} = (U"(2))xn
for the integer R with R := n if v € (U"(2))7» and R := r if 2 € (U™(2))miz(r) With
1 <r < n—1. Thus, the above semi-open sets {z} U {p(x,u)} and {2’} U {2’} are the
required disjoint semi-open sets containing the point x and z’, respectively. Indeed, we have
that ({z} U {p(z,0)}) 0 ({2'} U {='H)= ({z} 1 {2'}) U ({2} 0 {21 U ({ple, w)} 0 {2} U
{p(z.u)} 0 L)) € (VA (Z7)en) U (U () 1 V) U (U () O {2')) = 0, where
Vo= (Z")Fn U (U(Z")miz(|l < 7 < n —1}), because of the setting that z # 2/, the
decomposition of Z" and 2z’ & (U™ (z)).n» for the Case (xb).

Case 3. z € (Z")xn and 2" € (Z") 70 U (U{(Z" ) mix(r)|l <7 < n—1}): for this case, we
have that {z} = U"(z) and {2} N (U™(2'))x» = 0 and so {x} is the required semi-open set
containing the point z. We can construct the required semi-open set containing z’ using
Theorem 4.4; the construction is done by an argument similar to that in Case 2.

Therefore, by Case 1, Case 2, Case 3 above for distinct points  and z’, there exist
disjoint semi-open sets containing the point = and z’, respectively; and so (Z", k™) is semi-
Ts. O

Remark 4.11 (cf. Remark 4.7(ii)) The digital n-space (Z™, ") is semi-Ts, where n > 1
[30]; (Z,r) and (Z?,k?) are semi-Ty [11]. The results are confirmed directly by Corol-
lary 4.10 above. Moreover, since the semi-Ts separation axiom implies the semi-T; sep-
aration axiom, using Proposition 2.6(i), we have an alternative proof of Theorem 4.5(ii)
(cf. Definition 2.3). The above proof of Corollary 4.10 is done constructively; the present
authors believe that we applies the same method to other topological properties on (Z™, ™)
which are not proved by arguments preserving of topological products of (Z, k) and we have
further applications.
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GLOBAL EXISTENCE AND EXPONENTIAL ATTRACTOR OF
SOLUTIONS OF FIX-CAGINALP EQUATION

ToOSIYA MIYASITA
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ABSTRACT. We consider the Fix-Caginalp equation with the Neumann boundary
condition in R"™ with n = 1,2,3. We obtain a global solution by the existence of
the Lyapunov function. After, we construct a dynamical system corresponding to the
equation. By the existence of the Lyapunov function, the w-limit set is included in
the set of its stationary solution. We treat its dynamical properties such as a global
attractor, absorbing set, exponential attractor and so on. It is important to obtain
the estimate independent of the initial value. Finally, we construct an exponential
attractor.

1 Introduction In this paper, we consider the following Fix-Caginalp equation:

Tor=E2Np+¢— > +2u €, t>0,

ut—l—%@:ffAu zeQ, t>0,
(1) % =9u=y z €N, t>0,

o(x,0) = ¢o(z) x €8,

u(z,0) = up(x) x €,

where 7, [, k and € are positive constants, v is the outer unit normal vector and € is
a bounded domain in R™ with smooth boundary 92 for n = 1,2,3. An equation (1) was
proposed by Caginalp in [4] to describe the phase transitions with finite thickness interfaces.
The unknown functions ¢ and u represent the phase function and the reduced temperature,
respectively. The positive constants 7, [, x and € represent the relaxation time, the latent
heat, the thermal diffusivity and a length scale which is a measure of the strength of the
bonding at the microscopic level, respectively. In [12], they consider the historic background
of the model and the derivation of a more general thermodynamically consistent model. At
first in [4], he proved a global existence of a solution under the restriction é < k. After in
[7], [2], [3] and [16], they dropped the restriction and proved the global existence under the
other boundary conditions

(b(l‘,t) = ¢89(x)7 u(x,t) = an(.ﬁ),

%(m,t) =0, u(z,t)=upo(x)

and

b(x.1) = (), %(z,t) _ 0

for z € 9Q, t > 0, where ¢gqa(z) and ugq(x) are given functions on 9. In [7], they consider
the stationary problem with the Neumann boundary condition, derive the existence and

2010 Mathematics Subject Classification. Primary:35K55; Secondary:37L25,37L30.
Key words and phrases. Fix-Caginalp equation, Lyapunov function, w-limit set, global attractor, ab-
sorbing set, exponential attractor.
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non-existence of nontrivial solutions and the multi-existence of trivial solutions according
to the values of constants [, ¢ and fQ udr + % fQ ¢dr and deal with their stabilities. If
n = 1, the stationary problem with the Dirichlet boundary condition is considered in [5]
and [9]. They show that there exist exactly 2m + 1 solutions with m being an integer
determined by € and €. In [7], they consider the asymptotic behaviour of solution of (1).
For results with initial data in different settings of spaces, see [7], [1] and [3]. Lately in
[13], they consider non-local stationary problem and get some results on multiple existence,
stability and bifurcation of the solution. For a system of reaction-diffusion equations in
a bounded domain 0 C R?2, the existence of a global attractor and exponential attractor
is proved in [11]. Their key fact is that its dynamical system has the squeezing property.
Although the global existence for (¢g,ug) € H(Q) x L*(Q) is known by [7] and [16], we
treat more general space H7(Q2) x H7(Q). For the definition of function space and notion
of dynamical system, see Section 2 in this paper or [15], [6], [8], [14], [9]. In [16], he proves
the dynamical properties with the Dirichlet boundary condition instead of the Neumann
boundary condition. Since we can use the Poincaré inequality, the estimates of the Dirichlet
boundary condition case are easier. In particular, since the solution (¢, u) with the Dirichlet
boundary condition has the global dissipative property, we don’t have to consider a space Hy,
mentioned in Theorem 4 in this paper in order to construct a global attractor. The purpose
of this paper is to establish the existence of a global solution, the properties of w-limit
set and the exponential attractor in the dynamical system introduced by the Fix-Caginalp
equation. The first theorem is concerned with the global existence.

Theorem 1 Let Q C R™*(n =1,2,3) be a bounded domain with smooth boundary 0. We
suppose that ¢o,ug € HY(Q) for v < v <7, where (n,l,ﬁ) = (1,0, i) , (2,0, %) , (3, %, %)
Then, the problem (1) admits a unique global solution (¢, u) such that

b1 € € ((0,00); H'(9)) 1 C ([0, 00): HT(R)) N € ((0,00); H1(9).
The associated nonlinear semigroup T (t)
T(t) (¢o(-),uo(-)) = (¢(-, 1), u(:, 1))
defines a dynamical system in HY(Q) x HY(Q).

To obtain the a priori estimate for H! norm, we use the Lyapunov function

2
L(¢,u) (t);/Qquerl;/QV¢|2dx+i/QW(¢)dx+z§/QVu2dz:

for § < 477, where
W) = (1)
In the second theorem, we obtain the regularity of solution.
Theorem 2 Under the same assumption as Theorem 1,
¢, u € C™ ((0,+00); C>()) .
For any n > 0, the orbit t € [n,4+00) — (P(-,t),u(-,t)) is compact in HY(Q) x HY(Q).

Combining the estimates obtained in Theorems 1 and 2 with the existence of the Lya-
punov function, we consider the structure of w-limit set in the third theorem. At first, by
E we denote the set of stationary solution corresponding to (1). Since ¢(t),u(t) € H*(Q)
for t > 0, we assume that ¢g,uo € H'(2). As proved in Theorem 1, it is also easy to show
that the dynamical system is defined on H'(Q) x H* ().
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Theorem 3 We suppose that ¢g,ug € H (). Then, w(do,ug) is nonempty, compact,
invariant and connected in H'(Q) x HY(Q). And w(¢o,uo) is a single point and it holds
that w(¢po, ug) C E.

We construct an exponential attractor in H!(Q) x H!(Q) in the last theorem. However,
the solution (¢, u) of (1) does not have the global dissipative property. Thus, we restrict
the initial function to

Hy, = {(¢0,u0) € H' () x H'(Q) | L(¢o,u0) < k}

for fixed k£ > 0 and reduce a dynamical system to its subdynamical system {T'(¢) : Hy —

Theorem 4 Under the same assumption as Theorem 3, T (t) is dissipative in Hy,. The dy-
namical system T'(t) has a global attractor A C Hy. Then, there exists a compact absorbing
and positively invariant set X C Hj, such that its subdynamical system {T(t) : X — X}
admits an exponential attractor € in HY(Q) x H ().

This paper is composed of 6 sections. In Section 2, we introduce the notions and theories
of an abstract evolution equation and dynamical system. We also refer to the function
space involved in this paper. In Section 3, we apply the existence theorem in Section 2 and
establish the local solution of (1). In Section 4, we derive the a priori estimates and extend
the local solution globally in time. In Section 5, we consider a nonlinear mapping from
the initial function to the solution of (1) and define the dynamical system. The obtained
estimates in Section 4 lead us to the proof of Theorems 1, 2 and 3. In section 6, we construct
an exponential attractor and prove Theorem 4. Now that we restrict to Hy and have the
Lyapunov function, our result follows at once.

2 Preliminaries We introduce the results and related facts in an abstract evolution
equation. These results are mentioned in mainly [15] and [9], [8], [6]. Let X be a Banach
space with the norm || - ||. Let A be a densely defined, closed linear operator in X. We
assume that the spectrum of A is contained in an open sectorial domain such that

2) o(A) C Sy ={AeC|larg\| <w}, wA<w<g
and M
(3) H(/\—A)_lug © Ag S wa<w< T

Al 2
for wy € [0, %), where M,, > 0 is a constant depending on A and w. We call A a sectorial

operator of X with angle 0 < ws < 5. We consider the Cauchy problem for a semilinear
abstract evolution equation

() {Ut—i—AU:F(U) t>0,

U(0) = Us

in X. Here, F is a nonlinear operator from D(A") into X, where 0 < < 1 and satisfies a
Lipschitz condition of the form

IFU)-F(WV)II < &(|A°U] +|A%V]]) x
(5) (A" (U = V)| + (JA"U || + [|A"V ) || A° (U - V)||}

for U,V € D(A") with 0 < 8 < n < 1, where ®(-) is some increasing continuous function.
We have the following global existence theorem.
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Theorem 5 (Theorem 4.1 in [15]) Let (2), (8) and (5) with 0 < 8 <n < 1 be satisfied.
Then, for any Uy € D(AP), (4) admits a unique local solution U in

UeC ((OvTU0]7D(A)) nc ([OaTUo]vp(Aﬁ)) N Ol ((OaTUo]vX) 5

where Ty, denotes the maximal existence time depending only on the norm HAﬁUOH, More-
over, it holds that
|A°U || + ¢ =PN|T3]| + 7 | AU| < Cu,

where Cy, 1is a positive constant depending only on HABU0||~

Here, we note that D(A”) = X for 3 = 0. We can take 3 = 0 in the condition (5)
throughout theorems in this section.

Theorem 6 (Corollary 4.1 in [15]) Under the assumption of Theorem 5, we suppose
that any local solution U satisfies the estimate

147T@)] < Cus,

for 0 <t < Ty, with some positive constant Cy, depending only on HAﬁUo || and independent
of Ty,. Then, (4) admits a unique global solution U for all t > 0.

Let K(R) be a bounded ball in the space D(A”)
K(R) = {U € D(A?) | |APU|| < R}

for 0 < R < oo. Then, for all Uy € K(R), there exists a local solution of (4) on some interval
[0,Ty,]. There exists the time Tk > 0 such that [0,Tg] C [0,Ty,] for all Uy € K(R). We
have the theorem of the continuous dependence.

Theorem 7 (Theorem 4.3 and Corollary 4.2 in [15]) Under the assumption of The-
orem &5, let U and V be the solutions of (4) for the initial functions Uy and Vy in K(R),
respectively. Then, we have

AT (U () = VO) + 17 |47 (U ) = V(O)| + IU(t) = VBl < Lr [Uo — Vol

and
AU () = V() + || AT (U ) = V()| < Lr ||A7 (U — Vo) ||

for 0 <t <Tg, where Ly is a positive constant depending only on R.

We assume that there exists an increasing continuous function p(-) > 0 such that any
local solution satisfies

147 T )] < p(]| 47T}
for t € [0,Ty,] and Uy € D(AP). Theorem 6 implies that there exists a global solution on

[0,4+00) with the estimate
(6) l4°u@)] < o470

for t € [0,4+0c) and Uy € D(A?). We define a nonlinear operator T'(t) : D(AP) — D(AP)
by T(t)Us(-) = U(-,t). Let M be a subset of D(A%), M being a metric space with the
distance d(U,V) = ||A® (U — V)|| for U,V € M. A family of nonlinear operators T'(t) for
t > 0 from M to itself is said to be a continuous semigroup on M provided that

(SG.1) T'(0) is an identity mapping on M,

(SG.2) T(t)T(s) =T(t + s) for t,s > 0,

(SG.3) T'(t) is continuous from [0, +00) X M to M.

To show the property (SG.3), we combine Theorem 7 with the estimate (6). We apply the
estimate on the larger ball K,y D Kr because Up<i<ooT (1) Kr C Ky(R)-
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Theorem 8 (Proposition 6.2 in [15]) For any 0 < R < oo, it holds that
[AP(T(6)Uo = T(0)V)|| < Lyt |47 (Uo = Vo) |

for t € [nTyry, (n + 1)Tyg)] with n € NU{0} and Uy, Vy € Kr, where L;&l) >01isa
constant depending only on n and p(R).

Henceforth, we write X = D(A”). We denote the totality of trajectories starting from
the points in M by the triplet (T'(¢), M, X) and call it a dynamical system. A set ¥ C M
is said to be positively invariant under T'(¢) if T(¢)X C X for all t > 0. A set ¥ C M is said
to be negatively invariant under T'(¢) if ¥ C T'(¢)X for all t > 0. A set ¥ is invariant under
T(t) if it satisfies both conditions. A set A C M is said to attract a set B C M under T'(t)
if

sup inf [jv —ul| —0

veT(t)B UEA
as t — 4o00. T(t) is said to be dissipative if there exists a bounded set C C M such that
attracts every point of M under T'(t). A set A C M of (T'(t), M, X) is said to be a global
attractor if A is a maximal compact invariant set and attracts every bounded set B C M.
A set D C M is said to be an absorbing set if for every bounded set B C M, there exists
to such that U4, T(t)B C D holds. We take t; > to so that Uy>, T(¢t)D C D holds. Let
X = U, T(t)D C D. & is said to be an exponential attractor of (T'(¢), X', X), provided
that
(EA.1) A C £ C X holds, where A is a global attractor,
(EA.2) £ is compact in X,
(EA.3) & is positively invariant under T'(t),
(EA.4) & has a finite fractal dimension dp(€),
(EA.5) sup,erx infoee lu —v| < coe™ %, where ¢ and ¢; are positive constants. Here,
if we denote by N,.(£) the smallest number of r—balls necessary to cover £, we define a
fractal dimension by

log N,
dp(€) = limsup Ll(g).
r—0 log P

Then, we have

Theorem 9 (Theorem 3.1 in [6]) Let F(U) satisfy the Lipschitz condition
IF@) = F(V)| < Cx [ 4% @ =)

for U,V € X, where Cx > 0 depends only on X. Moreover, we assume that the mapping
S(t,Up) = T(t)Uy satisfies the Lipschitz condition

15(s, Uo) = St Vo)l < Cx,r ([[Uo = Vol| + [t — )

for Uy, Vo € X and s,t € [0,T] with any T > 0, where Cx r depends only on X and T
Then, the flow {T'(t)} admits an exponential attractor E.

Finally, we introduce the function space treated in this paper. For p € N, HP () denotes
the usual Sobolev space with the norm

N|=

2
ol = | D 1Dl

la|<p



344 T. MIYASITA

for w € HP(), where [ - |, denotes the standard L? norm in €, « is a multi index
a=(a,ag, -, an), o =a1 +az + -+ a, and
Do — olel

8041 xlaaQIQ N 30171,17” :

For 0 < 59 < s < 81 < +00, HQ(Q) is the interpolation space between H®°(Q2) and H*' (),
denoted [H*°(Q), H**(Q)]p,s = (1 —0) sg + sy with 6 € [0,1]. Then, the interpolation
inequality

I lge < Cl - llgee

holds according to Theorem 1.15 in [15]. Moreover, we denote

| %7

Hy(Q) = {ueHm(Q) | %:O xE@Q}

for m > % By D(2), we denote the space of all infinitely differentiable functions on Q with
compact supports. HE(Q) is defined as the closure of the set D(Q) in the space H*(Q).
H—5(Q) is defined as the dual space of H§(Q).

3 Local solution We prove the local existence and uniqueness of the solution by the
theories of an abstract evolution equation. We show that the nonlinear term in (1) satisfies
the condition (5).

Proposition 1 (Local existence in H") Suppose that ¢o,ug € HY(Q) for v < v < 7.
Then, (1) admits a unique local solution (¢, u) such that

b.ue C (0,77, ' (@) nC (0,77, H(@) N C* (0,77, , 1 @),

where v and % are defined in Theorem 1. In this paper, T3, ., denotes the mazimal existence

time depending only on the norms ||ug|| ;. and ||¢ol| - of initial functions.
Proof of Proposition 1: (1) can be written into

Ui+ AU = F(U), 0<t< oo,
_ . %o

where
(¢ _ (A0 _( {E+1) o~ ¢3+2u})
U‘(u)’ A‘(B Az>’ F‘((M) A
A= —CA—1). Ay——m(A-1 4 B=A
1==S(8-1), A=-k(A-1) ad B=A

The two operators A; and A, are positive definite self-adjoint operators of H~1() with
domains D(A4;) = D(A2) = H*(2). We regard B as a linear and bounded operator from
HY(Q) to H~1(Q). If necessary, we put w(x,t) = pu(x,t) for small p > 0. Then, the second
equation in (1) is converted into

l
wy + Epgi)t = kAw.
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For sufficiently small p > 0, we can suppose that

= (A O

4= < PB A )
and hence A are strictly positive operators of X = H~1(2) x H~(). Theorems 2.1 and
2.16 in [15] imply that A is a sectorial operator with angle 0 < wq < % in X. Then, it

2
holds that
D(AP) = HY(Q) x H"(Q)

for % < B < 1, where v = 23 — 1 (for details, see Theorems 12.1 and 16.7 in [15]). Under
our setting, we can apply Theorem 5 in Section 2 to (1). In fact, by the next lemma, we
show that the nonlinear term in (1) satisfies the condition (5). We set

1 5 3
B 1 = (1,7,7,1) forn=1,
(nag767a) = (n7ry—2’—a’y;1’a) == (2,%,%,1) forn = 2,
(3717671) for n = 3.

Lemma 1 Letn =1,2,3. Then, there exist o and 3 satisfying 0 < 8 < 3 < B<a<a<l
such that

2
[@-v|,  =clat@-w| 145 6= ol
for ¢, € H*(Q), where C is a positive constant depending only on o, B and Q.
Proof of Lemma 1: In the case of n = 1,2, we note that
[wll, < Cllwl| g

for w € H'(Q), where ¢ > 1 and C is a positive constant depending only on ¢ and €.
Henceforth, we denote a positive embedding constant depending only on ¢ and Q2 by C'. We

takeO<p<Qand4<qw1thm—|—f—1 For n =1, we have

Je-wil,. = s | @-v) i
H weH(Q),[|lw|| g1 <1 1/Q
< sup lwll, 16 — 12, 16 — |
weHN @)l p<t o !
< Clo— vl o - vl o
443p 2 34p
g<ﬂPWHW¢—w AW“W¢—@H
H-1 H-1
Here, 3 < ﬁ;ﬁ’i) <2< 2(3211;) < 3. For n = 2, we have
3
l@-v?|, . < Clo—vl?a lo-vl, .2
e g 242+p
< CHA?W¢w) mﬁ”%¢¢w
H-1 H-1

Here, 5 < ;ig <3< 2(421’;) < 1. In the case of n = 3, we note that

lwlls < Cllwll g
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for w € H(Q). Wetake%<p<3and15—8<q<6with$+%:% We have

@-v?| , < sup Jwl 6= 613 g 16— ¥
H H-1 weH @) wl i<t 3(6+7) !
< C - 2 P - —p
< Clo ¢||H% [ 1/1||Hng
5(34+p) 2 15
< o) o-v)| a4 e-u)
H-1 H-1
3 5(3+p) 5 15
Here, 3 < 4(6+5) <% <awipy <1l O

ForU<i>,V(:f})6D(A"‘)with,6’<a<oz,wehave

(@ +1-360) (0—v) — (6 - 9) +2(u—0)}
(k= 1) (=) + 2 {(6 = )" + Bov ~ 1) (9 - v) }
and concentrate on the estimetes

l6=llgrs [@=0?| 0 lew@- 0y, lu—vlg

H—l

F(U) - F(V) =

Now by the estimates as obtained in Lemma 1, we can apply Theorem 5 to our setting. O

Remark 1 (Local existence in L?) In the case of n = 1, We can take v = 0 in Propo-
sition 1. Now that it holds that H=*"(2) € C(Q) for r > 0, we have

le-w?| < s el I3 - vle < Cllo = vl3 16— b4

-1
H weHg (Q),[|wll 1 <1

where r € (0,%) and | - || denotes the norm of the space of continuous functions in Q.
Hence, for ¢o,ug € L?(), (1) admits a unique local solution (¢,u) such that

p,ue C((0,T) ., H' () NC([0,Ty, ) L* Q) nC ((0, T3, .. ); H Q).

Proposition 2 (Local existence in H') Suppose that ¢o,ug € H* (). Then, (1) admits
a unique local solution (¢,u) such that

p,ue C((0,Th 4 i HX () N C ([0,T5, , J; H' () N C* ((0, T}, .1 L*(2)) -

Proof of Proposition 2: In Theorem 5, we take
X =L*(Q) x L*(Q) D(A%)=H' Q) x H'(Q) D(A) = HZ(Q) x H3(Q) S=n==.

We have
@ =w°|, = o= wll§ < 16 - vl

for ¢, € H'(Q). Hence, we can apply Theorem 5 to our setting. O
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Proposition 3 (Local existence in H?) Suppose that ¢g,ug € H%(Q). Then, (1) ad-
mits a unique local solution (¢, u) such that

b€ C((0.72, ] HY (D) N C (10,12, s B3 () N C (0,72, ,,J: H'()

Proof of Proposition 3: In Theorem 5, we take
X = H'(Q) x H'(Q) D(A?) = H}(Q) x HY(Q) D(A) = HY(Q) x HY(Q) B=n=75.

Since it holds that
[wlle < Cllw|l g

for w € H%(Q), we have

[vio-0?|, =3[ @ -0 ve-v)|, <3216 - vl 16— llm <362 16 - vl
for ¢, € H%(9), which proves the proposition. O
Proposition 4 (Local existence in H?) Suppose that ¢o,ug € Ha(Q). Then, (1) ad-

mits a unique local solution (¢, u) such that

6.0 € C (0,3, HE(9)) 0 C (0,73, ) H(9) N C (0,73, ., H3 (©)

Proof of Proposition 4: In Theorem 5, we take

X = H(@)x Hy(9) D(A}) = HY(Q) < HY(Q) D(A) = HL (@) < HY(Q) f=n=.
The following estimate shows the proposition.
|aw=-v?|, = s|w-vIve-wP| +3|0-vaw-v)|,
< 6C° 16— ¥l s 16 — Pll g2 16 = Bll 2 +3C |6 = W32
< 90 ||é — Wl
for ¢, € Ha(Q). O

4 Global solution We derive the a priori estimates to obtain the global solution. The
tools are the Lyapunov function and energy method.

Lemma 2 For ¢o,up € H'(Q) and t € [0,T}

o,uo]’

_ 1 2 le? 2 l ) 5
L(gb,u)(t)—ﬁ/gu dm+§/ﬂ|v¢| dx+Z/QW(¢)dx+7/Q|Vu| dx

) ) - 2
is the Lyapunov function for (1), where 6 < 4T and W(¢) = i (gz52 — 1) .
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Proof of Lemma 2: We have only to prove that L (¢,u)(t) is monotone decreasing
with respect to t. Now that we have (¢(¢),u(t)) € HY(Q) x H(Q ) for t € [0,T}, ,,] from

Proposition 2, L (¢, u) (t) < oo because of the inclusion H(Q) C L*(£2). Note that

2
Ira® + 216ab + 46b* = | ﬁﬁib +54T_l5b220
T T

for a,be R and § < 4{. We have
L(vu) (1) - V= [ A nm s
t/

/t/uutdxds+/ /w Voidrds + — // ¢* — 1) ¢p¢pdxds
+k0 / / Vu - Vuydeds

/ / (mu— q§t> dxds—— / / A¢odads

*Z/t, /Q(qSQ—l) ¢¢td:vds—5/t/ /Qut <ut+2¢t) dzds

t 1 t
K / / \Vau|® deds — - / / (77 + 216¢,uy + 40uf) dads < 0
t JQ 4 t JQ

for 0 <t <t<T, , . Inparticular, we have

/"HVUMd Lol V/\mﬂbds<lw¢muw L () (8) < L (o, o)

On the other hand, since

) ) I \°  4r—15 ,
lta” + 2ldab + 40b° = 6§ 2b+§a +1 1 a®>0
for a,b € R and § < 4{, it also holds that
) [ 1wt + L s < 2 on) - L6 0 < £ G0

Proposition 5 (Global existence in H') Suppose that ¢g,ug € H*(Q). Then, (1) ad-
mits a unique global solution (¢, w) such that

¢,u € C ((0,400); Hy () N C ([0, +00); H'(2)) N C* ((0,400); L*(2)) .

Proof of Proposition 5: By Proposition 2, there exists a unique local solution (¢, u) in
the same function space. We have only to derive the a priori estimate thanks to Theorem
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6. From Lemma 2, it holds that

1 2 l€2 2 l 2 l 2 3 2 KO 2 51
- < - - S I Pl ~ 20
5 Il + 5 19013+ 35 113 + 75 [ (¢ 7+ 2 Vul® — 2219

2
= L(¢,u)()
< L(¢o,up)
1 5 e 2 l 4
< Lol + 1 ool + - ol + 190+ 5 v .

The Sobolev embedding theorem implies that the right-hand side is finite, which completes
the proof of Proposition 5. O

Proposition 6 (Global existence in H?) Suppose that ¢o,uo € H%(Q). Then, (1) ad-
mits a unique global solution (¢, w) such that

¢,u € C ((0,400); H3(Q)) N C ([0, +00); H} () NC* ((0,+00); H' (Q)) .

Proof of Proposition 6: As mentioned in Proposition 5, we derive the a priori estimates
for H? norm. In this paper, we denote by Czs > 0 the constant depending only on the
norms ||ugl| s and ||¢o|l s of initial functions, the measure || and physical constants
7,1, k,e. We have the following two inequalities from (1):

Td

Saloli+ e Ivel+s [ Gotar = [ o (ro - a0+ ), da
©) — fle3+2 [ wionda

Q
and
2 621
ll + 1 |Vl + 5 el = 57 [ T Vords
T Ja

Jr%/ Uy (¢t - 3¢2¢t) dx

Ld,
2dt

l €%l
= /Q Ut {utt - /@Aut + ’U,t —|— Aqﬁt o7 (¢t _ S(Z)Q(Z)t) } dx
(10) = % Ut (—quﬁt +ENp+ o — ¢ + 2u)t dr = 0.
Q

By integrating (9) over (0,t) with respect to ¢, we have

an  Thsdi+e / V6l ds < 7 (60) ||2+2/ ||¢t||2ds+/ e 2 ds,

which implies that ¢; € L?(2) by (7) and (8). Hence by (1), we have

(12) ||A¢||2 < Cpg> and ||¢t||2 < Chge.
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Next by integrating (10) over (0,t) with respect to ¢, we have

1 2 1 2 ! 2 -
g el = 5 Ml [ IVealds+ - [ el as
2 2 0 T Jo

2; ot t
(13) —e—l / / Vuy - Vopdrds + L/ / m (d)t — Sgbngt) dxds = 0.
27' 0 Q 2T 0 [¢)

Here, it holds that
t 9 [t
/ / Vus - Vopdrds = 7/ / Vug -V (kAu — uy) deds
0 Ja L Jo Ja
KR 2 2 2 ¢ 2
= =7 (12wl = Nawlz) = 7 | 1wz ds.

From (12), ||¢|| ;72 is bounded, which implies ¢ € C(£2) from the Sobolev embedding theorem.
Then, it holds that

t
/ / ug (¢r — 3¢°¢y) dads
0 JQ

Thus (13) becomes

! 2 2
<Cors [ (luall + lonl3) .
0

1 2 €2I€ 2 62 /t 2
— ||lu — ||[Au K+ — Vuel|5 ds
3l + SE 1wl + (545 ) [ 1vul

1 ek ICx2 [t
(14) < g Il + G 18wl + 2 [ (el + 1l3) as.
Finally, we obtain
(15) [Aull, < Cpz and gl < Cpe
by (7) and (8). After all, (12) and (15) imply the conclusion of proposition. m|

Proposition 7 (Global existence in H?) Suppose that ¢o,uo € Ha(Q). Then, (1) ad-
mits a unique global solution (¢, ) such that

6.0 € € ((0.+00): HE(Q) N1 C ([0, +00): HY(2)) N C* ((0, +00): H3 ().

Proof of Proposition 7: We derive the a priori estimates for H3 norm. We have
Td
2 dt
< / (2 IVee|” + |VUt‘2) dr + 3/ App? prda
Q Q

/|V¢t|2dfﬂz/V¢t'V(62A¢+¢f¢3+2u)tdx
Q Q

[ @Ived +19ul?) do+ 5 [ 660 (ro0 - 6+6° ~ 20), da
Q & Ja

21|V eill3 + [IVuells + Cr drell; + Cuz |0l + Curz [luel;

IN
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and

S E/ Autgbttdx
2 Q

i/ﬁ (Ut+é¢t> Ppedr

C e+ D g
2"

<
> 1k ||Utt||2

We integrate these inequalities with respect to ¢ and obtain
T 2 T 2 ’ 2
s [1velds < ZIVGoIE+Con [ lloulds
Q 0

t
+ [ (A0 + 1901+ Cor 6113+ Co el ) ds

(i+1) [ 2
|Vut| dr < 5 ||V (uo):ell3 + ||Utt||2d ! [t ds.
0

Now we have only to estimate fo |[use |3 ds and fo 6415 ds for t > 0 owing to (7), (8), (11)
and (14). It holds that

t t
T/o /Qqﬁ?tdwds = /0 /Qaén (EA¢+ ¢ — ¢° +2u), duds

2 t
< SIVEIE Itz + [ [ 266 ol 21l - 7 ol e

€ 1 9 a ff 4 [t
< —\IV(¢o)tII§+f||¢t||§+f||¢|\oo/ ||¢t”§d5+7/ uell3 ds
2 2 T 0 T 0

t
i / / ¢2 dxds.
2 0 Q

Hence, we have

and

t 62
[ Ioulds < < 1903+ Con
0

from (7), (8) and (12). Next, we have

t
/ /uftdxds = / /utt (HAU—(bt> dxds

0 Ja

K
75/ —|\Vut||2ds+/ / "LLtt| |¢tt‘d$d8
f||V ug) ||2 //uttdxds—i— //qﬁttdxds

t l €2
/O luall2ds < 519 (o)l + = IV (go)el3 + Care

IN

IN

and

which yields the desired estimates. O
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5 Dynamical system For (¢g,up) € H?(Q) x H?(2), we show that (1) has a global
solution

¢,u € C((0,400); H'(Q)) N C ([0, +00); HY () N C* ((0,+00); H () .
By T'(t), we denote a nonlinear semigroup (¢g, ug) — (¢(t), u(t)) acting on HY(Q2) x HY(Q).

Proof of Theorem 1 By Proposition 1, we have a local solution ¢, in [0,T)

o uo] with
the estimate

6Ol g+ + lu@ll v < Crn

fort € 0,7 | by Theorem 5. Let any small ¢; € (0,7 ,, ) be fixed. Then, it holds that
é(t1),u(ty) € H(Q). By Proposition 5, there exists a global solution

é,u € C ((t1,+00); H3(2)) N C ([t1, +00); H(Q)) N C* ((t1, +00); L*(2))

with the estimate
(16) oz + l[u®)l g2 < Crn

for t > t; with initial functions ¢g = ¢(t1),up = u(t1). Then, we have

o g + lu@ g+ < Crn

for t > t1. Again, according to Theorem 5,

278 (o) e + )l ) < Crro

Finally, we have
16 s + 4 0 < Catn

for t > 0. By Theorems 6 and 8, we can extend a time local solution globally in the space
¢,u € C ((0,400); H'(2)) N C ([0, +00); H?(2)) N C* ((0, +00); H~1())

and have a continuous mapping 7'(t) from [0, +00) x HY(Q) to HY(), which shows that

T'(t) defines a dynamical system in H7(Q) x HY(Q). O

Proof of Theorem 2 For any n > 0, we have ¢(n),u(n) € H(Q). By the same argument
as proof of Theorem 1, we have a global solution

¢,u € C ((n, +00); HY (2)) N C ([n, +00); H' (2)) N C* ((n, +00); L*())

with the estimate (16) for ¢ > 7 with initial functions ¢ = ¢(n),uo = u(n). Hence, the
compactness of the orbit in H7(2) x HV(2) follows. Differentiating (1) with respect to ¢
successively and making similar energy estimates to the proof of Proposition 7, we have the
uniform boundedness of the orbit Us>,T(t)(¢o, uo) in Hy () x Hy(2) for any small > 0
and m = 4,5,---. We use the standard bootstrap argument to prove that

(¢,u) € C™ ((0,+00); C=(Q)) x C*° ((0,400); C*(Q)).
O
Proof of Theorem 3 We have a unique global solution ¢,u € H'(Q) and Lyapunov

function L (¢, u) (t). Therefore, the w-limit set w(dg, ug) of ¢p and ug is nonempty, compact,
invariant and connected in H'(2) x H'(Q) according to Theorem 4.3.3 in [9]. And it holds
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that w(¢go,ug) C E by Theorem 4.3.4 in [9]. For any 7 > 0, we have ¢(n),u(n) € H%(Q)
by Proposition 2. By the estimates in Proposition 7, Us>,T'(t) (¢0,u0) is precompact in
HZ% () x H% (). As mentioned in Proposition 1, A is supposed to be a positive operator
in L2(Q2) x L?(Q) with domain H%(Q) x H%(2). The similar computation to Lemma 2

shows that d (47 — 15) 5(47 — 16)
T — 2 T — 2
- > 7 AN .
GLG. 0= T [ gtae S [ o

Hence, we can apply Theorem 1.1 in [10] to deduce that w(¢o,up) is a single point in E.
By the second equation in (1), (¢, u) satisfies

d l
—_ — = A = 0.
i ), <u + 2¢> dx K/Q udx =0

/Q(uﬁ-;(é)dx:/(z(uo—&-;%)dx:m

for some m € R. The stationary solution ® = ®(x) is satisfies

Hence, we have

EAL+ &~ + F (m— g [, @dz) =0 zeQ,
g—‘f_o x € 00

because the stationary solution satisfies AU =0 in Q and U = U(x) is constant in Q. O

6 Exponential attractor First, we derive the estimate for H> norm to obtain an ab-
sorbing set in H3. Next, we construct an exponential attractor in H' x H!.

Proof of Theorem 4: If (¢o,up) € Hg, then we have

le2 1 3 1 ko ~3
1 1 < . Ty T4 i s T
(17) ol e + llull g < (k+ |Q|) {mln( 5 16) -+ min <2, 5 > }

for all t > 0 by Proposition 5. By Theorem 5, Propositions 2 and 3, we have ¢(4),u(%) €
HZ%(Q) and ¢(t1),u(t1) € H3 () for small ¢; > 0 with the estimate

(&) (B, e =

with initial functions ¢g = ¢(0), ug = u(0) by (17) and

H?2

MBS

(2) (o) g5 + llult)|l s) < Crro

with initial functions ¢g = ¢

(t ) Uy = u( ) where Cj, > 0 is a constant depending only
on the fixed k, the measure || a

2
| and physical constants 7,1, k, e. Hence, we have

o) s + lu(®)l] s < Ch

for all ¢ > t; by Proposition 7. For any bounded set B C Hy, we have

Uiz, T(1)B C B={(¢,u) € Hy. | |6l s + llullgs < Cr}
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for some Cj, > 0. In particular, T(¢)B C B for all ¢t > ¢;. This set B shows us the existence
of an absorbing set in Hy, which implies that the dynamical system 7'(¢) is dissipative in Hy,.
We apply Theorem 1.1 in [14] to guarantee the existence of global attractor A C Hj. Let
X = Uy, T(t)B. Then, X is a compact, invariant and absorbing set in H'(Q2) x H'(Q).
From now on, we consider the subdynamical system T'(t) : X — X. To construct an

exponential attractor, we apply Theorem 9. Let U = T'(t)Uy = ( ¢ ) eX, V=TtV =

u
( :}Z) ) € X and s,t € [0,T] for any T" > 0. The first inequality follows at once from

Propositions 2 and 3. Next, we prove the second inequality. We have

U@ =Vl < U@ =Vl +[1VE) = V()

|av
< WO-VOIn+ [ |G| b
< OO - VOl + [ B4Vl + 1F OV ) do

for s < t. Since it holds the estimate in Theorem 8 and AV, F(V) € H'(Q) x H(Q) for
V(t) e X,
1U(s) =V(®)llgr < Ck[lUo = Vollgr + Cr [t — s,

which completes the proof of Theorem 4. |
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ON THE REPRESENTATION OF AN INTEGRATED GAUSS-MARKOV
PROCESS
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ABSTRACT. We find a representation of the integral of a Gauss-Markov process in the interval
[0,t], in terms of Brownian motion. In particular, such representation is used to analyze the
temporal mean in a finite interval of a Gauss-Markov process. Finally, some example are
explicitly reported.

1 Introduction In this short note, we consider a real continuous Gauss-Markov process X (t)
of the form:

(L1) X(t) = m(t) + ha(t) B(p(t)), ¢ >0

where:

e B(t) is a standard Brownian motion (BM);

e m(t) = E(X(t)) is continuous for every t > 0;

e the covariance ¢(s,t) := E[(X(s) — m(s))(X(t) — m(¢))] is continuous for every 0 < s < t, with
c(s,t) = hi(s)ha(t);

o p(t) = hi(t)/h2(t) is a monotonically increasing function and hy(t)ha(t) > 0; moreover p(0) = 0.
Notice that a special case of Gauss-Markov process is the Ornstein-Uhlenbeck (OU) process, and
in fact any Gauss-Markov process can be represented in terms of a OU process (see e.g. [13]).
Our aim is to find a representation of

(1.2) Y(t) = /OtX(s)ds, t>0,

in terms of Brownian motion. Notice that the integrated process Y (¢) is equal to X - t, where X
is the time average of X (s) in the interval [0, ¢].

The study of Y (¢) has interesting applications in Biology, for instance in the framework of diffusion
models for neural activity; if one identifies X (¢) with the neuron voltage at time ¢, then, Y (¢)/t
represents the time average of the neural voltage in the interval [0, ¢]. Another application can be
found in Queueing Theory, if X (¢) represents the length of a queue at time ¢; then, Y (¢) represents
the cumulative waiting time experienced by all the “users” till the time t. As for an example
from Economics, let us suppose that the variable ¢ represents the quantity of a commodity that
producers have available for sale, then Y (¢) provides a measure of the total value that consumers
receive from consuming the amount ¢ of the product.

Among the papers concerning integrated Gauss-Markov processes, we cite, for instance [10], in
which the author considered the integrated Brownian motion, which arises naturally in stochastic
models for particle sedimentation in fluids. In [5] observations of integrated diffusion processes
were used to estimate unknown parameters, by considering integrated data from the Ornstein-
Uhlenbeck process and the CIR-model; in papers [7], [8], [9], the authors studied some properties
for the statistical model obtained by the observation of local means of a diffusion process.

The first-passage time (FPT) for Y (¢) is an old and interesting problems in Probability; when
X(t) is Brownian motion, the two-dimensional process (X (t),Y (t)) was first studied by Kol-
mogorov ([12]). Useful references for FPT problems of integrated Markov processes are given by
the paper [10] and the references therein; in particular, in [10] the conditional moments of the
FPT of an integrated Brownian motion through a constant barrier were studied. Although the
study of FPT problems for Y (t) is not the purpose of the present article, since we aim mainly
to give an explicit representation of Y (t), we will outline as this representation can be useful to
study the FPT of Y (¢) through a continuous boundary (see Example 5 in Section 3).
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2 Main Result We begin with stating and proving the following:

Lemma 2.1 Let f(t) a continuous bounded deterministic function, then

(2.1) 1(t) ::/O f(s)B(s)ds
¢ R(t) — R(s))%ds and

is normally distributed with zero mean and variance ~(t), where y(t) = [ (
fo s)ds. Moreover, if y(+00) = +oo, then there exists a BM B(t) such that I(t) =

B(V(t))-

Proof. 'We observe that I(t) is a Gaussian process with zero mean and variance

V(t) == Var(I(t)) = Cou (/ £(s )ds,/otf(u)B(u)du>
=F </ s)ds - / flu du) :/0 ds /Ot duE(f(s)B(s)f(u)B(u)).

Since E(f(s)B(s)f(u)B(u) (u) min(s, u), we get:

/Af udsdu+/ Af f(u) - s dsdu,

where A; = {(s,u) € [0,4+00) X [0,400) : 0 < s <t, 0<u<s}and Ay = {(s,u) € [0,+00) X
[0,400) :0<s<t, s<wu<t} Thus, by calculation, we obtain:

Vt)—2/0tf(s)ds/osf(u)~udu.

As easily seen, V(¢) and (t) have the same derivative, so the equality V (t) = () follows for any
t >0, since V(0) = v(0) = 0.
Moreover, by using [t6’s formula we get:

/f @B@—AIWMM$=AUW%R®MM$

Notice that I(¢) is a continuous martingale and ~(t) is its quadratic variation; therefore, if
v(+o0) = 400, by the Dambis, Dubins-Schwarz Theorem (see e.g. [14]) we obtain that I(t)

can be written as B(v(t)), where B(¢) is BM.
O

As a corollary of the previous lemma, we obtain our main result:

Proposition 2.2 Let X(t) be a Gauss-Markov process given by (1.1), and suppose that hy, ho
are contmuous function and p : [0,+00) — [0,+00) is a C! functz’on wz’th pt) >0Vt >
0; then Y (¢ fo s)ds 1is normally distributed wzth mean M (t fo s)ds and variance
71(p(t)), thf?“e T (t fo Ry(t) — Ra(s))%ds and Ry (t) = [ haf _1( N/ (p ( ))ds. Moreover,
if v1(+00) = +o0, then Y(t) is Gauss-Markov and there exists a BM B(t) such that Y(t) =

M(t) + B(m(p(t))).
= /t X(s)ds
0

Proof. We have:
t t p(t)
= [ m(s)ds + [ ha(s)Blos)ds = MO+ [ hao (9)/6' (07 (5) Bls)ds
0 0 0

where we have used a variable change in the integral. Then, the proof follows by using Lemma

2.1 with f(t) = ha(p~ (1)) /" (p™*(1)). U

Example 1 (Brownian motion with drift)
Let be X(t) = ,ut—i—B( ) then m(t) = pt, hi(t) =t, ha(t) = 1 and p(t) = t. Moreover, Ry(t) =
f ds =t and v, (t) fo (t — 8)2ds = t3/3. Thus, Y (t) = ut?/2 + B(t3/3) (cf. [2]).
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Remark 2.3 If we consider the time average of X (t) in the interval [0,t], i.e. X; = %fot X(s)ds,
we get by Proposition 2.2 Xy = 1Y (t) = 1 {M(t) + B\(%(p(t)))] , namely X, is normally dis-
tributed with mean M (t)/t and variance vy1(p(t))/t?. In particular, if X (t) is BM, one has v1(t) =

t3/3, and so Xy ~ N(0,t/3) (cf. [2]).
3 A Few Examples

Example 2 (Ornstein-Uhlenbeck process)
Let X (t) be the solution of the SDE:

dX(t) = —pu(X(t) — B)dt + odB(t), X(0) =z,
where p,0 > 0 and § € (—00, +00). The explicit solution is (see e.g. [1]):
X(t) =B+ e [z = B+ Blp®),

where B is Brownian motion and p(t) = % (e** —1). So, X(t) is a Gauss-Markov process with
2

m(t) = B+ e M (x —B), hi(t) = § (" —e ), ho(t) = e and c(s,t) = hi(s)ha(t). By
calculation, we obtain:

1-— 67’”) ,

M(t):/o (B+e " (z— ) d.s,é’t+(xu/8>(

1 e—mp ()

u
p () = iln (1 + (2;;5) ,
7 (t) = % /t (e_“pil(t) - e‘“”il(s))zds = i? /t < ! _ 1 >2ds
#=Jo w2 Jo \V/1+2ut/o2 /1+2us/o?
- Mz(ai: 2ut) 18 12—:—722/“3/02 (W_ 1) + Qa;ln (1+2ut/0?).

Then, by Proposition 2.2, we get that Y (¢) = fot X (s)ds is normally distributed with mean M ()
and variance y;(p(t)). Moreover, since limy_, oo 71 (t) = 400, there exists a BM B(t) such that
Y(t) = M(t) + B (n(p(t))) -

Example 3 (Brownian bridge)
For T > 0 and given a, b, let X (t) be the solution of the SDE:

b— X(t)

ax(t) = “- =

dt+dB(t), 0<t < T, X(0) = a.

This is a transformed BM with fixed values at each end of the interval [0,7], X(0) = a and
X(T) = b. The explicit solution is (see e.g. [14]):

1

— S

X(t)=a(l—t/T)+bt)T + (T —t) /tT dB(s)
0

_a(l—t/T)+bt/T+(T—t)§( >,0§t§T,

t
T(T —t)
where B is BM. So, X (t) is a Gauss-Markov process with:

t

mt) = a (1= t/T) + 00T, els, 1) = ha(s)hal0), halt) = /T, ha(t) =T =1, plt) = 7
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By calculation, we obtain:

b—a
M _ 2
(t) = at + 5T 4,
T3t(2+Tt)
() = 20+ Tt)2°
T2s
—1 o
p (5) - 1 +TS’

O [Y(TRR2+ T T3s(2+Ts)\”
71(15)_/0 <2(1+Tt)2 N 2(1+Ts)2> ds.

Then, by Proposition 2.2, we get that Y (¢ fo s)ds is normally distributed with mean M (t)
and variance 1 (p(t)). Although it is stralghtforward to obtain the explicit form of v, (¢), we omit
to write it (a numerical evaluation can be obtained by a computer). We limit ourselves to mention
that lim—, 4 o 11 (t) = +00, as it can be verified by a boring calculation; so there exists a BM E(t)
such that Y (t) = M(t) + B (11 (p(t))) .

Example 4 (Generalized Gauss-Markov process)
Let us consider the diffusion X (¢) which is the solution of the SDE:

dX(t) =m/(t)dt + o(X (t))dB(t), X(0) =m(0)

Where m(t) and 0( ) > 0 are regular enough deterministic functions. We suppose that p(t) =

)t = fo ))ds, i.e. the quadratic variation of X (t), is increasing to p(+o0) = +o0. By
usmg the Dambls Dublns Schwarz Theorem, it follows that X (t) = m(t) + B(p(t)), ¢t > 0, where
p(t) is not necessarily deterministic, but it can be a random function. For this reason, we call X ()
a generalized Gauss-Markov process. Denote by A the “inverse” of the random function p, that
is, A(s) =inf{t > 0: p(t) > s}; since p(t) admits derivative and p'(t) = o?(X(t)) > 0, also A’(s)
exists and A’(s) = 1/0?(X(A(s))); we focus on the case when there exist deterministic continuous
functions a(t), G(¢) (with a(0) = £(0)) and a4 (t), F1(t), such that, for every t > 0 :

a(t), B(t) are increasing, a(t) < p(t) < B(t), and ay(t) < A'(t) < Bu(t).

Since p(t) is not deterministic, we cannot obtain exactly the distribution of fg X (s)ds, however
we are able to find bounds to it. In fact, we have:

"Xo)s = [ mds+ [ Bloyis= [ msds+ [ B4 @)
[ xyts= [[misras+ [ [ meras+ [

We can use the arguments of Lemma 2.1 with f(v) = A'(v), Ryi(¢ fo A'(s)ds, and v1(t) =
fg Ry(t Rl( ))2ds; by assumptions we get fot ap(s)ds < Ry(t) < fo B1(s)ds. Thus, we conclude
that fo s)ds is normally distributed with mean M (t) = fg ( )ds and variance 71 (p(t)), which
is bounded between v (a(t)) and v1(B(t)). The closer a(t) to 3(t), the better the approximation
above; for instance, if o(z) = 1 + e cos?(z), € > 0, we have p(t) = fot(l + ecos?(X (s)))%ds and so
at)=t, B(t) = (1+ €)%, ai(t) =1/(1+ €)%, Bi(t) = 1. The smaller is ¢, the closer v;(a(t)) to
7 (B(1)).

Example 5 (The FPT of Y (¢) over a continuous boundary)

Let S(t) > 0 a continuous boundary with S(0) > 0, and let us consider the FPT of Y (¢) over S
ie. 7g = inf{t > 0:Y(t) > S(t)}. If 71(+00) = +00, then Tg is nothing but the FPT of B(¥,(t))
over S(t) = S(t) — M(t), where 7,(t) = v (p(t)), or equivalently ¥,(rs) = inf{u > 0 : B(u) >
S(v; ' (u))}. Then, the distribution of 75 can be easily obtained for a class of boundaries S(t) for
which the FPT of BM through the transformed boundaries is explicitly known (see e.g. [3], [6]).
For instance, if S(t) = M(t) + a + by, (t) for some constants a and b, we get S(v; ' (u)) = a + bu;
thus, the probability density of g can be found in terms of the inverse Gaussian density, namely
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the density of the first-crossing time of BM B(u) through the linear boundary g(u) = a + bu,
which is explicitly given by

(3.1) w(u):ﬂqs(“j;ﬂb”), u>0

where ¢(y) = e’y2/2/\/ﬁ (see e.g. [11]).
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constructive comments and suggestions leading to improvements of the paper.
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1 1
ABSTRACT. Operator monotonicity of functions (#) P(-1<p<1)and (%) e
(=2 < p < 2) on (0,00) are known. The former is the representing function of the
power arithmetic mean and the latter is that of Stolarsky mean. We give somewhat
elementary proofs of operator monotonicity of them and some other related functions.

1 Introduction. A (bounded linear) operator A acting on a Hilbert space H is said to be
positive, denoted by A > 0, if (Av,v) > 0 for all v € H. The definition of positivity induces
the order A > B for self-adjoint operators A and B on H. A real-valued function f on
(0,00) is operator monotone, if f(A) < f(B) for operators A and B such that 0 < A < B.
As a typical example, z — 2P (0 < p < 1) is an operator monotone function, which is
well-known as Lowner-Heinz (LH) theorem.

Recently, Besenyei and Petz [1] showed the following two theorems by Lowner’s theory:

Theorem 1.1 ([1, Theorem 3]). The function

fplw) = (Im) p#0,1 (fo(x) (: ;ii%fp(:c)) - % file) = ix)

18 operator monotone if —2 < p < 2.

Theorem 1.2 ([1, Theorem 4]). The function

1+ 2P

wyle) = (25 );,pfo (wo(a) =

Nl

)

is operator monotone if (and only if) —1 <p < 1.

Theorem 1.2 is already known well ([3], [4], [5], [6], [9]). We shall give a simple proof of
this fact by using the binomial expansion and (LH) theorem.
Now define

P —1 zlogx z—1

gp(x):p;lf_l7 p#oal (90($):x_17 gl(iv)_ >7

D P ~ logz

a function related to wy(x) or its extension (as stated afterward in the proof of Theorem
3.2). Using an integral representation of g,(x), Hiai and Kosaki [10] showed:
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Theorem 1.3 ([6, Proposition 4.2]). g,(z) is operator monotone if =1 <p < 2.

In [6] by Fujii and Seo, this fact had been shown essentially in virtue of Bendat-Sherman
theorem. This fact was also shown, in [7] by Furuta, with a very elementary method, (LH)
only used repeatedly, and in [3] by Fujii ([4] by Fujii-Fujii), with the notion of the integral
mean of operator monotone functions.

In this paper, starting from the proof of Theorem 1.2, we give somewhat elementary
proofs of Theorems 1.1, 1.3 and some other related results. As an application of Theorem
1.1, we give a proof of Petz-Hasegawa theorem [14], an elementary proof of which was
recently presented by Furuta [8].

2 Preliminaries By Kubo-Ando theory [12], an operator mean ¢ is defined as a binary
relation of positive operators, satisfying the following properties in common:

(monotonicity) A< C,B<D=— AocB<CoD,
(transformer inequality) C(AcB)C < (CAC)o(CBC),
(normality) AcA = A,

(strong operator semi-continuity) A, | A, B, | B=— A,0B, | AcB.

As the basic operator means, we define: For A, B >0

arithmetic mean: AV B=(A+ B)/2,
harmonic mean: A!B={(A™'+ B™) /2}_1 and

-

1

geometric mean : A#B = Az (A’%BA’5> ts

Sometimes for the definition of an operator mean we must assume operators to be
invertible, say, for harmonic or geometric mean. Without any assumption for invertibility
every mean is well-defined as the (strong operator) limits of (A + el)o(B +¢el) ase | 0
instead of Ao B. (I is the identity operator.) For simplicity of discussions, from now on we
assume that all positive operators are invertible.

To every operator mean o corresponds a unique operator monotone function, that is, its
representing function f, which is defined by f,(x) = lox. Conversely, if f is an operator
monotone function with f(1) = 1, then the definition of the operator mean corresponding
to f is given by

AoB = A% f (A*%BA*%) A3

for positive operators A and B.
For an operator mean ¢ and for two operator monotone functions g and h, we define
goh by

(9oh)(4) = g(A)oh(A) (= g(A)2 £ (9(4) " Fn(A)g(4)~H) g(a)}).

Then it is easy to see that goh is operator monotone. In particular, if fyu (z) = z* for
0 < a <1, then g#,h (: gl’o‘h‘l) is also operator monotone.

Now to state another useful fact on an operator monotone function, let f be a strictly
positive function on (0,00). Define f°(x) := xf(1/x) (transpose), f*(x) := 1/f(1/x)
(adjoint) and f+(z) := x/f(x) (dual). Then the following (i)-(iv) are equivalent [12]([11]):

(i) f is operator monotone,

(ii) f° is operator monotone,

(iii) f* is operator monotone,
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(iv) f* is operator monotone.
For a (continuous) path oy (t € [0,1]) of operator means, its integral mean & is defined
[3] ([4]) for positive operators A and B by

1
A&B:/ Aoy Bdt.
0

Correspondingly, for a path f; of operator monotone functions, its integral mean f can be
defined by

f(x):/o fe(x)dt,

which is an operator monotone function.

3 Main results To prove Theorem 1.2, we use the following fact: For integers m,n,q,r
withl<m<n, n=mg+r, 0<r<m-—1,andany k=1,2,...,q,

(3.1) (7)1 4 27 )™ :(1+x:)##§x%(1+ﬂ)a

holds. Now we show a proof of Theorem 1.2, borrowing Furuta’s method, or applying the
theorem (LH) repeatedly (say, in [7], [8]):

Proof of Theorem 1.2. It suffices to show the proof when p is rational, p # 0,1, —1. First
we assume that 0 < p < 1, so put p = 2%, m,n are integers with (m,n) =1, 1 <m < n.
Then n = qgm + r for some 1 <r <m — 1, and

U}p(:r) _ (1 +2£L'n) " _ (;) " (1 —i—x%)q (1 +$%) = (;) " Z qck¢k(x)
k=0

Here ¢p(z) = 2"+ (1 4+ 2% )% . The notations qCr for k =0,1,...,q denote the binomial
. . 1
coefficients, i.e., ;C = W.
First note that ¢o(z) = (1 + 2™ )=, clearly, is operator monotone (by (LH)). Next for
the last term

3~

so that the dual ¢ (z) = 7@ of ¢q(z) is

1 _ zw m_ x E_( n—m J.)ﬁ
xTr) = o = Ireee— = xr n +x .
% (@) <1+x"> (xn+x> ( )

Hence (;Sj-(x), and ¢q(z) are both operator monotone by (iv) and (LH). Now recall (3.1)
stated before. For the general k-th term of the sum, we see:

or () = ¢0($)#§¢q(x)~

Hence all of ¢ (x) are operator monotone, so that the proof for 0 < p < 1 is completed.
For —1 < p < 0, notice that

upe) = (* *2“)_’17 = w_y(a).
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Hence we see that wy, or, equivalently, w), is operator monotone.

A property of an operator monotone function on (0, 00) is concavity [11] ([12]). If p > 1
then we can see wj, (x) > 0, so that w,(z) is not concave, which implies that the function
is not operator monotone. If p < —1 then since w;(z) = w_,(x) is not operator monotone,
so that w,(z) is not operator monotone. O

As a slight extension of Theorem 1.2, we can easily see the following:

Lemma 3.1. Fora;,;b; >0 (i=1,2,...,n), - 1<p<1, p#0,

D=

(3.2) (Z(ai + bzm)p> is operator monotone.

i=1

More generally, if f; (i = 1,2,...,n), are positive operator monotone functions on
(0,00), ~1<p<1, p#0, then

1
n P
(3.3) Sp = <Z ff’) is operator monotone.
i=1

Proof. We may show the general case. Denote by o, the operator mean corresponding to

p
the power arithmetic mean w, = (IJ“”

Now we prove (3.3) by the mathematlcal induction. Let n = 2, then

So = (fF + f5)7 =27 (f10, f).

Hence Ss is operator monotone. Assume that S,, for n > 2 is operator monotone. We have
to show S, 11 is also operator monotone. But this is clear since the both S, and f,,11 are
operator monotone, and

D=

n+1 P
nﬂ_(pr) (854 F141) " =27 (Suopfusn). 0

Theorem 3.2 (cf. Fujii-Fujii [4], Fujii [3]). For =1 <p <1, 0<s <1, the function

p Pt —1 2t -1 ~ logz—*
B o) = 2 T 0 (o) = E o) = 2B

18 operator monotone.

Proof. We can see that for p # 0,
1 El
Ups(x) = / (1 —t+taP)r dt.
0

By Lemma 3.1, (1 —t+ txp)% for ¢ € [0,1] is operator monotone, so that (1 — ¢ + ta?)7 is
also operator monotone. Hence as its integral mean, u, ¢(x) is operator monotone. We can
see operator monotonicity of ug s, by taking the limits of u, s as p — 0. O
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Corollary 3.3 (cf. Furuta [7]). For —1 < p <1, the function

p(x — xz—1
(35) wle) =202 20 (o) = 1)

18 operator monotone.

Proof. f 0 < p < 1, then put s =1 —p in (3.4), and we have (3.5). If —1 < p < 0, then put
p=—q, 0 < ¢ <1, and take the transpose of u,(x):

() = (—Q(x— 1))0 _a@—1)

P x=4—1 x?—1

We see that ug(ac) is operator monotone from the previous discussion for 0 < p < 1, so that
up(z) is also operator monotone. O

Applying Theorem 3.2, we show:

Proof of Theorem 1.3. For 0 < p < 2, replace p by p—1 in (3.4) of Theorem 3.2 and further
put s = 1. Then we obtain g,(x), so that g,(z) is operator monotone. For —1 < p < 0, put
p=—q,then 0 < ¢ <1, and

—q—-1 z77-1  q+1 z(z?-1)
 —q zrl-1 ¢ xatl — 17

9p(2)

Hence
x g xttt—1

:gp(x):qul' x4 —1

gy (x)

By the previous paragraph (the proof for 0 < p < 2), we then see that g;- (), and hence
gp(x) are operator monotone. O

Using the above lemma, we also show:

Proof of Theorem 1.1. We may consider the case for p # 1. We can represent fy(z) as
follows by using the integral:

fo(z) = [/01(1 —t+ tx)p_ldt} o .

First, we consider the case for 0 <p <2 or —1<qg:=p—1<1,(q¢ #0). Let

I(z) = /01(1 —t+tx)Pdt = /01(1 —t +tx)9dt.

Then as its approximate sum, we have

n

Sn(@) =Y (1 —t; + tix) At;

i=1

2
(0—t0<t1<...<tn_1<tn—1, Ati—ti_ti—1<n)-
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Q=

From (3.2) in Lemma 3.1, {En(z)}é is operator monotone. Therefore f,(z) = I(x)7, as
the limit of {En(x)}%, is operator monotone.

Second, for —2 < p < 0, we put ¢ = —p, so that 0 < ¢ < 2. (We may assume that
p # —1 (¢ # 1).) Then note that (%)m is operator monotone from the previous

argument. We now consider the following two cases:
(i) The case 0 < ¢ <1 (=1 < p < 0) : We have

Fol@) = f-a(@) = <‘M) - (M) _ <‘M) 42 2t

r~9—1 xd—1 x4 —1

Hence f,(x) is operator monotone.
(ii) The case 1 < ¢ < 2 (=2 < p < —1) : We may show that the adjoint f;(z) =

fp(x_l)_1 of f,(x) is operator monotone. We see:
(a1 =D\ _ (e =)\ (gl@ =1\
* _ px (4T - ? o q\r — N [ 9\T — - 1
N G e B () N e A

Hence f; (x) is operator monotone. The proof is completed. O

As an application of Theorem 1.1, we show an alternative proof of the following result
due to Petz and Hasegawa [14] ([8]):
Theorem 3.4. For —1 <p <2

(z—1)?

hp(x) = p(l 7p) ’ (l‘p — 1)(;61_1, — 1)

2201 (ofo) =) = )

log x
18 operator monotone.

Proof. 1t is sufficient to consider the case for p # 0,+£1, 2. First notice that

(Here #, also expresses an extended weighted mean if p > 1 or p < 0.) By Theorem
1 1

1.1, both (%) "7 and U;ﬁ%}”) " are operator monotone. Hence if 0 < p < 1,

then we, at once, see that h,(z) is operator monotone. Next if 1 < p < 2, then putting

p=¢q+1(0<qg<1), wehave

; a(z=1)
Now since 0 < ¢ < 1, we see that ( i

Further, since 1 < g+ 1 < 2, we see that

1
)1_q is operator monotone by Theorem 1.1.
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is operator monotone by Theorem 1.1, so that its dual (n*(z) =) z - (w)? is

ratl—1

operator monotone. Hence

(=) o () e

is operator monotone. Finally, if —1 < p < 0, then putting p = —¢ (0 < ¢ < 1), we have

ho () = (—)(g+1)(z=1)>  q(g+1Da9(z—1)?
P (e = D) (2l te — 1) (29t — 1) (29 — 1)

Hence hy(z) has the same expression as in case 1 < p < 2, so that it is operator monotone.
O

Remark 3.5. For the (extended) weighted geometric mean, the identity
A#4(A#3B) = A#.3B (a, B : real)

holds for positive operators A and B (cf. the interpolationality [3]). Using this formula, we
can get a slight extension of Theorem 3.4: Let 0 < o < 1. Then

(o) e (57 w52

18 operator monotone.
(If 0 < p < 1, then it is clear that

(M) #a (W)

is also operator monotone.)

Concluding Remark. In this note we began with an elementary proof of operator mono-
1

tonicity of the power arithmetic mean wy(z) = ()7 (: W‘l(H%(m))) for 7(x) = aP.

We now conclude with stating operator monotonicity of a very general extension of this

fact [5]): Let f be a positive operator monotone function with f(1) = 1. Then f;(z) =
fY(1 —t+tf(x)) is operator monotone for 0 < ¢ < 1.

Acknowledgment. The authors would like to express their hearty thanks to the referee
for valuable advice.
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ABSTRACT.

For0 < a < 1, we consider the parabolic operatbt™ = 9/9t + (—A,)® on the upper
half-space of the Euclidean spadR&™'. Forl < p < oo, thea-parabolic Hardy spadk?, is the
set of all solutiona: of L(*) which have the finitdsZ, norm. In this paper, we study fractional
calculus on parabolic Hardy spaces. Also, we investigate properties of maximal functions and
conjugate functions on parabolic Hardy spaces.

1. Introduction

Letn > 1 and H the upper half-space of the: + 1)-dimensional Euclidean space, that is,
H={X = (z,t) e R"" : 2 = (21,...,2,) € R", t > 0}. For0 < a < 1, the parabolic
operatorL(® is defined by

L(a) = 8t + (7Az)a7

whered, = 9/0t, 8; = 8/0x;, andA, = 07 + --- + 02. Let C(H) be the set of all real-valued
continuous functions off. A functionu € C(H) is said to bel.(*)-harmonic if L(*)u = 0 in the
sense of distributions (for details, see Section 2).1Fgrp < o, the Lebesgue spad® = LP(R™)

is defined to be the Banach space of Lebesgue measurable (real-valued) fufctidRg with

1= f(w’)lpan(x)); <o,

wheredV,, is theLebesgue volume measure Bfi. The parabolic Hardy spade’, is the set of all
L{®)-harmonic functions, on H with

[ullng, == sup [[u(- )] » < oo.
t>0

We remark thah! ., coincide with the harmonic Hardy spaces of [1, Chapter 7].

Our aim of this paper is the study of fractional calculus on parabolic Hardy spaces. In [3], we
study fractional calculus on parabolic Bergman spaces, which are the Banach spaces consisting of
all L?(H)-solutions of the parabolic operatéf®). Parabolic Bergman spaces are often studied
by using fractional calculus (see [4], [5], and [7]). In this paper, we study properties of fractional
calculus on parabolic Hardy spaces. Moreover, we investigate propertieparfabolic maximal
functions andZL(®)-conjugates of parabolic Hardy functions, which are the extension of the non-
tangential maximal functions and the harmonic conjugates, respectively.

To state our results of this paper, we give some notations. For a real numkerD; =
(—0¢)" be the fractional differential operator with respecttandFC" the class of functions on
R, = (0,00) such thatDy ¢ is well defined (the explicit definitions dP; and FC" are described

2010Mathematics Subje&@lassification. Primary 35K05; Secondary 42B30, 42A50.
Key words and phrasesardy space, maximal function, harmonic conjugate, parabolic operator of fractional order.
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in Section 2). For a multi-index = (y1,--+,7,) € Ni, letdy := 97" - - 9]». Theorem 1 shows
basic properties of fractional calculus on parabolic Hardy spaces.

THEOREM 1. Let0 < o« < 1,1 < p < 00,7 € N§, andv > —(n/2a)(1/p) — |7|/2c. If
u € h?, then the following statements hold

(1) The derivativeDy 97 u(z, t) is well defined, and there exists a consta@nt C'(n, a, p, v, v) >
0 such that
[Df (e, )] < Ot DTEN

for all (z,t) € H. Furthermore, ifv > —(n/2a)(1/p), then the derivativé®) D} u(z,t) is well
defined, and the equatid) D} u(z, t) = Dy ) u(x,t) holds.

(2) If B8 € Ny, then the derivativé’ DY 97 u(z, t) is well defined, and
IPDY N u(x,t) = DY P u(x,t).
(3) If s satisfiess + v > —(n/2a)(1/p) — |v|/2«, then the derivativ®; Dy 9 u(x, t) is well
defined, and
DEDY u(x,t) = DETY o u(z, t).
(4) The derivativeDY 9 u(z, t) is L(*)-harmonic on H.

We present the definition of ab(®)-conjugate of functions off, which is introduced in [7].

DEFINITION 1 ([7, Definition 1]). Let0 < o < 1 andu a function onH. We shall say that an

n-tuple of functions(vy, . .., v,) on H is an L(®)-conjugate ofu if v;(z, - ),u(z, - ) € FC/**
and(n + 1)-tuple (vy, . .. ,v,, u) satisfies the following equations:
(N.1) v = Opvy, 1<4,k<n,
(N.2) dju=-D*v;,  1<j<n,
and
(N.3) Dtl/mu = i: 0;v;.
j=1

We note that whemx = 1/2, the equations of Definition 1 coincide with the generalized Cauchy-
Riemann equations for harmonic functions in [13]. As we see beldw, - ) € FC/?* for
all w € h”. Theorem 2 shows the existence and the norm estimatés®dfconjugates of? -
functions.

THEOREM2. Let0 < a < 1 and1 < p < oo, then the following statements held

(1) If u € h?, then there exists a uniqug ®-conjugate(vy, . . ., v,,) of u such thaw; € h?.

(2) If an n-tuple of functiongvy,...,v,) with v; € h? satisfies Equation (N.1), then there
exists a unique function € h?, such that(vy, ..., v,) is the L(®)-conjugate ofu.

(3) There exists a constant > 0 independent of, € h?, such that

n
C M ullaz, <D llvjllaz < Clullnz,
j=1
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where(vy, ..., v,) is the L(®)-conjugate of: with v; € h?.

We present the definition of am-parabolic maximal function, which is the extension of the
non-tangential maximal function. Fere R™ andp > 0, let

@ . . 2« —1
C{(x) = {(y,5) € H: |y —a** < p~'s}.
For a functionu on H, we define am-parabolic maximal functioNp(a) [u] onR™ by

./\/[50‘) [u](z) := sup{\u(y,s)| :(y,8) € C’[(,O‘)(x)}, xz € R”.

We remark that whenr = 1/2, the functiorv\/,,(l/z) [u] coincides with the non-tangential maximal
function ofu. Theorem 3 shows that a functianon H belongs tak? if and only if ana-parabolic

maximal function\/\*) [u] belongs taZ.”.

THEOREM3. Let0 < o < 1,1 < p < o0, p > 0, andu be anL(®)-harmonic function orf.
Then,u € h? if and only if/\/,ﬁa) [u] € LP. Furthermore, the propertwp(“) [u] € L? is independent
of p, that is, ifAV/S)[u] € L for somep, then N\ [u] € L for all p.

We note that Theorems 2 and 3 hold wher: p < oo. The investigations for the cage= 1 are
more difficult, whose results will be described elsewhere.

We describe the construction of this paper. In Section 2, we recall definitions df(the
harmonic functions and the fundamental solutiod.6f). Furthermore, some lemmas are presented.
In Section 3, we introduce ah(®-harmonic extension, which is defined by the convolution of the
fundamental solution of.(*). And we give several properties @) -harmonic extensions. In
Section 4, we study of fractional calculus on parabolic Hardy spaces, that is, we give the proof of
Theorem 1. In Section 5, we show the existencé& 6 -conjugates on parabolic Hardy spaces. In
Section 6, we estimate the normsIgf”)-conjugates of parabolic Hardy functions, that is, we give
the proof of Theorem 2. In Section 7, we study properties ohttparabolic maximal functions of
parabolic Hardy functions, that is, we give the proof of Theorem 3. Throughout this gapet,
denote a positive constant whose value is not necessarily the same at each occurrence; it may vary
even within a line.

2. Preliminaries

In this section, we recall definitions of tHé*)-harmonic functions, the fundamental solution of
L(®) (for details, see [9]), and fractional differential operators. We begin with describing the opera-
tor (—A,)“. Since the case = 1 is trivial, we only describe the case< a < 1. LetC*(H) C
C(H) be the set of all infinitely differentiable functions dfi and letC°(H) c C*°(H) be the
set of all functions inC>°(H) with compact support. Theri—A,)* is the convolution operator
defined by

(2.1) (=A% (z,t) == —Ch o lim

dVi,
o lm /| v)

|y| 2

forally € C>°(H) and(z,t) € H, whereC,, , = —4%7 /2T ((n+2a)/2) /T(—a) > 0 andT'is
the gamma function. Let(®) := —, + (—A,)* be the adjoint operator df(*). Then, a function
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u € C(H) is said to bel.(*)-harmonic ifu satisfiesl.(*)u = 0 in the sense of distributions, that is,

/OO/ u(z, )L p(z, t)|dV, (z)dt < co and /oo/ w(z, )L (x, t)dV, (z)dt = 0
0 n 0 n

for all v € C*(H). By (2.1) and the compactness «fpp(y) (the support of)), there exist
0 < t; < ta < oo and a constant’ > 0 such that

supp(L(®e) € § = R™ x [ty,ts)]
and
|L) 4 (, 8)| < C(1 + |z|) =2 for (z,1) € S.

Hence, the conditiorf,,; |u - L®)y|dV < oo forall ¢ € C2°(H) is equivalent to the following: for
any0 <ty < ta < oo,

to
2.2) /t / ()] (1 + [2]) 2% dV;y (2)dt < oo,

We present the explicit definition of the fundamental solutiod . Forz € R”, let

W (z,1) = { 2" /Rn exp(—t|E]** +ix-€) dVy, (&) (t > 0)
- Lo (t<0),

wherez - € denotes the inner product ®f* and|¢| = (¢ - £€)'/2. The functionV(®) is called the
fundamental solution of(®). We also describe basic propertiegBt®). It is well known that

(2.3) W (z,t) >0, (z,t) € H
and
(2.4) / W (2, 1)dV,(z) = 1, 0<t< oo

We also remark that/(*) is L(®)-harmonic onH andW () € C>°(H). The following estimate is
[9, Lemma 3.1]: there exists a consté@ht= C'(n, o) > 0 such that

t

()
(2.5) Wi e D) < Cqippayeras

forall (z,t) € H.
In casex = 1/2, the functioni?(1/2) is the Poisson kernel, that is,

I((n+1)/2) t f=0
W(I/Q)(.Z’,t) _ /2 (12 4 |x‘2)(n+1)/2 (t>0)
0 (t<0).
In casex = 1, the function (1) is the Gauss kernel, that is,
2
—ns2 o (121
W (g 1) = (4rt) exp( ; ) (t>0)

0 (t <0).
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In other cases, simple explicit expressionslfiol*) are not known.

We also present the following lemma, which is obtained from the proofs of [9, Theorem 4.1]
and [14, Lemma 3.1] whelh < p < oo, and which is obtained from [10, Proposition 11] when
p = 0.

LEMMA 2.1. Let0 < o < 1 and letu be L(®)-harmonic onH. If 1 < p < oo andw is p-th
integrable on any strip domain df, that is,

ta
(2.6) / / |u(z, t)[PdV,(z)dt < oo forall 0 <ty <ta < o0,
t1 n

thenu satisfies the following Huygens property, that is,

2.7) u(x,t+s):/

u(x - Y t)W(a) (ya S)dvn(y) = / u(ya t)W(a) (x - Y S)dvn(y)

n n

holds for allx € R", 0 < s < o0, and0 < ¢t < oo. Furthermore, ifu is bounded on any strip
domain ofH, that is,

(2.8) sup{|u(z,t)| : x € R™,t € [t1,t2]} < oo forall 0<t; <ty < o0,
thenu satisfies the Huygens prope(8.7).

As in the proof of [9, Lemma 5.6], we clearly obtain by Lemma 2.1 the following.

LEMMA 2.2. Let0 < o < 1 and letu be L(®)-harmonic onH. If 1 < p < oo andu satisfies
the condition(2.6),then the functiort — |[lu( - ,#)[/z» is non-increasing orf0, oo). Furthermore,

If u satisfies the conditio®.8), then the functiort — ||u( - ,t)| L~ iS non-increasing or0, oo).

Now, we recall definitions of the fractional integral and differential operators for functions on
R4+ = (0,00). For a real numbet > 0, let

FC = {pe CRy) : p(t) = Ot (t — co) for somex’ > k}.

For a functionp € FC™", we can define the fractional integ@} "¢ of ¢ by

(2.9) D; "o(t) = L ] / " lo(r+t)dr,  teR,.
0

I(x
We putFC° := C(R,) andDYy := ¢. Moreover, let
FC" :={p; Btmcp e Fe~xl=ry

where[k] is the smallest integer greater than or equal.tdhen, we can also define the fractional
derivativeD; ¢ of ¢ € FC" by

(2.10) Dip(t) =D, 179 (o)) (1), te Ry

Clearly, wherx € Ny := NU {0}, the operatoD} coincides with the ordinary differential operator
(—0;)". For areal numbet, we may call both (2.9) and (2.1@)e fractional derivatives op with
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order k. And, we callDy the fractional differential operator with ordet. Some basic properties
of the fractional differential operators are the following.

LEMMA 2.3. ([3, Proposition 2.1] and [4, Proposition 2.B)r real numberss, v > 0, the
following statements hold.

1) Ifo € FC ", thenD; "¢ € C(R).

2)lfpe FCT" ¥, thenD, "D, o =D, " V.

(3) If 9Fp € FC~V for all integers0 < k < [x] — 1 and 8[“190 e FC~Ir1=r)=¥ then
DDy "¢ =D, "Dip =Dy e

@ 1t My e 7e~U"1=¥) for all integers0 < k < [r] — 1, 0" o e Fc~¥1-") for all
integersd < ¢ < [v] — 1, andd "1 1"y ¢ Fe=(H1=m=(V1=2) ‘thenDEDr o = D+ .

) 10"y e Fe 1] and lim dFp(t) = 0forallintegersd < k < [k] —1,thenD; *Dfp =

Here, we give some examples of fractional derivatives of elementary functions.

EXAMPLE 2.4.Letx > 0 andv be real numbers. Then, we have the following.
(L) DYe "t = kVe "

We need the following lemma in our later arguments.

LEMMA 2.5. Let0 < o < 1 and letc be a real number such that/2« — ¢ < 0. Then, there
exists a constar®’ = C(n, o, ¢) > 0 such that

1
—dvn y) = Ctn,/Qa—c
IRl

forall (z,t) € H.

PrROOFE Making a change of variable, we obtain

! 1
/R" ((EarEeyES el (y) = / R Eamarad W)

tn/2a 1
= — :t”/Q""C/ e dVa(y)-
.. ST

Sincen/2a — ¢ < 0, we have

1
C=| — aVu(y) < .
o (A F oy V@)
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3. The L(®-harmonic extensions

In this section, we study several properties of ft{&)-harmonic extensions. The results ob-
tained in this section shall be used for investigations of parabolic Hardy spaces in the next section.
We begin with recalling the definition of the Lebesgue spddesFor1 < p < oo, the Lebesgue
spacel? := L?(R") is defined to be the Banach space of Lebesgue measurable (real-valued) func-
tions f onR™ with || f||z» < oo, where

([ rerane)” asp<o

esssup | f(x)] (p = ).
TER™

[ fllLe ==

Let M := M (R™) be the set of all finite signed Borel measuresiéh We denote by| x| the total
variation norm ofu € M. Now, we present the definition of dif*)-harmonic extension, which is
introduced in [6].

DEFINITION 3.1 ([6, (1.2) and (1.3) of Section 1]). Fbr< p < oo, we define ar.(*)-harmonic
extensiorﬁﬁf‘) of f € LP by

H (2,1) = s W (z—y, ) f)dVa(y), (2,t) € H.

We also define a(*)-harmonic extensiott) of . € M by

Hff‘)(at,t):/ WO (2 -y Dduly),  (2.1) € H.

n

We note thatZ(®)-harmonic extensions of € L? andu € M are L(®-harmonic onH (see [6,
Theorem 5.2)).

First, we study derivatives or fractional derivativesIdf)-harmonic extensions. For a multi-
indexy = (y1,-++ ,7m) € Ni, letd) := 97" ---9)». We present some properties of fractional
derivatives of the fundamental soluti®¥i(®). The following lemma is [3, Theorem 3.1].

LEMMA 3.2. ([3, Theorem 3.1])et0 < o < 1 and~y € Nj a multi-index. Ifv is a real number
such thatr > —n/2q, then the following statements hold

(1) The derivative®) Dy W () (x,t) and DY 8 W () (z, ) are well defined, and the equation
YDy W ) (z,t) = DYOJW @ (x,t) holds. Furthermore, there exists a constaht= C(n, o, 7, v)

> (0 such that )

o T (@)
|31Dt W (Jf,t)| S C(t + |x‘2a)(n+\’y\)/2a+1/

forall (z,t) € H.

(2) If a real numbers satisfiess + v > —n/2a, then the derivativ®; 01 DY W () (z, t) is well
defined, and
DEIDYW ) (2, 1) = YD W) (2, 1),

(3) The derivative)) DY W () (z, t) is L(*)-harmonic on H.

We define an auxiliary function dR, which is used in our later arguments. Boe R, let

_fivl (vz0)
u)(V)_{o (v <0).
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We give more general properties of fractional derivativeBof").

LEMMA 3.3. Let0 < o < 1 andy € Nj a multi-index. Ifv is a real number such that
v > —(n+ |v])/2a, then the following statements hold

(1) The derivativeD} 97 W (¥ (z, t) is well defined. Furthermore, there exists a constant
C(n,a,~,v) > 0 such that

1
(t + [z|2o) (TP 2a+w

(3.1) Dy W (2, 1) < C

forall (z,t) € H.
(2) If 8 € Ny is a multi-index, then the derivativ& DY 97 W () (z, t) is well defined, and
IPDYOIW N (1) = DVPHTW () (2, 1).

(3) If a real numberx satisfiesc +v > —(n +|y|)/2«, then the derivativ®; DY 67 W (@) (x, t)
is well defined, and
DEDYOIW ) (1) = DEFYOIW @) (2,1).

(4) The derivativeDy 97 W (@) (z, t) is L(*)-harmonic on H.

PROOF (1) By Lemma 3.2 (1), we hav@) W (@) (z,t)| < C(t + |z[>*)~(+1D/2o for all
(x,t) € H. It suffices to show the lemma for the caset 0 and—n/2a > v > —(n + |v|)/2a.
The proof is similar to that of [3, Theorem 3.1 (1)].

(2) SinceW () ¢ C>(H), the cases € Ny is trivial. Thus, suppose that ¢ Ny. Then, the
definitions of the fractional derivatives (2.9) and (2.10) imply that

1 o0
DYOTW ) (4. 4) = 7/ w(u)—u—l,Dw(V)a»YW(a) Ndr.
te (1) T(w(v) —v) Jo T t Oz (z,7 +t)dr
Since we can differentiating under the integral sign by Lemma 3.3 (1), we obtain
1

IPDYOYW ) () = / 7o) =v=1pe W) gty (@) (3 1 4 t)dr

Iw() =v) Jo
= DY YW (x,1).

(3) Using Estimate (3.1), we obtain the desired result from Lemma 2.3 (2), (3), (4), and (5).

(4) The proof is similar to that of [3, Theorem 3.1 (3)]. O

Now, we give properties of fractional derivatives ) -harmonic extensions. We prepare the
following interval. Letn > 1 and0 < a < 1 be fixed. Fory € Nj and1l < p < oo, define the
interval I (-, p) by

o { {reR:v>—(n/2a)(1/p) — |7]/2a} (p # o)
I(y,p) =
{veR:v>—|y|/2a} U {0} (p = 00).

THEOREM3.4. Let0 < a < 1,1 < p < oo,andy € Ny. If f € L? andp € M, then the
following statements hoid

(1) If v € I(7, p), then the derivativ®? 91 H'™ (z, ) is well defined, and
tYx ' f

(3.2) DO H Y (2,1) = [ DRI @ ) ()dVa(y)
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Furthermore, there exists a constatit= C'(n, «, p, vy, ) > 0 such that
Dy Oy (2, 0)] < Com (/200 /m=hl ey

for all (xz,t) € H. If v € I(0,p), then the derivativ@;D;’H;a)(x,t) is well defined, and the
equationd} Dy 1\ (z,t) = Dy Oy H'™ (x, ) holds.
If v € I(+,1), then the derivativ@t”agHLa)(:v, t) is well defined, and
DYOYH (x,t) = | DYy W (@ -y, t)du(y).
]Rn
Furthermore, there exists a constatit= C(n, «, v,v) > 0 such that
Dy OYHY (x,t)] < Ot /2= PI2emv |y
for all (z,t) € H. If v € I(0,1), then the derivativé?;D;’Hf?)(x,t) is well defined, and the
equationd? DY H'™ (z,t) = DYoYH™ (x,t) holds.
(@) If v € I(,p) and 3 € N2, then the derivativ@fo@gH;a)(x, t) is well defined, and

98Dy H Y (w,t) = DY OV HY (x,1).
If v € I(v,1) and 8 € Njj, then the derivativ@fD;’@;H,(f) (z,t) is well defined, and
OIDy M (x,t) = Dy O HM ().

(3)If v € I(v,p) andk satisfiess +v € I(v,p), then the derivativé)th”agH;“)(a:, t) is well
defined, and

DDy O H Y (x,1) = DFF O HY (. 1).

If v € I(v,1) andx satisfiess+v € I(v, 1), thenthe derivativé)g‘Dt”agHLa)(x, t) is well defined,
and
DDy OYH ) (w,1) = D OYH (2, 1).

@) If v € I(y,p), then the derivativé){@;?—[(f“)(a:,t) is L{*)-harmonic on H. Ify € I(v,1)
then the derivative? 9y H'™ (2, t) is L(®)-harmonic on H.

PrROOF Since the proof o'Hff“) is analogous to that GHSF) with f € L', we only show the

assertion foﬁ-{gf‘) :
(1) Letr € Ny. Supposd < p < oo and letqg be the exponent conjugate o Then, by the
Holder inequality, Lemma 3.3 (1), and Lemma 2.5, we have

[ Pt w @@ = .0 w)lavi ()

IN

1/q
[ |Dza;W<a><x—y,wwvn(y)) 1l

1 1/q
¢ (/ + o y2a){<n+w)/2a+u}qdv"(y)) I1fllze
Ct(n/2a)(1/q)—(n+\’Y\)/%z—vHf|

IA

(3.3)

IA

Lp-
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We remark that (3.3) for the casps= 1 andp = oo are also obtained by Lemma 3.3 (1), the
property (2.4), and Lemma 2.5. Therefore, foK p < oo, we can differentiate under the integral
sign, and we get (3.2) for the cage= Ny. Furthermore, we also have

DL @ 0] < [ DLW @~ .0 f) V)
(3.4) < ot~ 200 /p) =l 2a=v) £l
Letv € I(v,p)\Ny. Then, (3.2) for the case € N, implies that

DyOYH M (2, 1)

1 oo
R — w(v)—v—=1pw(¥) gyq /()
Tw) =) /o T Dy VO H (2, T+ t)dT
1 > e w(v)
(3.5) = 7/ rew)—v 1/ D 8;,’W(a) x—y,7+t)f(y)dV,(y)dT.
F(w(l/)—l/) 0 N t ( )() ()

We show that we can apply the Fubini theorem to (3.5). Indeed, Estimate (3.4) implies that

oo
/ Fo)—r-1 / D70 W ) (z — y, 7+ 1) f(y)|dVa (y)dr
; .
<c / TR (g 4 )P0 gy < o,
0

because’ € I(v,p). Therefore, we obtain (3.2) for the cases I(v,p)\Ny. Furthermore, as in
the proof of (3.3), we also get (3.4) for the case I(v,p)\Np by Lemma 3.3 (1).
Letv € I(0,p). Since we have already shown (3.2) fo= 0 andv € I(0, p), we obtain

Dy (w,t) = | DI @ =y, )] (4)dVay).

Differentiating under the integral sign, we get

n

DI (1) = / DIW (& — y,t) f(y)dVi(y).

Hence, the equatioﬁgD;’H}“)(x,t) = D;’@;Hgf‘) (x,t) is obtained.
(2) Letv € I(y,p) andg € Nj. Then, by the proof of Theorem 3.4 (1), we have

DYOYH () = | DYaIW ) (@ — y, 0) f(y)dVa(y)
Rn

By differentiating under the integral sign, Lemma 3.3 (2) implies that

OIDYOYHYY (w,0) = | OIDLOIW ) (& . 0) f(y)dVa ()
= | DrOrW @ =0 f()aValy)
=Dyl H Y (a,t),
because € I(5 +v,p).

(3) Using the estimate of Theorem 3.4 (1), we obtain the desired result from Lemma 2.3 (2), (3),
(4), and (5).
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(4) We show thaDy 9 ') satisfies (2.2). Forany < ; < t» < oo, Theorem 3.4 (1) implies
that

ta
L e i v @y

ta
<C f<n/2a><1/p>*lvl/2a*'/dt/ (1 + |z|) " 2%dV,(2) < oo.

t1

n

Thus, Dy 931\ satisfies (2.2). Thé(*)-harmonicity ofDy 87"’ follows from the Fubini the-
orem and Lemma 3.3 (4). a

Next, we shall give more properties @£ -harmonic extensions. The following lemma is
shown in [6, Theorem 4.2].

LEMMA 3.5. ([6, Theorem 4.2]het0 < o < 1. Then, the following statements hold

() Letl <p<ooandf € LP. Then,

IHS - D)llze < [1F oo
forall ¢t > 0.

(2) Lety € M. Then,
RS-0l < lul

forall t > 0.
We note that\l = (Cy)*, whereCy := Cy(R"™) is the set of all continuous functions &t that

vanish atco. By properties (2.3), (2.4), and (2.5), the following results are obtained, which were
shown in [6, Theorem 5.1].

LEMMA 3.6. ([6, Theorem 5.1])et0 < o < 1. Then, the following statements hold

DIf1<p<ooandf € LP, thenthe function%igc“)( -, 1) converge tof in the norm topology
on LP ast — +0.

(2)If f € L®°, then the function%i;")( -, t) converge taf in the weak-star topology oh> as
t — 0.

(3) If u € M, then the measurésf,(,,“)( -, t)dV,, converge tqu in the weak-star topology oh/
ast — 0.

We obtain the following theorem, which shall be used for investigations of parabolic Hardy
spaces.

THEOREM3.7.Let0 < a < 1. Then, the following statements hold
() Letl <p<ooandf € LP. Then,

(@) — (). =
sup [H; 7 Oller = Hu IR C 8)ller = (11l

(2) Lety € M. Then,

sup [ H) (- )| = lim [H (- )]l = [l
t>0 -
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PROOF (1) Letl < p < ccandf € LP. Then, Lemma 3.6 (1) implies
: (o) o )
T [[H55(-5 )l = (1 fllze-

By Lemma 3.5 (1) and Theorem 3.4 (4), the funct’l?dfj'a") satisfies (2.6) and i&(*)-harmonic on
H. Thus, by Lemma 2.2, we have

() (. 1 (@), =
sup 1,7 (- 5 O)llee = T HEC B)llee = (1 e
Let f € L*°. Then, Lemma 3.6 (2) implies

.. ()
o~ < lim H . oo .
Hf”L —ht %lfH f ( 7t)||L

By Lemma 3.5 (1) and Theorem 3.4 (4), the funct’Vﬁ!f;aa) satisfies (2.8) and i&(®)-harmonic on
H. Thus, by Lemma 2.2, we have

(@), B HO B = (]l
igg”Hf (o Dllpee = Hm [[H 70 Ol = ([ fllze

(2) The proof of (2) is similar to that of (1) when= oco. O

4. The parabolic Hardy spaces

The parabolic Hardy spaces were introduced in [9, Remark 5.7]. Hardly properties of their
spaces have been studied. In this section, we study properties of fractional derivatives of parabolic
Hardy functions. Particularly, we give the proof of Theorem 1. We begin with recalling definition
of the parabolic Hardy spaces. Fbk « < 1 and1 < p < oo, thea-parabolic Hardy spack? is
the set of allL(®)-harmonic functions. on H with

[ullpg, == sup [[u(-, )][L» < oo.
t>0

By Lemma 2.2, we have
[ullng, = tim ffu(- . 6)] e

forall1 < p < coandu € h%. By Theorem 3.7 (1), the mapping— H;“) is a linear isometry of

L? into h?, whenl < p < co. By Theorem 3.7 (2), the mapping— H,(f‘) is also a linear isometry

of M into hi In Theorem 4.1 below, we show that the mappings are onto. Consequently, we obtain
several properties of fractional derivativestdf-functions from Theorem 3.4. It also follows from
Theorem 4.1 thak?, are Banach spaces for alk< p < oo.

THEOREM4.1.Let0 < « < 1. Then, the following statements hold
(1) For 1 < p < oo, the mappingf — H;") is a linear isometry of.? ontoh”.

(2) The mapping: — Hff” is a linear isometry of\/ ontoh(ly.

PROOF (1) Letl < p < oo andu € hE. Also, letq be the exponent conjugateio Then, the
set{u( -,t) : t > 0} is bounded inL? = (L?)*. SinceL? is separable, there exist a sequefice
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and a functionf € L such that; — 0 andu( - ,t;) converges tgf in the weak-star topology. Let
(z,t) € H be fixed. Then, by Lemma 2.1, we have

wmt+t) = [ Wz —y,thuly,t;)dV(y).
R‘Il

Here, we note thalt’(*)(z — - ,t) € L4. Indeed, whemy = 1, the conditions (2.3) and (2.4) imply
that

[ W=y 0dvi) = [ W0V = 1.

Furthermore, whef < ¢ < oo, Estimate (2.5) and Lemma 2.5 show that

1
W (2 —y, 1)?dV,(y) < C

) re (t+ |z — y|2)na/2e AV, (y) < Ct/2e=na/2e

Hence, letji — oo, then we obtainu(z,t) = H(f“)(:c,t).

(2) Letu € hl. Then, the sefu( - ,t)dV, : t > 0} is bounded il = (Cy)*. SinceCy is
also separable, there exist a sequeft¢g and a measurg € M such that; — 0 andu( - ,t;)dV,
converges t: in the weak-star topology. Lét, t) € H be fixed. Then, by Estimate (2.5), we have

W) (z—- t) € Cy. Thus, by similar arguments in the proof of (1), we obtaim, t) = H,(f‘>(:c, t).
O

Now, we give the proof of Theorem 1.

PROOF OFTHEOREM 1. The assertion immediately follows from Theorems 3.4 and 4.10]

5. The existence of.(*)-conjugates ofh? -functions

In this section, for givek? -functions, we construct an conjugate system. In Theorem 5.2 below,
we show the existence @ *)-conjugates oh” -functions. We need the following lemma.

LEMMA 5.1. ([5, Lemma4.1])et0 < « < 1. Then,
(Dtl/ 4 Aw) W (z,t) =0
forall (x,t) € H.
Now, we show the existence &) -conjugates oh? -functions.

THEOREMb5.2.Let0 < o < 1 and1 < p < oo, then the following statements hold

(1) If w € A%, then for each < j < n, we can define a function, on H by
(5.1) vi(z,t) == —D;l/zaaju(m,t), (x,t) € H.

Also, each function; is L(®-harmonic onH. Furthermore, then-tuple of functiongvy, ..., v,)
is an L(®)-conjugate ofu.

(2) If an n-tuple of functiongvy, ..., v,) withv; € h? satisfies Equation (N.1), then we can
define a function. on H by

(5.2) u(zx,t) := Z’D;lmaﬁjvj(x,t), (x,t) € H.

Jj=1
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Also, the function: is L(*)-harmonic onH. Furthermore, thex-tuple of functiongv,, ..., v,) is
an L(®-conjugate ofi.

PROOF (1) Letu € h?. By Theorem 1 (1), we can define a functionon H by (5.1), and we
also havey;(z, - ) € FC'/?*, The L(®-harmonicity ofv; follows from Theorem 1 (4).

We show that thén + 1)-tuple (vy, . . . , v,, u) satisfies Equations (N.1) and (N.2). By Theorem
1(2), we obtain

(63)  Ovi(x,t) = —0;D; *Opu(x, t) = =D, **0,00u(z,t), 1< jk<n.
Thus, Equation (N.1) is satisfied. Furthermore, by Theorem 1 (3), we have
D vi(x,1) = DD P Opu(a, t) = dju(w,t),  1<j<n.

Therefore, Equation (N.2) is also satisfied.
We show thafvy, . . ., v,,u) also satisfies Equation (N.3). First, we claim that

(5.4) (D}/ o g Am> w(a,t) =0

for all (z,t) € H. Infact, suppose thdt < p < co. By Theorem 4.1 (1), there exists a function
f € LP such thaty = H(fo‘). Thus, (3.2) of Theorem 3.4 and Lemma 5.1 imply that

(Dg/"‘ + AI) u(z,t) = (Dtl/a + Am> HE (a, 1)
= [ (B A) W=y 05 w)Va0) =

The proof of the casg = 1 is similar to that of the case < p < co. Hence, we obtain (5.4) for all
1 < p < oco. We show thafn + 1)-tuple of functions(vy, . .., v,, u) satisfies Equation (N.3). By
(5.3), we have

Za vj(z,t) ZD‘”Q‘X@? (x,t) = D_l/zaAmu(x,t).

J=1

Therefore, (5.4) and Theorem 1 (3) imply that

Z Ovj(z,t) = D;l/QaDtl/au(x, t) = Dtl/gau(ac7 t).

(2) Suppose that am-tuple of functiong(vy, . .., v, ) with v; € h?, satisfies Equation (N.1). By
Theorem 1 (1), we can define a functioon H by (5.2), and we also havgz, - ) € FC/?* The
L(*)-harmonicity ofu follows from Theorem 1 (4).

We show that thén + 1)-tuple (vy, . . ., v,, u) satisfies Equations (N.2) and (N.3). By (5.2) and
Theorem 1 (2), for each < k < n, Equation (N.1) implies that

Oru(z,t) ZD 1/2“8k8 vz, t) = 1/2a (Z 8211k (x t)) D, 12 Vg (2, 1).

j=1 Jj=1

Since (5.4) holds for alh? -functions, Theorem 1 (3) shows that

Opu(z,t) = —D;l/QaDtl/avk(x,t) = —Dtl/zavk(x,t),
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so Equation (N.2) is satisfied. Moreover, (5.2) and Theorem 1 (3) imply that
’Dtl/hu(x,t) = ZDg/Qanl/Qaajvj(x,t) = Zajvj(:mt),
j=1 j=1

so Equation (N.3) is also satisfied. a

6. The norms of L(*)-conjugates ofh? -functions with 1 < p < oo

In this section, we estimate the normsIgf*)-conjugates oh? -functions. Our estimates are
given for the casé < p < co. Consequently, we give the proof of Theorem 2. For eaehL'NL?,
the Fourier transform of is defined by (according to the definition of [12, p.28 (1.3 of Chapter I1)])

f) = | @)™ vdv,(z), yeR",

R

and it is well known that the Fourier transform can be extended to all’dby continuity. The
following lemma is Theorem 1 of [12, p.29 (2.2 of Chapter II)].

LEMMA 6.1. (Theorem 1 of [12, p.29 (2.2 of Chapter )@t K € L2. We suppose:

(a) The Fourier transform of is essentially bounded

|K(z)] < B, zeR™
(b) K is of classC! (R") outside the origin and

V. K(z)] < z €R™

|x|n+1’

For f € L' N L», let us set

Tf(x) = A K(z—y)f(y)dValy), xeR™
Then, the following statements hold
(1) There exists a constart,, so that

ITfllze < Apllfllzo-

One can thus exterifl to all of L? by continuity. The constant, depends only op, B, andn. In
particular, it does not depend on tie norm of K.
(2) There exists a constaat = C(B,n), so that

Vo({z € R™: [Tf(z)| > A}) <

> Q

£l

The authors also describe the following remark. The assumptionithat L? is made for the
purpose of having direct definition @ff on a dense subset &F (in this case.! N LP), and it could
be replaced by other assumptions.
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We show the following lemma.
LEMMA 6.2.Let0 < o < 1landl < j < n. We put
Kj(x,t) :=D; ' o,W ) (x,1), (x,t) € H.
Then, for fixed > 0, we haveK;( - ,t) € L?forall 1 < ¢ < oo, and the following conditions

hold:

(1) There exists a constarit > 0 such that
|Kj(x,t)| < B
forall (z,t) € Handl < j <n.
(2) For fixedt > 0, K;( - ,t) is of classC' (R™) and there exists a constat > 0 such that

B

IV Kj(z,t)| < T

forall (z,t) € Handl < j <n.

PROOF. First, we show thaf{;( - ,t) € L?forall 1 < ¢ < co. Indeed, by Lemma 3.3 (1) and
Lemma 2.5, we have

1
Ki(z,t)]94dV,, (z) < 4V, (z) = C"/2eman/2e
| ms@npavie) <0 | o vi@) =

(1) Since we can differentiate under the integral sign, we get

;W (2, t) = —2mi | &5~ @M L =2mint e
R"L

Thus, we have
Kj(z,t) = D;”Qaajw@ (x,t)

1 /OC 1/2a—1 —(2m)>® 2o —2miz
- —— . /2a e (2m)=* (t+7) €] e~ 2miz-€ dedr.
I(1/20) Jo _—

The Fubini theorem and Example 2.4 (1) imply that

Kj($,t) = _27-”'/ gj (Dt—l/2a67(27r)2at‘§‘2a)6727”-1,.6 df

n

= _i/ &) - (2m)?tle —2miz€ de.
rr [€]

Therefore, by the inversion theorem of the Fourier transform, we obtain

Kj(z,t) = i L o= (@m)

|| ’

forall (x,t) € Handl < j <n.

sowe get| K (z,t)] < 1
< n, Lemma 3.3 implies that

<

(2) For eachl < k
C C

(t+ ‘x|2a)(n+l)/2a — ‘x|n+1

I (2, 1) = [D; 2 0,0,W @) (2, 1)] <



FRACTIONAL CALCULUS AND L(*)-CONJUGATES ON PARABOLIC HARDY SPACES 387

forall (x,t) € Handl < j <n. O
By Lemmas 6.1 and 6.2, we give the following estimate.

PROPOSITION6.3. Let0 < o < 1 andl < p < co. If u € hE, then there exists a constant
C = C(n,a,v,p) > 0 independent of, such that
—1/2a
127 **0;ullng, < Clullng
forall 1 <j <n.

PROOF By Theorem 4.1 (1), there exists a functifre LP such thaw = ng“) and||ul|pr =
I/l By Theorem 3.4 (1), we have

D;l/m@ju(:mt) = D;l/z"‘ajH}“) (z,t)
-/ D20, W ) (@ — y, 6) f(y)dViu (y)

— . Kj(x—y,t)f(y)dVa(y),

whereK; (z,t) = D; "/**9,W(®)(z,t). Thus, by Lemmas 6.1 and 6.2, there exists a constgnt
so that

1/p
([ 1o euterav@) < Ayl = Ayl

forall ¢ > 0 andl < j < n. Since the constant,, is independent of > 0, we obtain

1/p
D> Byl = sup ( | 1/2aaju(x7t>|f’dvn<x>) < Aplullng
foralll <j <n. O
Now, we give the proof of Theorem 2.

PROOF OFTHEOREM?2. (1) Letu € hE. Foreachl < j < n, let(vy,...,v,) be then-tuple of
functions defined by (5.1). Then, by Theorem 5.2 (1) /tkeple (v, ..., v,) is anL(®)-conjugate
of u. Furthermore, Proposition 6.3 implies that there exists a conétaat C(n,«,~,p) > 0
independent of, such that
[05llng, < Cllullng
forall1 < j < n, sowe have;; € h?. To show the uniqueness, we suppose that there exists an

n-tuple of functions(us, . .., u,) with u; € h®, such that(us, ..., u,) is anL(*)-conjugate ofu.
Then, by Lemma 3.3 (3) and Equation (N.2), we obtain

u; =D, ?D} P = —D7 VP90 = v,
(2) Let (v1,...,v,) be then-tuple of functions withv; € h?, such that(vi,...,v,) satisfies
Equation (N.1). Letu be the function defined by (5.2). Then, by Theorem 5.2 (2),rthiaple
(v1,...,v,) is an L(®)-conjugate ofu. Furthermore, Proposition 6.3 implies that there exists a

constanC' = C(n, a, v, p) > 0 such that

n n n
—1/2 —1/2
lullne = 1Y D72 000lhn < S ID; 205050l < C Y 05lne.
j=1

Jj=1 Jj=1
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so we have: € h? . To show the uniqueness, we suppose that there exists an functidsf, such
that(vy, .. .,v,) is anL(®-conjugate ofv. Then, by Lemma 3.3 (3) and Equation (N.3), we obtain

v = D;l/QaDtl/Qav = Z’D;l/majvj =u.
j=1
(3) The desired result immediately follows form the proofs of (1) and (2). O

We close this section with making a remark for the gase 1.

REMARK 6.4. Using Lemma 6.1 (2) instead of (1), we have the following wiak) type
relations between and(vy, . .., v,) in Theorem 5.2 whep = 1:
(1) If w € b}, then we have fot < j <n

C
sup Vo ({2 € R" : |vj(@,8)] > A}) < lullnz
>0
with some constar®, where(v, . .., v,) is defined in Theorem 5.2 (1).
(2) If ann-tuple of functiong(vy, . . ., v,) With v; € hé satisfies Equation (N.1), then we have

. O n
sup Va({ € R™ : fu(z, )] > A}) < 5D lvjllng

j=1

with some constar®’, whereu is defined in Theorem 5.2 (2).
In fact, if u € b, then fort > s > 0, we have

Hence, by Lemma 6.1 (2), we have
n C
Va({z € R™ ¢ Ju;(2,)| > A}) < ~llu(, s)ll e

with some constan®’ independent of > s > 0, which shows (1). We obtain (2) similarly.

7. The a-parabolic maximal functions

In this section, we study properties of theparabolic maximal functions, that is, we give the
proof of Theorem 3. We recall the definition of theparabolic maximal functions. Far€ R™ and
p>0,let

[e — . 2a —1
Cl)(x) = {(y.5) € H : |y — x> < p~Ls}.

The a-parabolic maximal functioNp(“) [u] of a functionu on H is defined by
N [u)(2) == sup{[u(y, s)| : (y,5) € Cf(x)}, = €R™
Clearly, for a function: on H, we have

g, < IV [u]l| o



FRACTIONAL CALCULUS AND L(*)-CONJUGATES ON PARABOLIC HARDY SPACES 389

forall0 < a < 1,1 < p < oo, andp > 0. We observe the relation with the Hardy-Littlewood
maximal functions. Fol < p < oo, the Hardy-Littlewood maximal functioM ¢ of f € L? is
defined by

1 n
M) =sp s | Sl e R

where B(z, r) is the ball of radiug- centered at:. Furthermore, the Hardy-Littlewood maximal
function M, of u € M is defined by

1
M (x)=sup7/ dlul(y), xeR"
W) = B ) g
The following lemma concerning the Hardy-Littlewood maximal functions is well known.

LEMMA 7.1. ([11, Theorem 7.4] and [12, Theorem If])]l < p < oo and f € LP, then there
exists a constar®’ = C(n, p) > 0 independent of such that

(7.1) (Mgllee < C|\fllze-

Moreover, ifu € M and A > 0 is a real number, then there exists a constéht= C(n) > 0
independent of: and A such that

¢
A

(7.2) Val{z € R : Myu(2) > A}) < ~ll

Now we shall give a proof of Theorem 3. The following lemma is a generalization of [8, Lemma
5.2]. Here, we use the notation @)afffl) and/\/lff) for general positive Borel measurgson R",
which may take value-oo.

LEMMA 7.2. Letu be a positive Borel measure di. If we putu := H,(f‘>, then there exists a
constantC' = C(n, «, p) > 0 independent of, such that

NP (z) < C M ()
for all z € R™.

PROOF. Letx € R™. Then for(y, s) € Cﬁo‘) (z) andz € R™, we have

stle =2 <s+ (o —yl+ 1y —2)* <s+2(|z =y + |y - 2*)
<s+20p ts+ |y —2**) < C(s+ |y — 2*),
with some constar®’. Now, lety > 0 be a Borel measure and put= Hff*). Then, (2.5) implies
that there exists a constafit= C(n, «) > 0 such that

S

|U(y, S)| = W(a)(y - % S) dlL(Z) S c Z|2Oé)"/20z+1 d,u(z)

Rr R (54 |y—
1
<Cs /Rn (5 + |z — z[2)n/2041 dp(z)

for all (y, s) € C**) (). Thus, putting

1
(S + |IL‘ _ Z|2a)n/2a+1’

T, 1=
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we have, by the Fubini theorem,

1 Tz
<C d =C dtd
lu(y, s)| < 3/ (5 + |& — z[2a)n/2a+1 p(z) S/Rn/o p(z)

:Cs/ / dp(z) dt < Cs/ Va(Bz, 1)) M (z) dt
0 |z—z|<ry 0

:CMM(:C)S/ / dz dt
0 |z—x|<r:

1
=CM@s [ )
wherer; > 0 denotesz| suchthatr, = t. The proof is complete by Lemma 2.5. O

THEOREM7.3.Let0 < o < 1 andp > 0. Then, the following statements hold
(1) If 1 < p < o, then there exists a constafit= C(n, «, p, p) > 0 such that

ullpg, < NS [ulll e < C llullps
for all L{®)-harmonic functions, on H.
(2) If p = 1, then there exists a constafit= C(n, «, p) > 0 such that

Valle € B NEOl(@) > M) < S lullg

for all A and Z(®)-harmonic functions on H.

PROOF Let1 < p < oo andu an L(®)-harmonic function orf. If ||ul|,» = oo, then the
inequalities of (1) and (2) are always satisfied. Thus, supposg: < oo, thatis,u € h%,.
We show the inequality of (1). It suffices to show the second inequality of (1). Suppose that

1 < p < co. Then, by Theorem 4.1 (1), there exists a functfor LP such that, = Hgf') and
l|lullpe = ||f]lz». By Lemma 7.2 and (7.1), we obtain

IV [lllze < ClM e < Clifllze = Clullne.

We show the inequality of (2). By Theorem 4.1 (2), there exists a measwel/ such that
uw="H and||ul|p: = [|u/. By Lemma 7.2, we have

{r eR" :Néa)[u](x) >AtC{z e R": M, (z) > \/C}
for all A > 0. Therefore, (7.2) implies that

< &l = 99
= yc = T Hing

Va({z € R : MW [u](z) > A}) < Vo({z € R" : M, (x) > A/CY)
forall A > 0. d
Now, we give the proof of Theorem 3.

PROOF OFTHEOREM 3. The assertion immediately follows from Theorem 7.3 (1). O
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A CRITERION ON APPORTIONMENT METHODS
MINIMIZING THE RENYI’S DIVERGENCE

Ersvo Kumacar
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ABSTRACT. For the Rényi’s divergence with an index «, we propose a criterion with
respect to the index « on apportionment methods, which the criterion is the sum of
the Rényi’s divergence and a proposed function of « as a kind of penalty. Under the
criterion, we also obtain appropriate house seats in the House of Representatives and
the House of Councillors in Japan.

1 Introduction In democratic states, seats are contested in the election. The seats
are allocated by a rule which is regulated by the Diet, the Congress, or the Parliament.
In principle, their seats should be proportional to the populations or the voters in their
election districts, but it is difficult to determine them exactly because the seats are integers
and the ratios of populations are usually rationals. To dissolve the gap between them, a lot
of researches have been done from several research areas, for example, sociology, economics,
operations research, and statistics.

[1] is a nice reference for determining methods with respect to proportional representa-
tion systems in the seats. Among the famous five divisor methods, i.e., the Adams method,
the Dean method, the Hill method, the Webster (or Saint-Lagué) method, and the Jefferson
(or D’Hondt) method, they propose that the Webster method is the best one because it is
to minimize a bias, but there is counterviews against this proposal. [2] propose the primal
problem and dual problem based on a rounding rule with respect to signposts as an op-
timization approach to vector and matrix apportionment problems. [4] proposes a divisor
apportionment method based on the Kolm-Atkinson social welfare function. [3] shows that
apportionment methods maximizing the Rényi’s entropy are included in the divisor meth-
ods and that his approach with the index « is corresponding to the famous five methods.
But it is not clear which o we should use among the apportionment method maximizing
the Rényi’s entropy.

In this paper, we propose a criterion with respect to the index a on apportionment
methods, which the criterion is the sum of the Rényi’s divergence and a proposed function of
« as a kind of penalty and investigate the index a minimizing our proposed criterion. Under
the criterion, we also investigate appropriate house seats in the House of Representatives
(295 seats for single-seat constituency electoral system (2013)) and the House of Councillors
(73 seats for that in re-election of half the members (2013)) in Japan.

2 Divisor methods We have to allocate the seats in proportion to the population to
realize equivalent value of votes. The typical methods are the method of greatest remainders
and the divisor method. The former has unfavorable properties like Alabama paradox and
population paradox, but the latter is the only method which does not run such paradoxes.

2010 Mathematics Subject Classification. 62B10,91D20.
Key words and phrases. The Rényi’s divergence, apportionment method, divisor method, information
criterion.
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Suppose that a country has s states, the population in the state ¢ is p; > 0, and the
total population is 7 = Zle p;. Also suppose that the seat allocated in the state i is
a; > 0 by an appropriate divisor method and the total seats is h = Zle a;, where any a;
is non-negative integer and h > s. If single-seat constituencies in the state i are a; with the
same size, we can define the value of a voter in the state i as a;/p; and it is obvious that
the sum of the value of voters is equivalent to the total seats, i.e.,

S

¢ i=1

=1

For non-negative integer a € Ny, we define a function d(a) as a rounding function. Then
it is a strictly increasing function of integers a and it satisfies that @ < d(a) < a+1. A
divisor method is decided by determining a rounding function, respectively, as follows:

Divisor method Adams Dean Hill Webster | Jefferson
1
Rounding function d(a) a % ala+1) | a+1 a+1
a4+ L
2

Based on a rounding function d(a) for positive integers z > 0, an integer [z] is determined
by the following rules:

e If z < d(0), then [z] = 0.
o If d(a) < z < d(a+1), then [z] =a+ 1.
o If z=d(a), then [z] =aor [z] =a+ 1.

Since 0 < d(0) < d(1) < d(2) < ---, the value of the integer [z] is uniquely determined
for arbitrary real number z > 0 except for the last rule. If we decide a rounding function d(a)
for arbitrary non-negative integer a and we select a positive real number x appropriately,
then, by the third rule, the total seats h is allocated as follows:

>[5 =

=1

and the seats in the state ¢ is a; = [p;/z]. This method is called a divisor method based on
a rounding function d(a). If an allocated set is defined as follows:

{a a; = [%} where z satisfies i{%} = h},

i=1
where a = (a1, as, ..., as), this set is equivalent to the following set:

max {d(a,—l)} < min{d(aj)}; aGF},
i€Sla; >1 i jes | pj

where F = {a|a(S) =h; a; € Ny (i € S)}, S ={1,2,...,s},and a(S) = >_7_, a;. [1](page
100).

(2.1) Ay = {a
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3 Two types of the Rényi’s divergences We consider the value of a voter and the
size of constituency with respect to the Rényi’s entropy.
When we can make a probability distribution by {a;/(hp;)} as follows:

p1 Ps

u = | a1 s s
St LTY St LR vl BT veull I

the Rényi’s entropy with respect to an index « is as follows:

1 ® a; ¢
mlOgQ (zz (hpz) pi>7 a >0, Oé;é17

H&(u) = S =1

a; a;
_Z<h lothpi>, a=1.

i=1

It is easy to obtain that the range of this entropy is min;log, p; < Ho(U) < log, w, but
that all hp; /7 are integers is extremely rare, so that we have to consider an apportionment
which maximizes this entropy under some restrictions. Then the problem that the seats
apportionment @ maximizing the Rényi’s entropy is equivalent to

(3.2) mﬁxHa(U) subject to a(S)=h, a; € Ny (i € 5).

Let A be a distribution of proportion of each state’s seats for the total seats,

R R

i=1

and P be that of proportion of each state’s population for the total population,

S
(N Ps bi pi
P (FeoR) B0 X0 -0
1=

and I, (A| P) be the Rényi’s divergence of A based on P,

S

L) = e (N (5) (%)) as0 art

Since the Rényi’s entropy with respect to U is transformed into

) =~ (S (5" (2)'7) i

we have the following relationship:
H,U)+ I,(A|P) = logem, a>0, a#l.

Note that, when o = 1, I;(A| P) is the Kullback-Leibler divergence of A based on P.
Thus [3] shows that the maximization of the Rényi’s entropy H,(U) is equivalent to the
minimization of the Rényi’s divergence I, (A || P), so that the problem (3.2) to obtain the
apportionment a maximizing the Rényi’s entropy is reformulated as

(3.3) mcilnFa(a) subject to  a(S)=h, a; € Ny (i € 9),
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where

oa—174
Zai logQ%7 a=1.
i=1 pi

Let o # 1. F,(a) is reformulated by F,(a) = Y7, fi(a;), where f;(a;) = a&/((a—1)p™1)
and the difference of {f;(a;)} which are strictly convex is

(ai +1)* —ag

1 S
Za?p}_a, a>0, a#l,
(3.4) F,(a) = =1

(3.5) ui(a;) = fila; +1) — fi(a;) = 1
(a—1)p;
so that it is a strictly increasing function of a; and f;(a;) = Z;OI u;(k). For the set

F={al|a(S)=h; a; € Ny (i € 5)}, a set of integer vector a is defined by

(3.6) 14:{a

i(ai — 1)) < minqu;(a;);j; Fo.
iersnlaaél{u (@ R Ijrgg{u](a])} e }

For a = 1, we define the followings:

a; (ai + l)aH—l
i(ai) = ailogy —, wia;) = logy —5—.
filaq) a; 108, ; ui(a;) 082 % p;
[3] shows that, for « > 0, a is the optimal solution of the problem (3.3) if and only if a € A.
For the set A which is characterized by the differences {u;(a;)}, we have rewritten forms

a <amw“47 o C%+2fﬁ>sﬂ (@1, a>0),

a—1 bi
. a;+1
+ 1Og2 e, 1 %’
i e a;"”
so that the set A (3.6) is characterized by both the rounding function d(a;) and the ratios
d(a;)/p; like the set Ay (2.1). [3] shows that an apportionment method maximizing the
Rényi’s entropy H,(U) (a > 0) is a divisor method.

ul(al) = a
9

log,

The value of a voter a;/p; means the number of seats per person in the state because the
allocated seats in the state ¢ is @;. On the other hand, we can also consider an apportionment
which satisfies the equality of p;/a;, which means the population per seat, i.e., the size of
constituency. In this case a; > 1 is assumed, which guarantees that every state has at least
one seat. We regard p;/(ma;) as a probability whose distribution is

ai as

P1 P1 Ps Ps
7’ ) 7’ ) IR
Tay Tay Qg TAg

W:

)

so that the Rényi’s entropy with respect to an index [ is as follows:

LI ~(pY 0 1
m 0g9 Z(TF(%’) a; |, (ﬂ> 757{ )7

Hz(W) = s =1

-y (fj log, f;), (8=1).

i=1




A CRITERION ON APPORTIONMENT METHODS 397

As a similar way in the value of a voter, the Rényi’s divergence of P based on A is

b1 = 5t (N (2) () 7). ae0 e

and we have the following relationship:
Hg(W) +15(P||A) = logoh, 5>0, f#1

Note that, when 8 = 1, I;(P||.A) is the Kullback-Leibler divergence of P based on .A.
The problem (3.2) to obtain the apportionment a = (a1, as, . . ., as) maximizing the Rényi’s
entropy is reformulated as

3.7 min Fz(a) subject to a(S)=h, a; e N (i € 5),
a B
where N = {1,2,...} and
R~ _
ﬂzp?ai ﬁa ﬁ>07 ﬂ?élv
i=1

(3.8) Fg(a) = s s
Zp’b IOgZJv ﬁ:]-
i=1 i

As the same way, we obtain the optimal set for the problem (3.7) and that an apportionment
method based on the optimal set is a divisor method. In this case, the rounding function

for a; € N is
1
I R B
<(“’+) & . B0

1-p
1
log((a; +1)/as)’
[3] shows that an apportionment method maximizing the Rényi’s entropy Hz(W) (8 > 0)

is a divisor method and that the following relationship between an apportionment method
maximizing the Rényi’s entropy and the six popular divisor methods:

d(a;) =
g=1.

a>0 a=1 a=2 a — 00
d(a) (a7 a+05  a+1
method Theil Webster  Jefferson
6>0 6=1 08=2 B — o0
d(a) m a(a + 1) a
method | Theil & Schrage Hill Adams

4 A criterion on apportionment methods We understand that an apportionment
method minimizing the Rényi’s divergence is a divisor method and we have a question as
follows: Which value in « or (3 should we use in the apportionment method as the best
choice?

Before selecting the best value «, 3, we consider properties of the Rényi’s divergence.

LEMMA 4.1 For I,(A||P) given A with o« # 1, I,(A||P) is a monotone-increasing function
with respect to .
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Proof: Since

. 1 log G(«
I(AIP) = 2 lom Gla) = 2200
where . s
N (@) P a 7\ pi
G(a);(h) (7r> ;(hm) T’

the derivative of G(a)) with respect to « is

ot = o = S 5) 5 e (35)

o = (45)

gives the relationships as follows:

= ;gi(a) and G« Zgl 10g<h;>

so that the derivative of I, (A||P) with respect to « is

) . Gla)(a —1) — G(a)log G(a)
21, = .
da (AlIP) G(a)(a—1)% log2

Since the denominator is positive without & = 1 and the property of Kullback-Leibler
divergence, the numerator is

Letting

=8

(4.9)

Gla)(a—1) - Gla)log(G() = 3@ [t~ Dtog (% ) - ogtci(@)]
- Yol ll e(F 7)) los - tor — og(Ge)

(4.10) = G(a)

so that the Rényi’s divergence I, (AHP) given A is a monotone-increasing function of . O

This means that the Rényi’s divergence itself does not work as a criterion to choose the
best index «. Then, in order to improve the Rényi’s divergence as a criterion, we will use
a kind of shrinkage function as follows:

a—1

(4.11) r(a) = (1> (a>0),

(0%

which is a unimodal which is less than or equal to 1 and maximizes at o = 1.
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PROPOSITION 4.1 Combining the monotonicity of the Rényi’s divergence I,,(A|P) and
the unimodality of the shrinkage function (4.11) with respect to «, we propose a following
criterion based on the Rényi’s divergence:

e = gy ((5)(2) 7 o)

i=1
1

a

(4.12) —  L.(A|P) + log, <;>

The second term in (4.12) is interpreted as a penalty term, which is monotone-decreasing
as a goes to exp(1l) and is monotone-increasing as o goes from exp(1) to the infinity. O

We might consider that this formulation (4.12) is very similar to a usual information criterion
which consists of both the likelihood and the penalty term, but the second term in this
formulation corresponding to the penalty term is not the dimension of parameters, so that
this formulation is not an information criterion exactly. It is, however, useful to obtain the
index o which minimizes this criterion IC(«) given A and we can use a following algorithm
to obtain an appropriate index « and the appropriate apportionment.

With respect to the seat per voter:

e (Step 1) We choose arbitrary « > 0, put it &, and set a permissible error € > 0.

e (Step 2) For & > 0, we determine an allocated seats A minimizing the Rényi’s diver-

gence:
A = arg mfiln Is(A||P).

e (Step 3) We determine an index & minimizing our proposed criterion:
A
& = argminIC(«) = argmin (IQ(AHP) + log, () > :
a [ «

e (Step 4) If |& — a&| < &, we output A as a desired allocation. Otherwise, we replace &
with & and go to (Step 2).

With respect to the population per seat:

As the same way with respect to the seat per voter, we determine 3 minimizing our
proposed criterion:

= argmﬁinlc(ﬁ) = argméln (I@(PHA)-FlogQ <;)”>

THEOREM 4.1 For our proposed criterion 1C(a), there exists a (0 < a < exp(1),a # 1
such that it attains the minimum of IC (). As the same way, it holds for IC(8) (0 < 8 <

exp(1), 8 # 1),
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Proof: From (4.9) and (4.10), the derivative of our proposed criterion IC(«) is

9 S8 (a—1)~1og(G(a))  1-loga

Y — _
da Cla) (a—1)2 log2 a? log 2
a?y(a) + (a —1)*(loga — 1)
a2 (a—1)2 log2 ’

where

so that the solution of OIC(«)/da = 0 is a which satisfies the equation

2
< al) v(a) = 1—loga for 0<a<exp(l), a#1.
o —

Note that 0IC(a))/Oa > 0 for a > exp(1). As the same way for IC(S3), we put the terms
as follows:

m™ a; s
< 9 -~ - i h
GO = 5500 = a2 1),
i=1 v
. _ ~ Gi(B) {1 9i(B) 1 pi] >0
7(8) ; o [ FaE B =0
so that we have the similar result for 0 < 8 < exp(1), 5 # 1. a

5 The single-seat constituencies of the Japanese Diet We consider the single-seat
constituencies of the Japanese Diet based on 47 prefectures’ population and voters in 2011.
The Japanese Diet consists of the House of Representatives and the House of Councillors.
The total seats in the former is 295 and that in the latter is 73 every reelection. The
High Courts in Japan adjudges that the election of the House of Representatives in 2012
is unconstitutional under the present allocation with respect to the size of constituency.
For this problem, we show the best solution under our proposed criterion in Table 1 which
includes the results by the Webster and Hill methods for reference.
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Table 1: Estimated seats by our proposed criterion: The term ’all’ means the population
in thousands and and ’voter’ the voter in thousands. In the estimation, the term ’est.a’ in
the middle area in the 295 seats is an estimation with & = 2.7 and IC(&) = —0.52308, ’a2’
is an estimation with a = 2, ’est.b’ with 3 = 2.7 and IC(8) = —0.52321, and b2’ is an
estimation with 8 = 2. The term ’est.a’ in the right area in the 73 seats is an estimation
with & = 2.4 and IC(&) = —0.399774, 'a2’ is an estimation with ov = 2 which is the Webster
method, ’est.b’ with 3 = 2.3 and IC’(B) = —0.388826, and ’'b2’ is an estimation with 8 = 2
which is the Hill method. Bold figures in the table indicate the difference of seats between

IC(6) and IC(f).

Prefecture all voter seat est.a a2 est.b b2 seat.C est.a a2 est.b b2
Hokkaido 5486 4582 12 13 13 13 13 2 3 3 3 3
Aomori 1363 1127 4 3 3 3 3 1 1 1 1 1
Iwate 1314 1083 4 3 3 3 3 1 1 1 1 1
Miyagi 2327 1908 6 5 5 5 5 2 1 1 1 1
Akita 1075 906 3 2 2 3 3 1 1 1 1 1
Yamagata 1161 957 3 3 3 3 3 1 1 1 1 1
Fukushima 1990 1624 5 5 5 5 5 1 1 1 1 1
Ibaraki 2958 2417 7 7 7 7 7 2 2 2 2 2
Tochigi 2000 1638 5 5 5 5 5 1 1 1 1 1
Gumma 2001 1629 5 5 5 5 5 1 1 1 1 1
Saitama 7207 5908 15 17 17 16 16 3 4 4 4 4
Chiba 6214 5127 13 14 14 14 14 3 4 4 3 3
Tokyo 13196 11173 25 30 30 30 30 5 8 8 6 6
Kanagawa 9058 7461 18 21 21 21 21 4 5 5 4 4
Niigata 2362 1949 6 5 5 5 5 2 1 1 1 1
Toyama 1088 898 3 3 3 3 3 1 1 1 1 1
Ishikawa 1166 951 3 3 3 3 3 1 1 1 1 1
Fukui 803 652 2 2 2 2 2 1 0 0 1 1
Yamanashi 857 699 2 2 2 2 2 1 0 0 1 1
Nagano 2142 1747 5 5 5 5 5 2 1 1 1 1
Gifu 2071 1681 5 5 5 5 5 1 1 1 1 1
Shizuoka 3749 3066 8 9 9 9 9 2 2 2 2 2
Aichi 7416 5992 15 17 17 17 17 3 4 4 4 4
Mie 1847 1505 5 4 4 4 4 1 1 1 1 1
Shiga 1414 1130 4 3 3 3 3 1 1 1 1 1
Kyoto 2632 2173 6 6 6 6 6 2 1 1 1 1
Osaka 8861 7283 19 20 20 20 20 4 5 5 4 4
Hyogo 5582 4554 12 13 13 13 13 2 3 3 3 3
Nara 1396 1142 4 3 3 3 3 1 1 1 1 1
‘Wakayama 995 820 3 2 2 2 2 1 1 1 1 1
Tottori 585 478 2 1 1 1 1 1 0 0 1 1
Shimane 712 587 2 2 2 2 2 1 0 0 1 1
Okayama 1941 1582 5 4 4 4 4 1 1 1 1 1
Hiroshima 2855 2332 7 7 7 7 7 2 2 2 1 1
Yamaguchi 1442 1193 4 3 3 3 3 1 1 1 1 1
Tokushima 780 649 2 2 2 2 2 1 0 0 1 1
Kagawa 992 814 3 2 2 2 2 1 1 1 1 1
Ehime 1423 1171 4 3 3 3 3 1 1 1 1 1
Kochi 758 631 2 2 2 2 2 1 0 0 1 1
Fukuoka 5079 4140 11 12 12 12 12 2 3 3 2 2
Saga 847 679 2 2 2 2 2 1 0 0 1 1
Nagasaki 1417 1154 4 3 3 3 3 1 1 1 1 1
Kumamoto 1813 1474 5 4 4 4 4 1 1 1 1 1
Oita 1191 979 3 3 3 3 3 1 1 1 1 1
Miyazaki 1131 916 3 3 3 3 3 1 1 1 1 1
Kagoshima 1699 1382 5 4 4 4 4 1 1 1 1 1
Okinawa 1401 1068 4 3 3 3 3 1 1 1 1 1
total 127797 105011 295 295 295 295 295 73 73 73 73 73

In this Japanese case, the indexes a, 3 which are obtained by our criterion IC(a), IC(3) are
equivalent to those corresponding to the famous Webster and Hill apportionment methods.
Thus we could consider that our criterion as a unified method is appropriate among the
famous apportionment methods.
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6 Conclusion Based on the Rényi’s entropy corresponding to the previous famous ap-
portionment methods, we propose a criterion IC(«), IC(53) in order to select the best index
«, B given an allocated seats, respectively, and an algorithm to select the totally best index.
Under this criterion, we obtain appropriate seats in the single-seat constituencies of the
Japanese Diet.

We might need more theoretical derivation with respect to our criterion because this
does not exactly correspond to a usual information criterion.
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ABSTRACT. This paper is devoted to investigating quantitatively the ODE model
for fish schooling which was introduced in the paper [15]. First, we will study how
each parameter in the model equations contributes to the geometrical structure of the
school created by fish such as school diameter, connectedness, graph, etc. Second,
we will concentrate on studying effects of the noise imposed to the model equations.
In particular, it will be shown that, if the noise’s magnitude is larger than a certain
threshold, then fish can no longer form a school.

1 Introduction In the preceding paper [15], we have introduced an ordinary differential
equation model:

dxl(t) = vldt+02dw2(t)7 1= 172,. . .,N,
N rP rd
= [0 ¥ (mm - ) )

(1.1)

for describing the process of schooling of N-fish system. Each fish is regarded as a moving
particle in the Euclidean space R?, where d = 2 or 3. The unknown z;(t) is a stochastic
process with values in R? denoting a position of the i-th fish of system at time ¢; meanwhile,
v;(t) is a stochastic process with values in R? denoting a velocity of the i-th fish at time ¢.
The fish are allowed to swim in the unbounded, continuous and homogeneous space R?.

The first equations of (1.1) are stochastic equations concerning x;, where o;dw; denote
noise resulting from the imperfectness of information-gathering and action of the i-th fish.
In fact, {w;(t), ¢t > 0} (i = 1,2,...,N) are independent d-dimensional Brownian motions
defined on a complete probability space with filtration (Q, F, {F; }+>0, P) satistying the usual
conditions. The second equations are deterministic equations on v;, where 1 < p < ¢ < o©
are fixed exponents, «, J are positive coeflicients for interaction between fish and velocity
matching, respectively, and r > 0 is a fixed distance. Since 1 < p < ¢ < o0, if ||z; —z;|| > 7
then the i-th fish moves toward the j-th; to the contrary, if ||z; — x;|| < r, then the i-th
fish acts in order to avoid collision with the j-th fish. The number r > 0 therefore denotes
a critical distance. Finally, the functions F; (¢, z;,v;) denote external forces at time ¢ which
are given functions defined for (z;,v;) with values in Re. Tt is assumed that Fi(t, z;,v;)
(i=1,2,...,N) are locally Lipschitz continuous. In building up such a differential equation
model we have referred to the fish’s behavioral rules:

2010 Mathematics Subject Classification. Primary 60H10; Secondary 82C22.
Key words and phrases. Fish schooling, Geometrical structure, Ordinary differential equations, Particle
systems.
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1. The school has no leaders and each fish follows the same behavioral rules.

2. To decide where to move, each fish uses some form of weighted average of the position
and orientation of its nearest neighbors.

3. There is a degree of uncertainty in the individual’s behavior that reflects both the
imperfect information-gathering ability of a fish and the imperfect execution of the
fish’s actions.

introduced by Camazine-Deneubourg-Franks-Sneyd-Theraulaz-Bonabeau [4, Chapter 11].
We have also referred to the idea due to Reynolds [14]. For the details, however, consult
the paper [15].

The objective of the present paper is to investigate geometrical structures of the fish
school when the fish move by obeying the kinematic equations (1.1) and create a swarm.
For this purpose, we intend to introduce several quantitative notions: Distance to School
Mates, Minimum Distance, Mean Distance to School Mates, Diameter of School, Variance
of Velocity, and e-Graph, to measure the geometrical structure of school. We in addition
introduce a notion of e-schooling where ¢ is fixed almost equally to 7. We then perform many
numerical computations to clarify effects of each parameter or exponent of the equations
in determining geometry of structures of school. These will be presented in Section 2 with
absence of noise. Next, in Section 3, we focus on studying effects of the noise which is an
indispensable factor in the real world.

Empirical study on fish schooling has been done in [1, 3, 5, 8, 13]. As for the theoretical
approach we want to quote [7, 10, 11, 16]. Vicsek et al. [16] introduced a simple difference
model, assuming that each particle is driven with a constant absolute velocity and the
average direction of motion of the particles in its neighborhood together with some random
perturbation. Oboshi et al. [10] presented another difference model in which an individual
selects one basic behavioral pattern from four based on the distance between it and its
nearest neighbor. Olfati-Saber [11] and D Orsogna et al. [7] constructed deterministic
differential models using a generalized Morse and attractive/repulsive potential functions,
respectively. We use the ODE model mentioned above. Such a model can describe the fish’s
behavior precisely. Moreover, an ODE model is tractable for making numerical simulations.
In this paper, we will use the Euler scheme for stochastic differential equations which has
been introduced by Kloeden and Platen [6].

2 Various Measures for Geometrical Structures In this section we want to intro-
duce various measures to study the geometrical structures of school. Using these measures
we will also clarify contributions of exponents and parameters included in (1.1) to the
geometrical structure of school by examining many numerical examples.

For simplicity, we consider throughout this section the deterministic case, i.e., o; = 0
for all 4. Therefore, (z;(t),v;(t)) denotes a trajectory of the i-th fish in the phase space
R? x R4,

2.1 Distance to School Mates For each fish i, put

DS;(t) = LU llz;(t) — 2s(t)]], 0<t<oo,i=1,2,...,N.
By definition, DS;(¢) denotes the distance between the i-th individual to its nearest mates
at time t. We call DS;(t) the distance of ¢ to the school mates. It is observed that DS;(t)
depends on the position x;(t) considerably. If z;(¢) is near the center of school, i.e., Z(t) =
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N
> a;(t), then DS;(¢) is much smaller than r; on the contrary, if 2;(¢) is in the periphery

1
N

J=1
of school, then DS;(t) can be almost equal to the maximum value r.
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Figure 1: Dependence of MiDS on the exponent p

2.2 Minimum Distance We define

MiDS(t) = min DS,(t), 0 <t < oo,

1<i<N
and call this value the minimum distance of school. This is the nearest distance between
two fish in a group of N individuals at time ¢. Basically, MiDS(¢) is dependent on r. But,
it is seen that MiDS(¢) depends on the exponents p and ¢, too. For example, we have

lim MiDS(T') = r,

p—o0
provided that T is a sufficiently large time. That is the nearest distance tends to the critical

distance as power p tends to infinity for sufficiently large time 7T'. By simulations, we shall
find such a relationship between r and MiDS(T).

We consider a 100-fish system in the 2-dimensional space with F; = —5.0v;, which is
often used to present the resistance against the moving particles. We fix two initial positions
for two examples of 100-individual system (the initial positions z;(0), 1 < i < 100, are
randomly distributed in the square domain [0,10]> C R?) with all null initial velocities
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v; = (0,0), (1 < i < 100). Taking the critical distance r = 1 for the first example and
r = 0.5 for the second, we tune the exponent p from 1 to 12 and always keep the relation
q = p+ 1. Other parameters are chosen as follows: @ = 1, 8 = 0.5, step size § = 0.001.
The result is got after 30.000 running steps, that is at time 7" = 30. Figure 1 illustrates
dependence of MiDS(T) on the exponent p.

Remark 2.1. The model we consider contains many parameters, but we can find that the
powers p and ¢ are especially meaningful. p and g are concerned with a range of interactions
among fish. As p and ¢ increase, the range shortens and approaches sharply to the critical
length r, namely, if ||z; — ;|| > r the attraction between ¢ and j is weak and if ||z; —z;|| <
the repulsive is very strong.

In order to simplify our arguments, in what follows, we will always take ¢ so that
q = p+ 1. This assures the condition ¢ > p in modeling and the difference is similar to that
of the Van der Waals and the Newton’s law, where p = 3 and ¢ = 4.
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Mean distance to school mates
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02 ! ! ! ! ! ! ! !
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Number of fish in school
Figure 2: Dependence of MDS on the total number of fish

2.3 Mean Distance to School Mates We consider the mean of DS;(¢), i.e.,

N
1
MDS(t Nz_: ),  0<t<oo.
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This quantity is called the mean distance of school mates and is one of quantitative measures
which are used to study the internal structure of the fish school.

It may be a very interesting question to know how MDS(¢) depends on the total number
of fish. In order to examine this, we consider an N-fish system in the 3-dimensional space
with F; = —5.0v;, 1 <i< N. Let a=5,6=1,p=3,9g =4 and r = 0.5. We take various
values N between 20 and 200. Initial positions z;(0), 1 < ¢ < N, are randomly distributed
in the cubic domain [0,20]* with all null initial velocities v;(0) = (0,0,0). The time T is
fixed as T' = 120 throughout the simulations. Figure 2 then shows dependence of MDS(T)
on the total number N. In order to reduce the effect of the random initial positions to
the result, for each value of N, we run 10 simulations each with different random initial
positions in [0,20]® C R3. The mean distance for each N is drawn by a cross x. After that
we take the mean value of these and then interpolate these values by a smooth curve.

As seen, MDS(T') decreases monotonically as N increases. This means that the school
becomes “more condensed” as N is larger. This agrees with the results stated in a number
of works, such as [2, 8, 9, 12] in which the authors show that the mean distance to school
mates decreases as a function of the number of fish. From Figure 2, we also see that the
range of the simulation results for MDS decreases as N increases.

Figure 3: Dependence of MDS and 4.5 on the critical distance r

2.4 Diameter of School The diameter of school is defined by
65(t) = sup |zi(t) —z@)l,  0<t<oa,

IR

=

where Z(t) = % > ;(t) is the center of the group at time ¢.

i=1
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The diameter of school is, by definition, the radius of the minimal ball centered at Z(t)
and containing all the individuals at time .

The following numerical example shows that MDS(T") and 0.5(T") are linearly dependent
on r for sufficiently large time T. We consider a 50-fish system in the 3-dimensional space
with F; = —bv;. Let a =5, =1, p =3 with ¢ = p+ 1. Now, r is a tuning parameter
which varies from 0.5 to 2. Initial positions x;(0), 1 < i < 50, are randomly distributed in
the cubic domain [0,20]% with null initial velocities v;(0) = (0,0,0). The time T is fixed as
T = 150. Figure 3 then illustrated the dependence of MDS(T') and §S(T) on the critical
distance r. The plots of these values are approximately on linear lines 65(7) = ar and
MDS(T) = br, respectively. In this parameter setting we observe that a = 1.18984 and
b= 0.60158.

2-Dimension

3S
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\

®

3-Dimension
16 | | : -
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w, e |
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Figure 4: Dependence of 4.5 on the total number N

How does 65(T) respond when the total number N increases? To examine this question,
we consider an N-fish system in the 2 or 3-dimensional space with F; = —5.0v;, and set
a=1,6=05p=3,¢g=p+ 1, r=1and T = 20. As stated before, in order to simplify
the arguments, each value shown in the figure is calculated by taking the mean value of the
corresponding values for 10 simulations with different initial positions. Figure 4 shows that
the diameter of school typically increases with the fish number. This is generally true in
animal flocks, cf. also [7].

By observing the figure we find that the slope of the school radius as function of N is
larger when p becomes larger.
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2.5 Variance of Velocity In order to measure matching of velocity each other, we will
use the ordinary variance

1 N
oVS(t) = [ DIl — o)z, 0<t<oo,
i=1

where () = +

M=

v;(t) is the average of all velocities of fish at time ¢.

i=1
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Figure 5: Effect of the total number N for N,

2.6 &-Graph of School We finally introduce the e-graph. Let ¢ > 0 be a fixed length.
The vertices of graph at time ¢ are all the positions of particles, z;(t), 1 < i < N. Two
vertices x;(t) and z;(t) are connected by the edge of graph if and only if ||z;(t) —z; ()| <e.
This graph is called the e-graph of school at time ¢ and is denoted by GS.(¢t). We also
denote by N.(t) the number of connected components of GS.(¢t). When N.(t) = 1, we
consider that the fish have created a school with max DS;(t) < e. If N.(¢t) > 2, N.(t)

X

denotes the number of sub-schools.

Let us now examine effects of the total population N on N.(¢) for sufficiently large time
t. To create a single school, N must be sufficiently large. To see this fact, consider an
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N-fish system in the 2-dimensional space with F; = —5.0v;. Let a = 1, 8 = 0.5, p = 4,
g =p+1, r =¢e = 0.5. Initial positions z;(0), 1 < ¢ < N, are randomly distributed in
[0, 10]? with null initial velocities v;(0) = (0,0). The population number N changes from 20
to 50. Figure 5 illustrates the graph GSg 5(400) for each N. Up to N = 39, Ny 5(400) > 2
and so the fish are divided into a few sub-schools. But after a threshold number N = 40,
they can create a single school.

3 Robustness of €, #-Schooling against Noise In this section, we consider the stochas-
tic model (1.1). Under o; > 0, we want to study how the terms o;dw;(t) affect the geomet-
rical structure of school. Can the fish system still create a school?

Let us here give a mathematical definition of school.

Definition 3.1 (g,6-Schooling). For a given length € > 0 and a tolerance § > 0, we say
that the fish system is in g, f-schooling if there exists a time T' > 0 such that N.(¢) = 1 and
oV S(t) <0 forevery t > T.

According to the above definition, a system forms a school only if velocities of all the
fish tend to their average with the error less than tolerance . Therefore, the distance
|zi(t) — x;(t)|| between any pair (i, j) will almost remain unchanged for ¢ > T. So, the
school structure remains unchanged, too. The second condition ensures that all the fish
keep the relation DS;(¢) < € for t > T. As a consequence, N.(t) = 1 remains to hold for
t>T.

Assume that a system is in ¢, #-schooling for ¢t > T. According to Remark 2.1 (cf. also
Figure 1), if ||;(t) — z;(t)|| > ¢, then i and j keep their distance far away and consquently

(3.1) Q%@%@W_me%@wymw_%M)

is sufficiently small. In the meantime, if ||2;(t) — z;(t)|| ~ €, then their distance is ||z;(t) —
x;(t)| = r and consequently (3.1) is again sufficiently small. In addition, it is clear that

@mm—@mw+:mw—@ww>mw‘ww)

is sufficiently small because of ||v;(¢) — v;(t)|| = 0. We thus verify that

n N

Z E(t, i, Ul)dt

=1 i=1

(]
g
2

In particular, if we take F;(¢,2;,v;) = —cv; (1 <@ < N), then

N N
Zdvi ~ —c (Z v; | dt.
i=1 i=1

N
Consequently, > v;(t) decays exponentially as t — oo and the system converges to a steady
i=1
state. '
Figure 6 shows an example of ¢, §-schooling generated by (1.1). 100 fish are situated at
random positions in [0,10]> € R? with null velocities at time ¢t = 0. Then they interact
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Figure 6: Example of ¢, #-schooling

with each other with a =5, 8=1,p=3,¢=4,r=0.5,0 =0, F; = —5v;, (1 < ¢ < 100),
we set € = 0.5 =r and 6 = 1075,

In the first three subfigures, we show e-graphs of the system at different instants ¢. Each
of these figure shows the positions of fish by points, their velocities by vectors and e-graph
edges by lines. The last subfigure draws the variance of velocity and the radius of school as
functions of ¢.

Of course whether a system creates a school or not depends strongly on initial posi-
tions. It is also observed that 3-dimensional systems can create schools much easier than
2-dimensional ones.

Let us next study effects of the noise. We set o;(t) = o, for i = 1,2,..., N. Simulations
are implemented in the 3-dimensional space. We fix initial positions taking randomly in
[0,5]% € R? with 50 fish, run 10 simulations with different realizations of the Wiener process
for each value of 0. We observe the end point of each trajectories of o VS(T') and 06S(T") at
T = 50. Other parameters are set asp=3,¢g=p+ 1, a=5,=1,r =0.5, F; = —5.0v;,
step size § = 0.001. Figure 7 shows that the fish can keep schooling against the noises when
their magnitude o is small enough. To the contrary, when it is large, the noises prevent the
fish from creating a single school. It might be allowed, however, to insist that the swarming
behavior described by our model (1.1) possesses the robustness for schooling. Figure 8
shows the expectation of school diameter as a function of . From this figure, too, we can
find a similar tendency.
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LOWER DECAY ESTIMATES FOR NON-DEGENERATE
DISSIPATIVE WAVE EQUATIONS OF KIRCHHOFF TYPE
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ABSTRACT. Consider the initial-boundary value problem for non-degenerate dissipa-
tive wave equations of Kirchhoff type. Using the energy method, we see that the
energies have exponential decay rates. Also, we show that the decay rates from below
of the solutions are exponentially.

1 Introduction In this paper, we study on the asymptotic behavior of solutions to the
initial boundary value problem for the following non-degenerate dissipative wave equations
of Kirchhoff type :

pu’ + (L4 [|AV2u(®)|>) Au+ o' =0 in Qx (0,00)
(11) U(x, O) = Uo(l') and ’U,/(ﬂj7 O) = U1($) in
u(x,t) =0 on 9N x (0,00),

where u = u(x,t) is an unknown real value function, 2 is a bounded domain in R with
smooth boundary 99Q, ' = 9/0t, A = —A = — Zjvzl 9 /93 is the Laplace operator with
the domain D(A) = H?(Q) N H (), || - || is the usual norm of L? = L?(Q), and 0 < p < 1
and vy > 0 are constants.

In the case of N = 1, Equation (1.1) describes a small amplitude vibration of an elastic
string (see Kichhoff [7] for the original equation ; also see [4], [5], [10]).

Many authors have shown the local in time solvability for initial data in suitable Sobolev
spaces (see [1], [2], [6], [18], [19]).

By help of dissipation we can show the global in time solvability for initial data in certain
Sobolev spaces (see [3], [17] for small data and v > 1), and we can derive some exponential
decay estimates for energies.

In previous paper [13], when v > 1, we have derive some exponential decay estimates,
that is,

[Au(®)]|? + [|AY24 ()2 + [l (@)||* < Ce™**

with some constant # > 0 under the small data condition (see Theorem 5.1).
Ghisi and Gobbino [9] have given some decay estimates of the solutions of (1.1) :

e b2t < ||A1/2u(t)||2 < Oeialt’
C'em %! < [ Au(t)|® < Ce ™,
[/ @)]? < Ce® for t>0.

2010 Mathematics Subject Classification. Primary 35L20; Secondary 35B40.
Key words and phrases. Kirchhoff strings, dissipative wave equations, decay rates.
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under the smallness condition for the coefficient p > 0. However, from their results we
can not know the lower decay estimate of the norm ||u(t)||? (cf. [8], [9], [11], [14] and the
references cited therein for mildly degenerate cases).

The purpose of this paper is to give the condition for the global solvability of (1.1) for
any 7 > 0 (see Theorem 3.1), and to derive a lower decay estimate of the L? norm of the
solution u(t) (see Theorem 4.6).

The notations we use in this paper are standard. The symbol (-,-) means the inner
product in L? = L%()) or sometimes duality between the space X and its dual X’. Positive
constants will be denoted by C and will change from line to line.

2 A-priori Estimate By applying the Banach contraction mapping theorem, we obtain
the following local existence theorem. The proof is standard and we omit it here (see [1],
[2], [15], [16]).

Proposition 2.1 If the initial data [ug,u1] belong to D(A) x D(AY?), then the problem
(1.1) admits a unique local solution u(t) in the lass C°([0,T); D(A))NC*([0,T); D(A?))N
C°([0,T); L*(Q)) for some T = T(||Auo|| , | A ?u1]]) > 0. Moreover, ||Au(t)|| + || A ?u(t)]|
< oo fort >0, then we can take T = co.

In what follows in this section, let u(t) be a solution of (1.1) and we assume that

MW 1

Py =y+1

(2.1)
By fundamental calculation, we have the energy identity
d t
(2.2) %E(t) +2|B))> =0 or E(t)+ 2/ |w'(s)||* ds = E(0),
0

where E(t) is defined by

(2.3) E(t) = p||lu' (t)|]* + (1 + WlHM(tW) M(t) with M(t) = ||AY2u(t)|?.

Proposition 2.2 Under the assumption (2.1), it holds that

Au(t)|?
(2.4) Mg <6 <60
where
U 2
(25) 6= 150 + a0,

(2:6) Q) = gy (A OPMO - o))
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Proof. From Equation (1.1) we observe

d || Au(t)]
dat M(t)
_ 1
T (T M) M(t)?
—1
T (T M) M(t)?

- <;M’(t)|2 +p <||A1/2u’<t)||2 - ;M"(w) M’<t>> >

214+ M@#))Au, Au') M(t) — (1 + M (t)7)Au, Au) M'(t))

(2 (120l + pat2, 422 vy

(2.7)
= —2Q(t) + pR(?)
where
1 " 1 / 1 / 1 1 /
R = G a3t (2(A1/2u JAYPU) M (L) + <|A Pl ()| - 5M (t)) M (t)> :

On the other hand, by simple calculation we have

M'(t) 24 (v + 2)M (t)Y
M(t) 14 M(t)

(28) Lat=- Q) ~ R().

Thus, from (2.7) and (2.8) we obtain

d (JAu(t))? p M) 2+ (v + M (1)’
i (i o) w2 (1§ 3 T ) @ =0

Since it follows from (2.1) and (2.5) that

pM'(t) 24 (y+2)M(t)”

N VO REEES VIO

>0 and Q(t) >0

we conclude the desired estimate (2.5). O

Proposition 2.3 Under the assumption (2.1), it holds that

| 2

(2.9) ”1;\4(2) < B(0)
where
U 2
(2.10) B(0) = max { le(g) , 7THG(O)(l + E(O)”)z} :

Proof. Multiplying (1.1) by 2M ()"« and integrating it over €2, we have

d [ ()| pM’(t)) [[w'(t)
Pat M) o M(t) ) M(t

2 _ L+ M(@)
M(1)
< IO 14w
T O M(t)z M(t)z

M'(t)

+2<1+ )|

(1+ M(t)).
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Since it follows from (2.1) that

2.11 1+ =
(211) +!

the Young inequality yields
Al v WO _ [Au@)]?
dt M(t) y+1 M(@) — M(®)
< G(0)(1+ E(0)7)?

(1+M(t)7)?

where we used the estimates (2.2) and (2.4) at the last inequality. Thus, by standard
calculation for ODE, we obtain the desired estimate (2.9). O

3 Global Solvability for v > 0

Theorem 3.1 Let the initial data [ug,u;] belong to D(A) x D(AY?). Suppose that the
coefficient p > 0 and the initial data [ug,u1] satisfy
1

<7
v+1

N

(3.1) 2pB(0)2G(0)

where G(0) and B(0) are given by (2.5) and (2.10), respectively. Then, the problem (1.1)
admits a unique global solution u(t) in the class C°(]0,00); D(A)) N CL([0,00); D(A?)) N
C°([0,00); L2(£2)), and moreover, the solution u(t) satisfies

|M'(t)] 1
(3.2) P M < m and M(t) < E(t) < E(0),
| Au(t)]? [’ ()]
(3.3) T@ < G(0) and TU < B(0)
fort>0.

Proof. Let u(t) be a solution of (1.1) on [0,T]. Since it follows from (2.5), (2.10), and (3.1)
that

=

|M(0)| [ua]] || Auol| 3 —
A(0) <2 0! M)} <2pB(0)2G(0)2 < y+1’

putting

[M'(s)] 1

Ty =sup { t €[0,00) | p M (s) <7+1

f0r0§s<t},

we see that 77 > 0. If T3 < T, then

[M'(#)] 1 |M' (T3] 1

3.4 1 for 0<t<T and _ .
(34) Py SAye1 On PSSl A ey T S

On the other hand, from Proposition 2.2 and Proposition 2.3, we observe

| 1

<—— for 0<t<T
y+1

N

< 2pB(0)G(0)

(35) M@ _, W' ()] IIAU(t)l

M)~ P M)
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which is a contradiction to (3.4), and hence, we have that 77 > T
Moreover, for 0 < t < T, multiplying (1.1) by 2(1+ M (¢)Y) "t Au’ and integrating it over
Q, we have
d ([ |JAYV2 (t)] M) M'(t)\ AV ()]
4OIAPCOR | Ly (147, MO MY A )]
dt 1+ M) 2V1 4+ M@E)Y M) ) 1+ M(@)

Since it follows from (3.5) that

=0.

v ’ 4
1+1p M (t) M(t)21_zp|M(t)\2 y+2 7
2714+ M(t)Y M(t) 2" M(t) 2(y+1)
we observe
d (A2 (@)1 5
_ AL S L <
i (P auol?) <o,

and hence, we see that || Au(t)|| 4+ ||AY2u/(t)|| < C for 0 < t < T. Therefore, by the
second statement of Proposition 2.1, we conclude that the problem (1.1) admits a unique
global solution. Moreover, from Proposition 2.2 and Proposition 2.3, we obtain the desired
estimate (3.3). O

4 Decay

Proposition 4.1 Under the assumption of Theorem 3.1, it holds that,

2
(4.1) M(t) < E(t) < Z2B(0)e "1
o
with
3 2 1
(4.2) a:max{2p,p+ci} and kl:a_lzmin{i’»p’ercz}’

where c, is the Sobolev-Poincaré constant such that ||¢|| < c.||AY?4)||.

Proof. We define F (t) by
E\(t) = E(t) + %HUU)HQ + (u'(t), u(t))

with E(t) given by (2.3). Since |(v/,u)] < (p/2)||v/||* + (1/2p)]||u||?, we observe from the
Sobolev-Poincaré inequality that

1 3
(4.3) §E(t) < E(t) < %E(t) with o= rnax{2,o7 p—&—cf} )

Multiplying (1.1) by 2u’ 4+ p~!u and integrating it over €2, we have
d

/ 1 vy _
21t + O + ;(1 + M(t)")M(t) =0,

and moreover, it follows from (4.3) that
d
%El(t) + klEl(t) <0 with k= a b,

Thus, we obtain that E1(t) < E1(0)e %, and hence, from (4.3) we arrive at the desired
estimate. O
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Proposition 4.2 Under the assumption of Theorem 3.1, it holds that

A2 @2 1+ M)
M@ M@

mi

(4.4) H(t)=p [Au(®)]* < g

with my = 2amax{pH (0), v~ 1(p(y + 1)E(0)"G(0) + 1)}.
Proof. We define H;(t) by

1 (AY2u/(t), AV2u(t))
2p M(t)

Since |(AY2u!, AY2u)| < (p/2)||AY?u!||> + (1/2p)||A*?u|?, we observe from the Sobolev-
Poincaré inequality that

1
(4.5) §H(t)<H1(t)< H(t) with a:max{gmp—&-cz}.

a
p
Multiplying (1.1) by M (t)~(2Au’ + p~ 1 Au) and integrating it over 2, we have

d

—H(t) + <1 +p

2
¥ ()]

Mmyw%mw L1+ M(E)
M) ME p M)
M) [Au(®)]? 1 M@ 1[M(0)2

=—(1-(y-1)M(@)) M(t) M) 20 M(t) 2 M(t)2 °

Since it follows from (3.2) that

M'(t) gl
(4.6) 1+pM(t) 2m7
we have from (3.2) and (3.3) that
d v AR 11+ M) 2
|M'(t)] SAu@)? 1 1[M(1)]
< (o vaerbgt + 5+ 350 )
1 60+ 1
< G+ 1) <(7+ 1) E(0)"G(0) + ,0) ,

and moreover, we observe from (4.5) that

d Y B
%Hl(t) + mHl(t) < WI(O)
with I(0) =~ (p(y+ 1)E(0)YG(0) + 1). Thus, we obtain

Hi(t) < max {Hl(O), ;1(0)}

and from (4.5) we conclude the desired estimate (4.4). O



NON-DEGENERATE DISSIPATIVE WAVE EQUATIONS OF KIRCHHOFF TYPE

Proposition 4.3 Under the assumption of Theorem 3.1, it holds that

J @2 1+ M@y MR _ ma
M) M) M2 = 5
with ms = 20 max{pP(0), 7 (6(7 + 1) E(0)mi + p(y + 1)y BO)}.

Proof. We define P (t) by

(47) P = AV (1) + TM ()

_ @I (), v (1)
PO=POY o, S T M

421

Since |(u”,u")| < (p/2)|]u"||*+(1/2p)||u||?, we observe from the Sobolev-Poincaré inequality

(4.8) %P(t) < Pi(t) < %P(t) with o= max{zp, p+ci} .

Multiplying (1.1) differentiated with respect to t by M (t)~!(2u”+p~1u’) and integrating

it over €2, we have

dt M) M@ p M)

M'(t) A2 @)1 | (v —2) L (M'(t))?

M) M) ;M) :

LM WO M@ (W (#), W (1))
20 M(t) Mi(t) M(t) M)

M(t)?

=—(1—=(By—=1M(t)")

From the Young inequality and (4.6) (or (3.2)) we observe
d v @I 114+ M@
A VA OV V()

M ()] [ A2/ (2)]>

M(t) Mt

1M @O | v+ 1M @) [lv'(1)]

20 M(t) Mi(t) 2y M@)?* M)

)

(
(30 17E00 % + 2 500)

1/2, 7 2 Y 7|M/(t)‘2
[AY24/ ()] +27)M(t) e

< 3(y+1)2M(t)

| 2

= p(y+1)

where we used the estimates (3.2) and (3.3), and moreover, we have from (4.8) that

Lyt + Mﬁmt) < mm)

with J(0) =y~ 1(6(y + 1)2E(0)Ym1 + p(y + 1)y~ B(0)). Thus, we obtain
Py (t) < max {Pl(O) : ;J(O)}
and from (4.8) we conclude the desired estimate (4.7). O

Proposition 4.4 Under the assumption of Theorem 3.1, it holds that if ug # 0,

1

(4.9) M(t) > C'e ™t with ky = p ' max{2, v —2}(1 + E(0)")2G(0) ,

where C' is some positive constant.

e+ (13l ) RO | MO v+ Loy B0
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Proof. Multiplying by 2M (t) =2« and integrating it over €, we have

' (1)])2 gl / o (112 i y
;f(pll M 1+ M) >+2<1+pM(t)>|| OIF _ 2= =2MO" 0

M(1)? M(t) M) ) M@)?E M(1)?

and from (3.2), (3.3), and the Young inequality we observe

d (W@l 1+ M@
dt(” M@ M) )

<2max{2,y — 2}(1 + M(t)’Y)% ”;\j;g;i” <1 + M(t)V) 2

)
< max{2. — 2)(1 4 BO)):C(0)} (1 + M(t) +an;(tn ) |

Thus, we obtain

lw' ()] | 1+ M(t)

Gr - SO with ke =g max{2, 0 = 241+ EO)) G (0)*

which gives the desired estimate (4.9). O

Proposition 4.5 Under the assumption of Theorem 3.1, it holds that if ug # 0,
(4.10) u(t)||? > C'e k2t with  ky = kg +ma/p?,
where C' is some positive constant.

Proof. From Equation (1.1), we observe

i M(t) _ —2p u _ M(t) u o
d @ ~ Ta) (A O~ TagyE @ “”)

M@ (0 M@
e (40~ a0 40
d M) 201+ M@#)7) . M) ,
dtH“(t)H2Jr lu(t)||? lAu(t) - a2 u(t)]]
__—? ult) M(t) y
= e (A0 = .0
e = MO O
<20 - o OV e

The Young inequality yields

d M) _ L@l _ Sllu"MIF M) _ me M()
at Tu@®lE =" Tu@F =7 M) WOl = 7 Ju®l?

where we used the estimate (4.7). Thus, we have
M(t
7()2 < cEt
[u(@)

and hence, from (4.9) we obtain the desired estimate (4.10). O
From Propositions 4.1-4.5, we arrive at the following theorem.
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Theorem 4.6 Under the assumption of Theorem 3.1, the solution u(t) of (1.1) satisfies
that if ug # 0,

(4.11) C'e kst < |lu(t)]|? < Ce ™t

(4.12) Cle ket < ||AV2u(t)])? < CeMt,

(4.13) Cle k2t < || Au(t)||*> < Ce Mt

(4.14) [AY 20 ()] + ||u” ()]|? < Ce ™t for t>0

with constants ki, ko, ks given by (4.1), (4.9), (4.10), where C and C’ are some positive
constants.

Proof.  (4.12) follows from (4.1) and (4.9). (4.11) follows from (4.12) and (4.10). (4.13)
follows from (4.12) and (3.3). (4.14) follows from (4.12) and (4.7). O

5 Appendix : Global Sovability for v > 1 When v > 1, if the initial energy E(0) is
small, then there exists a unique global solution and the solution decays exponentially. We
intoroduce the function F(t) as

(>-1) F(t) = pl| AV (0 + (1 + M(1)) | Au(t)]* .

Theorem 5.1 Let the initial data [ug,u;] belong to D(A) x D(AY?). Suppose that the
initial energy E(0) is small such that

(5.2) 2542aE(0)271F(0) < 1

with o = max{3p/2, p+ c.}. Then, the problem (1.1) admits a unique global solution u(t)
in the class C°([0,00); D(A)) N C(]0,00); D(AY2)) N CO([0, 00); L*()), and moreover, the
solution u(t) satisfies

(5.3) [Au()? + A2 (O + o (O] < Ce™ for 20
with 6 = (4p) =L, where C is some positive constant.

Proof. Let u(t) be a solution of (1.1) on [0,7]. We define F;(t) by
Fi(t) = PU0) + 5 [A"ut) P + (V20 (0), A 2u(r).

Since |(AY2u!, AY2u)| < (p/2)||AY?u'||> + (1/2p)||A*?u)|?, we observe from the Sobolev-
Poincaré inequality that

1
(5.4) §F(t) < Fi(t) < %F(t) with «a = max{3p, p+ci} .

2

Multiplying (1.1) by 2Au’ + p~! Au and integrating it over €2, we have

(6:5) RO+ AU O + 20+ M) Aub =70 (M) Au(o)]

We observe from (2.2) and (5.1) that

(5.6) YM' ()M (t) ™" < 2yM(£)7 | Au(t)|| < 2yp~ 2 E(0) 2 F(t)? .
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Since 2442pE(0)2~1F(0) < 1 (by (5.2)), putting
Ty =sup {t € [0,00) | u(s) =2'+*pE(0)> ' F(s) < 1for 0 <s <t}

we see that 77 > 0. If T3 < T, then

(5.7) u(t) <1l for 0<t<Ty and wu(Ty)=1
(5.8) YM (£ M (£) | Au(t)||* < $||Au(t)||2~

Thus, for 0 <t < T, it follows from (5.4), (5.5), and (5.8) that

%Fl(t) +0F (t) <0 with 6= (4p)7*,
and hence,
-0t 2a —0t
(5.9) Fi(t) < Fi(0)e or F(t) < 7F(0)e .
Then, we observe
(5.10) lu" @) < [lp™ (1 + M(6)7) Au(t) + p~ ' (1)|* < CF(t) < Ce™™

and
w(t) = 242 pE(0)7LE(t) < 2°4%aE(0)2771F(0) <1 for 0<t<T)

which is a contradiction to (5.7), and hence, we have that T} > T and || Au(t)|| + || AY 2w/ (t)]|
< C for 0 <t < T. Therefore, by the second statement of Proposition 2.1, we conclude
that the problem (1.1) admits a unique global solution. Moreover, from (5.9) and (5.10) we
obtain the desired estimate (5.3). O
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Abstract

We consider an optimal stopping problem for the operation of system
that deteriorates with age and fails stochastically until the fixed time
limit in advance. When the system fails unexpectedly, we choose one of
two actions, repair or stop. The optimal stopping time which minimizes
the total expected cost is derived by means of a simple mathematical
model and dynamic programming technique. Some numerical examples
are presented to illustrate our results in detail when the failure and the
repair distributions are given specifically.

1 Introduction

In practice, most system operational periods are fixed in advance. For instance,
consider the management of some airline company with B747 jumbo jet. From
the view point of running cost, the company takes into consideration of replacing
B747 with B787 carbon fiber aircraft. The deliver time of a new aircraft is
3 years from now on. If the B747 jumbo jet fails unexpectedlly, there are
two alternatives, repair and revolve service or stop flighting service until the
delivery time. It is clear that if the failure such as engine trouble occurs just
before the fixed time limit, then it will be better not to repair sevice. Hence, it
is an important problem to find a critical point in time between repairing and
stopping.

Another example is concerned with the operation of atomic power plants
in Japan. As a turning point with the Fukushima’s nuclear accident in 2011,
the Japanese government has established the operating time limit of all atomic
power plants in 2030. In this case, the same problem happens, because the
voluntary moratorium on one atomic plant will loss about 1 billion dollar/year.
So, one of important problems to the electric power company is to find the
optimal operating and stopping policy for existing atomic power plant.

In general, all the system will deteriorate with age and will fail stochastically.
When the system fails, it is repaired with a specified repair time distribution or
left as it is until the fixed time limit in advance. From the view point of cost, if
the system fails close to the time limit, we should stop and not repair the system.
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As a result of stopping action, an idle time occurs and a cost is incurred due
to the failed system remaining idle[2,7]. It is an interesting problem to find
a critical point in time to repair or to leave the failed system as it is. Such
problems have been investigated by some authors in the fields of operations
research and reliability engineering[1,2,6]. Kijima and et al [4] discussed the
periodic replacement problem and Nair and Hoppl[5] gave a simple and efficient
algorithm for finding the optimal stopping rule of an equipment replacement.
A recent survey paper on maintenance strategy has been written by Wang][8].

In the next section, we provide a simple model to derive the optimal operat-
ing and stopping rule for the system with arbitrary failure and repair distribu-
tions. In section 3, numerical examples with some failure and repair distribu-
tions are given to derive the critical point in time explicitly. Section 4 includes
our conclusion.

2 Model and Formulation

Consider a system that deteriorates with age and fails stochastically. When the
system fails, we can choose one of two actions, repair or stop. If the repair action
with repair distribution R(t) is chosen, the setup cost K» and the idle time cost
per unit time C' are incurred. On the other hand, if the stop action is chosen,
the system will be idle until the fixed time limit and the fixed cost K; (cost
of decommissioning) and the idle time cost per unit time C are incurred. Our
problem is to find the optimal action in order to minimize the total expected
cost and to derive the critical point in time to repair or to stop the failed system.
Concentrating our model, we define the following notation:

e F(y) and f(y) = failure distribution and its density function

e \y) = f(y)/(1 = F(y)) = failure rate. So \(y)Ay represents the proba-
bility that the system aged y fails between y and y + Ay.

e U(x,y) = minimum expected cost up to the fixed time limit when there
is still a time x to go and the system aged y is in the state of failure

e V(z,y) = minimum expected cost up to the fixed time limit when there
is still a time x to go and the system aged y is in the operable state.

Under these notation, consider the situation in which the system aged y is failed
when there is still a time x to go and let us compare the system at two closely
spaced remaining times x and x — Az. In this case, we have two alternatives,
repair the system or stop the system. If the repair action is chosen at x, either
the system turns out to be an operable state with probability R(t) or the repair
action does not finish until the fixed time limit with probability 1 — R(t). If we
choose stop action, then the next state is still failure state and the cost K1 +Czx
is incurred.

On the other hand, if the current state is operable, then after the small time
interval Ay, the state remains as operable with probability 1 — A(y)Ay and the
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state will run into the failure state with probability A(y)Ay. When the repair
action is over, the age of the system is A, a given value which may not exceed
the system age prior to failure. It should be noted that A = y corresponds
to the minimal repair and A = 0 major repair. Then, we have the following
functional equation:

K+ Cu, : stop
(1)  Ulz,y) =ming K+ [ {Ct+V(x —t, A)}dR(t)
+(Ky + Cz) [ dR(t), : Tepair

For simplicity, we assume that the repair is minimal A = y. The first line in
the bracket represents the cost of stopping action and the second one the total
expected cost of repair service. If z is small enough, it is clear that the stopping
action is preferable. Thus, for small z,

(2) Uz,y) = K1 + Cx.

On the other hand, for small Ay, V(x,y) is expressed as
(3)
{ Viz,y) =My)AyU(z — Ay,y+ Ay) + (1 = Ay)Ay)V (z — Ay, y + Ay)
V(07 y) = Kl

Using a Taylor expansion for U and V and Ay — 0, we have a quasi-linear
partial differential equation with the boundary condition V(0,y) = K;.

(4) 6\/5;, y) 6Véz, )

Applying the standard method, the solution for this equation is given by

= M) (K + Co — V(z,y)).

V(z,y) = Ki+Ce” Jo Maty—z)d= / Mz +y— Z)zefoz Az+y—£)dE g,
0
= Ki+ 0/ (1 —e féy+§ A(z)dz)dg
0
C

5 = Ki++—F5— / Fly+¢&) — F(y))dg].

o) gl Fwr o - P
Therefore, the functional equation (1) for U(z,y) can be written as
(6) U(z,y) = K1 + Cz+min{ 0; Gy(z)},

where V(z,y) is given by (5) and Gy(x) expresses the optimal stopping time
function as

G,(x) = Ki— K\R(z)— c/oz R(t)dt + /0 V(z —t,y)dR(?)

C x x—t
Ko = KR(0) + =] /O /0 F(y+ €)d¢dR(t)

(7) - /O " R(t)dt + F(y)R(0)a].
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Note that for each y > 0,
Gy(0) = Ky — K1 R(0).

So, if Gy (0) = Ko—K;R(0) > 0, then the stopping action should be made, where
K1 R(0) shows the expected stopping cost at z = 0. And if Ko — K1 R(0) < 0
then the repair action is preferential.

Since R(0) means the probability that finishes the repair action in a moment,
we assume that R(0) = 0 without a special case. Under this assumption, G (z)
is given by

Gy(e) = K 4 = // Fly + €)dedR(t) /R #)dt]

and from this result we can observe that the solution of Gy(z*) = 0 does not
depend on K.

(Proposition) If R(0) = 0, then the optimal stopping time x*(y) does not
depend on the stopping cost K.

It should be noted that the relation
U(z,y) = K1+ Cx
is valid for the preferential region of stopping and
Ulz,y) = K1+ Cx + Gy(x)
gives the expected cost for repair action, that is
Gy(x) > 0 = stop action Gy(x) < 0 = repair action

Thus, the critical value of x, for which the repair action should be made, is
given by the minimum positive root of

Gy(z) =0.

Moreover,
*(y) = inf : <
#(y) = i { & : Gylx) <0}
represents the critical value for which the repair action should be made. It is
intuitively clear, and can be easily demonstrated, that the optimal region is
provided by the simple form as

stop for 0<a <a*(y)
repair for x> z*(y).
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3 Simple Examples

In this section, we show some simple examples to find a critical value z*(y)
explicitly.

(1) General Failure Distribution and Negligible Repair Time
The first example is shown by an instanteneous repair time distribution R(0) = 1
and a genenral failure distribution F(t). By equation (7), we have

C x
Gy(z :KQ_C(L"‘F*/ F(y+¢) — F(y)}dg].
(2) ol PO - P
Especially, if the failure distribution F'(¢) is given by the exponential distribution
F(t)=1—e?, XA>0, then

C
Gy(2) = Ko+ S(e7 = 1),

Under the condition C' > AKs5, we have

i} 1. C—\K
7(y) = =5 In(——50).

On the other hand, if the repair is maximal( that is, after the repair the system’s
age is always y = 0) and F(0) # 1, we have

Gyfa) = Ko = Cort 1=l [ 1F(©) ~ F(O)}ag

and
Gy(0) = K3 >0, Gy(o0)=—00<0.

Therefore, the optimal stopping time equation G (z) = 0 has at least one root
for x > 0.

1. If F(0) = 1, then the optimal rule is always stop since Gy(z) = oo > 0
and the repaired system fails in a moment.

2. If F(0) # 1, then

Gy(2) = Kz — Ca + 1CF(O)[/0 F(€)d¢ — F(0)a).

So, the optimal stopping time z*(y) satisfies the following equation:

*

u—me@=c%xa—F@ma
Especially, if F/(0) = 0, then

%@ﬁﬂ@—q[%—F@ma:m—cm—nwn
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where m is the mean time to failure and
Tee) = [ (@ - OdF(e).

Note that the transform Tr(z) is a nonnegative convex and strictly de-
creasing function of z as was pointed out by DeGroot[2]. So, the optimal
stopping time z* is given by

K
* —1 2
zt =Tp (m— ?)
as shown in Figure 1.
\ "
mi—K/C \
T—
0 x* ’ X

Figure 1: Graph of Tp(x)

(2) Gamma Type Failure Distribution
Suppose that the failure distribution F(t) is Gamma type as

t k
F(t):/o (kil)!e—*ﬁgk—ldg

Let .
Ti(a,b) = / e Mtk=1lat,
then
A% (a,b) = kT (a,b) + abe™*2 — pFe= b

and equation (5) can be denoted as

V(z,y) = K1+ C)[(ffJ + )Ty, +y) — Trgr(y,  +y)].

Fk(ya S8

It is difficult to carry out the operation of integral explicitly except for k = 1.
Let k = 1, then the failure distribution is reduced to an exponential distribution
and we have

V(z,y) = K1 +Cx — %(1 —e ),
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Thus,
Gy(z) = Ky — Ce™ / e MO R(t)dt.
0

From this relationship, the critical value x* is given by the solution of

where the symbol * denotes the convolution integral.

In addition to the assumption that the failure distribution is exponential, we
suppose that the repair time is subject to an exponential distribution R(t) =
1 —exp(—pt) and p/A = p > 1. Then the optimal stopping time function can
be written as

c - Cu - Y
G =Ko——(1—-e") = ———— (e " - .
Letting e~ = z, we can write G, () = 0 as
T OV R N (C W
7 S iy o B Y

For A = 2,u = 1,C/K> = 8, this equation yields a quardratic equation in z
which has the solution z* = In 2.

Especially, if C' > AK5, we can easily obtain the analytical form of this value
x* for two extreme cases p = 0o and p = 0. The assumption of y = oo shows a
negligible repair time. Thus, the above equation is expressed as

Gy(2) = Ky — %(1 _ ey,

Since G, () is a decreasing function of z, there exists the unique value

1 — \K.
o= _Xln(%)

as was derived above.

On the other hand, we consider the case of p = 0. This means that the
repair action never finishes in the finite horizon. Then we have G (z) = K2 > 0
and

U(z,y) = K1+ Cz +min{0: K3} = K7 + Cx.

The result shows that the optimal policy is to be always idle for any .
As the last example of repair time, we consider it as constant in time D. The
distribution function R(¢) is written as

0, for 0<t< D
for t> D
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Accordingly we have

G, (z) = Ko for 0<xz<D
v\ = Ky — §(1— e Me=D)) for x> D

From the equation the optimal policy is described as follows:
(i) C > A\K»
stop for 0 <z < z*
repair for x > 2*(> D)
where z* is given by
1. C—)\K,
x 3 n( - )

(ii) C < AKj idle for all z since the second term is positive for all x.

(3) Linear Failure Distribution
o 8 /5
t 0<t<1
F(t){ L t>1/8,

then the failure rate is given by

B
11—t

Alt) 0<t<1/B)
To derive an explicit expression of V(z,y) and G (z), we consider the following

three cases:
Case(i) z+y <1/8

C 2
and c
* 1
Gy(2) = Kz + 1 fﬂy /0 (o y =t = )R

Note that the condition x4+ y < 1/ suggests that the time remaining until the
fixed time limit is short and the system is in the nearly new state.

Case (ii) z+y>1/fand y <1/p
This case means that the time remaining is long enough and the system is nearly
new. Then we have

Vey) =Ko+ Clat 30— )
and CR )
Gy(a) = o+ BTy - 2,

O Case(iii) y > 1/5
It is clear that V(x,y) = oo. It follows that the optimal action should be
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always idle since the system aged y(> 1/3) fails with probability 1. To study
the optimal policy in detail, we specify that distribution of repair time R(t) as
follows:

(A) Exponential Repair Distribution R(t) =1 — exp(—put)
From the results of three cases mentioned above, it follows that

Kot 25l + (=5~ e~ f(1—e )] foraty<1/8
Gy(z) = Kg—i-%(y—%)(l—e”””) forr+y>1/fandy<1/8
o0 for y > 1/

It is clear that the critical point * depends on x and y. We can find the critical
point by the numerical calculation and the following figure 2 and figure 3 are
useful.

1/B=15u-05,K/C= 2

Figure 2: 3 dimensional graph of G, (x) Figure 3: Graph of G (z)

(B) Straight Line Repair Distribution
Let the repair time distribution be a linear function as

foat, 0<t<1l/a
R() { 1, t>1/a

To avoid unnecessary complications, we assume that o > 3. Then we have the
following result:

Coo® (i — 1} for z+y<1/8,0<z<1/a
Clas — 7+ gaigy (2® — £+ 502)] foraz+y<1/8,1/a<u

Gy(z) = Ko+ %(y—%) fore4+y>1/8,y<1/B,2>1/a
Yy—1) forz+y>1/8,y <1/8,x <1/a
00 fory>1/p8

The shaded portion in the figure shows a preferential region of repair service
for this example. Note that the optimal stopping time z*(y) depends on the
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y=1/B - 2K2/Cox

/ K/C=1, 1/B=3,u=2

v/ @: y=1/p - axs/3(axz — 2K2/C)
/ @): y=1/B + (xe-x/a +1/303)/2(Ko/C +1/200 —X)

/

Figure 4: Repair Region

remaining time x and the system age y.

(4) Weibull Failure Distribution
Let ,
£() = aBlat)?le=@0”,

Then
A(t) = BaPtP1

1. If « = 1,8 = 2, then the failure distribution shows an increasing failure
rate(IFR). In this case we have

Gya) = Ko = OV [ (0(VE(w +y - 0) - (V) dR().

2. If « = 1,8 = 1/2, then the failure distribution shows a decreasing failure
rate(DFR). In this case we have

G,(z) = Ky — 2CeV? /O eI+ ) — VI - Ty D) }R().

Unfortunately, it is difficult to carry out the operation of integrals explicitly.

4 Conclusion

The present paper is concerned with an optimal maintenance policy for the
system with repair and idle time during the fixed time limit. An optimal policy
and a critical point in time to repair or to leave the failed system as it is
are provided by the method of dynamic programming technique. We show
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that the optimal policy depends not only the time until the fixed time limit
but on the system age. It is difficult to obtain an explicit form of optimal
policy for arbitrary distributions of failure and repair. The interesting results
are that the critical value z*(y) does not depend on the system’s age y for
the exponential ditribution family by the memoryless property. Except the
exponential distribution, the critical value depends on the remaining time x
and the system’s age y. A numerical calculation presents a solution to this
difficult problem. For some simple examples, convenient figures which specify
the critical point and the preferential region of repair action are easily described
by the numerical calculation. The results will be useful to solve the practical
problems.
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Abstract. Inthispaper,acharacteristic function depending on the state of a pair’s
relationship is introduced to a coalitional game with the Shapley value. By applying
the characteristic function, we draw some theorems where a specific player makes
his reward the maximum or the minimum. Furthermore, some properties in two
concrete models are shown and various strategies of each player are discussed in
two simulations. Especially, it is investigated how a player with low original
reward should cooperate with other players in order to make his portion the

maximum.

1 Introduction

If three people obtain reward when they cooperate, there exists a problem how to
divide reward to them. Ordinary person simply thinks it should be divided reward by
three evenly. But with different potential or skills, that division way is not proper from
the perspective of each person’s satisfaction. In real life, if you think about your wage
in the company, this wages are divided by your experience, your role, and the
significance of your position. We think that the system is rational in our real life.

In this research, based on the Shapley value L.S. Shapley introduced, we will discuss
how to divide reward in a coalitional game depending on the state of player’s
relationship. It was well known that L.S. Shapley won the 2012 Nobel Memorial Prize
in Economic Sciences. In the coalitional game, it is clear that when relationship among
all players should be good, their sum of reward becomes the maximum. But we are not
sure that a specific player can get the most reward from that relationship. For a specific
player, there exists the strategy what kind of relationship the player makes to other
players. Here, we give each relationship between two players, and we define the value of
characteristic function depending on the state of that relationship. If the relationship is
good, the value of characteristic function goes high. If the relationship is bad, that
value goes down. We define a characteristic function being like this situation and

discuss the strategy of each player.

2 Definition of a characteristic function
Let S be the set of relationship between two players, S= {si, sz, 3,..., Sm/.

For any 1 <j, let si>s;. > means that the relationship of si is better than that of s; .

Mathematics Subject classification 2010. 91A12
Key words and phrases. coalitional game, the Shapley value, characteristic function
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All elements of S are the following relations, s1> s> s3> ..... >si> ..... >sm. Of course,
s1means the best relationship and sm meansthe worst relationship. Let P be the set of
players, P=1{p1, pz, p3, ... , Pn J.
When the relationship of two players p: and pjis sn , we make the characteristic function
giving reward based on the relationship.
[ Definition 1 ]
That characteristic function is defined as
v (pi U pj,sn), where for k<, v(pi U pj,sx) = vipi U pj,si).
When we have the characteristic function with three people, we define
vipi U pj U p)= %{v(pi U pj,s)+vip U p,s)+vipe U pj,s™ ),
where s’ 1s the relationship between p; and p;j,s’ is the relationship between pi and px,
and s” i1s the relationship between p; and px .
For four players, we define as follows,
vipi U pj U px U p1)=§{v(pi Up Up)+vlps U px U p)+vp U pe U pr)+v
(i U p U p)i.
We can define the same things to others following this.
By applying the characteristic function depending on the relationship, we discuss the
strategy that each player makes the Shapley value the maximum.
[ Definition 2 |
For the coalitional game (P, v), the Shapley value of player pi is given

R @I =D e ur) - vy

where n is the number of players in the set P, P’ represents any set except player pi,

P’ U pi isthe set P’ adding player pi,) represents the number of players in the set P’,
and Yp can give us the sum of all of the combination of P’.
[ Example ]
In the coalitional game of three players, let be P={p1, p2, ps} and S= {s1, sz, S3,..., Sw/.
It is assumed the reward to be able to get alone as follows,

vip) =qi, v(p2)=qz v(ps)=gs.

We can get the Shapley value of each player as follows,

fp1)= = tv(p) (6 + Zv(pr U ps, 8) = v(po} +={v(pr U ps, &) = vipa} + 2ivipr U po

U ps)—v(p: U ps, s}
= 22 gz +@} + 2 V1 U pz,8) +v(pr U ps,s))-v(p: U ps, 8"}
f(ps )= %{2 qz —(qut ga)} + %{2 v U p2,s)+v(pz U ps,s”)—vipr U ps,s)}
f(ps )= %{2 qs —(qut+ q2)} + %{2 vp2 U ps,s)+v(pr U ps,s)—vipt U pe,s)}
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where s, s” and s” are elements of S= {si, sq, ss,..., Su/.
Since the property of v(pi U p;i, sk) = v(pi U p;j, s1) for k<l, the strategy to make

» 9
S

f(p1) be the maximum is (s,s”,s™) = (s1, s1, Sw) .

We get as follows similarly, the strategy to make f(p: ) be the maximum is (s’,s”,s™) = (s,
sm, 81) ,the strategy to make f(ps ) be the maximum is (8’,s”,8™) = (sm, s1, s1) .

Even if it extends a player to n persons from three persons, it is clear that the same
structure is held.

[Theorem 1]

When the relationship of pi U pj for every j G#1) is s:1and the relationship of p; U pxis
sm G#1 and k#1), f(pi) becomes the maximum.

[Theorem 2]

When the relationship of pi U pj for every j (j#1) is smand the relationship of p; U pxis
s1 G#1 and k#1), f(pi) becomes the minimum.

[ Proof']

Two theorems can be quickly derives from Definition 1 and Definition 2.

From Theorem 1, when one chooses good relationship of a pair with oneself and does
worse relationship of other pair except oneself, one can make one’s reward the
maximum. Conversely, to make reward of specific player the minimum is by having a
bad relationship of a pair with the player, and also relationship of others except the

player needs to be good.

3 Simulation Model I

Let P= {A,B,C} be a set of 3 players, S= {g,n,w} be the state set of relationship between
two players. Let g be “good” of relationship, n be “neutral”’, and w be “worse”.

Each of the 3 players can choose a element of the state set and the selection is carried
out to their strategies.

The characteristic function v is defined as follows.
v(A)=a, v(B)=b, v(C)=c,

2(a+b), s=g
v(AUB,9)= atb), s=n
a+b, S=W
2(a+c), =g
v(AUC,t)= %(a+c), t=n
a+tc, t=w
2(b+c), u=g
v(BU C,u)= %(b+c), u=n
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b+c, u=w
VAUBUC)={v(AUB,9) +v(AU C,p) +v(BU C,)}
The Shapley value of each player can be calculated by using the dividend.
f(A) :%(2a—b—c) +%{2V(A UB,s) +2v(AUC,t) —v(BU C,w)}
f(B) :%(2b —a—c) +%{2V(A UB,s) +2v(BUC,u) —v(AUC,t)}
f(C) :%(20— a—Db) +%{2V(A UGC,t) +2v(BUC,u) —v(AUB,s)}

[Property 1]

When relationships between three players are all “good”, the sum of all players reward

becomes the maximum. But the strategy which makes each individual’s reward the

maximum can be expressed by Theorem 1.

Each strategy of player A, player B, and player C is (s,t,u)=(g,g,w), (s,t,u)=(g,w,g),

and (s,t,u)=(w,g,g), respectively.

[Property II]

When relationships between three players are all “worse”, the sum of all players reward

becomes the minimum. But the strategy which makes each individual’s reward the

minimum can be expressed by Theorem 1I.

Each strategy of player A, player B and player C is (s,t,u)=(w,w,g),(s,t,0)=(w,g,w),

or (s,t,u)=(g,w,w), respectively.

[Property 1]

When (s,t,u)=(n,*,g) or (s,t,u)=(w,*,w), f(A) does not depend on b.

When (s,t,u)=(*n,g) or (s,t,u)=(*,w,w), f(A) does not depend on c.
The symbol* denotes an arbitrary state of relationship.

Especially, when (s,t,u)=(n,n,g), f(A)= %a does not depend on both b and c.

[Property IV]

When (s,t,u)=(n,g,*) or (s,t,u)=(w,w,*), f(B) does not depend on a.

When (s,t,u)=(*,g,n) or (s,t,u)=(*,w,w), f(B) does not depend on c.
Especially, when (s,t,u)=(n,g,n), {(B)= Zb does not depend on both a and c.

[Property V]

When (s,t,u)=(g,* n) or (s,t,u)=(w,*,w), f(C) does not depend on b.
When (s,t,u)=(g,n,*) or (s,t,u)=(w,w,*), f(C) does not depend on a.
Especially, when (s,t,u)=(g,n,n), f(C) =%c does not depend on both a and b.
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[Property VI]
When (s,t,w)=(w,w,w), f(A)=a, f(B)=b, and f(C)=c.

[Property VI
When (s,t,u)=(w,*,g) or (s,t,u)=(*w,g), f(A) is decreasing in b and is decreasing in c,

respectively. Especially, when (s,t,u)=(w,w,g), f(A) is decreasing in both b and c.

[Property VII]
When (s,t,u)=(g,w,*) or (s,t,u)=(*g,w), f(B) is decreasing in a and is decreasing in c,

respectively. Especially, when (s,t,u)=(w,g,w), f(B) is decreasing in both a and c.

[Property IX]
When (s,t,u)=(g,w,*) or (s,t,u)=(g,*,w), f(C) is decreasing in b and is decreasing in c,

respectively. Especially, when (s,t,u)=(g,w,w), f(B) is decreasing in both a and b.

[Numerical analysis of Model 1]

When v(A)=a=4, v(B)=b=3, and v(C)=c=2, the Shapley value of each player can be
calculated in each strategy.
From Property 1, when you choose good relationship of a pair with yourself and does
worse relationship of a pair except yourself, you can make your reward the maximum.

The number of strategies which 3 players take the state is 27. Figure 1-1 represents
that it arranges in many order with reward f(A) of player A.

Figure 1-2 and Figure 1-3 are also the same.
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Figure 1-3
When relationships among three players are all “good”, the strategy (s,t,u)=(g,g,2) is
not necessarily best for each player. In the arrangement of f(A),f(B), and f(C), the
ranking of the strategy (s,t,u)=(g,g,g) is 3rd,4th and 5th,respectively. When original
reward v(C) of player C is the lowest value of three players, a player like player C is
called “low potential player’. For low potential player like player C, (s,t,u)=(g,g,2) is
not so an important strategy. If the value of v(C) becomes small, the importance of the

strategy (s,t,u)=(g,g,g) will fall for player C.
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Figure 1-4
If player C takes the strategy (s,t,u)=(w,g,g) which makes one’s reward the maximum, it
is investigated how f(A), f(B), and f(C) will change by the variable of v(C)=c.
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Figure 1-4 represents the changes of f(A), f(B), and f(C) where v(A)=4, v(B)=3 and v(C) is
changed to 3 from 1. If v(C) exceeds 1.7, f(C) will become the maximum among three

players.

4 Simulation Model 11

In Model 1, the characteristic function v depends on the sum of 2 player’s reward
and is linear function of v(A), v(B) and v(C). In Model II, the characteristic function v
changes the product of 2 player’s reward. The reward of each player will become large if
a good relationship is chosen.

The characteristic function v 1s defined as follows.
v(A)=a, v(B)=b, v(C)=c,

- 2ab, s=g
v(AUB,s)= gab, s=n
a+b, S=w

2ac, t=g

v(AUC,t)= %ac, t=n
a+tc, t=w

2bc, u=g

v(BUC,w)= %bc, u=n

L Dbtc, u=w
VAUBUC)=2tv(AUB,8) +v(AU C,t) +v(BU C,w}
Since this characteristic function v satisfies the conditions of Theorem I and 1I,

Model II is keeping the same properties as Property I, Property II and Property VI
in Model 1.

[Numerical analysis of Model 1]
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Figure 2-3
In the arrangement of many order of f(C), the ranking of the strategy (s,t,u)=(g,g,g) is
6th. Furthermore, the importance of this strategy will fall for player C.
[ Property X]

When a=b=c> % and (s,t,u)=(w,w,g), f(A) is decreasing in both b and c.

When a=b=c> % and (s,t,u)=(w,g,w), f(B) is decreasing in both a and c.

When a=b=c> % and (s,t,u)=(g,w,w), f(C) is decreasing in both a and b.

[ Property XI]

Except (s,t,u)=(w,w,g) ,(s,t,u)=(w,g,w), and (s,t,u)=(g,w,w), let aibic%,then f(A), £(B),

and f(C) are increasing in all a, b and c.
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Figure 2-4
It is investigated how f(A), f{(B) and f(C) will change by the variable of v(C)=c like Model
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I . In spite of the best strategy (s,t,u)=(w,g,g) for player C, it becomes the lowest at
v(C)=1. When v(C) exceeds 1.6, f(C) will become the top of three players. The

structure of characteristic function v is disadvantageous for the low potential player.

5 Comparison of Model I and Model 1I

In Model I and Model II,since 3 players can choose three kinds of relationships each
one ,the number of their strategies is 27. We investigate the reward distribution of 3
players in all strategies. In Model I and Model II, the order of strategies make a
small difference for each player. In particular, the change of the order is large for the
low potential player. In all strategies, the average of each player’s distribution
percentage is as follows.
In Model 1 ,when v(A)=4, v(B)=3, and v(C)=2, we can see the share of f(A) in v(AUBU
C). We take the average of that and let it be ASR(Average Share Rate).
ASR of f(A): ASR of f(B): ASR of f(C) =42.6% : 33.3% : 24.1% , and
the average of all of f(A): the average of all of f(B): the average of all of f(C) =5.75: 4.5 :
3.25 .
Compared with an original reward, the average of each player becomes large
comparatively. Especially, when an original reward, v(C)=2 becomes the average 3.25,
the satisfaction of player C may be high.
When relationships among three players are all “worse”, f(A),f(B), and f(C) depend on
each original reward only from Property VI. The structure of cooperative relation will
not exist at all.

In Model 1, when v(A)=4, v(B)=3 and v(C)=2,
ASR of f(A): ASR of f(B): ASR of f(C) = 44.9%:34.9%:20.2%,
the average of all of f(A): the average of all of f(B): the average of all of f(C) =8.2777 :
6.4444  3.4444.
Compared with an original reward, the average of each player becomes large
comparatively like Model 1. On the contrary to Model I, the satisfactions of player A
and player B will be high. The structure of the characteristic function 1is

disadvantageous for the low potential player like player C.

6 Conclusion

It is clear that a high potential player is advantageous in the coalitional game with
the Shapley value. Since a characteristic function depending on the state of a pair’s
relationship is introduced to a coalitional game, there exists the strategy where a

specific player makes his reward the maximum or the minimum.
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Since two models hold v(pi U p;, sk) = v(pi )+ v(p; ) for any sk, the Shapley value of
each player becomes more than an original reward in a coalitional game. A low potential
player is disadvantageous in two models. But when the low potential player C takes
two strategies (s,t,u)=(w,g,g) or (s,t,u)=(wn,g) in Model 1 ,four strategies
(s,t,w=(w,g,2), (s,t,u)=(w,g,n), (s,t,u)=(w,n,g), or (s,t,u)=(w,n,n) in Model II respectively,
reward of the player will become the top of three players. The choice is increasing in
spite of the disadvantageous structure of Model II for the low potential player C.

In the future, we can extend to 4 players and 5 players from three players and may
draw many properties from these models. In this paper, the characteristic function of
more than three players was made from two players’ relationship. We can make
directly the relationship of more than three players and will discuss the structure of a

complicated relationship.
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