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The International Society for Mathematical Sciences (ISMS) is an international soci-
ety consisting of mathematical scientists throughout the world.

The main activities of the ISMS are to publish (1) the (print and online) journal
Scientiae Mathematicae Japonicae (SCMJ) and (2) Notices from the ISMS and to
hold assembly meeetings in Japan and international internet meetings (distance
symposium) of mathematical sciences (IVMS) accessible from all over the world.
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1998 in celebration of the semi-centurial anniversary and received 26000 visits per month
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Using this system, speakers of the session can write on a white board or an OHP sheet
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from any connected site in the world. All these are performed similarly to the traditional
meetings.

To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).

Copyright Transfer Agreement

A copyright transfer agreement is required before a paper is published in this journal.
By submitting a paper to this journal, authors are regarded to certify that the manuscript
has not been submitted to nor is it under consideration for publication by another journal,
conference proceedings or similar publication.

For more information, please visit http://www.jams.or.jp.

Copyright Copyright (©2014 by International Society for Mathematical Sciences.
All rights reserved.



Scientiae Mathematicae Japonicae 79, No.1(2016) (1-10)

HOPF HYPERSURFACES ADMITTING ¢-INVARIANT RICCI TENSORS
IN A NONFLAT COMPLEX SPACE FORM

KAZUHIRO OKUMURA
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ABSTRACT. We investigate real hypersurfaces with ¢-invariant Ricci tensors in a non-
flat complex space form M, (c). In particular, we classify Hopf hypersurfaces having
weakly ¢-invariant Ricci tensor in Mn(c) In addition, we verify the non-existence
of Hopf hypersurfaces with strongly ¢-invariant Ricci tensor in ]\’Zn(c) and the non-
existence of ruled real hypersurfaces with weakly ¢-invariant Ricci tensor in Mn(c)

1 Introduction We denote by M,(c) (n = 2) an n-dimensional non-flat complex space
form. Namely, Mn (c) is congruent to either a complex projective space of constant holo-
morphic sectional curvature ¢(> 0) or a complex hyperbolic space of constant holomorphic
sectional curvature ¢(< 0). Let M?"~! be a real hypersurface in Mn(c) It is well-known
that real hypersurfaces in M, (¢) admitting almost contact metric structure (¢,&,7,g) in-
duced from Kéhler structure J of Mn(c) (see Section 2). From the viewpoint of contact
geometry, real hypersurfaces are interesting in Mn(c) It is also well-known that there exist
no Finstein real hypersurfaces in Mn(c) Thus, many geometers studied its weaker condi-
tions and conditions related to the Ricci tensor of M?"~! (See [3], [5], [7], [10], [11], [14],
[15]).

In this paper, we focus on the structure tensor ¢ of M?"~! and the Ricci tensor of
M?*"=1. We define the notion of ¢-invariant Ricci tensor of M?"~! (for detail, see Section
5). This notion is divided into strongly ¢-invariance of the Ricci tensor of M?"~1 or weakly
¢-invariance of the Ricci tensor of M2"~!. In particular, the latter is a weaker condition of
Einstein real hypersurfaces. .

In the theory of real hypersurfaces in M, (c), Hopf hypersurfaces (namely, real hypersur-
faces such that the characteristic vector £ is a principal curvature vector at its each point)
play an important role. We investigate Hopf hypersurfaces M 2n=1 with ¢-invariant Ricci
tensors of M?"~1 in M, (c). Note that there exist real hypersurfaces M?"~! with weakly
¢-invariant Ricci tensor of M?"~! in Mn(c) In fact, the family of such real hypersur-
faces includes real hypersurfaces of type (A) in J\Ajn(c) (Theorem 1). It is known that real
hypersurfaces of type (A) in Mn(c) have many nice geometric properties.

The purpose of this paper is to determine Hopf hypersurfaces M 2n=1 having weakly
¢-invariant Ricci tensor of M?"~1 in M,(c). To do this, we shall prove that weakly ¢-
invariance of the Ricci tensor of M2"~! is equivalent to the commutativity of the structure
tensor ¢ of M?"~! and the Ricci tensor @ of type (1, 1) of M2"~! (that is, pQ = Q¢) on a
Hopf hypersurface M?"~1 in Mn (¢). In addition, we shall show the non-existence of Hopf
hypersurfaces M?"~! with strongly ¢-invariant Ricci tensor of M?2"~! in Mn(c)

In general, weakly ¢-invariance of the Ricci tensor is not equivalent to the commutativity
of the structure tensor ¢ and the Ricci tensor @ of type (1, 1) on a non-Hopf hypersurface in
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Mn(c) It is natural to consider non-Hopf hypersurfaces M?"~! having weakly ¢-invariant
Ricci tensor of M?"~1 in Mn(c) Ruled real hypersurfaces are typical non-Hopf hypersur-
faces in M, (¢). So, we shall also show the non-existence of ruled real hypersurfaces M?2"~!
with weakly ¢-invariant Ricci tensor of M?"~! in Mn(c)

2 Preliminaries Let M?"~! be a real hypersurface with a unit local vector field N/
of a complex n-dimensional non-flat complex space form M (¢) of constant holomorphic

sectional curvature ¢. The Riemannian connections V of M, (¢) and V of M?"~! are related
by

(2.1) VxY = VxY + g(4X, YN,
(2.2) VxN = —

for vector fields X and Y tangent to M 2n=1 where ¢ denotes the induced metric from the
standard Riemannian metric of M, (¢) and A is the shape operator of M?"~1 in M, (c).
(2.1) is called Gauss’s formula, and (2.2) is called Weingarten’s formula. Eigenvalues and
eigenvectors of the shape operator A are called principal curvatures and principal vectors
of M?"=1 in M, (c), respectively.

It is known that M?"~1 admits an almost contact metric structure (¢,€,n,g) induced
from the Kahler structure J of Mn(c) The characteristic vector field & of M*"~ is defined

as £ = —JN and this structure satisfies

(2.3) ¢*=—-T+n®E n(X)=g(X,£),nE) =1, ¢ =0, n(¢X) =0,
9(¢X,Y) = —g(X,9Y) and g(¢X, ¢Y)=g(X,Y)—n(X)n(Y),

where I denotes the identity map of the tangent bundle TM of M?2"~1. We call ¢ and n
the structure tensor and the contact form of M/QV”_l7 respectively.

Let R be the curvature tensor of M?"~!in M, (c). We have the equation of Gauss given
by:

(24)  RX,Y)Z =(c/D{9(Y, 2)X — g(X, 2)Y + g(¢Y, Z)9 X — g(¢X, Z)¢Y
—29(¢X,Y)pZ} + g(AY, Z)AX — g(AX,Z)AY

for all vectors X,Y and Z on M?"~1,
The Ricci tensor S of type (0, 2) and the Ricci tensor @ of type (1, 1) of an arbitrary
real hypersurface M2"~! in M, (c) (n = 2) is expressed as:

(2.5) S(X,Y) = g(QX,Y) = (¢/4)((2n + 1)g(X,Y) = 3n(X)n(Y))
+ (Trace A)g(AX,Y) — g(A*X,Y).

3 Homogeneous Hopf hypersurfaces in Mn(c) We usually call M?"~1 a, Hopf hyper-
surface if the characteristic vector £ is a principal curvature vector at each point of M?27~1,
It is known that every tube of sufficiently small constant radius around each Kahler subman-
ifold of M,,(c) is a Hopf hypersurface. This fact tells us that the notion of Hopf hypersurface
is natural in the theory of real hypersurfaces in M, (¢) (see [15]).

The following lemma clarifies a fundamental property which is a useful tool in the theory
of Hopf hypersurfaces in M, (c) (cf. [15]).

Lemma 1. For a Hopf hypersurfacey%_l with the principal curvature § corresponding
to the characteristic vector field & in M, (c), we have the following:
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(1) 6 is locally constant on M?"~1;

(2) If X is a tangent vector of M?"~! perpendicular to & with AX = AX, then (2\ —
0 APX = (A + (¢/2))pX.

In CP™(c) (n 2 2), a Hopf hypersurface all of whose principal curvatures are constant is
locally congruent to a homogeneous real hypersurface (that is, real hypersurfaces which are

expressed as orbits of some subgroup of the isometry group I(M,(c)) of M, (c)). Moreover,
these real hypersurfaces are one of the following:

(A1) A geodesic sphere G(r) of radius r, where 0 < r < 7/4/c;
(A3) A tube of radius r around a totally geodesic CP*(c) (1 £ ¢ < n —2), where 0 < r <
m/\/e;
(B) A tube of radius 7 around a complex hyper quadric CQ™~ !, where 0 < r < 7/(2+/¢ );

(C) A tube of radius r around a CP'(c) x CP("~1/2(¢), where 0 < r < 7/(2y/c ) and
n(= 5) is odd;

(D) A tube of radius r around a complex Grassmann CG3 5, where 0 < r < 7/(24/c ) and
n=29;

(E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where 0 < r <
w/(2y/c) and n = 15.

These real hypersurfaces are said to be of types (A1), (Az), (B), (C), (D) and (E). Summing
up real hypersurfaces of type (A1) and (Ag), we call them real hypersurfaces of type (A).
The numbers of distinct principal curvatures of these real hypersurfaces are 2,3,3,5,5, 5,
respectively. The principal curvatures of these real hypersurfaces in CP™(c) are given as
follows (cf. [15]):

Ll o | ow | o ®m | oom |
AL | % cot (%7) g cot (Trr) g cot (@r - %) g cot (@r - %)
A2 — —@ tan (%r) @ cot (%r + %) @ cot (§7 + %)
A3 — — — %co‘c (%7‘)

M T — — —%tdn (%r)
d | /e cot(y/cr) Ve cot(y/cr) Ve cot(y/cr) Veceot(yer)

The multiplicities of these principal curvatures are given as follows (cf. [15]):

| LAY [ () [ B [© [D)]E ]
mA) [ 2n—2 | 2n—20—2 | n—1 2 4 6
m(Aa) — 20 n—1 2 4 6
m(As3) — — — |n—=-3] 4 8
m(Ag) — — — |n—=3] 4 8
m(3) 1 1 1 1 1| 1

Remark 1. A geodesic sphere G(r) of radius r (0 < r < w/y/c) in CP"(c) is congru-
ent to a tube of radius (w/\/c ) —r around totally geodesic CP"~(c) of CP™(c). Indeed,

lim G(r) =
r—m/\/c

cP* ().
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In CH"™(c) (n 2 2), a Hopf hypersurface all of whose principal curvatures are constant
is locally congruent to one of the following:

(Ao) A horosphere in CH™(c);

(A1) A geodesic sphere G(r) of radius r, where 0 < r < oo;

s

)
)
(A11) A tube of radius r around a totally geodesic CH"~!(c), where 0 < r < o0;
(A2) A tube of radius r around a totally geodesic CH®(c) (1 £ £ < n—2), where 0 < r < oc;
)

(B) A tube of radius r around a totally real totally geodesic RH™(c/4), where 0 < r < oc.

These real hypersurfaces are said to be of types (Ag), (A1), (A11), (A2) and (B). Here,
type (A1) means either type (A1) or type (A1 1). Summing up real hypersurfaces of types
(Ap), (A7) and (As), we call them hypersurfaces of type (A). A real hypersurface of type
(B) with radius r = (1/4/|c| ) log.(2 +v/3 ) has two distinct constant principal curvatures
M =6 =/3[c[/2 and X2 = /][ /(2V/3 ). Except for this real hypersurface, the numbers
of distinct principal curvatures of Hopf hypersurfaces with constant principal curvatures are
2,2,2,3,3, respectively. The principal curvatures of these real hypersurfaces in CH™(c) are
given as follows (cf. [15]):

Ll ww T e [ e [
A1 e Viel Coth(@r) Viel tanh(@r) Vel coth( lel 7’) Vel coth( e 7’)

2 2 2 2 2 2 2
Ao — — — \/2|7| tanh(\/gr) \/QH tanh(\/gr)
5 | I | /I coth(y/Ielr) | /Iel coth(y/[e[r) | /Iel coth(y/[e]r) | /[e tanh(y/[e[r)

The multiplicities of these principal curvatures are given as follows (cf. [15]):

’ | (Ag) | (Aro) [ (A1) | (Az) | B) |
mA) |[2n—2 | 2n—2 | 2n—2 | 2n—20—-2 | n—1
m(A2) — — — 20 n—1
m(o) 1 1 1 1 1

Remark 2. The above Hopf hypersurfaces of type (A) and (B) in CH"(c) are homoge-
neous real hypersurfaces. However, there exist non-Hopf homogeneous real hypersurfaces in
CH™(c) (for detail, see [1]).

4 Ruled real hypersurfaces in Mn(c) Next we give ruled real hypersurfaces in a non-
flat complex space form Mn(c), which are typical examples of non-Hopf hypersurfaces. A
real hypersurface M 2n=L g called a ruled real hypersurface of a non-flat complex space form
M, (c) (n = 2) if the holomorphic distribution T°M defined by T°M (z) = {X € T, M |
X 1¢&} for x € M1 is integrable and each of its maximal integral manifolds is a totally
geodesic complex hypersurface M,,_1(c) of Mn(c) A ruled real hypersurface is constructed
in the following way. Given an arbitrary regular real smooth curve v in Mn(c) which is
defined on an interval I we have at each point () (¢t € I) a totally geodesic complex
hypersurface MT(QI(C) that is orthogonal to the plane spanned by {¥(t), J4(¢t)}. Then we
see that M?"~1 =, MT(LQI(C) is a ruled real hypersurface in Mn(c) The following is a
well-known characterization of ruled real hypersurfaces in terms of the shape operator A.
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Lemma 2. For a real hypersurface M>"~1 in a non-flat complex space form Mn(c)
(n = 2), the following conditions are mutually equivalent:

1. M*1 s a ruled real hypersurface;

2. The shape operator A of M?"~1 satisfies the following equalities on the open dense
subset My = {z € M?"~|v(z) # 0} with a unit vector field U orthogonal to & : A& =
né +vU, AU = vE, AX = 0 for an arbitrary tangent vector X orthogonal to & and
U, where p,v are differentiable functions on My by p = g(A&, &) and v = ||AE — pé||;

3. The shape operator A of M?"~! satisfies g(Av,w) = 0 for arbitrary tangent vectors
v,w € TpyM orthogonal to &, at each point x € M?"~1,

We treat a ruled real hypersurface locally, because generally this hypersurface has sin-
gularities. When we study ruled real hypersurfaces, we usually omit points where £ is
principal and suppose that v does not vanish everywhere, namely a ruled hypersurface
M?71 is usually supposed M; = M2~

5 ¢-invariances of the Ricci tensor and main theorem First, we define the notion
of ¢-invariance of the Ricci tensor S of M?"~! in M, (c). The Ricci tensor S of M?"~1 is
called strongly ¢-invariant if S satisfies

S(¢X,9Y) = S(X,Y)

for all vectors X and Y on M?2"~1. Also it is called weakly ¢-invariant if S satisfies
S(¢X,¢Y) = S(X,Y)

for all vectors X and Y on M?2"~! orthogonal to the characteristic vector & on M?"~1L,

Theorem 1. Let M?"~ ! be a real hypersurface in a non-flat complex space form Mn(c) (n=
2). Then the following holds:

1. Suppose that M>"~' is a Hopf hypersurface in Mn(c) Then M?*"~1 has weakly ¢-
invariant Ricci tensor S of M?"~1 if and only if M?"~1 satisfies Q = Q¢. Moreover,
M?"=1 s locally congruent to one of the following:

(a) A real hypersurface of type (A) in Mn(c);

(b) A tube of radius r around a complex hyperquadric CQ™~1 in CP"™(c), where
0<r<m/(2y/c) and cot (\Ver/2) =vn—2 ++/n—1;

(c) A tube of radius r around a CP'(c) x CP™=1/2(c) in CP™(c), where 0 < r <
7/(24/c), n (2 5) is odd and cot (v/er/2) = (vVn—1 +1)/v/n —2;

(d) A tube of radius v around a complex Grassmann CGa 5 in CP™(c), where 0 <
r<m/(2y/c), n=29 and cot (ver/2) = (v/8 +3)/V5;

(e) A tube of radius r around a Hermitian symmetric space SO(10)/U(5) in CP"(c),
where 0 < r < 7/(2y/c ), n =15 and cot (y/cr/2) = (V14 ++/5)/3;

(f) A non-homogeneous real hypersurface which is a tube~0f radius v around an (-
dimensional non-totally geodesic Kdahler submanifold N without principal curva-
tures £(y/c /2)\/(20 — 1)/(2n — 20 — 1), where the rank of every shape operator
of N in the ambient space CP™(c) is not greater than 2 and cot?(\/cr/2) =
(20-1)/(2n—20 —1) with £ =1,...,n— 1.
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2. There does not exist a Hopf hypersurface M>"~1 with strongly ¢-invariant Ricci tensor
S of M1,

3. There does not exist a ruled real hypersurface M>*"~1 with weakly ¢-invariant Ricci
tensor S of M?"1.

Proof. From (2.5), we know that strongly ¢-invariance of the Ricci tensor S of M?"~! is
equivalent to saying that

(5.1) —g(n — Dn(X)n(Y) + (Trace A)(g(ApX, ¢Y) — g(AX,Y))
— g(A%$X,¢Y) + g(A*X,Y) =0

for all vectors X,Y on M?"~!. By this equation, we obtain that weakly ¢-invariance of the
Ricci tensor S of M?"~1 is equivalent to saying that

(5.2) (Trace A)(g(A9X, ¢Y) — g(AX,Y)) — g(A*6X,9Y) + g(A*X,Y) = 0

for all vectors X and Y orthogonal to &.
(1) First of all, we suppose that M?2"~! satisfies $Q = Q. Then, we get

S(6X,0Y) = g(QoX,6Y) = g(6QX, ¢Y) = —g(QX,4°Y) = g(QX,Y) = S(X,Y)

for any vectors X,Y orthogonal to &.
Next, we suppose that M?"~! has weakly ¢-invariant Ricci tensor S of M?"~1. By (5.2),
we have

(5.3) (Trace A)g(—pApX — AX,Y) + g(pA%¢X + A’X,Y) =0

for any vectors X, Y orthogonal to £. Interchanging a vector X (L £) with a vector ¢X (L &)
in Equation (5.3), we obtain

(Trace A)g((pA — A)X,Y) — g((¢A* — A%$)X,Y) =0
for any vectors X,Y orthogonal to £&. This implies that
(5.4) 9((0Q — QP)X,Y) =0

for any vectors X, Y orthogonal to . On the other hand, using assumption that M?lisa
Hopf hypersurface in M, (c), we obtain ¢Q¢& = 0 = Q¢&. This, combine with (5.4), implies
PQ = Q9.

By the works of M. Kimura [8], [9] (the case of n = 3 in CP"(c)), U-H. Ki and Y. J.
Suh [6] (the case of n = 3 in CH"(c)) and J. T. Cho [4] (the case of ]T/.fg(c)), we know the
classification of Hopf hypersurfaces with ¢@Q = Q¢ in Mn(c) Hence, we get the classification
of Hopf hypersurfaces having weakly ¢-invariant Ricci tensor in Mn(c)

(2) We suppose that M?"~! is a Hopf hypersurface with A¢ = 6¢ in Mn(c) From (5.1),
we find that M?"~! has strongly ¢-invariant Ricci tensor S of M2~ if and only if M?"~1
satisfies the following two conditions:

(i) The Hopf hypersurface M2"~! has weakly ¢-invariant Ricci tensor S of M?"~1;

(ii) The Hopf hypersurface M?"~1 satisfies the following equation:

(5.5) 52 — (Trace A)J — g(n —1)=0.
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Now we shall check Equation (5.5) one by one for real hypersurfaces of (1) in our Theorem.

Let M?"~! be a real hypersurface of type (A;) in CP"(c). Let x = cot (\/cr/2), 0 <
r < w/y/c. Then we have § = (\/c/2)(z — (1/x)), 62 = (c/4)(z* — 2 + (1/2?)) and
Trace A = (v/¢/2)((2n — 1) — (1/z)). These, together with Equation (5.5) we get n = 1,
which contradicts n = 2. Hence M?"~! does not have strongly ¢-invariant Ricci tensor S
of M?n—1,

Let M?"~! be a real hypersurface of type (Az) in CP"(c). Let x = cot (y/cr/2), 0 <
r < w/y/c. Then we have § = (\/c/2)(x — (1/x)), 6% = (c/4)(2? — 2 + (1/2?%)) and
Trace A = (v/¢/2)((2n — 20 — 1)z — (20 + 1)(1/x)). These, together with Equation (5.5) we
get (n — ¢ —1)z* + ¢ = 0. However, this equation can not occur. Hence M?"~! does not
have strongly ¢-invariant Ricci tensor S of M2~ 1,

Let M?"~! be a real hypersurface of type (Ag) in CH"(c). Then we have § = /|c[, 62 =
—c and Trace A = /[c| + (2n — 2)(y/]¢]| /2). These, together with Equation (5.5) we get
n = 1, which contradicts n = 2. Hence M?"~! does not have strongly ¢-invariant Ricci
tensor S of M?n—1,

Let M2"~! be a real hypersurface of type (A; ) in CH"(c). Let x = coth (/]c|r/2),

0 < r < co. Then we have 0§ = (\/]c[/2)(z + (1/z)), 6% = —(c/4)(z® + 2 + (1/2?)) and
Trace A = (/][ /2)((2n — 1)x + (1/x)). These, together with Equation (5.5) we get n = 1,
which contradicts n = 2. Hence M?"~! does not have strongly ¢-invariant Ricci tensor S
of M?"~!. Similarly, we can show that real hypersurfaces of type (A1 1) in CH"(c) do not
have strongly ¢-invariant Ricci tensor.

Let M?"~! be a real hypersurface of type (A) in CH"(c). Let 2 = coth (y/]c[r/2),

0 < r < 0o. Then we have § = (1/]c[/2)(z + (1/z)), 6% = —(c/4)(z® + 2 + (1/2?)) and
Trace A = (1/]e[ /2)((2n — 2¢ — 1)z + (2¢ + 1)(1/x)). These, together with Equation (5.5)
we get (n — £ —1)z* + ¢ = 0. However, this equation can not occur. Hence M?"~! does not
have strongly ¢-invariant Ricci tensor S of M?"~1,

Let M?"~1 be a real hypersurface of the case of (b) in our Theorem. Then we have
§=+/c(n—2), 6% =c(n—2) and Trace A = —/c /v/n — 2. These, together with Equation
(5.5) we get n = 1, which contradicts n = 3.

Let M?"~1 be a real hypersurface of the case of (c) in our Theorem. Then we have
§=+/c/vn—2,6%>=c/(n—2) and Trace A = —+/c(n — 2). These, together with Equation
(5.5) we get n? — 5n + 4 = 0, so that n = 1,4, which contradicts n = 5.

Let M?"~1 be a real hypersurface of the case of (d) in our Theorem. Then we have
§ =3¢ /V5, 62 = 3¢/5 and Trace A = —/5¢/v/3. These, together with Equation (5.5)
we get n = 21/5, which contradicts n = 9.

Let M?"~1 be a real hypersurface of the case of (e) in our Theorem. Then we have
§ = +/5¢/3, 62 = 5¢/9 and Trace A = —3v/5¢ /5. These, together with Equation (5.5) we
get n = 37/9, which contradicts n = 15.

Let M?"~! be a real hypersurface of the case of (f) in our Theorem. Then M?"~!
has at most five distinct principal curvatures as follow:y/c cot(y/cr) with multiplicity 1,
(v/¢/2) cot(y/cr/2) with multiplicity 2n — 20 — 2, —(y/c/2) tan(y/cr/2) with multiplicity
20 — 2, (/¢ /2)cot((y/er/2) — 0) with multiplicity 1 and (y/c/2) cot((y/cr/2) + 0) with
multiplicity 1, where (/¢ /2)cot @ is a principal curvature of the Kéhler submanifold N (see
[3], [9], [10], [12]). In this case, M?"~! has either the case of § = 0 or the case of § # 0.
When § = 0 (that is, the case of n = 2¢), we have (¢/2)(n—1) = 0, which is a contradiction.
When § # 0, we have

(5.6) Trace A =0+ 2—65(71 —1).

It follows from (1) of Lemma 1 that the right side of Equation (5.6) is constant on M?"~1,
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On the other hand, the left side of Equation (5.6) is non-constant. Indeed, Trace A of
M?~1 is expressed as:

Trace A =0+ (2n — 20 — 2)% cot (\fr) — (20— 2)% tan (ﬁr)

2
Lo (e 0) Y o ().

Note that (y/c/2) cot((y/cr/2) —0) + (/¢ /2) cot((y/cr/2) + ) is non-constant on M?"~1,
Thus, we have a contradiction. Hence, M?"~! does not have strongly ¢-invariant Ricci
tensor S of M?"~1,

Therefore, there exist no Hopf hypersurface M 2n=1 with strongly ¢-invariant Ricci tensor
S of M?"~1in M, (c).

(3) We suppose that M?"~1 is a ruled real hypersurface with weakly ¢-invariant Ricci
tensor S of M2"~1 in M, (c). It follows from (5.2) and (3) of Lemma 2 that we obtain

—g(A%9X,9Y) + g(A*X,Y) =0
for all vectors X,Y orthogonal to £. Setting X =Y = U, by using Lemma 2 we have
0= —g(A%pU, ¢U) + g(A*U,U) = v* # 0,

which is a contradiction. Hence, M?"~! does not have weakly ¢-invariant Ricci tensor S of
M2n—1. O

Remark 3. Note that the commutativity of the structure tensor ¢ and the Ricci tensor @
of type (1,1) always implies weakly ¢-invariance of the Ricci tensor. However, in general,
we do not know whether the converse holds or not.

6 Concluding remarks

6.1  In general, there exist contact metric manifolds with strongly ¢-invariant Ricci ten-
SOT.

For example, R3 with coordinates (!, 2%, #3) and the contact form n = (1/2)(cos 23 da' +
sin 23 dx?). The characteristic vector filed £ is defined by & = 2(cos 23(9/0x!)+sin 23(9/0x?))
and the metric g is given by g;; = (1/4)d;;, where g;; are components of g. Then R? has a flat
contact metric structure (cf. [2]). Hence clearly this example admits strongly ¢-invariant
Ricci tensor.

6.2 In [13], S. Maeda and H. Naitoh investigated real hypersurfaces with ¢-invariant
shape operators in CP™(c). The shape operator A of a real hypersurface M2?"~1 is called
strongly ¢-invariant if A satisfies

9(ApX,9Y) = g(AX,Y)
for all vectors X and Y on M?"~1. Also, it is called weakly ¢-invariant if A satisfies
9(A9X,¢Y) = g(AX,Y)

for all vectors X and Y orthogonal to the characteristic vector £ on M?2"~1,
S. Maeda and H. Naitoh [13] obtained the following results:

Proposition 1. Let M?"~ ! be a real hypersurface M>"~ with strongly ¢-invariant shape
operator A of M*"~1 in CP"™(¢). Then M*"~1 is locally congruent to a real hypersurface

of type (A) of radius w/(2/c ) in CP"(c).
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Proposition 2. Let M?"~! be a real hypersurface M?"~1 with weakly ¢-invariant shape
operator A of M?"~! in CP"(c). Then the following holds:

1. If M*~1 is a Hopf hypersurface in CP"(c), then M?"~! is locally congruent to a real
hypersurface of type (A) in CP™(c).

2. If the holomorphic distribution TOM = {X € TM : X L &} is integrable, then M?"~1
is locally congruent to a ruled real hypersurface in CP™(c).

By using the discussion of [13], we know that there exists no real hypersurface M2"~!
in CH"(c) such that the shape operator A of M?"~! is strongly ¢-invariant. In addition,
for real hypersurfaces in CH™(c¢), Proposition 2 also holds.

From our theorem, ruled real hypersurfaces do not have weakly ¢-invariant Ricci tensor
in M,(c). However, ruled real hypersurfaces have weakly ¢-invariant shape operator in

M, (c).

6.3  We shall consider the notion of ¢-invariant curvature tensor R of M?"=1 in M,(c).
The curvature tensor R of a real hypersurface M?"~! is called strongly ¢-invariant if R
satisfies

R(¢X,9Y) = R(X,Y)

for all vectors X and Y on M?"~!. Also, it is called weakly ¢-invariant if R satisfies
R(¢X,9Y) = R(X,Y)

for all vectors X and Y orthogonal to the characteristic vector & on M2"~1 .
From our theorem and S. Maeda and H. Naitoh’s work [13], real hypersurfaces of type (A)

in Mn(c) have both weakly ¢-invariant Ricci tensor and weakly ¢-invariant shape operator.

Now we investigate whether there exists a real hypersurface of type (A) in M, (¢) having
weakly ¢-invariant curvature tensor R or not.

Proposition 3. There does not exist a real hypersurface M?"~' of type (A) admitting
weakly ¢-invariant curvature tensor R of M*"~! in M,(c) (n = 3).

Proof. We suppose that a real hypersurface M2"~! admitting weakly ¢-invariant curvature
tensor R of M?"~1. By (2.4), we know that weakly ¢-invariance of the curvature tensor R
of M?"~1 is equivalent to saying that

(6.1) g(AQY, Z)AbpX — g(AdX, Z)A¢Y — g(AY, Z)AX + g(AX, Z)AY =0

for VX,Y L € and VZ € TM.
Let M?"~1! be a real hypersurface of type (A;) in CP"(c) (n = 3). We take a local field
of orthogonal frame {e1,ea,...,e,_1,Pe1, Pea, ... de,_1,E} in M?"~1 such that

Ae; = (Ve /2) cot(ver/2)ei,  Ade; = (Ve /2) cot(ver/2)ge; (1=i<n—1).

We can put X =e;,Y =e;,Z = e; in Equation (6.1) satisfying e; # e;, ¢e; # e;. Then
we have cot?(y/cr/2) = 0, which is a contradiction. Hence M?"~! does not have weakly
¢-invariant curvature tensor R of M2"~1. Similarly, real hypersurfaces M 2"~ of types (Ag)
and (A;) in CH"(c) (n = 3) do not admit ¢-invariant curvature tensor R of M?2"~1.

Let M?2"~1 be a real hypersurface of type (As) in CP"(c) (n = 3). We take a local field
of orthogonal frame {e1, e, ..., €2, 2,&} in M?"~1 such that

Ae; = (V¢ /2) cot(ver/2)e; (1 <0< 2n—20—2),
Ae; = —(\/c/2) tan(ver/2)e; (2n—20—1<j < 2n—2).
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Weset X =¢;,Y =¢;,Z =¢; (1 =i <2n—20-2,2n—2(—1 < j < 2n—2) in Equation (6.1).
Note that ¢V, =V, = {X € TM : AX = )\1X},¢VA2 =W, = {X €eTM : AX = XX}
and Vy, & Vy, = T'M = {X € TM : X L &}, where Ay = (y/c/2)cot(y/cr/2), a2 =
—(y/c/2)tan(y/cr/2). Then we obtain cot(y/cr/2) tan(y/cr/2) = 0, which is a contradic-
tion. Hence M?"~! does not have weakly ¢-invariant curvature tensor R of M?"~!. Simi-
larly, real hypersurfaces M?"~! of type (As) in CH™(c) (n = 3) does not have ¢-invariant
curvature tensor R of M?"~ 1. o

Therefore real hypersurfaces of type (A) in M, (c)(n = 3) do not admit ¢-invariant

curvature tensor. O]
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ABSTRACT. We know many results about colorability for single-valued maps. But
we know a few results about colorability for set-valued maps. In this paper we
generalize some results on colorability for single-valued maps to those for set-valued
maps. Especially, our main result is a generalization of E. K. van Douwen’s result,
which insists that every fixed-point free continuous closed map f : X — X with
sup{|f~'(z)| : # € X} < oo on a finite-dimensional paracompact space X is col-
orable. In fact, we prove the following: Let X be a finite-dimensional paracompact
space and f : X — F(X) a fixed-point free upper semi-continuous map, where F(X)
is the family of non-empty subsets of X with at most k elements. Suppose that
sup{|f ' (z)| 12 € X} < o0 and J{f(z) : & € F'} is closed in X for any closed subset
F of X. Then f is colorable.

1 Introduction

All spaces under discussion are regular. We will discuss some set-valued versions of
results about colorability for single-valued maps.

We define some notions about colorability of single-valued maps as follows: Let X be a
subset of a space Y and f : X — Y a single-valued map. For a subset A of X, A is called a

color of fif AN f(A) =0 and a bright color of f if ar ﬂmy = (), where A" denotes the
closure of A in Y. Also we call a finite closed cover of X consisting of colors of f a coloring
of f and we say that f is colorable if there is a coloring of f. Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f.

The following shows the essential meaning of colorability for single-valued maps:

Proposition 1.1. Let X be a closed subspace of a normal space Y and let f: X — Y be
a fizxed-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.

(2) The Stone-Cech extension Sf : BX — BY of f is fired-point free.

Also the following results for single-valued maps are known:

Proposition 1.2. Let X be a compact subspace of a space Y and let f : X — Y be a
fized-point free continuous map. Then f is colorable.

Theorem 1.3. ([5]) Let X be a closed subspace of a locally compact separable metrizable
space Y with dimY < mn and let f : X — Y be a fixed-point free continuous map. Then, f
s brightly colorable.

2014 Msthematics Subject Classification. 54F45, 54C60, 54H25 .
Key words and phrases. set-valued map, color, fixed-point free, extension.
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Theorem 1.4. ([6]) Let X be a paracompact space with dim X <n and let f : X — X be
a fized-point free continuous closed map such that | = sup{|f*1(x)\ rx € X} < 00. Then,
f s colorable with at most (I + 1)(n+ 1) + 1 colors.

Theorem 1.5. ([2]) Let X be a separable metrizable space with dim X < n andlet f : X —
X be a fixed-point free homeomorphism. Then, f is colorable with at most n + 3 colors.

In this paper we generalize these results for single-valued maps to some results for set-
valued maps. To start our discussion we give a topology of the space consisting of closed
subsets (see [9] in detail).

For a space X we define the hyperspace 2¥ of X as the family of all non-empty closed
subsets of X and endow 2% with the Vietoris topology, which has

<U>={AGZX:ACUZ/{andAﬁU;E(DforanyUEL{},

where U is a finite family of open subsets of X, as the basic open subsets of 2¥. Also let
K(X) and Fj(X) for k € N denote the family of non-empty compact subsets of X and the
family of non-empty finite subsets of X with at most k£ elements, respectively.

Let X and Y be spaces and f : X — 2V a set-valued map. For A C X we write
fA) =U{f(z) :x € A}. Alsofory € Y, BCY and B C 2Y we write f~1(y) = {x €
X:yef(@)}, ffAB)={zeX: f(z)NB+#0}and f71[B] ={x € X : f(z) € B}. Also
f: X —2Y is upper semi-continuous if for z € X and an open set V of Y with f(x) C V,
FHAVPI(={2" € X : f(2') C V}) is open in X.

When X C Y we define some notions about colorability of set-valued maps as follows:
A map f: X — 2V is called a fized-point free map if x ¢ f(x) for any x € X. For a
subset A of X, A is called a color of f if AN f(A) = 0 and called a bright color of f if

a'n my = . Also we call a finite closed cover of X consisting of colors of f a coloring
of f and we say that f is colorable if there is a coloring of f. Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f.

Any space X can be embedded to 2% by the inclusion ¢ : X — 2% defined by z +— {z}.
Hence all results for set-valued maps are also true for single-valued maps. The proofs are
modifications of proofs for single-valued versions in [5], [6] and [2].

Also let (A, B) be a pair of disjoint closed subsets of a space X. A subset S of X is
called a partition between A and B if there is a pair (U, V) of disjoint open subsets of X
such that ACU, BCV and X\S=UUV.

2 Results
First, we present a generalization of Proposition 1.2.

Proposition 2.1. Let X be a compact subspace of a space Y and let f : X — 2Y be a
fized-point free and upper semi-continuous map. Then, f is colorable.

Proof. By compactness of X it is sufficient to show that for each z € X there is an open
neighborhood of  in X such that its closure is a color of f. Take x € X. Then = ¢ f(x)
since f is fixed-point free. By regularity of Y there are two open neighborhoods U and V'
of z and f(z) in Y, respectively, such that U NV = (). Since f is upper semi-continuous,
FHH{V})] is open in X. By regularity of X there is an open neighborhood W of z in X
such that W Cc U N f=[({V'})]. This is as required. O
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Next, we consider a generalization of Theorem 1.3.

Theorem 2.2. ([4]) Let X be a closed subspace of R™ and let f : X — Fr(R"™) be a
fizxed-point free continuous map. Then, f is brightly colorable.

Applying Theorem 2.2, we obtain a generalization of Theorem 1.3 as follows.

Theorem 2.3. Let X be a closed subset of a locally compact separable metrizable space Y
with dimY < n and let f: X — Fp(Y) be a fized-point free continuous map. Then, f is
brightly colorable.

Proof. We may assume that Y is closed in R?"*! since any n-dimensional locally compact
separable metrizable space can be embedded in R?"*! as a closed subset. Therefore, this
proof is completed by Theorem 2.2. ]

Remark. For Theorem 2.2 we know that for n,k € N there is a minimal integer K(n, k)
such that every fixed point free continuous map f : X — Fi(R"™) is colorable with at most
K(n, k) colors (see [4]). So we can see that K (2n + 1, k) plays the same part for Theorem
2.3. But it is not clear about the exact values.

To show our main result we define the order and give a lemma.
Let X be a space and U a family of subsets of X and n € {0,1,2,...}. We define the
order of U, which is denoted by ord U, as follows:

ordU < n if sup{|{U€U:m€UH:m€X}§n.

Remark. In many books ord U < n is defined by HU ceU: x¢€ U}| <n+1forany x € X.
But in this paper we use the above definition to see inequalities about the order easily.

Lemma 2.4. ([6]) Let X be a normal space. Let {G; : i =1,...,k} be a family of closed
subsets of X with ord{G; : i =1,....k} <dimX + 1 and {W; : i =1,...,k} an open cover
of X such that G; C W; for i =1,...,k. Then, there is an open cover {V; :i =1,...,k} of
X such that ord{V; :i =1,....k} <dim X +1 and G; CV; and V; CW; fori=1,....k.

The following theorem is a generalization of Theorem 1.4.

Theorem 2.5. Let X be a paracompact space with dim X < n and let f : X — F(X) be a
fized-point free upper semi-continuous map. Suppose that | = sup{|f‘1(x)| cx € X} < 0
and f(F) is closed in X for any closed subset F' of X. Then, [ is colorable with at most
(k+0)(n+1)+1 colors.

Proof. First, fix x € X. Since f is fixed-point free, there are two open neighborhoods U,
and V, of x and f(x) in X, respectively, such that U, NV, = 0. f~[({V.})] is an open
neighborhood of z in X since f is upper semi-continuous. Put W, = U, N f~[{{V.})].
Then W, N f(W,) = 0.

Put W= {W, : 2 € X}. Then W covers X. So by paracompactness of X there is a
locally finite closed refinement A of W. List A as {A¢ : £ < x} for some ordinal number .
Observe that A¢ U f(A¢) = 0 for each £ < k.

13
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Next, put p = (k+1)(n+1)+1 and for each £ < k we will construct inductively a closed
cover {Bg; 11 =1,...,p} of A¢ in a way such that if

Chi = U Be; fori=1,..,p

£<n
then for all n < k we have
(1y) CriNf(Cpi) =0 fori=1,..,p,
(2) ord{Cm i =1, ...,p} <n+1.

We note that (), ; is closed in X for each n < x and ¢ = 1, ..., p since A is locally finite.

The construction: For n =0 (1) and (2¢) hold since Cyp; = 0 for i =1, ..., p.

When constructing {Be; : ¢ = 1,...,p} for an n < k and each { < 7, we may assume
(1,) and (2,) to hold. Now we will construct {B,; : i = 1,...,p}. For i =1, ..., p define

D; = f7HChi) U f(Ca).
Then D; is closed in X since f is upper semi-continuous. To see that
(a) {4,\D; :i=1,...,p} covers A,
we claim that .
ﬂ D; = 0.
i=1
By (2,) and |f(z)| <k, |f~!(x)| < for all z € X we have

ord{f~1Cy;):i=1,..,p} < k(n+1),
ord{f(Cy;):t=1,....,p} <l(n+1).

Indeed, for the first when we put f(z) = {z1,..., 24} foreachz € X, |{i : x; € Cy;}| < n+1
for j =1,...,k by (2,). Hence

k
|{z tx € f*l(Cm)}f = ’U{z cxy € Chut

M=

’{Z 1Ty € Cn,i}‘

IN
= 5
/5 —-

+1).

Similarly, we can verify the second.
Thus, from the definition of D;

ord{D; :i=1,..,p} < ord{fﬁl(C’m) Uf(Cps)ii=1,..,p}
<k(n+1)+Iin+1)
=(k+D)(n+1).

So _; D; = 0 and (a) holds.
By (1,)
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(b) C’q,i N Di = (Z) for i = 1, ey P

So because dim A, < n, ord{A,NC,;:i=1,..,p} <n+1and A,NC,; C A)\D; for
i=1,...,p, by Lemma 2.4 there is a relatively open cover {O; : i = 1,...,p} of A, such that

(c) A,NC,; CO;, 0; C A)\D; fori=1,...p,
(d) ord{@ ci =1, ...,p} <n+1.

Define B, ; = O; for i =1, ...,p. Then, Cpy1,i =Cy i UBy; = O UO,; fori=1,..,p.
We check (1,41) and (2,41). For (2,41) we obtain

ord{Cy11,:i=1,...p} =ord{C,; UO0; : i =1,...,p}
=ord{(C,;\A4,) U0, :i=1,..,p}
<n+1

by (2,), (d) and the first part of (c). For (1,41) it is sufficient to prove that

for i = 1,...,p. The first and fourth are trivial from (1,) and the property of A,. Also
B,:N f74C,;) = 0 if and only if C,,; N f(B,,;) = 0. Thus, the second and third hold by
the second part of (c). This completes the construction of B ;.
Finally, define
C; = U Cpi fori=1,..,p.

n<wk

It is easy to see that C = {C; : i = 1,...,p} is a closed cover of X consisting of colors of f.
Consequently, C is as required. O

When X is compact, Theorem 2.5 implies the following corollary.

Corollary 2.6. Let X be a compact space with dim X < n and let f : X — Fi(X) be a fived-
point free and upper semi-continuous map. Suppose that | = sup{|f‘1(x)\ tx € X} < 0.
Then f is colorable with at most (k+1)(n+ 1)+ 1 colors.

Proof. By compactness of X, f(F) is closed in X for any closed subset F' of X. So this is
shown from Theorem 2.5. O

The numbers of colors in the above results are not sharp. Here we consider reducing the
numbers of colors.

Lemma 2.7. Let X be a separable metrizable space with dim X < n and let f : X — 2%
be an upper semi-continuous map such that f(F) is closed in X and dim f~}(F) = dim F
for any closed subset F' of X. Let ¢ and ¢;(i = 1,2, ...... ) denote one of the map f and the
inclusion v. Assume that S = {S; : i € N} is a family of closed subsets of X such that

dim(;, (Si,) N+ N @i (Si,) <n—k

15
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whenever iy < --- < i and k = 1,...n+ 1. Then for every pair (G, H) of disjoint closed
subsets of X there is a partition S between G and H in X such that

dim(s, (Siy) NNy, (Si ) N@(S)) <n—k

whenever i; < -+ <ip_1 and k=1,...,n+ 1.

Proof. Put Xy, = U{¢i, (Si;) NN, (Si) i1 < -+ < i} fork=1,..,n. Write Xy = X.
Then X}, is an F,-subset of X. By assumptions of S we have dim X, < n — k. So there is
an Fy-subset Z of X with dimZ = 0 and dim(X3\Z) <n —k —1 for k = 1,...,n. Since
f is upper semi-continuous, f~1(Z) is an F,-subset of X. By assumption of f we have
dim(Z U f~%(Z)) = 0. Hence there is a partition S between G and H in X such that
SN(Zuf~1(2))=0.

Then

Pix (S’il) n---N @ik,l(sik,l) nsc AXV]c_l\Z7
@iy (Si) N Npiy, (Siy) N F(S) C X1\ Z,

whenever i; < --- <ip_q and k =1,...,n 4+ 1. Therefore,

dim((s, (Siy) N -+ N i, (S, ) Np(S) <n—(k—1) =1
=n—k.

So S is as required. O

Lemma 2.8. Let X be a separable metrizable space with dim X < n and let f : X — 2% be
an upper semi-continuous map such that f(F) is closed in X and dim f~1(F) = dim F =
dim f(F) for any closed subset F' of X. Let ¢ and @;(i = 1,2, ......) denote one of the map
f and the inclusion v. LetU = {U; : i =1,...,m} be an open cover of X and K = {K; : i =
1,...,m} be an closed shrinking of U. Then there is a closed cover L ={L; :i=1,...,m}
of X such that K; C L; C U; fori=1,...,m and

Piq (aL'Ll) n---N Pint1 (aLin+1) = @
whenever 1 < iy < -+ <ippy < m.

Proof. The proof will be done by induction.

First, we define L;. Since dim X < n, there is a partition S; between K; and X\U; in
X such that dim S; < n —1. By assumption of f we have dim f(S;) < n—1. Now X\S; is
the disjoint union of two open subsets V; and W; in X such that K7 C V; and X\U; C Wj.
Define Ly = Vi. Then 0L; C Sy and so dim p(0L1) < n — 1.

Next, assume that for some r € {1,...,m} L; is defined for i = 1,...,7 — 1 such that the
family {OL; : i = 1,...,7 — 1} has the property

() dim(p;, (OLiy) N -+ Ny (OL3,)) < n—k,

whenever 1 < i1 < -+ < ip <r—1and k = 1,...,n+ 1. From Lemma 2.7 there is a
partition S, between K, and X\U, in X such that the property () holds for the family
{0L; :i=1,..,r =1} U{S,}. Now X\S, is the disjoint union of two open subsets V;. and
W, in X such that K, C V;. and X\U, C W,.. Define L, = V,.. Then 9L, C S, and so the
property () holds for {OL; : i = 1,...,r}. This completes the construction of L;.
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Take 1 <41 < -+ < ipp1 < m. Then
dim((pil (8‘[’11) n---N Ping1 (aLin+l)) <n-— (n + 1) =-1

and so
Piq (aLh) n---N Pyt (8Lln+1) =0.

Consequently, £ = {L; : i =1,...,m} is as required. O

Lemma 2.9. (/2]) Let K = {K; : i = 1,...,k} be a finite closed cover of a space X.
Define L; = Kl\(U;;l1 Kj) fori=1,...,m. Then L ={L; : i = 1,....,k} has the following
properties:

(1) Ls N Lt = ﬁLg N 3Lt fOT’ S 7& t.

(2) IfOL;,N---NOL;,, # 0, then OK;,N---NIK;, _, # 0 whenever 1 < iy < -+ < iy, < k.

Tm

The following theorem is a generalization of Theorem 1.5.

Theorem 2.10. Let X be a separable metrizable space with dim X < n and let f : X —
Fi(X) be a fized-point free upper semi-continuous map such that | = sup{|f~*(z)| : = €
X} < oo. Suppose that f(F) is closed in X and dim f~!(F) = dim F = dim f(F) for any
closed subset F' of X. Then f is colorable with at most kn + k + 1+ 1 colors.

Proof. f is colorable by Theorem 2.5. So there is a coloring A = {A; :i=1,....,r} of f for
some r € N. Assume that r > kn + k + 1 + 1. Because A; and f(A4;) are disjoint closed
subsets of X for each i = 1,...,7 and X is normal, there are two open neighborhoods U; and
V; of A; and f(A) in X, respectively, such that U; N V; = 0 for each i = 1,...,7. Since f is
upper semi-continuous, f~[({V;})] is an open neighborhood of A; in X for each i = 1,...,7.
Put B; = U; N f~H{{Vi})] for each i = 1,...,r. Then B = {B;|i = 1,...,r} is an open cover
of X such that A; C B; and B; N f(B;) =0 fori=1,...,7.

Define g : X — 2% by g(z) = f(f(z)) for € X. Since f is upper semi-continuous, g
is upper semi-continuous. For any closed subset F of X, g(F) = f(f(F)) and ¢~ *(F) =
F~YfYF)). Hence g(F) is closed in X and dim g~!(F) = dim F = dim g(F) by assump-
tions of f. These enable us to apply Lemma 2.8 as ¢ and ¢;(i = 1,2, ...... ) denote one of
the map ¢ and the inclusion ¢. So there is a closed cover C = {C; : i = 1,...,7} of X such
that A;, CC; € B; fori=1,...,r and

(h) Piy (ach) n---N Pingr (8Cin+1) = (Z),

whenever 1 < i7 < -+ < ipp1 < 7. Define D; = C’Z\(Uz;l1 C;)and let D ={D; : i =
1,...,7}. Observe that D is a coloring of f.

Take x € D, and put f~*(x) = {y1,..., s} and f(x) = {21, ..., 2x }. Define m, p, and g,
fora=1,..,1,b=1,....k as follows:

m=|{i: (f}(z) U f(z)) N D; # 0},

p1=|{i:y1 € Di}l,

Pa = |{7’ : {y17 -~-7ya71} nD; = (0 and Ya € Dl}l (a’ > 2)7
q={i:fYz)ND;=0and 2; € D;}|,

@ ={i: (fTH@)U{21,..,26-1}) N D; =0 and 2, € D;}| (b > 2).
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Without lost of generality we may assume that p, > 1,q, > 1fora=1,..,[,b=1,... k.
Note that no indices i overlap in the definition of p, and ¢, fora =1,...,1, b=1,....k i.e.

l k
m=> patd
a=1 b=1
By Lemma 2.9

Yo € 0C; for at least p, — 1 indices 1,
zp € OC;  for at least ¢, — 1 indices 1,

fora=1,..,1,b=1,....k. So
!
flx) C g(aC;) for at least Z(pa — 1) indices 1.
a=1
Hence for b =1, ...,k
1
zp € p(0C;) for at least z:(p(1 — 1)+ (g — 1) indices i.
a=1

By the property (f) for b=1,...,k

Since p, —1>0fora=1,...,1,
l k
m=2 Pt @
a=1 b=1

l k
=> Pa—D+1+> (p—1)+k

= b=1

k l
<SS (e -1+ @—1) +h+1

b=1 a=1

k
<> n+k+l

b=1
—kn+k+1.

Now since 7 > kn+ k4141, there is a j(z) € {1,...,r — 1} such that z ¢ f~1(D;(,)) U
f(Dj(2)). Because f~(Dj(,)) and f(Dj(,)) are closed in X, there is an open neighborhood
W, of x in X such that W, C B,\(f ™' (Dj()) U f(Dj()))-

Put W = {W, : « € D,}. By paracompactness of D, there is a locally finite closed
refinement K = {K, : s € S} of W, where S is an index set. Define ¢ : S — {1,...,r — 1}
as it satisfies that K, C By \(f 7 (Dy(s)) U f(Dys)))- Put E; = {K, : j = 9¥(s)} and
F;=D;UE;forj=1,...,r—1. Then F = {F; : j =1,...,r—1} is a coloring of f consisting
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of 7 — 1 colors. In fact, since K is locally finite, F; is closed in X and so F} is closed in X.
To show that Fj is a color of f for each j =1,...,7 — 1 we check the followings:

for j = 1,...,r — 1. The second can be replaced by E; N f~'(D;) = 0. Therefore, all hold
since D is the coloring of f and E; C B, \(f~1(D;) U f(D;)).

We have reduced the number of colors by one, under the assumption that this number
is greater than kn 4+ k 4+ [ + 1. Inductively, the coloring of f can be reduced to a coloring
of f with kn+ k+ 1+ 1 colors. O

When X is compact, Theorem 2.10 implies the following corollary by the same way as
Corollary 2.6.

Corollary 2.11. Let X be a compact metrizable space with dim X < n and let f : X —
Fi(X) be a fized-point free upper semi-continuous map such that | = sup{|f*1(ac)| tx €
X} < oo. Suppose that dim f~1(F) = dim F = dim f(F) for any closed subset F' of X.
Then f is colorable with at most kn +k + 1+ 1 colors.

We would like to finish the paper by mentioning a relation between colorability and the
Stone-Cech compactification. Let X be a normal space. Then the Stone-Cech compacti-
fication X of X is equivalent to the Wallman compactification of X with respect to the
Wallman base consisting of all closed subsets of X. Hence Fﬁx N éﬁX = () for any pair

(F,G) of disjoint closed subsets of X. Also if F is closed in X, SF = . So we may
assume that 0F C gX.
The following is a generalization of Proposition 1.1.

Proposition 2.12. Let X be a closed subspace of a normal space Y and let f : X — K(Y)
be a fixed-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.

(2) The Stone-Cech extension Bf : BX — 2°Y of f is fived-point free.

Proof. We will show that (1) implies (2). Since 2°Y is compact and K(Y) C 287, there is
a continuous extension ff : BX — 20V of f. Take z € BX to show that 3f is fixed-point
free . By (1) there is a bright coloring C of f. Then " is a finite cover of (X and hence
there is a C € C such that z € C . Because C is a bright color of f, C HTC)Y = (. By
the property of the Stone-Cech compactification éﬁy N TC’)BY = (). By continuity of f

Bf(z) c rC) c BREY " c Ty

Thus, z ¢ Bf(2).

Next, we will show that (2) implies (1). Since Sf is fixed-point free continuous and X
is compact, B f is colorable from Proposition 2.1. So there is a coloring C of §f. Then the
restriction of C to X is as required. ]

This shows that colorability for set-valued continuous maps with compact values is
similar to that for single-valued continuous maps.
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ABSTRACT. The aim of this paper is to develop a theory of weighted modulation spaces
with variable exponent. All we assume on the exponent is that the essential infimum of
the exponent is positive. We shall show that the auxiliary parameter can be removed
assuming, in addition, that the weight belongs to the variable Muckenhoupt class and
that the exponents satisfy the log-Ho6lder condition and the log-decay condition. Under
these assumptions, we prove the molecular decomposition theorem and boundedness
of pseudo-differential operators with symbol S§.

1 Introduction The aim of this paper is two-fold: one is to develop a theory for modu-
lation spaces with variable exponents; the other is to establish that the results carry over
to the weighted setting to a large extent by introducing an auxiliary parameter a > 0.

Let us start by recalling the variable Lebesgue space Lp(')(IR”) proposed by Nakano
in 1951 [10, 11], where Nakano actually worked on [0,1]; see [§] for a detailed account.
Let L°(R™) be the set of all complex-valued measurable functions defined on R™. Let also
p(-) : R® — (0,00) be a measurable function throughout this paper, which is sometimes
referred to as an exponent. Define the Lebesgue space f € LP() (R™) with variable exponent
by:

f(z) p(x)

LPO(RY) = {f e L°(R") : /

dz < oo for some )\>O}.

Equip LP)(R™) with the norm given by
”f”LP(-)(Rn) = inf {)\ >0: /
for f € LPO(R™).

Now we move on to the weighted setting. By a “weight function”, we mean a measurable
function w defined on R™ such that 0 < w(z) < oo for almost every = € R™. Let p(-) be an
exponent such that

f(x)

A

p(z)
der <1

0 < p_ = essinf p(x) < p; = esssup p(z) < 00
TeR™ TER™

and w be a weight function. One defines the weighted variable exponent Lebesgue space
LPO) (w) by

row ={rer®) : [ @t <o},

as a linear space, and the norm is given by:

1/p(z) \ P®)
||f||Lp<-)(w)inf{/\>O : / <|f(:c)|w§\x)p> dxﬁl}.

We define the weighted vector-valued Lebesgue space £9¢) (LP() (w)) with variable exponents
based on the above definition.

2000 Mathematics Subject Classification. 42B35, 41A17.

21



22

WEIGHTED VARIABLE MODULATION SPACES

Definition 1.1. Let p(-) and ¢(-) be exponents satisfying
(1.1) 0<p_<pyr<oo, 0<qg-<gqy <oo

and let w be a weight. One defines the weighted vector-valued function space £4() (LP() (w))
by

(10170 (w)) = {{fm}meZn cL0®) 3 1l s }
mezn )
as a linear space, and the norm is given by:

q()
H{f'rn}mEZ"||Zq(-)([,1>(-)(w)) = lnf A > 0 : S 1

mezZ"

(
a0 (w)

’fm

for {fm}meZ" C LO(Rn)'

Now we define the weighted modulation space M. 4(.),« (w) with variable exponents by
using the following standard operators in time frequency analysis:

e For a measurable function f on R™ and m,l € Z", define M, f and T;f by M, f(x) =
exp(im - z) f(x) and T; f(x) = f(z — 1), respectively.

e Define the Fourier transform and its inverse by

FIO = g [ @) esp(cin- e, (@) = e [ explia € at
o Let Q(r) = {z € R" : max{|z1],|zal,..., |znl} <7}

With these definitions in mind, we present the definition of the weighted modulation space
M, (y,4(),a(w) with variable exponents.

Definition 1.2. Suppose that p(-) and ¢(-) satisfies (1.1) and a > 0. Let ¢ € S(R™)
satisfying

(1.2) XQ(1/4) < Fo < XQ(2)

and

(1.3) > TulFgl(z) >0
meZL™

for all x € R™. Then the space M) 4(.).«(w) is defined to be the set of all f € S'(R") for
which the quasi-norm

182,000 w) = Mm@ * fatmezn |l gae) (o) (w))

is finite, where

(1.4) (Mm@ * fa(z) = e G — T

The next result justifies the notation M) 4.),q(w).
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Theorem 1.1. Let p(-),q(-) : R™ — (0,00) be variable exponents satisfying (1.1). Then
the definition of the set M.y 4(.),a(w) is independent of the choice of ¢; different choices of
admissible functions yield equivalent norms.

With the new parameter a, our assumption on w can be minimized in order that

My (y,4(),0(w) = S'(R™). More quantitatively, we have the following assertion:

P
Theorem 1.2. Let w be a weight such that

(1.5) / w(x) dr < oo.
[0’1]71

Let f € My q(),a(w). Then there exists C > 0 such that

Slelgn X+ [ D7 Mg * flallee < CUfllat,s00y.0(w)-

In particular, My q(y,0(w) = S"(R™).

Theorem 1.2 shows that (1.5) is sufficient to guarantee that our new space M.y 4(.),q(w)
is a subset of &’'(R™).
We impose on p(+) the log-Hélder continuity condition:

Clog (p)

1.6 — < fi R"
(1.6) lp(z) — p(y)| < oglot g1 O ©YERY
and the log decay condition;

C*
1.7 T) = Poo| < ——— for x€R",
(1.7) p(2) = poc| < Tog(e 2]

where po is a real number, cioq(p) and ¢* are positive constants independent of = and y.
We say that p(-) satisfies the globally log-Holder condition if p(-) satisfies both (1.6) and
(1.7).

We also consider the sequence space 1.y 4(.),a (w) to prove the molecular decomposition
theorem.

Definition 1.3. Let p(-) and ¢(-) be exponents satisfying (1.1) and a > 0. One defines a
space My(.) 4(-),a(w) as the set of all complex sequences X = { A1 }m,iez» such that

q()

Ao (- —
3 | (32 Pt .
mezn |||YER™ \[cRrn (L+ D) L%(w)
For such a sequence A, define the quasi-norm by
1My, 0,0 )
q(-)
. |)‘ml|Xl+[0 1)"(' )
=inf<7T >0 : sup : <1
5 o (22 P "
La() (u))

We consider the following condition on weights:
(1.8) (1+]-))7% e LPO(w) < 0.

As the following theorem shows, (1.8) is a natural and minimal condition.
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Theorem 1.3. Let w : R™ — [0,00) be a measurable function. Assume that p(-) and q(-)
satisfy (1.1) and a > 0. Then assumption (1.8) is necessary and sufficient for mp(.) q(.),q(w)
to contain an element other than 0.

We may ask ourselves whether the parameter a is essential. If the weight is good enough,
then we can show that a is not essential as long as a > 0. We invoke the following definition
from [2, 3, 4].

For a variable exponent p(-) : R™ — [1,00), a measurable function w is said to be an
Apy weight if 0 < w(x) < oo for almost every x € R™ and

1 ) _ .
(1.9) P («mllwm 'l w17 >><QLP/<.)> <

holds, where the supremum is taken over all open cubes () C R™ whose sides are parallel to
the coordinate axes and p’(z) is the conjugate exponent of p(x), that is, 1/p(z)+1/p'(x) = 1.

In the above definition, when a > 0 and w € Ay, the space my(.) 4(.),«(w) does not
depend on a, as the following theorem shows.

Theorem 1.4. Assume that p(-) and q(-) satisfy (1.1), p— > 1, w € Ay and a >
0. Assume, in addition, that p(-) and q(-) are globally log-Hélder continuous. Then \ €

My().q().a(w) if and only if

{Z ‘)‘ml‘Xl-&-[O,l)"(')

} <o
lezm mezn gq(*)(LP(‘)(w))

We also consider the molecular decomposition. For 2z € R™, we write (z) = /1 + |z|.
Suppose that K, N € N are large enough and fixed. A CK-function 7 : R® — C is said to
be an (m, [)-molecule if it satisfies [0%(e """ %7 (x))| < (x — )=V, x € R" for |a| < K. Set

M ={M = {mol,; }m 1ezn C C% . mol,,; is an (m,l)-molecule for every m,l € Z"}.
We shall develop a theory of decomposition based on the above definition.
Theorem 1.5. Let a>> N +n. Assume, in addition, that p(-) and q(-) satisfy (1.1).
(i) Let ¢,k € S(R™) satisfy

(1.10) XQ(1/4) < FP < Xq(2)s Z Ti[lFel =1
lezn
and
(1.11) 0<rk<xqo, » Tr=L
lezn

The decomposition, called Gabor decomposition, holds for My q(.).a(w). More pre-
cisely, we have {TyM,,[F k] }m iczn € M and the mapping

fe Mp(.),q(_),a(w) =\ = {Mm(b * f(l)}m,lEZ" S mp(.),q(.),a(w)

is bounded. Furthermore, any f € My q().o(w) admits the following Gabor decom-
position

F=> A TiMp[F ),

m,leZm

(1.12) A= {itmpezn = {Mmd * f(1)}miezn € Myp() g(),a(w).
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(ii) Suppose we are given M = {moly }miczn € M and X = {Ami}m,iezr € Mp() q().0(W).
Then

(1.13) f= > A moly,

m,lEL™

converges unconditionally in S'(R™). Furthermore, f belongs to My 4.),q(w) and

satisfies the quasi-norm estimate || fllar, ;) a(w) < C M lmy .00y (w)- In particular,

the convergence of (1.13) takes place in My 4(.y,a(w).
Corollary 1.6. Under assumption (1.8), S(R™) C M.y 4(.),a(w).

As an application, we shall show that the pseudo-differential operator with symbol S,
is bounded on M) 4(.),o(w). Recall that a € C®(R} x R}) is an Sg-symbol if

950¢a € L®(Ry x RY)
for all multi-indices o and . The pseudo-differential operator a(X, D) is defined by

1

a(X,D)f(z) = W

| atwF o< e

In [9, Lemma 3.2], the authors showed that the set M is preserved by a(X, D). Thus, we
have the following result, which is a direct corollary of Theorem 1.5:

Theorem 1.7. Let a € S§y. Then a(X, D) is a bounded linear operator on M.y 4(.y,a(w).

Remark 1.1. When p(-) = ¢(-) =2, a > n/2 and w = 1, we have M,y (y,o(w) = L*(R™). It
may be interesting to note that Sjéstrand proved this result when M.y q(y.o(w) = L*(R™)
by using the so-called T*T-method, while our method is beyond the reach of this method
employed in [12].

We organize the remaining part of this paper as follows: The proofs of Theorem 1.1
through Theorem 1.4 can be found in Section 2. In Section 3, we shall develop a theory of
decomposition and we prove Theorem 1.5.

2 Fundamental structure of M, 4(.)..(w)

2.1 Proof of Theorem 1.1 Let ¢, be functions in S(R™) satisfying (1.2) and (1.3).
Let us choose a smooth function ® € S(R™) so that

Fo(¢) > Fp(&—m) = Fo(&).

me{—2,—1,0,1,2}"

Then we have

¢ = (2m)"2® « > M0

me{—2,—1,0,1,2}"

and hence

Mp = (2m)"2 My ® * Z Mipmib,
me{—2,-1,0,1,2}»
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which implies
|Mi¢p* f(z —y)

|
=C Z /n |(I)<Z)| ) ‘Ml+m77[} * f(x -y — Z)|dZ

me{-2,-1,0,1,2}»

SC(/n@(z)(leeryDadz) S Wit s =)

me{-2,—1,0,1,2}n VER” (1+ [w[)e

ML) * —
< C(l + |y|)a Z sup | I+ 1"/’ f(xa w)‘
me{-2,-1,0,1,2}n VER" (1 + [w])

for all x,y € R™. This in turn implies
(Mg * fla(z) <C Z (Migm ¥ * fa(z).
me{—2,—1,0,1,2}n

Due to symmetry, we see that different choices of admissible functions yield equivalent
norms.

2.2 Proof of Theorem 1.2 Let m € Z" be fixed and take x € m + [0,1]". Then we
have

By - | Mo = f(y)]
(L4 a)™ (M * flale) = Sup G 7 5em s ol
| Mo+ [(y)]
C o M f(0)]
=CED T D
, | My * f(y)]
f - -
SO L, s Ty = 2)e

If we use (1.5), then we obtain

wup M6 £0)]

(14 la) ™ M+ fa(e) < €| sup G210

= C||(Mm¢ * f)aHLp(-)(w)~
Lr() (w)

This then yields
(1 +|2)) (Mm@ * fa(@) < Clflatya0)a(w)-

Thus, the proof is complete.
2.3 Proof of Theorem 1.3 We justify the condition (1.8); we prove Theorem 1.3.

Proof of Theorem 1.3. Let X = { A1} m,iczn € Mp() q(),a(w)\{0}. Then there exist mg,ly €
Z™ such that Ap,;, # 0. Set

ot = Amoly (M, 1) = (mo, o),
" 0 otherwise.

Then p = {pmi}tm,iezn belongs to my(y 4¢).a(w) \ {0}. This implies

)
X1 , n(-—y) I
sup (I)\mozooﬂo o )

O < m w) —
1Py, 5,0 () JeR™ (L+lyhe

< oQ.
()

La0) (w)
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Hence, we have

<X[0,1)n (-—yv) ) a0
sup | ——~——~

(Xlo-i-[O,l)"(' - y))q(')
sup | ———————"~
yern \ (1+]y))e

S 1+ lO aq4
(L+ [koD™ ) sup { ===

p(

p()
La0) (w) :

La0) (w)

< 00.

Therefore, we obtain

sup <X[0,1)"(' - y))
yern \ (1+]y))*

L
L (- — 9+
S <><[01><>> “up (X[OU(?/)) <o
(1 + |y‘) yER™ (]‘ + |y|) Lr() (w)

and hence (1.8). O

q(+)

p(

109 (w)

q—

sup
yER™

)

2.4 Proof of Theorem 1.4 Firstly, we prove the following lemma to prove Lemma 2.2.

1

Lemma 2.1. Let p(-) satisfy the log-Hélder conditions. Define ng(x) = e
x a

for

x € R". If a > ciog(p), then there exists a constant C' > 0 such that
(2.1) P naq(z — ) < CPWng(z — y)
holds for any 1 <b < oo and x,y € R™.

Proof. We use a similar argument to the proof of [5, Lemma 6.1]. We may assume |z —y| > b
due to the log Holder continuity of p(-). We fix the smallest natural number k& > 2 such
that |z — y| < b~'*. Then, for such x,y and k, 1+ |z — y| ~ b* holds and we have

n2a(x — y)

22) Na(z —y

<c(l+ bk)_“ < ch ke,

Furthermore, by the Hélder continuity of p(-) and a > ciog(p), we see that
(2.3) BPW)-P@) > pciox(p)/ log(etlz =yl ) > p-ciox(p) > y=(k-Da.

Hence, the desired inequality (2.1) holds thanks to (2.2) and (2.3) as well as the fact that
a > Clog(p)- O

We need the following auxiliary estimate akin to the one in [1].

Lemma 2.2. Let p(-),q(-) satisfy the log-Holder condition as well as the log decay condition.
Let 1 < p_ < py < oo and let also w € Apy. Let a > 2max{n,ciog(q)}. Set na(v) =

(1+ |z|)=*. Then, for any {fm }mezn € éq(')(Lp(')(w)),

{70 * fm}mezn Lo (L) (w)y < Cl{fmtmezn llga) (LrO) (w))-

Proof. We follow the idea in the work by Almeida and H&st6, which is listed above. Without
loss of generality, we can assume |[{fy tmezn [lpat) (Lr0) (w)) = 1. Then it is easy to see that
| fmll o) () < 1 hold for any m € Z". Let m € Z" be fixed and & = ||| 7| Lo 7a0) (u)-
By the argument of [1, Proof of Lemma 4.7] with Lemma 2.1 which takes the place of [1,
Lemma 4.3], we have HJ_I/‘I(')(na * fm)||Lp<.)(w) < C||nay2 * [5_1/Q(')fm]”m<->(w)~



28

WEIGHTED VARIABLE MODULATION SPACES

Denote by M the Hardy-Littlewood maximal operator; for a measurable function f

define
1

r>0 (QT)

Since a > 2n, we have [1,/2]/z1 < oo and hence

Mf(r) = [ el @em)

Mas2 % F(z)| < CMF(x)
for all positive measurable functions F'. Since w € A,.), we have
(2.4) IMay2 * Fll o) (wy < CIE Lo w)-
Note that

1679 (g % fa) 2o (wy < Cllnagz * 679 ol zoer wy < CNI™9O frnll 0 ()

where for the second inequality we used (2.4). Note that

. Inl/a- 1
mm{th( )||L/p(f )/a() (w)? ||hq ”L/P%J;/Q(-)(w)}

1/q_ anl
< hllpeer < maX{HhQ( )||L/p?->/q<->(w)7 ||hQ( )HL/p%/q«)(w)}

for any non-negative measurable function h. Therefore,

1/q- Iyt
min{d~ /9 [[n % fim |70 HLp(i)/qm(w)v 1/q+H|7la*fm|q<)||L/p%-J3/q<->(w)}
_ ynl/a- - YT
< max{J 1/[17|||Jcrrz|q( ||L/pg<(~>/q<')(w)7 1/q+|||fm|q()“L/p%/q(-)(w)}:1

This implies that either

_ . 1/q_

079 1na % Fnl TN oy <1
or

_ . 1

07 [0 % finl 55 sy < 1
Hence,

” |77a * fm|q() ||Lp(-)/<I(~)(w) S C” |fm|q() HLP(')/‘Z(‘)(w)~

Now we prove Theorem 1.4. Let n,(z) = (1 + |z|)~® as before. Then we have

At Xi40,1)7 (2 — ) |/\ml|Xl+ 0,1y (T — k)
sup : <C
yeRn (gz: (1+lyl)e 2 IGZ” (1+ |k[)e

keZn

| At Xi410,1)n (7 — 2)
<
= C/Rn (Z (L+]2)e 4

lezn

> |/\ml|Xl+[0,1)"‘| (@).

leZn

:C’(]a*
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Taking the £40)(LPC) (w))-norm, we obtain

| Ami|Xi410,1)m (- — y)) }
sup ( E :
n 1+ @
{yER lezn ( v meZ™ || ga() (Lr() (w))

<C {na * lz |Aml|Xl+[0,1)’L] } .
lezn meZ™ || ga() (LrC) (w))

Hence, we invoke Lemma 2.2 to see that

[ Amt|X1+10,1)7 (- — y)) }
sup ( :
sup (D 1+ [y
{JER lezn ( v meZ™ || ga() (Lr() (w))

<C {Z |>\le1+[0,1)"} ;

lezn meEZ™ || ga() (LP() (w))

as was to be shown.

3 Molecular decomposition Assumption (1.5) is also appropriate to develop a theory
for the decomposition of weighted modulation spaces with variable exponent.

The following well-known lemma is used to prove Theorem 1.5. For example, we refer
for the proof to the paper [6, Lemma 2.1] due to M. Frazier and B. Jawerth, who took full
advantage of this equality in [7, Lemma 2.1].

Lemma 3.1. [6, Lemma 2.1], [7, Lemma 2.1] Let f € S'(R™) with frequency support
contained in Q(2);

(3.1) supp(Ff) C Q(2).

Assume, in addition, that k € S(R™) is supported on Q(2) and that

ZTmzl.

lezn
Then we have
(3.2) f=0@m)7% Y f()-T[F k]
lezn

Remark 3.1. In the original version of [6, Lemma 2.1], Frazier and Jawerth did not consider
condition (3.1). Instead, they decomposed f according the size of frequency support; see [6,
(2.5)]. Apart from the mollification done in [6, (2.7)], their key idea of the proof is to expand
a function into Fourier series; see [6, (2.8)]. This technique will be used to prove Lemma
3.1. Despite the fact that Frazier and Jawerth dealt with Besov spaces and Triebel-Lizorkin
spaces in [6, 7] and that we deal with (weighted) modulation spaces, we can say that Lemma
3.1 is essentially due to Frazier and Jawerth because of the important contribution to the
theory of decompositions obtained in [6, 7].

Proof of Theorem 1.5. Define M) 4(.),o(w) according to Definition 1.2 by using ¢ satisfy-
ing (1.10).
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(i) Let f € My q(),a(w). Then by using (1.10) and (1.11) we expand f according to
Lemma 3.1:

f=Y Mupsf=02m)% > <Z Mmqb*f(l)-ﬂMm[f_lm]) .

mezZn meZm™ \leZn

Thus, if we set Ay = (27) 73 M, ¢ * f(1), then we obtain a decomposition of f as

follows:
f=> (Z )\ml-Tle[]-'_ln]>.

mezr \lezn
Let us check that this decomposition fulfills the desired property in Theorem 1.5(i).
Let z,y € R". Denote by I, ,, an element in Z" such that t—y € I, ,+[0,1)”. Observe

that
(271')% sup Z |)\ml|Xz+[0,1)n(39*y) — sup Z |Mm¢*f(l)|Xl+[o,1)n($*y)
P NI P 1+ )"
M, Iy
sy M L)
yern  (1+[y])®
|Mm¢ * f(lw y)|
<sup ————— (14 |y —z+ 1)
S Tl Ly e vl
< 2% sup | M@ * f(ley)]
yern (1+ [z =y y|)®
= QG(Mm¢ * f)a(w)
Therefore, we obtain
H)‘Hmpm.qm,a(w) = C”f”Mp«),q(-),a(w)’
as was to be shown.
(ii) Let m’ € Z™ and x € R™. Then we have
My * f(x)] < Z [Amit| * [ My ¢ % mol, ()]
m,leZ™
= Z [Ami| = [ M @ % [Mp[M_molyy]| ()|
m,leZ™
= > Pl [ My % [M_pymol ] (2)].
m,leZm

Note that

Mo 5 [M_pmolyl](z) = (2)3 / 1M =)y () (M mol) (2 — 1) dy

satisfies
| Mo @ % [M_ ol ] (z)| < C(m! —m) N (x - 1)V,
Thus, it follows that

| Mo~ % [M_molny] (y)|
(1+ [z —y)V

<C(m' —m)y N@ -1~
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for all y € R™. Consequently,

sup |Mm’¢ * f(y)‘
yerr (L+ |z —y[)V

<C Z (Z |)\ml|<m’—m>_N<:E—l>_N>

meZn \leZ™
=C > (m'—mN <Z A (z = 1)@ — l>N+a>
meZ™ lezn
_ Aty [X1, 410,17 (T — 2) _
S C ml -m N sup | 1 1 5 r—1 N+a
meZZ"< > (z;w z€R" lleZZ" (1 +[z]) < >
- [ Aty X1, 40,17 (2 — 2)
<C (m' —m)~N [ sup 110,
m%Z:" z€R™ l;n (1 + ‘z|)a

as long as N > a +n. Thus, f € M) q0),qa(w).
O
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ABSTRACT. This paper examines whether firms prefer to choose prices or quantities
with a manufacturing duopoly in which each upstream firm sells its product to its
own downstream firm. The degree of product differentiation plays an important role
in whether firms set prices or quantities. We show that price competition performs
better than quantity competition, from the upstream and downstream firms’ point of
view, regardless of the product differentiation. We also show that pay-offs are larger in
Bertrand (price) competition than in Cournot (quantitiy) competition if both products
are differentiated to a certain extent.

1 Introduction As we well know, two classical models in oligopoly theory are Cournot
and Bertrand. In a non-cooperative profit maximization environment, one may wonder
whether firms prefer to choose prices (Bertland) or quantities (Cournot). Singh and Vives
(1984) first analyzed the issue of whether firms prefer to set prices or quantities. They show
that consumer and total surplus in Bertrand competition are larger than those in Cournot
competition regardless of the nature of goods.! They also show that Cournot equilibrium
profits are higher than Bertrand equilibrium profits when the goods are substitutes, and
vice versa when the goods are complements.?

During the past 30 years, many literatures have produced an array of extensions and
generalizations of the analysis in Singh and Vives (1984). Previous literature on the issue
has followed two separate streams. One stream focuses on extensions and generalizations
of Singh and Vives (1984). For example, Dastidar (1997), Qiu (1997), Lambertini (1997),
Héckner (2000), and Amir and Jin (2001), among others, have analyzed counter-examples
based on the framework of Singh and Vives (1984) by allowing for a wider range of cost
and demand asymmetries.> The other stream of the literature focuses on expanding the
Bertrand-Cournot competition with vertically related duopoly. Correa-Lopez (2007) exam-
ines the Bertrand-Cournot profits ranking in a vertically related duopoly model focusing
on substitutes and vertical product differentiation. They show that Bertrand profits may
exceed Cournot profits when decentralized bargaining over the labor cost is introduced.*

2010 Mathematics Subject Classification. 91A80, 47N10.
Key words and phrases. Price and Quantity Competition, Imperfect Downstream Competition.
*Faculty of Management Administration Nagoya University of Commerce & Business 4-4
Sagamine, Komenoki-cho, Nisshin-shi, Aichi-ken, Japan 470-0193, Phone: +81-(0)561-73-2111, E-mail:
dongjoon@nucba.ac.jp
TFaculty of Management Administration Nagoya University of Commerce & Business 4-4 Sagamine,
Komenoki-cho, Nisshin-shi, Aichi-ken, Japan 470-0193, Phone: +81-(0)561-73-2111, E-mail: han-
sh@nucba.ac.jp
fFaculty of Commerce Administration Nagoya University of Commerce & Business 4-4 Sagamine,
Komenoki-cho, Nisshin-shi, Aichi-ken, Japan 470-0193, Phone: +81-(0)561-73-2111, E-mail:
jhoh@nucba.ac.jp, This research was supported by JSPS KAKENHI Grant Number 26780262.
IWhen the goods are independent, they are equal.
2S8ee Cheng (1985) for a graphical description of Singh and Vives’ analysis.
3In particular, Zanchettin (2006) found that Singh and Vives’s (1984) result that firms always make
larger profits under Cournot competition than under Bertrand competition fails to hold.
4Symeonidis (2003, 2008) also analyzes the effects of downstream competition when there is bargaining
between downstream firms and upstream agents (firms or unions).
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Arya et al. (2008) explore the standard conclusions about duopoly competition when the
production of key input is outsourced to a vertically integrated retail competitor with up-
stream market power. They show that prices and industry profits can be larger in Bertrand
competition than in Cournot, while consumer and total surplus can be smaller in Bertrand
than in Cournot. Mukherjee et al. (2012) compare Cournot with Bertrand competition in
a vertical structure in which a monopoly upstream firm sells its product to two downstream
firms, assuming there are asymmetric costs between downstream firms and homogeneous
final goods. They demonstrate that the technology differences among the downstream firms
and the pricing strategy (i.e., uniform pricing or price discrimination) of the upstream firm
play an important role in the ranking of profit and social welfare. We revisit the profit rank-
ing under Bertrand and Cournot competition in a vertically related duopoly in which each
upstream firm sells its product to its own downstream firm. Our paper differs from the ex-
isting literature in at least two important aspects. First, previous studies consider Bertrand
and Cournot competitions under wage bargaining and input prices negotiation. Our study
examines them without negotiation. Second, previous ones produced the counter-results of
Signs and Vives (1984) under costs and demand asymmetry. However, this paper analyzes
the issue under symmetric conditions. This paper is organized as follows; in Section 2, we
set up the model. Section 3 examines the Cournot competition, and then, Section 4 ana-
lyzes the Bertrand competition. Section 5 deals with comparative analysis. Finally, Section
6 contains concluding remarks.

Consider a manufacturing duopoly in which each upstream firm sells its product to its
own downstream firm. There is a continuum of consumers of the same type with a utility
function separable and linear in numeraire goods. Therefore, there are no income effects.
The representative consumer maximizes U(q;,q;) — Xpiqi;¢ = 1,251 # j, where ¢; is the
quantity of good ¢ and p; its price. U is assumed to be quadratic and strictly concave
Ul(gi,q5) = @i + ¢ — (¢ + 2bg;q; + q?-)/?;i =1,2;i # j. This utility function gives rise to a
linear demand structure. Inverse demands are given by

(1) pzzl*chqu]aOSbSL Za]:132327éj

where p; is the retail price for product 4, and ¢; and ¢; are the amount of goods produced
by channel 7 and j, respectively. Each unit of retail output requires exactly one unit of the
input. The products are differentiated (0 < b < 1). Upstream firms and downstream firms
are risk-neutral and there are no production or retailing costs.

We posit a two-stage game. At stage one, each upstream firm sets an wholesale price.
At stage two, each downstream firm also sets the retail price or quantity.

2 Cournot Competition We first consider Cournot competition in which each down-
stream firm sets a quantity. In this case the equilibrium concept is the sub-game perfect
Nash equilibrium.

Stage Two (Quantity): At stage two, downstream firm 7 sets a quantity, ¢;, so as to maximize
its profit for a given input price, w;. Downstream firm i’s maximization problem is as follows:

max m; = (p; — w;)q;, w.r.t. g;.

where w; is the input price. Therefore, downstream firm ¢ sets the quantity, ¢;, as the
function of input prices as follows:
2(1 - wi) — b(l — wj)

4 — b2 '

(2) Qi(wiu wj) =
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Stage one (Wholesale Price): At stage one, upstream firm ¢ sets wholesale, w;, to maximize

its profit for a given w;. Upstream firm i’s maximization problem is as follows:

wi[(2 — wi) = b(1 — wy)]
4 — b2

max II; = w;q; (w;, w;) = , w.r.t. w;.

The equilibrium wholesale price for upstream firm 7 is derived as follows:

2—0

Substituting the wholesale price into Eq. (1) and Eq. (2), we obtain the retail price, p;, the
quantity, ¢;, the upstream firm i’s payoff, II;, and downstream firm ¢’s payoff, m;,

6 —b?
(32) = Q2rb)E—b)
2
(3:3) qz'c = m,
o 2(2-0b) an
(34) 0 = arpape
(3.5) 7l = 1

(24 b)2(4 —b)?"
where superscripts C' denote Cournot equilibrium.

3 Bertrand Competition We now turn to Bertrand competition in which each down-
stream firm sets a retail price. From Eq. (1), the following direct demand function can be
derived as follows:

(4) 4% = ,0<0<1, 4, j=1,2,i# .

Stage Two (Retail Price): At stage two, downstream firm 4 sets retail price, p;, so as to

maximize its profit for a given wholesale price, w;. Downstream firm 4’s maximization
problem is as follows:

(pi —wi)(1 —b—p; +bp;)
1— b2

maxm; = (p; — w;)q; = , w.r.t. p;.

Therefore, downstream firm i sets the retail price, p;, as the function of wholesale prices
as follows:
2(1 — wl) — b(l — wj) — b2
4 — b2 ’

(5) pi(w, wj) =

Stage One (Wholesale Price): At stage one, upstream firm 4 sets a wholesale price, w;, to
maximize its profit for a given wholesale price, w;. Upstream firm 4’s maximization problem
is as follows:

w;(2 = b2)(1 — w;) — b(1 — w;)]
(4-02)(1-b?)

max IT; = wiq; (w;, w;) = , w.r.t. w;.

The equilibrium wholesale price for upstream firm ¢ is derived as follows:

2—b—0b?
(6.1) S T
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Substituting the wholesale price into Eq. (4) and Eq. (5), we obtain the retail price, p;, the
quantity, g;, the upstream firm i’s payoff, II;, and downstream firm i’s payoff, 7,

B 2(1-b)(3—1?)

(62) PP T —b— 22y
_ (2-0%)
(6:3) qﬁ_(2—®@—b—2@f
(6.4) 5 — (1—=b)(2+b)(2—b%) o

P02 - b)(d—b—262)2
(1—b)(2 - b?)?
(1+0)(2—b)2(4—b—262)2°

(6.5) B =

4 Comparative Analysis We turn now to compare the equilibrium under Bertrand and
Cournot competition. Firstly, we compare wholesale prices between two types of contracts.
From Eq. (3.1) and Eq. (6.1), we obtain the following results:

c b*

B
—wP = > 0.
Y T —2) =

where superscripts B and C' denote Bertrand and Cournot, respectively.
Lemma 1. Under Eq. (1) and Eq. (4), if 0 < b < 1, the equilibrium wholesale prices are
higher in Cournot than in Bertrand competition. If b = 0, both have the same wholesale
prices.

Secondly, the equilibrium levels of retail prices and quantities are shown in Table 1.

Table 1: Equilibrium Levels of Retail Price and Quantity

Retail Price Quantity
2(1—b)(3 — b?) 212
Bertrand - 55 T o) @b A= b— 27
(6 — 12) 2
Cournot o= A=) 210)(d—b)

Lemma 2. Under Eq. (1) and Eq. (4), if 0 < b < 1, the equilibrium prices for both
downstream firms are higher in Cournot than in Bertrand competition. If b = 0, both have
the same prices.

Lemma 3. Under Eq. (1) and Eq. (4), if 0 < b < 1, the equilibrium outputs for both
downstream firms are larger in Bertrand than in Cournot competition. If b = 0, both have
the same input prices.

Quantities are larger and prices lower in Bertrand than in Cournot competition re-
gardless of the nature of goods.® Lower prices and higher quantities are always better in
welfare terms. Consumer and total surplus are decreasing as a function of prices. There-
fore, in terms of consumer surplus and total surplus, the Bertrand equilibrium dominates
the Cournot one. Proposition 1 summarizes the results thus far.

5When b = 0, they are equal.
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Proposition 1. Under Eq. (1) and Eq. (4), if 0 < b < 1, consumer surplus and total
surplus are larger in Bertrand than in Cournot competition. If 6 = 0, they are equal.
For proof, see Appendix.

Thirdly, we turn to the equilibrium profits for Bertrand and Cournot competition. From
Eq. (3.4) and Eq. (6.4), when 0 < b < 1, notice that the following results are satisfied:

1o _ PP+ —b)(16 b2~ b)(10+ 7))

B _ 11¢
‘ P +b)(2-b)(2+b)(4—D)2(4— b — 2b2)2
P2 >1¢ < 0 < b < 0.8868 = b.

Proposition 2. Under Eq. (1) and Eq. (4), if 0 < b < b, the Bertrand strategy is dominant
for upstream firms. If b < b < 1, the Cournot strategy is dominant for upstream firms. If
b = 0, payoffs for both upstream firm are equal.

Proposition 2 can be explained as follows. If 0 < b < b, pay-offs in Bertrand competition
are higher than those in Cournot, and vise versa. The degree of product differentiation
plays an important role in equilibrium. As the degree of product differentiation decreases,
the product market competition is more intense under Bertrand compared with Cournot
competition. Therefore, pay-offs of Cournot competition are higher than those of Bertrand
competition because of monopolistic effect. On the other hand, as the degree of product
differentiation decreases, even if the wholesale price is lower in Bertrand competition than
in Cournot competition, a more intense competition in the former helps to create a larger
wholesale demand than in the latter. As a result, the upstream firm obtains higher pay-offs
in Bertrand competition than in Cournot competition.

5 Concluding Remarks We may summarize the results derived from the model as
follows:
(1) With linear demand function, if 0 < b < 1, consumer and total surplus are larger in
Bertrand than in Cournot competition.
(2) Pay-offs of both upstream firms are larger, equal, or smaller in Bertrand competition
than in Cournot competition, according to whether 0 < b < b, or b < b < 1.

We can also extend our analysis for each upstream firm and each downstream firm to
make a precommitment to quantity or price contract in a vertically related market. In such
a situation, we are wondering the results are the same as Singh and Vives (1984).

Appendix

Proof of Proposition 1. Consumer Surplus ranking of Bertrand and Cournot equilibria. In
view of Lemma 2, consumer surplus is clearly higher under Bertrand than under Cournot
competition. From the utility function, we get

(@7 + 2bgiq; + q7)
2

CS =U(gi,q;) — (pits +0j05) =4 +¢; — — (pigi + ;)
(gi + qj)*
2

¢ qj
+ (1= b)agiq; — (pigi + pjg;) = (1 — pi)§ + (1 —pj)2

=qi+tq— 9

For 0 < b < 1, inequality C'S? > CS® reduces to

b%(8 — 3b%)(32 + 8b — 28b* — 4b® + 5bt)

C8" - 08 = T hE- e+ 0 P -0 - TR

> 0.
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This inequality holds for any 0 < b < 1. For b = 0, consumer surplus is equal. From the
utility function, we get

TSZCS—FHi—FHj—F?Ti—FTFj
=U(qi,q5) — (Pii +pjq;) + (wigi +w;q;) + (pi — wi)gi + (pj — w;)g;
(g7 + 2bgiq; + ¢3)

=q;+q; — 5
%+ q;)°
:%""‘Qj_%"i'(l_b)%%
L —pi)gi L —pj)g;
= %eriqﬁ % +pi;
_ (tpia | (1+p5)g
2 2

For 0 < b < 1, inequality TS > TS reduces to

b%(8 — 3b%)(96 — 72b — 600 + 36> + 9b* — 4b°)

T S = G - 0P + DR~ bR~ b 2P

>0

This inequality holds for any 0 < b < 1. For b = 0, total surplus is equal.

(1
2]
3l

(4]

(8]

(9]
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ABSTRACT. In this paper we investigate the possibility of combination two optimal
stopping algorithms: Odds algorithm and Elimination algorithm. We show how reduce
a problem to monotone problem and after this step find the optimal strategy which
will be valid also in the original problem.

1 Introduction Bruss (2000) in [3] developed Odds algorithm which is very simple tool
used to solve optimal stopping problems. In this model observe sequence of independent
indicators and want to stop on the last (if any) success. Extension of this idea was presented
in [4] and [9]. Different approaches are presented in work of Dendievel [6]. The result of
Bruss’ can be obtain in another way if we focus on monotonicity of a problem of selecting last
success in sequence of events. However there are some problems which are not monotone
and therefore Odds algorithm can give us strategy that is not optimal. Sonin (1999) in
[13] presented so called Elimination Algorithm (EA) for solving optimal stopping problems
(OSP). The idea is to combine this two algorithms by reducing original problem to monotone
problem using EA and then find the optimal strategy by One-Step-Look-Ahead (1-SLA)
method. Similar work was done by Ferguson [8]. This problem was also considered by
Ano [1].

2 Optimal stopping for unobservable event Let a probability space (Q,G, P) be
given and let { X} }?° | be a sequence of random variables whose joint distribution is known.
Let F, = 0(X1, ..., X&) be a sigma field generated by X7, ..., X} (natural filtration). In many
cases we deal with Markov chain. We assume that we have finite horizon n. Define function
9:((X1,...X%)) and call it reward function. gj is Fj measurable. Further we will denote
9 ((X1,..Xk)) as Gi. We observe X}, sequentially. The goal is to stop observation on
index ¢ for which reward function reach the maximum value. The triplet (space, filtration,
function) we will call an optimal stopping problem (OSP).

Definition 1. Let Ay denote a set {Gy > E[Gri1|Fi]}. We say that the stopping rule
problem is monotone if

(1) Ag C Ay C Ay C ... a.s.

One of the simplest stopping rule is known as One-Step-Look-Ahead (OSLA or 1-SLA).
The 1-SLA is the rule which calls for stopping on the first k for which the return for stopping
is greater or equal as the expected return of continuing one step and then stopping.

Definition 2. 1-SLA is described by the stopping time
v1 = min{k > 0: Gy > E[G41|Fr]}

2010 Mathematics Subject Classification. 60G40.
Key words and phrases. odds algorithm, elimination algorithm, optimal stopping, monotone problem,
Markov chain .
IFaculty of Pure and Applied Mathmatics Wroclaw University of Science and Technology Wyb.
Wyspianskiego 27 50-370 Wroctaw, Poland
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Theorem 1. In a finite horizon monotone stopping rule problem, the 1-SLA rule is optimal.

The proof of this fact is here omitted. It can be found in [7]

3 0Odds theorem Idea is that we consider n independent indicators I,1 < k < n
observed sequentially. If the indicator on place k has value 1 we say that the success occur.
If 0 then we say that the failure occur. The aim is to stop on last 1.

Let (2,G, P) be a probability space. On this space we define sequence of independent
events {Ax}7_,. We observe sequence of indicators of this events {Ij}7_,. Let us denote
by Fr = o(I1,...I) sequence of sigma fields generated by indicators and let 7 be the set of
all stopping moments 7 wrt o -fields Fi, k = 1,...,n. We want to stop on such time 7* that
will maximize P(I; = 1,I;41 =...=1, =0) over allt € 7.

Theorem 2. (Bruss 2000)

Let I,I5,..., I, be a sequence of independent indicator functions with p; = E[I;]. Let

gj =1—p; and r; = %, Then an optimal rule T, for stopping on the last success exists

and is to stop on the ﬁszt index (if any) k with I, = 1 and k > s where

n
s =sup{l,sup{l <k <n: er >1}}
j=k

with sup{0} = —oo. The optimal reward (win probability) is given by
Vi) =1[a > r
Jj=s Jj=s

Proof presented by Bruss in [3] is based on probability generating function. We present
different approach.

Proof. Define a process & in the following way
é-t = mf{k Z gt—l . Ik = 1}
with initial point {; = 1. Calculate transition probabilities

Pi,s = P(€k+1 = 3|§k — Z) — P(£k+l = Sagk = ’L) _

P(& =1)
(2) CP(Li=1,Liy = .= I, =0,1,=1) 1:[1 |
- P =1) — b 119
Jj=i+1
Define a gain function g in the following way
(3) 9(i)=P(lit1=...=1,=0) = H -
j=it1

Definition 3. An operator T'(-) defined as follows

Tf(x) =Y plz,y)f(y)

1s called the averaging operator.
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Using averaging operator calculate the expected pay-off in next step.

To()) = Y pisg(s) z ‘H 11 o=

s=i+1 j=1+1 Jj=s+1

Zpqug H%qs:

s=i+1 J=i+1 Jj=s+1

R ILD o

j=itl  s=i+1l

—
=~

N2
Il

To find an optimal stopping rule we check when Tg < g, i.e. when the expected value
of doing one step more is less or equal to pay-off in current state. We get condition that
stopping rule is

(5) s:min{lgkgn:ergl}.

j=k
We show that it is optimal. In Bruss’ theorem we can see that problem is monotone, because
sets Ay, = {Tg(k) < g(k)} satisfies condition (1). Therefore we know that method 1-SLA

is optimal. In this case, because we deal with independent events 1-SLA is described as
follows

(6) VO:min{lgk:gn:ergl}.
j=k

So it is exactly the same rule as in (5). Therefore we get the thesis. Win probability is
calculated as follows

n n

(7) V(n) = Eg(vo) = H q; Z Ts.

Jj=ro S=vg
O]

3.1 Extension of Bruss’ theorem ;From Odds theorem we can find the moment of
last success in n trials. The obvious question is how to find the moment of last [-th success
in n independent trials. Idea is to find such a stopping time 7;* that will maximize P(I; =
1,541 + ... + I, = 1) and its value. The following theorem gives us the answer of this
question.

Theorem 3. (Bruss, Paindaveine 2000)

Let 1,15, ..., I, be a sequence of independent indicator functions with p; = E[I;]. Let

gi =1—pj andr; = 1;" . Then an optimal rule T, for stopping on the l-th last success exists

and is to stop on the first index (if any) k with I, = 1 and k > s; where

sp=sup{l,sup{l <k <n—-101+4+1:Ry; >IR_1 and m > 1}}
where
Ry, = Z Tjy T,
J1sedi—k,all#
™ = #{j = k|r; > 0}
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with sup{0} = —oo. The optimal reward (win probability) is given by:

- Rl,s
V(l,n) = H 4

J=s1

The proof of this fact can be found in [4].
Another similar problem is to stop on any of last [-th success. The following theorem gives
the solution of it.

Theorem 4. (Tamaki 2010)
Let I,Is, ..., I, be a sequence of independent indicator functions with p; = E[I;]. Let

gj =1—pj and r; = Z—j. Then an optimal rule T, for stopping on any of the l-th last

success exists and is to stop on the first index (if any) k with I, = 1 and k > s; where

s =sup{l,sup{l <k <n: El,k+1 >1}}

Rl,k = E Tj1---T5

k<ji<...<ji<n

where

with sup{0} = —oo. The optimal reward (win probability) is given by

n

l
V(in) =] qj(zﬁjasl)'

j=s =1
The proof of this fact can be found in [16].

4 Eliminate and Stop. Theorem 2 provides a simple rule for stopping on problems
which can be described via simple indicator functions. As an example we consider Classical
Secretary problem:

4.1 Example 1 - Selecting the best object. Consider the classical secretary problem.
Let X} be the absolute rank of the k-th candidate. We define

The random variable Y}, is called the relative rank of k-th candidate.

Let (2, F,P) be the probability space, where elementary events are permutations of the
elements from {1,...,n} and the probability measure P is the uniform distribution on .
For k =1,...,n let F, = o{Y1,..., Y} be a sequence of o -fields. It can be proved that Y}
are independent and P(Yy = 1) = %,i =1,...,k. Set a function

Ik = I{Ykzl}-

Then we get that pp, = E[I;] = P(Y, = 1) = % and ¢ = %,rk = ﬁ The optimal
stopping rule is therefore

1
1—1

n
s:min{lgkzgnzz <1}
i=k

The gain is

V("):Sglzz‘il‘

i=s
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4.2 Example 2A - Selecting the second best object. There are problems that can
be described similarly as in Odds theorem: we want to maximize the probability of unob-
servable event describing them via Indicator functions. But because of non-monotonicity
of the problem there does not exist a simple rule as the above. As an example consider
secretary problem with choosing the second best applicant.

Let A = {X}, = 2} denote an event that k-th absolute rank is equal to 2.

{Xp =2} =

n
= U Vi=1,Yep1 >1,..,Y,=1,Y1 >2,..,Y, > 2} U{Y, =2,V >2,...,Y, >2} =
s=k+1

= U BgS)UBQ
s=k+1

The sets B§S)7 B, for all indexes s are disjoint. We have that

® P =Pxe==P( ) BOUB) = 3 PBY)+ P(By)
s=k+1 s=k+1

First calculate P(Bs). Let us introduce function G

N\ I{Yi:2} fOI' = k
(9) G(Y;) - { I{YLE{I,Q}} fork+1<i<n.

(10)  P(By) = P(G(Yy) =1,G(Yiy1) =0,...,G(Y,) =0) = P(>_G(Y;) =1).

Now we calculate P(B%S)). Let us introduce function Fiy)

Ty, =1y fork<i<s
Ity,cqi2yy fors<i<n

(1) Fio (V) = {

n n

P(|J BY)= Y Py =

s=k+1 s=k+1

= Y P(F(Y) =1, Fs(Yis1) = 0,00, Fu(Yy) = 1, Fy(Yaq1) = 0,.., Fy(Y,) = 0) =
s=k+1

(12) = 2 PO_RM)=2).

(13) > PO_F.(Y)=2)+ P> _G(YV;)=1).
Lot :
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We are looking for such 7* € 7 that P(A) is the greatest, i.e.

7" = argsup P(A).
TeT

From Theorem 2 we can find a stopping time 7o € 7 that:

Ty = arg sup P G(Y; .
? TeT ; )
We have )
o V) PYi=2)=¢ fori =k
mfﬂ%m)”{]%Ke{Lﬁ%:fka+l<i<n
and
k=1 for i =
qi = i_kg .
- fork+1<i:<n
ﬁ fori =~k

2
—2

-

Fori=1,p1 =0,¢1 = 1,7y = 1. We get that

fork+1<i<n

.

1 2
=35 1.s 1<k<n:——— > 1L
T2 = sup{l,sup{l1 <k <n k—1+4§ 52 +H
i=k+1
(i | k—2
= 1 1<k<n: > .
7o =sup{l,sup{l <k <n g i71_2k72}}

i=k

The win probability is V(n) = 7(1’2 D D (25 + Zl k+1 25).

From Theorem 3 we can find a stopping time 7 1 ) € T that

(s)

T =argsup P(y F(Y;)=2).
PO F09 =
We have

pl—P(FS(Y;)—l)—{ P(Y; 6{12})2% fors<i<n
and
o % for k<i<s
4 = % fors<i<n
L fork<i<s
r; = 7.21 .
— fors<i<n

Let us consider the following inequality

n

Z T > Qirj.
=k

v,j=k,i#j
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n

LHS = Z T = ((Zm)2 - Zr?) =

i,j=k,i#j i=k i=k
L1 = 2 ., < 1 = 4
7((Zi—1+,zi—2) - (2—1)27_Z (1—2)2)
1=k i=s+1 1=k 1=s+1
1 2
HS =2 =2( .
s E;rj Zkz_l+i§kli_2)

We get that
S

Tfs) =sup{l,sup{l <k <n-—-1:(

i=s+1

s.

i=k

n S 1 n 4
:Z i—2 _Z(i—l)Q_ 2 (i —2)2

>2 Z and 7, > 2}}.

Which after some simplifications gives us

n

Tl(s)—sup{l sup{l <k<n-1: Z 2—1 2+ Z(i_2)2_(zi—1+ Z i—2)2

1=s+1 1=k i=s+1
<n—k+1 and m >2}}.

The value of the problem is (according to Theorem 3)

S n

kE—1)(s—1 1 2 o % 1 3 4
Vin) = n(n)(_l) )((Zi_lﬂL > =) —Zm— 2 -2,

i=k i=s5+1 i=k i=s5+1

Remark 5. Ezact results for stopping on second best object can be found in [11]. The above
probabilities are conditional probabilities that selected relatively best object is the second one
from the end. Denote as k* the first moment after k when relatively first occurs and let
S :=1; + ...+ I,. Then we have the following approximation

P(Xp- =2|Sp =2) =

) R (VI
Z o Zz 22 GG

i1 ® j=l+

)
Hx/:;(t/tl 1(12/1“261 du)dt =

= /1 -t dt = z(x — 1 —log(z)) := v(z).

2
We have that
(15) E*=s3, af:= 5 — e “=0.13534 as n — oo.
n

Approzimated reward (probability of stopping on relative rank 1, such that Sy = 2) is

22 2
(16) V(2,n) — 2z = 2 0.27067 as n — oo.
But approzimating win probability of P(Xy- = 2) we get that P(Xp« = 2) = v(x). Substi-
tuting £* = e~ 2 to this formula we get

(17) v(e?) =e 24+t ~0.15361.
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4.3 Reduction of states We want to consider the above example as a stopping problem
of some Markov chain. It is obvious that the problem is not monotone. Thus we can not use
1-SLA method. In similar problems we would like to find the most simple optimal stopping
rule. But the simplest rule is provided by monotone problems. Idea is to eliminate those
states that spoils monotonicity and afterwards use 1-SLA.

State reduction approach (SRA). Let us assume that the model (X, P;), where X;
is a state space and P; is a transition matrix is given. Let Z, be a Markov chain in this
model and let 7q,...,7, be the sequence of the moments of first,..., n-th exit of Z,, from
set D C Xj. Counsider the chain Z! = Z, . Denote by Xy = X; \ D. Let us denote by
u1(z, Xg, ) the distribution of the Markov chain Z,, for the initial model at the moment 7y
of first exit from D starting at z,z € D.

The sequence Z/, is a Markov chain in model (X, Py), where the transition matrix is
given by the formula

(18) pa(a,y) = pr(w,y) + Y pi(w,2)ui(2,Xa,y), 2,y € Xo.
zeD
In case when D = {Z} and it is not absorbing point we get simpler formula
P, 2)p1(Z,y)
1-pi(Z,2)
New model is called D-reduced model. Z,, and Z/ are different chains, with different

state spaces and transition probabilities, but there are some characteristics that are common
for them. We formulate one result that will be used later.

(19) p2(z,y) = p1(x,y) +

Lemma 1. Let us assume that we have two models (X1, P1) and (Xa, Py) defined as above,
U C Xy and 1y, (1{;) be the moment of first visit to U in the first (second) model. Then

Ve e Xy u(z,U,y) =us(z,U,y), (xeXq,yel).

Proof of this lemma can be found in [13]. In a finite model we can use procedure of

eliminating states recursively by eliminating on each step one state. This is very simple
implication from the Lemma 1.
Elimination theorem. Let us assume that we have Markov model M = (X, Py, g), where
X is a state space, and P; is a transition matrix and g is reward function. Let Z,, be
a Markov chain specified on this model with initial point z. We denote by P., E, the
probability measure and expectation of the Markov chain with the initial point z. We
introduce natural filtration and with respect to it we define stopping times. Denote by 7°
the set of all stopping times.

Let v be the value function, i.e. v(z) = sup, s E.9(Z;). Let T be an averaging operator.
By D let us denote a subset of X and by 7p we denote moment of first visit of the chain in
set D, i.e: Tp = min{k > 1: Z;, € D}.

Definition 4. We call a set S an optimal stopping set if
S={z:v(x)=yg(z)} and P(rs < c0) = 1.

The idea of state elimination approach is to eliminate states where is not optimal to
stop. We want to eliminate those states, where doing one step more is optimal. In this case
we want to satisfy the condition

(20) Tg(z) > g(x).
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Theorem 6. (Sonin 1995)

Let My = (Xq, P1,g) be an OSP,D C {z € X; : T1g(z) > g(2)} and Py (7x,\p < 00) =1
for all x € D. Consider an OSP My = (Xg, Py, g) with Xy = X1 \ D, pa(x,y) defined by
(18). Let S be the optimal stopping set in Ms. Then S is the optimal stopping set in the
problem My also and vi(x) = ve(x), Vo € X,.

Second theorem from [13] deals with situation when the problem can be divided into
disjoint classes with two properties:

e for any class the transition probability from each state in one class to another class
are the same for all states in first class

e the reward function is a constant inside of each of these classes.

Theorem 7. Let My = (X1, P1,g) and My = (Xg, Py, g) be two optimal stopping problems
and let f: Xy — My be surjection such that

o Pi(z, f(y) = p2(f(x),y) Vo € Xy, y € Xo
* g(z) = g(f(z)) Yz € Xy

Then
1. vi(z) = »(f(z), Yo € Xy

2. if Sy is an optimal stopping set for the problem Xa then S; = {f~1(S2)} is an optimal
stopping set for the problem My .

Proof. 1. Denote f(z) =y. Then

Tgi(z) =Y pi(z,2)g1(2) =

= 3 e W) )
I~ ()

=Y p(f(@),9)g2(f(f ' (1) = Tga(f()).

Thus

vi(x) = max{g(z), Tvi ()} = max{gz(f(2)), Tva(f(2))} = v2(f(2)).

So ={y: 92(y) = v2(v)}.

718y = fHy  g2(y) = va(y)} = {x : ga(f(2)) = va(f(2))} =
={z:q1(x) =v1(x)} = S1.
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4.4 The monotonicity of the model after the state reduction Consider a Markov
model (Xy, P, g), where X; is a state space and P; is a transition matrix. Let Z, be a
Markov chain in this model with special absorbing state 0. Denote Gy = gi(Z1, .., Zk)
Consider sets

D(l) = {Zk eX;:Gr < E[Gk+1|fk]}

We denote by T; an averaging operator in model X;.
Idea is to eliminate all states from set D. We do it sequentially till we get such a model
(X, Pj,g), that Tjg(z) < g(z). It means that

DY = {2 €X;: Gy < E[Gra|Fi]} =0
and therefore
(21) VzeX; :Tig(z) < g(z).
We get that new Markov chain Z ,ij ). For every index k& we have that
G z EGLIF,

Denote this set by Ai. It is easy to see that in this model condition (1) is satisfied. Thus
we get a monotone stopping problem.

In this new problem we want to find an optimal stopping rule. But according to Theorem
1 1-SLA is optimal for this problem.

Lemma 2. Suppose that we have Markov model (X1, P1,g) and reduced model (Xa, Py, g)
such that condition (21) is satisfied. Then 1-SLA stopping rule optimal in model Xo is also
optimal is Xy.

Proof. Suppose that in reduced model X;. From SRA we can reduce this model to X5. We
do it sequentially till condition (21) is satisfied. Therefore stopping set is

XQ = {Z : gk(zi’ ?Z;c) Z E[gk(Zi, ~-~7ZI/67ZI;+1)|217 7212])}
where Z/ is a Markov chain in reduced model. Consider set A = {Gy > E[Gi41|F]},

where Fj is sigma-field generated by Z7, ..., Z;.. We show that Aj C A} ;.
Take an arbitrary elementary event w € Aj. Then we have

Gri1 = gr41(Z1(w), -, Z4(w), Zy 1 (W) ()
Since Z;,;(w) € X thus we have:
(%) = Elgr41(Z1(w), -, Zi1 (@), Zy )| 21 (W), s Zjyr (w)])
Therefore w € Aj, ;. Because w and k was arbitrary we have that
weAy=>we A,
Al C Aj .

So we have that 1-SLA is optimal in model X5. From Theorem 6 we have the that the same
stopping rule is valid in model X;. ]
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4.5 General model for monotone problems One of the most important modifications
of Odds theorem provided in [8] was finding the connection between Bruss’ result and 1-
SLA method. Let Zi,Zs,... be a stochastic process on an arbitrary space with special
absorbing state which will be denoted as 0. Zj denote the set of random variables observed
after £ — 1 success up to and including success k. If there are less than & successes then
Z = 0. Assume that the process will be absorbed with probability one. We want to predict
when the process will first hit state 0. If we predict correctly then we win 1, if we predict
incorrectly we win nothing, if the process hits 0 before our prediction then we win w < 1.
Therefore the pay-off function is given by

Gy = wl(Zy, = 0)+ I(Zy # 0)P(Zpi1 = 0|Gp)

(22) Goo = w.

where G,, = 0(Z1, ..., Zy).
This problem is solved by 1-SLA described in Definition 2. The optimal stopping rule is
given by

(23) Vlzmin{kz1:Zk:()0r(Zk.7£0and¥§lfw)}
k
where

Vi = P(Zy41 = 0|Gy)
Wi = P(Zk1 # 0, Zi12 = 0|Gy).

(From the condition in Definition 1 it is easy to see that the sufficient condition for the
problem to be monotone is

%%
(24) —Fisas non-increasing in k.
k

Theorem 8. (Ferguson 2008)
Suppose that process Z1,Zs, ... has an absorbing state 0 such that probability that the pro-

cess is absorbed is 1 and that the stopping problem with reward sequence (22) satisfies the
condition (24). Then the 1-SLA is optimal.

The problem for the Bruss’ theorem deals with situation where we observe independent
indicators and natural filtration generated by this indicators. Nevertheless this method can
be also applied to possibly dependent indicators. Then we have that

Vie = P(Ij41 = k2 = ... = 0|Gy)
o0
Wi= Y Plgp1=TIro=. =L 1=01I; =111 == =0[G)
j=k+1

In Bruss’ result we have also w = 0. From Theorem 8 we get the following corollary.

Corollary 1. Suppose the Bernoulli variables Iy, Is, ... satisfy the condition that there are
finite number of successes with probability one. Let Gy,Go, ... be an increasing sequence of
sigma-fields such that {I, = 1} is in Gy, for any k = 1,2,... . Then among stopping rules
adapted to the sequence {Gi}, the rule (23) is an optimal stopping rule provided condition
(24) is satisfied.
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It is easy to see that this corollary implies the Bruss’ theorem. In the theorem of

W, W,
Bruss indicators I, are independent so the ratio % in (23) may be written as 7k =
k k

Z;’; el 167]], All conditions for monotonicity of the problem are satisfied. Thus problem

j
is monotone and 1-SLA is optimal. This also proves the Bruss’ result in the infinite horizon
case. Using this approach we can easily find 1-SLA rule in reduced model from Lemma 2.
Therefore it is also optimal stopping rule in non-reduced model.

4.6 Example 2B - Selecting the second best object We want to find optimal stop-
ping set for event {X; = 2}. Gain function is given by:

g((n, k) = Ell;x, =2} |Yn = K, n=1,.,N;k=1,...,n.

Because absolute rank 2 we can obtain only if we focus on relative ranks 1 or 2 then we get
that
g((n,1)) =0, VI>3.

g((n,1)) = E[I{Xn=2}|yn =1]=

(o) (h=7)

= P(X, =2[Y, = 1) = 2n-l =

(25) (v)
B (N —=2)! n!(N —n)l  n(N —n)
" (h—D(N—n—-1) NI ~ N(N-1)
9((n,2)) = E[I{x,=2}|Yn = 2] =
= P(X, =2[Y, :2):w:
(26) o (%)
B (N —2)! n!(N —n)!  n(n—1)
T m=2(N-n)! NI NN-1)

Define mapping
(k,2) for Yy, =2
f((Y177Yk)): (k7 1) for Yk: =1
(k,0) otherwise

New transition probabilities are given by pa((k—1,5), (k, 1)) = p2((k—1,5), (k,2)) = ¢ and
p2((k —1,7), (k,0)) = 52, We want to create a simpler model M; and eliminate states in
which is not optimal to stop. First notice that all states (n,l) where | > 3 are eliminated,

because
Tg(n,l) >0=g(n,l).

Thus we get new model M;:
1. X3 is set of all pairs (n, k), where 1 <n < N and k= 1,2
2. transition matrix is defines as

() () = PO agnem <N,

pal(L1),2,0) =5, J=12

and satisfies monotonicity property, i.e. for m < n, p3((n,k),(m,j)) =0 .
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3. Z, be a Markov chain with initial point z = (1, 1).

There are also some states with relative ranks 1 and 2 that should be eliminated. We
will find condition for that. First calculate T'g(n,j),j = 1,2.

Tg(n, 1) = Zp((n’ 1)) (m7 k))g((m’ k)) =

p((n, 1), (m, 1))g((m, 1)) + p((n, 1), (m, 2))g((m, 2)) =

N
>
m=n+1
:i n(n-1)  m(N -m) nn—1  mm-1) _
s m(im—1)(m—-2) N(N—-1)  m(m—1)(m—2) N(N —1)
(27) B N n(n—1) N—-m B
‘m;lN(N—l)(m—z)(m—l“)‘
=1 &~ 1 (N-m+m—1)
_N(N—l)m_zr;ﬂm—Q( m—1 )_
_nn-1) 1
N mg—&-l (m—1)(m—2)
Similarly

Tg(n,2) =Y p((n,2), (m, k))g((m, k)) =

p((n,2), (m,1))g((m, 1)) + p((n,2), (m, 2))g((m, 2)) =
1

m

n(n —1) m(N —m) n(n—1) m(m — 1)

m(m —1)(m —2) N(N—1) ' m(m—1)(m —2) N(N — 1)

M= 1pM=

W
. B minﬂ D) (ern_—ql - 1) B
g =
B n(nN— 1) m_ﬁ;ﬂ - 1)1(m -
We see that Tg((n, 1)) = Tg((n,2)). From (20), (25) and (27) we get
@) mél e Rl e ey

and from (20), (26) and (28)

N 1 1

2. m—1)(m-2) N—-1'

m=n+1

(30)
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Then we eliminate states for which conditions (29) and (30) are satisfied and recalculate
transition probabilities using (29). We get simpler model M4 and from Theorem 6 we know
that optimal stopping set in My is also optimal stopping set in Mj.

From calculus we know that

N

1 N-—n
(31) 7rL§+l (m - 1)<m - 2) N (n - 1)(N - 1) '

It means that we do not eliminate any state (n,1) and eliminate states (n,2) such that

N —n 1
m—)(N-1) N-1
(32) Nonoy
n—1
N41
TZ<T.

Denote: K = L%J According to the Lemma 1 we can eliminate the states recursively using
formula (18). Therefore the new transition probabilities are

pa(n 1) (mo 1) = ot ISn<m <K
) n(K —1)
(33) p4((na1)7(m79)): m(m—l)(m—Q)’ ’I’LSK<m
pa((n, k), (m, j)) = m(mnfnl)_(:rz_ 2y K<n<m

Continuing this procedure of course should give us the minimal optimal stopping set and
transition probabilities. Once again calculate T'g(n,j),j = 1,2.

For n < K
(34)
Tg(n,1) =
K N
_ n ~m(N —m) n(K —1) m(N —m) +m(m—1)
) m§+l m(m B 1) N(N -1 " m:zK:+1 m(m - 1)(m — 2) N(N _ 1)
K
:]\7(1\?1)(<N_1)m;+1mll_[(+n+N_K) _

K
n 1 n
- N +n - 2K).
Nm§+1m—1+N(N—1)( +n—2K)

Using 20 we get

K

1 2(K -1
@ T =
m=n-+1

From this we find an index £* such that the above condition is satisfied. Of course neither
for n > K states (n, 1) and states (n,2) are eliminated.
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It is easy to check, that there are no more states that can be eliminated. Thus the optimal
stopping rule is

L5 N
1 2(l51-1)
N*=min{l1 <n<N:(Y,=1and < 2 )
:Z+1m—1 N—1

m=n

or (Y, € {1,2} and n > |

N
Shr

Now from Lemma 2 we know that the same optimal stopping rule holds for initial model.

5 Conclusion We have shown two important results: one is that Odds Theorem comes
from problem of optimal stopping of Markov chains. Second is that optimal stopping
problem of Markov chain can be reduced to monotone stopping problem. The procedure is
the following: eliminate those states which is not optimal to stop on, apply 1-SLA method
to find the optimal stopping rule and calculate the expected reward. This explains why
the procedure was called ’Eliminate and stop’. This algorithm can be used to solve many
problems. One of them is ’secretary problem’.
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ABSTRACT. In this study, we applied propositional and predicate logic for mathemat-
ical explication of the processes of inference by children. This facilitated extraction and
comparison of children-specific inference processes, which are difficult to derive from
a child’s protocol itself, and elucidation of the structure of children’s ratio-related
conceptual and procedural knowledge.

1 Introduction In arithmetic education, ascertaining the concepts of given domains
in terms of conceptual and procedural knowledge is essential as a mechanism of knowl-
edge change during knowledge acquisition. Conceptual knowledge consists of an implicit
or explicit system of interlinked pieces of knowledge for a given domain, and procedural
knowledge comprises systems of multiple execution series for problem solution [1], [2].

The concept of ratio is applied in ascertaining the relation between two quantities and in
comparing the relative quantities of two sets. It differs in meaning from simple multiplication
and is active in the sense of comparing the relative sizes (multiples) of given quantities and
base quantities rather than directly comparing quantities [3]. In the present study, we
therefore focus on comparison of the relations between quantities in two different sets. It
has been noted that the concept of ratio can be investigated in a fairly pure form as a logical
mathematical recognition [4], and in this light we treat this comparison as a probabilistic
comparison task. Ratio and probability are different concepts, but for children unschooled
in probability, the ratio concept can be utilized as an approach for probability settings.
Studies that have utilized probability comparison tasks include A. Nakagaki [4], [5], N.
Fujimura [6], G. Noelting [7], [8], J. Piaget and B. Inhelder [9], and R. S. Siegler [10],
[11], which in relation to quantification of probability all share the view that recognition of
equivalence based on recognition of multiple relationships provides the foundation for the
intensive quantity concept, and formation of that concept begins at the age of 11 or 12 years
[6]. A. Nakagaki [5] identifies the psychological stage of development of the ratio concept as
a process of balancing in which the ability to compensate affirmation with negation becomes
complete. Moreover, children inherently possess and apply the concept of “half” 1/2) as
an intuitive approach for quantification of probability [12], and the “half” benchmark
strategy [13] is of key significance during the stage in which children recognize and develop
ratio inference leading to “ part-whole ” comparison in probability comparison problems.

Previous studies have not included integrated analyses of children’s recognition in the
three situational contexts of ratio, comparative quantity, and base quantity, and are gen-
erally protocol-based analyses of children’s recognition of ratio rather than mathematical
representations of children’s thought processes, using test problems that include numbers,
and thereby make it difficult to determine the relationship between children’s conceptual
and procedural knowledge in their ratio recognition.

2010 Mathematics Subject
Classification. Mathematics Education .
Key words and phrases. ratio, propositional logic, predicate logic.

55



56

TAKESHI SAKAI AND TADASHI TAKAHASHI

The present study was undertaken to develop test problems that distinguish between
conceptual and procedural knowledge relating to ratios, express the thought processes of
children mathematically, and elucidate the structures of ratio-related conceptual and pro-
cedural knowledge.

2 Development of test problems

(1) Symbolization of inference process by propositional and predicate logic In
the development of each test problem, it is necessary to prove that a given inference process
can derive the correct conclusion from the perspective of probability with the conditions
given in the problem statement as assumptions. In analysis of the test results, moreover, it is
essential to explain the children-specific logic used in the inference process mathematically.
In the present study, we perform these proofs and analyses by using propositional logic and
predicate logic with reference to the views of S. Tamura, K. Aragane, and T. Hirai [14] and
K. Todayama [15]. The symbols and the rules and laws of inference as used in the present
study are essentially as follows. Note that we express A = B, i.e.,if A=T then B=T,
as inference schemata with a horizontal line of the form as below.

A
A=B 2
= B

1) Inference rules and laws We let z,y, 2,a, b, ¢, and d be nonnegative variables, and
let f(x) be x =y, x >y, or & < y. We refer to f(z) containing variable = as the expression.
The focus is on the thought processes of children, and we accordingly allow the use of
operations on the variables and take the operation rules to be applicable to inference rules.
Tables 1 through 3 show the unit element, zero element, and reflective, symmetric, and
transitive laws, the inference rules, and the inference laws, respectively, for operations on
the variables. The proofs of the inference laws are not shown.

Unit Element(UE) | If x x y =y X & = x, take y as a unit element and write y = 1.

Zero Element(ZE) If x+y=y+x=ux, take y as a zero element and write y = 0.

Reflective Law(RL) | z ==

Symmetric Law(SL) r=y
y=x
Transitive Law(TL) r=y y=z x>y y>z x<y y<z
=z T >z <z

*T>Yy yYy==z T=Yy yY>=z r<y yYy==z r=1y y<z

x>z x>z r <z r <z

Table 1: Unit element, zero element, and reflective, symmetric, and
transitive laws for operations on the variables

Rule name Inference rule

flach) 1)
i@ flaob)

Operation—Inference(OI) | Where aob = ¢, allow

a=b c=d
aoc=bod
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N a>b c¢c=d a<b c=d 4o
aoc>bod aoc<bod o ’
a=b ¢>d a=b c<d
aoc>bod aoc<bod prorx

PN a=b c>d a=b c<d CCor -
aoc<bod aoc>bod

o1 a>b ¢>d a<b c<d 4 oor x
aoc>bod aoc<bod

o> 9 a>b c¢c>d a<b c<d CCor -
aod>boc aod<boc
a>b a<b

= b<a b>a

Table 2: Rules of inference for operations on variables

In all of the above operations, =+ is applicable so long as ¢ # 0 and d # 0.

The following rules are allowed as operation-inference rules for a o b = c.
rxl=1xz=x

rxljz=1/zxer=c+z=a/x=1

z+0=0+z=2

(o : 4+ or x) [Commutative Law]

(o : 4 or x) [Associative Law]
(o:+ or —) [Distributive Law]
(o : + or —) [Distributive Law]

roy=you
(Toy)oz=wo(yoz)
xx (yoz)=xXyoxxz
(yoz)+x=y+zxoz+ux

The following calculations are allowed as operation-inference rules for a o b = c.

Daexlly=zx+y=ua/y
(2)a+b=(axc)=(bxc)
(3) (a/b x bd) + (c/d x bd) = (a x d) = (b X ¢)

Law name Inference law
. . f(a/laa/2a"'7a'n) a1:b17a2:b27"'7an:bn
= Substitution(= Sub
(= Sub) [ b2~ ba)

Table 3: Laws of inference for operations on variables

The next four tables show the inference rules (Table 4) and inference laws (Table 5)
for propositional logic, and the inference rules (Table 6) and inference law (Table 7) for
predicate logic. F'(X) is a logical expression containing propositional variable X. The

proofs of the inference laws are not shown.
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Rule name Inference rule Rule name Inference rule
(k) (k) (k)
— Introduction(— Int) 4] V Removal(VRem) 4] [B]
B AvB C C
s o ™
A A—B . A
— Removal(— Rem) —5 VIntroduction(VInt) 1V E
A—B B—-C A ——A
T ition(T - -
ransition(Trn) 158 Removal(—Rem) T
. A B .
AIntroduction(AInt) —Introduction(—Int) | [A]
ANB
L
-A
ANB AAB ——A
ARemoval(ARem) //\1 g ——Removal(——Rem) -
Table 4: Rules of inference for propositional logic
Law name Inference law Law name Inference law
A=B A=B F(A) A=B

= Removal(= Rem)

= Substiution(= Sub)

A-B B A F(B)

ANAIntroduction(ANInt) Af/l\ Afj\ Aji\ .. : //\174” Y j\y/%

—=Introduction(——Int) % Importation(Imp) 4 ;A (5: g )
Contraposition(Cont) %

Table 5: Laws of inference for propositional logic

Rule name Inference rule
V[P(z)]
VRemoval(VRem) “Plar)
: P(ai)
IIntroduction(IInt) T2P()]
VIntroduction(VInt) Pla) \VIID([(]EDZ() )] Plan)
z[P(z
P(a1) P(a2)  Play)
JRemoval(IRem) JolP(o) ¢ 8 ¢

Table 6: Rules of inference for predicate logic
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Law name Inference law

Pi(ar,,) Pa(az,) - Po(an,,)

J3Introduction(33Int)

E|$1E|.132 e E|$n[P1 (.131) N PQ(JZQ) VARERIVAN Pn(],‘n)]

Table 7: Law of inference for predicate logic

2) Symbolization for single-lot drawing trials

Table 8 shows the symbolization for

the number of events, elementary events, and probabilities in a trial drawing of one lot
from a set containing winning and losing lots and in a trial drawing of one lot each from
sets A and B (thus an “ A lot” and a “ B lot ” | respectively) with both sets containing
winning and losing lots. Variable x may be n(X),n(Y),n(S), P(X), or P(Y), either alone

or in combination.

X Event: Drawing of winning lot n(S) Total number of lots

Xa Event: Drawing of winning A lot | n(S4) | Total number of A lots

Xp Event: Drawing of winning B lot | n(Sg) | Total number of B lots

Y Event: Drawing of losing lot P(X) Probability of drawing winning lot
Ya Event: Drawing of losing A lot P(X4) | Probability of drawing winning A lot
Yz Event: Drawing of losing B lot P(Xp) | Probability of drawing winning B lot
S All events P(Y) Probability of drawing losing lot

Sa All A-lot events P(Y,4) | Probability of drawing losing A lot
Sp All B-lot events P(Yg) | Probability of drawing losing B lot
n(X) | Number of winning lots P(S) Probability of all events

n(Xa) | Number of winning A lots P(S4) | Probability of all events for A lots
n(Xp) | Number of winning B lots P(Sp) | Probability of all events for B lots
n(Y) Number of losing lots

n(Y4) | Number of losing A lots

n(Yg) | Number of losing B lots

Table 8: Number and probability of events and elementary events

in single-lot drawing trials

Table 9 shows the symbolization of comparative conditions in the settings, with the total
number of lots, number of winning lots, number of losing lots, probability of winning, and
probability of losing as the objects of comparison. The expression (A A =B)V (mA A B) is
abbreviated A Y B, and exclusive disjunction is symbolized as V.

Condition Symbolization
Equal total numbers of A and B lots Ay n(Sa) =n(Sp)
Larger total number of A lots As: n(Sa) > n(Sgp)
Larger total number of B lots As: n(Sa) <n(Sgp)
Different total numbers of A and B lots —Ay: =(n(Sa) =n(Sg))
Equal numbers of winning A and B lots Bi: n(Xa) =n(Xp)
Larger number of winning A lots Bsy: n(Xa) > n(Xp)
Larger number of winning B lots Bs: n(Xa) <n(Xp)
Different numbers of winning A and B lots -By: (n(Xa) =n(Xp))
Equal numbers of losing A and B lots Cy: n(Ya) =n(Yp)
Larger number of losing A lots Cy: n(Ya) > n(Yp)
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Larger number of losing B lots Cs: n(Ya) <n(Yp)
Different numbers of losing A and B lots -C1: =(n(Ya) =n(Yp))
Equal chances of winning with A and B lots Dy: P(X4)=P(Xp)
Greater chance of winning with A lots Dy: P(X4) > P(Xp)
Greater chance of winning with B lots Ds: P(X4) < P(XpB)
Different chances of winning with A and B lots | =Dy: =(P(X4) = P(Xp))
Equal chances of losing with A and B lots Ey: P(Ya) = P(YB)
Greater chance of losing with A lots Ey: P(Ya) > P(Yg)
Greater chance of losing with B lots Es5: P(Ya) < P(YB)
Different chances of losing with A and B lots —FE1: ~(P(Ya) = P(YB))

Table 9: Comparative setting conditions relating to probabilities

From Al v AQ v Ag, ﬁA]_ = A2 v Ag; from B]_ v BQ v Bgn ﬁB]_ = B2 v Bg; from Cl v CQ
\ Cg, _\Cl = CQ \ 03; from D1 \ DQ Y D37 _\D1 = DQ v Dg; and from E1 v EQ v E3, ﬂEl
= E2 v E3

3) Axioms, definitions, and theorems for single-lot drawing trials Table 10 shows
the axioms, definitions, and theorems for the trials in which a single lot is drawn. The
theorem proofs are not shown.

Aziom1(Azl) P(S)=1,P(¢) =0
Axiom2(Ax2) P(S)=P(X)+ P(Y)
Aziom3(Ax3) 0SPX)S1L,0sPY)sS1 (XCSYCLDS)
Definition(Def) | P(Z) =n(Z)+n(S) (Z:X,Y)
Theorem1(Thml) | P(Y)=1- P(X)
Theorem2(Thm2) | P(X)=1—-P(Y)
Theorem3(Thm3) | n(Z) =n(S) x P(Z) (Z:X,Y)
Theorem4(Thm4) | n(S)=n(Z)+P(Z) (Z:X,Y)
Theoremb(Thm5) | n(S) =n(X)+n(Y)
Theorem6(Thm6) | n(Y) =n(S) —n(X)
TheoremT7(ThmT7) | n(X)=n(S) —n(Y)

Table 10: Axioms, definitions, and theorems for single-lot drawing
trials

(2) Test problems The test problems in the probability comparison tasks are in the two
categories of ratio-related conceptual and ratio-related procedural knowledge. Each of the
two categories includes the three contextual categories of ratio, comparative-quantity, and
base-quantity. The conceptual-knowledge problems are those that contain no numbers and
thus require approaches based primarily on concepts. The procedural-knowledge problems
are those that contain numbers and thus allow approaches based primarily on procedures.
In the following, we provide examples of ratio-context test problems that pertain to ratio-
related conceptual and procedural knowledge. Tables 11 and 12 show the supposition and
conclusion of each of these test problems. Please refer to Supplements 1 through 4 for test
problems in the comparative-quantity and base-quantity contexts pertaining to ratio-related
conceptual and procedural knowledge.
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Example test problem for ratio-related conceptual knowledge in the ratio context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called “ A lots” and lots from
the other group are called “ B lots” . Both groups include winning lots and losing lots.
The “total number of lots” in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an “ easy winner ” .

The total number of A lots is the same as the total number of B lots.
There are more winning A lots than winning B lots.
There are more losing B lots than losing A lots. (Supposition)

If just one lot is drawn, will it be easier to win with an A lot or a B lot, or will it be
the same for an A lot and a B lot? Draw a circle in the box above any of the following
answers that you think may be correct. Note that in some questions, a circle can be
drawn in all of the boxes.

] [l [l

It is easier to win  No difference between It is easier to win

with an A lot. an A lot and a B lot.  with a B lot. (Conclusion)
Supposition Correct conclusion
Question 1 Ay, By, Cy Dy
Question 2 Ay, By, C Dq
Question 3 -Aq, By, Cy Do
Question 4 _|A1, BQ, CQ Dl, DQ, D3
Question 5 -Aq, By, C Dy
Question 6 —Ay, By, Cs D

Table 11: Test problem suppositions and correct conclusions for
ratio-related conceptual knowledge in the ratio context

Example test problem for ratio-related procedural knowledge in the ratio context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called “ A lots” and lots from
the other group are called “ B lots” . Both groups include winning lots and losing lots.
The “total number of lots” in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot “ chance of winning ” . If chance of
winning is high, we call the group an “ easy winner ” .

The total number of A lots is 5, and 3 of them are winning lots.
The total number of B lots is 5, and 1 of them is a winning lot.

(Supposition)
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If just one lot is drawn, will it be easier to win with an A lot or a B lot, or will it be
the same for an A lot and a B lot? Draw a circle in the box above any of the following

answers that you think may be correct.

[l

It is easier to win
with an A lot.

[l

No difference between
an A lot and a B lot.

It is easier to win

[]

with a B lot.

(Conclusion)

Supposition Correct conclusion
Question 1 | n(X4) =3,n(Xp) =1,n(S4) =5,n(Sp) =5 Dy
Question 2 | n(X4) =1,n(Xp) =3,n(54) =2,n(Sp) =6 D,
Question 3 | n(Xa4) =3,n(Xp)=3,n(54) =4,n(Sg) =5 Dy
Question 4 | n(X4) =1,n(Xp) =3,n(54) =4,n(Sp) =4 Dy
Question 5 | n(X4) =3,n(Xp)=6,n(54) =4,n(Sp) =8 Dy
Question 6 | n(X4) =2,n(Xp) =2,n(54) =4,n(Sp) =5 D,
Question 7 | n(Xa) =1,n(Xg) =4,n(5a) =2,n(Sg) =5 Ds
Question 8 | n(X4) =1,n(Xp) =3,n(54) =4,n(Sp) =6 Dy
Question 9 | n(X4) =2,n(Xp)=3,n(54) =4,n(Sp) =5 Ds
Question 10 | n(X4) =2,n(Xp) =3,n(54) =8,n(Sp) =10 Ds
Question 11 | n(X4) =3,n(Xp) =4,n(5S4) =4,n(Sp) =5 D5
Question 12 | n(X4) =4,n(Xp) =3,n(54) =10,n(Sp) =6 Dy

Table 12: Test problem suppositions and correct conclusions for
ratio-related procedural knowledge in the ratio context

(3) Test-problem proofs We proved the validity of the correct conclusions given the
problem descriptions and suppositions, by propositional logic in cases resulting in one correct
answer and by predicate logic in cases not resulting in one correct answer. The following
two examples are typical of the proof process. One is for a problem involving ratio-related
conceptual knowledge in the ratio context and the other is for a problem involving ratio-
related procedural knowledge in the ratio context.

1) Ratio-related conceptual knowledge in the ratio context
Case resulting in one correct answer: Question 1

Supposition Ay, By, Cs
Correct conclusion Do
By :n(Xa)>n(Xp) A;:n(Sa)=n(Sp)

n(XA> - TL(SA) > n(XB) = n(SB) (>= 1)

Def : P(Z) =n(Z) +n(S) n(Z) =n(Xa) n(S)=n(Sa) P(Z)= P(Xa) (= Sub)
P(XA) = n(XA) - TL(SA) (SL)
n(XA) - n(SA) = P(XA)

Def : P(Z) =n(Z) +n(S)  n(Z) =n(Xp) n(S)=n(Sp) P(Z)=P(Xp) (= Sub)
P(XB) = n(XB) - ’I’L(SB) (SL)
TL(XB) —TL(SB) = (XB)
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n(Xa)+n(Sa)>n(Xp)+n(Sg) n(Xa)+n(Sa)=P(Xa) n(Xp)+n(Sp)=P(Xp)

Dy : P(Xa) > P(Xg) (= Sub)

This proves that Dy is the correct conclusion, given supposition A; and Bs.

Case not resulting in one correct answer: Question 4

Supposition —Aq, Ba, Cs
Correct conclusion Dy, D5, D3
n(Xa)=2 n(Xp)=1 n(Sa)=4 n(Sp)=2 2>1 4>2 4-2>2-1 2/4=1/2
JrdyFzFwn(Xa) =z An(Xp) =yAz >y
An(Sa)=zAn(Sp)=wAz>w
MYa)=z—axzAnYp)=w—-yAz—z>w—y
AP(XA)=x/2ANP(Xp)=y/wAhz/z=y/w] - (a)

(33Int)

n(Xa)=3 n(Xp)=1 n(Sa)=5 n(Sp)=2 3>1 5>2 5-3>2-1 3/5>1/2
'y’ 32 Fw' n(X4) =2’ An(Xp) =y Aa' >y

Sa) =2 An(Sg)=w Az >uw

n —2'AnYp)=w —y AN =2’ >uw -y

AP(Xa)=2a'/2' NP(Xp)=vy'/w N2'[z' >y /w']--- (D)

(33Int)

nXa)=2 nXp)=1 n@a)=>5 n(Sp)=2 2>1 5>2 5-2>2-1 2/5<1/2

Jd3Int
F"Fy" 32" " [n(Xa) = 2" An(Xp) =y" ANz >y (F3nt)
An(Sa)=2"An(Sp) =w" Nz" > w"
/\n(YA) — Z” _ :1:,// /\ n(YB) — wl/ _ y// /\ Z// _ xl/ > w// _ y//
/\P(.XA) — x///Z// /\ P(XB) — y///w// /\ x///zll < y///w//] . (C)
b
@ ® @ ot

(FrTyFzFwn(Xa) =z An(Xp)=yAz >y
An(Sa)=zAn(Sp)=wAz>w
MYp)=z—axAnYp)=w—-—yAz—z>w—y
AP(Xa)=x/2NP(Xp)=y/wAhz/z=y/w])

ATz Iy 32T [n(Xa) =2/ An(Xp) =y AN’ >
An(Sa) =2 An(Sp)=w Az >uw
AMYp)=2 -2’ An(Yp)=w —y N2 =2/ >w' —y
ANP(Xa)=2a'/z' NP(Xp) =y /w' N[z >y [Ju'])
AFx" Iy 32" T [n(Xa) = 2" An(Xp) =y" Ax" > y”
An(Sa) =2" An(Sp) =w" Nz" > w"
/\n(YA) — A n(YB) =" =y N — 2 >~y
/\P(XA) — ‘T///Z// /\ P(XB) — y///w// /\ :LJI/Z” < y///w//])

This proves that there exist n(X4),n(Xp),n(S4a), and n(Sp) that satisfy —A;, By, Cs,
and Dq; = Ay, By, Co, and Dy; and — Ay, By, Co, and Ds, respectively.
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2) Ratio-related procedural knowledge in the ratio context

Question 1
Supposition n(Xa) =3,n(Xp)=1,n(5S4) =5n(Sg) =5
Correct conclusion Dy
Def:P(Z)=n(Z)+n(S) n(Z)=n(Xa) n(S)=n(Sa) P(Z)=P(Xa) (= Sub)
P(Xa) = (XA) +n(Sa)
P(XA) = n(XA) - n(S’A) n(XA) =3 n(SA) =5 (_ Sub)
P(XA):3+5(OI) N
P(Xa)=3/5
Def : P(Z) =n(Z) =n($) _n(Z) = n(Xp) n(S)=n(Sw) P(Z)=P(Xs) _ g
P(Xp) =n(Xg)+n(Sp) a
P(XB):TL(XB)le(SB) (XB):]. Tl(SB):5 (: Sub)
P(Xp)=1~+ (OI)
P(Xp)=1/5
P(X4)=3/5 3/5>1/5 P(Xp)=1/5
P(X4)>1/5 (TL) 1/5=P(Xp) (SL) (TL)
Dy : P(X4) > P(XpB)
This proves Dy as the correct conclusion.

We similarly proved all of the test problems by mathematically deriving the correct
answers from the suppositions, using propositional or predicate logic. The results showed all
of the test problems to be free from contradiction and demonstrated their correct inference
processes. By similarly representing the inference processes performed by the children, it
was then possible to obtain a clear comparison between the correct reasoning based on
probability definitions and the children’s reasoning based on theorems of their own making.

(4) Children tested The tests were administered to children in the fifth and sixth grades
of elementary schools. The sixth graders had been schooled in unit-element ratios and the
fifth graders had not. The number of children in each test category was as follows.

Ratio-related conceptual knowledge in the ratio context
125 5" graders, 129 6! graders, 254 total

Ratio-related conceptual knowledge in the comparative-quantity context
117 5" graders, 114 6" graders, 231 total

Ratio-related conceptual knowledge in the base-quantity context
144 5" graders, 139 6" graders, 283 total

Ratio-related procedural knowledge in the ratio context
214 57 graders, 229 6" graders, 443 tota

Ratio-related procedural knowledge in the comparative-quantity context
188 5" graders, 203 6" grader, 391 total

Ratio-related procedural knowledge in the base-quantity context
207 5" graders, 220 6" graders, 427 total
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3 Analysis of test results

(1) Mathematical explication of children’s inference processes We listed the test
problems in order from high to low correct-answer rate and analyzed the children’s proto-
cols. As a result, we found that the children’s manner of reasoning was characteristic and
that because they consistently used the same manner of reasoning it tended to be applicable
only to specific problems. As shown in Table 13, we therefore added symbols relating to
determinations based on half (1/2) as the basis/standard and then performed the symbol-
ization of inferences seen in classic child protocols to obtain a mathematical explication of
the children’s manner of reasoning. We also performed level and stage categorization, with
structural and qualitative changes in the children’s manner of reasoning taken as changes
of level and changes of stages within levels, respectively. For integrated analysis relating to
the two types of ratio-related knowledge and the three contexts, we extracted the children-
specific manner of reasoning as reasoning that is central to the reasoning of children.

In the following, we show typical examples of our symbolization of inferences made by
the children and the related level and stage categories for several test problems on ratio-
related conceptual knowledge in the ratio context. In these examples, we refer to correct
conclusions derived from the suppositions as “correct answers” and answers derived by the
children simply as “conclusions” , and highlight the children-specific reasoning in inference
schemata.

W(z) P(z)>1/2
L(z) P(z) <1/2
H(z) P(z)=1/2

Table 13: Determinations from base 1/2

1) Level 0
Question 2
Supposition Ay, By, C
Correct answer D,
Conclusion D3

Correct or Incorrect Incorrect

2) Level 1, Stage 1A

Question 2

Supposition Ay, By, Ch
Correct answer Dy
Conclusion Dy
Correct or Incorrect correct

By :n(Xa) =n(Xp) n(Xa)=nXp) —PXs)=PXp)
D1 . P(XA) = P(XB)

(— Rem)

Question 6

Supposition -Ay, By, Cs

Correct answer D3
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Conclusion D,

Correct or Incorrect Incorrect

By : n(XA) = TL(XB) n(XA):n(XB) —)P(XA) :P(XB)

Dy : P(X4) = P(Xg) (= Rem)

3) Level 1, Stage 1B

Question 6

Supposition -A1,Bq,Cs
Correct answer D3
Conclusion D3
Correct or Incorrect correct

B Ct (AInt)

Bi/ACy (ARem)
Cy :n(Ya) > n(Yp) nYa) >n{B) — P(Xa) < P(Xp) (s Rem)

D5 : P(XA) < P(XB)

Question 4
Supposition —Aq, Ba, Co
Correct answer D1, D5, D3
Conclusion Do
Correct or Incorrect Incorrect

By Oy

B nCs (AInt)

(ARem)

By : TL(XA) > n(XB) n(XA)>TL(XB)—)P(XA)>P(XB)

(— Rem)

Dy : P(X4) > P(Xp)

4) Level 2
Question 4
Supposition —Aj, By, Co
Correct answer Dy, D5, D3
Conclusion D1, D5, D5
Correct or Incorrect correct

n(Xa)=3,n(Xp)=2,n(Ya) =3,n(Yg)=2---(1)

In the following inference schemata, [1] should be replaced with (1), excluding the
commas.

1 3>2 3>2 3/3+3)=2/(2+2)
JrIyFzFwin(Xa) =axAn(Xp)=yAx >y
A(Ya)=zAnYp)=wAz>w

AP(X4) = o/(@+2) A P(X) = y/(y +w) An/(z +2) = y/(y +w)] - (a)

(F3Int)

n(XA) = 6,7’L(XB> = Q,H(YA) = 37n(YB) =2 (2)
In the following inference schemata, [2] should be replaced with (2), excluding the
commas.
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2] 6>2 3>2 6/(6+3)>2/(2+2)
F2'Fy' 32 Fw' In(X4) =2’ An(Xp) =y ANa' >y
A(Ya)=2"An(Yg) =w A2 >
AP(Xa) =2 /(2'+2")AP(Xp) = ' /(y' +w") A2 [ (2'+2") > ¢ /(' +w')] - - (b)

(33Int)

n(Xa)=6n(Xp)=4,n(Ya)=6,nYp)=2---(3)
In the following inference schemata, [3] should be replaced with (3), excluding the
commas.

B 6>4 6>2 6/(6+6) <4/(4+2)
F"Fy" 32" Iw" [n(X ) = 2" An(Xp) =y’ AN >y
An(Ya) = 2" An(Yg) = w"’ A 2" > w"
/\P(XA):LU/I/(.Z'//+Z//)AP(XB> :y///(y//+w//)/\m///(m//_’_z//) <y///(yll+w//>] . (C)

(33Int)

(a) (b) (©)
(FrdyFzFwn(Xa) =z An(Xp)=yAz >y (AA Int)
AM(Ya)=2AnYg)=wAz>w
AP(Xa) =x/(x+2) N P(XB) =y/(y +w) Nx/(x+2) = y/(y + w)])
A(F2' 3y 32T [n(Xa) = 2" An(Xp) =y AN’ >
A(Ya) =2 An(Yg)=w A2 >
AP(Xa) =2 /('+2)AP(Xp) = ' /(y' +w") A2' [ (2'+2) > ¢/ (y +w)])
ATz Fy" 32" [n(X4) = 2" An(Xp) =y ANz >y
A(Ya)=2"An(Yp) =w"ANz2" > w"
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/\P(XA) — :C/I/(CC//+Z/I)/\P(XB) — yll/(yll+w//)/\x///(xll+zll) < y///(y//+w//)])

The processes of inference in children unschooled in probability are not based on an ex-
plicit definition of probability. In their inference processes, leaps therefore tend to occur due
to children-specific reasoning. The children’s reasoning sequences n(Xa) =n(Xg) — P(Xa) =
P(Xp) in Level 1 Stage 1A and n(Ya) >n(Ys) — P(Xa) < P(Xp) in Level 1 Stage 1B gen-
erally hold in cases where n(S4) = n(Sg), but it appears that they were also excessively
applied in cases where n(S4) # n(Sp). The children at Level 2 apparently focused on
n(Xa),n(Xp),n(Ya), and n(Yp), and derived inference schema conclusion (a) based on
the following manner of reasoning.

n(XA) =3, n(XB) = 27n(YA) = 37n(YB) =2

n(Xa)=3 3>2 n(Xp) =2
Xos2 T s oEy B )
B2 . n(XA) > n(XB)
n(Yq)=3 3>2 n(Yg) =2
sz T gy ) )

Cy:n(Ya) > n(Yp)

n(XB) =2 n(YB) =2

n(Xp) s n(Vg) =252 )

n(XA) =3 n(YA) =3
n(Xa)+n(Ys)=3=+3 ©on n(Xg)+n(Yp)=1
’I?,(XA) - TL(YA) =1 1= n(XB) - n(YB)
n(XA) - ’I’L(YA) = n(XB) - n(YB)
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Xo) +n(Va)=nXp)+nls) nXy)-+nla)=nXp) +nlp)—PXs)=PXs) (= Rem)
Dy : P(Xa) = P(Xp)

The Level-2 children’s reasoning, n(Xa)+n{a) =nXps)+n¥s) — PXa)=PXg), is
not correct in terms of probability. It does have a certain generality, as in this reasoning the
ratio n(X4) to n(Ya) extended to the ratio n(X4) to n(S4) and the ratio n(Xp) to n(Yp)
extended to the ratio n(Xp) to n(Sg). It is accordingly a mathematically correct concept
in special cases, but its generality is not guaranteed. In the following, we show in terms of
propositional logic the process of obtaining n(Xa) +n(Ya) =n(Xs) +n(¥s) — P(Xa) = P(XB).

1 (X a) = n(Ya) = 1 x n(Ya) = (n(Xa) = n(Ya) x n(Ya))
(0I)*1 A A Tt +An(XA) A A A

. 1+n(Ya) +n(Xa) =n(Xa) +n(Xa)+n(Ya) ~n(Xa)
(0072 T ) ) (X

(n(Xa) +n(Ya)) xn(Xa) +n(Xa)
(Xa) +n(Ya)) x 1

n(Xa)x (n(Xa)+n(Ya))+n(Xa) b
n(Xa) +n(Ya)

(01)*3 ~ (n

n(Xa)=3 nYs)=3

n(Xa)=n(Ys) =3=3 (==)

1=1 n(Xa)+nYa)=1 (==)
1+ (n(Xa)+nYa)=1+1 ©on
1+ (n(Xa)=n(Ya)) =1 (O1)*1
n(YA) =+ n(XA) =1
1=1 n(YA) - TL(XA) =1 (::)
1+n(YA)+n(XA):1—|—1 (OI)*2

(n(XA) + n(YA)) =+ n(XA) =141

WA =3 () + (V) £l =L+
’I’L(XA) X (n(XA)+n(YA)) n(X4) =3 x (1+1) (o1
n(Xa) x (n(Xa) +n(Ya)) +n(Xa) =343
n(Xa)+n(Ys)=3+3

Thmb:n(S) =n(X)+nY) n(X)=n(Xa) nY)=n(Ya) n(S)=n(Sa) (= Sub)
)

n(Xa)+n(Ya)=3+3 n(Xa)+n(a)
n(Xa)+n(Sa) =3+ (3+3) ==

Def:P(Z)=n(Z)+n(S) n(Z)=n(X4) n(S)=n(Sa) P(Z)=P(Xa) (= Sub)
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P(XA) = n(XA) - n(SA)

n(Xa) +n(Sa) =3+ (3+3) n(Xa)+n(Sa) = P(Xa) oY (= Sub)
P(X4)=3+(3+3) _ (OI)
P(Xa)=1/2
n(Xp) = n(Yp) =2 (==)
n(Xp) +n(Yp) =22
1=1 n(Xp) +n(Yp) =1 (o0 (==)
1+ (n(Xp)+n(Yp) =1+1 (oI)
1+ (n(Xp) +n(Yp)) =1 (OI)*1
n(Yp) +n(Xp) =1
1= n(Ygp) +n(Xp) =1 (==)
1+n(Yp)+n(Xp)=1+1 *
(n(XB) +n(Yg)) +n(Xp)=1+1 onz
Tl(XB) =92 (n(XB)+n(YB))*T’L(XB) =141 (::)
n(Xp) x ((Xp) + n(Yp)) + n(Xp) =2 x (1+ 1) (oI
n(Xg) x (n(Xp) +n(Yp)) + n(Xp) =2+2 (01)*3
n(Xp) +n(Yp) =2+2

n(Xg)+n(Ys)=2+2 n(Xp)+n(Yp)=n(Sp) s
n(Xp) =2 n(Sp) =242 _ _
n(Xp) +n(Sp)=2+(2+2) ——

Def : P(Z) = n(Z) =n(S) _n(Z) =n(Xp) n(S) =n(Sp) P(Z)=P(Xp) g
P(XB) = n(XB) - n(SB)

n(Xpg)=n(Sp) =2+ (2+2) n(Xp)+n(Sp)=P(Xp) (= Sub)
P(Xp) =2+ (212) oD
P(Xp) = 1/2

P(Xp)=1/2
P(X4)=1/2 1/2=P(Xp)
D1: P(XA) = P(XB)

(SL)

(T'L)
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(2) Children-specific reasoning As a result of the symbolization of the inferences
performed by the children for all of the test problems and their level and stage classification
as shown in Tables 14 and 15, we found children-specific reasoning to be present in all levels
and stages. Tables 16 and 17 provide a summary of the children-specific reasoning extracted
from the children’s manner of reasoning at each level and stage, and the correct answers

based on probabilistic definitions.
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Level | Stage Ratio Comparative quantity | Base quantity
0

1 1A Question 2 Question 2 Question 2
Question 1 Question 1 Question 1

Question 3

Question 5
1B Question 6 Question 6 Question 6
Question 4 Question 3
2 Question 4 Question 5 Question 5
Question 3 Question 4

Table 14: Levels and stages of ratio-related conceptual knowledge

Level | Stage Ratio Comparative quantity | Base quantity
0
1 1A Question 1 Question 1 Question 2
Question 4 Question 4 Question 5
Question 11 Question 7
Question 9 Question 11
Question 10 Question 8
Question 8 Question 9
Question 7 Question 10
Question 12
1B Question 6 Question 2 Question 3
Question 3 Question 5 Question 6
Question 12
1C | Question 2
Question 8
Question 9
Question 7
2 Question 5 Question 6 Question 1
Question 10 Question 12 Question 4
Question 11 Question 3

Table 15: Levels and stages of ratio-related procedural knowledge

Level | Stage Ratio Comparative quantity Base quantity
0
1 A | n(Xa) =n(Xp) = | n(Ya) =n(Yp) = n(Xa) =n(Xp) —
P(XA) = P(XB) n(XA) = n(XB) n(YA) = n(YB)
n(Xa) >n(Xp) — n(Ya) <n(Yp) — n(Xa) >n(Xp) —
P(X4)> P(Xp) n(X4) >n(Xpg) n(Ya) <n(Yp)
1B | n(Xa)=n(Xp)— n(Ya) =n(Yp) — n(Xa) =n(Xp) —
’I?,(YA)>TL(YB)—> P(XA)>P(XB)—> P(XA)<P(XB)—>
P(X4) < P(Xp) n(X4) > n(Xp) n(Ya) > n(Yp)
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1C

P(Xa) < P(Xp)
2 n(Sa)x a=n(Sg)xb
—nXa)xa=nXpg)xb
%P(XA):P(XB)
n(Sa)xa=n(Sg)xb

—nXa)xa<n(Xp)xb

—P(X4)<P(Xp)

n(Xa)+n(Sa) = n(Sa) X P(X4) = n(Xa)+P(Xa)=
n(Xp) +n(Sp) = n(Sp) x P(Xp) — n(Xg) + P(Xp) —
P(X4) = P(Xp) n(Xa) =n(Xp) n(S4) = n(Sp
n(XA) %n(SA) < TL(SA) X P(XA) >

TL(XB) —TL(SB) — n(SB) X P(XB) —

P(X4) < P(XB) n(Xa) > n(Xp)

Table 17: Children’s reasoning related to procedural knowledge

4 Discussion In reasoning, children consider relations between two sets and relations
within a set, which we refer to here as “ Between” and “ Within” relations, respectively.
For Between relations, such as that of n(X 4) and n(Xpg), they consider the relation between
two quantities with each occurring in a different set. For Within relations, such as that of
n(X4) and n(Yya), they consider the relation between two quantities occurring in the same
set.

In comparing the children’s reasoning processes, as shown in Tables 16 and 17, we found
that additive reasoning (including size comparison) for Between relations and multiplicative
reasoning for Within relations occur in relation to both conceptual knowledge and proce-
dural knowledge in all three of the contexts, and that additive reasoning for the Between
relation precedes multiplicative reasoning for the Within relation. We found additive rea-
soning (including size comparison) for the Within relation to occur consistently in relation
to ratio-related conceptual knowledge in all three contexts. In relation to ratio-related
procedural knowledge in the ratio context, we found additive reasoning (including size com-
parison) for the Within relation and multiplicative reasoning for the Between relation, again
with additive reasoning for the Within relation preceding multiplicative reasoning for the
Between relation. These findings indicate that the Between relation is easier for children to
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recognize than the Within relation, and that additive reasoning is easier than multiplica-
tive reasoning. They also indicate that the transitions in reasoning proceed from additive
reasoning for the Between relation to additive reasoning for the Within relation, to multi-
plicative reasoning for the Between relation, and finally to multiplicative reasoning for the
Within relation. Additive reasoning for the Within relation was found to involve the use of
half as a basis strategy. This is in accord with the findings in studies made to present on
the stages of children’s knowledge and development in proportional reasoning.

In cases where the number of winning lots and total number of lots in two sets were
in a double-half (1/2) relation, some of the children considered the related numbers and
performed inferences based on multiplicative reasoning for the Between relation. Even in
problems containing no explicit numbers, some of the children on their own initiative set
up actual numbers that were in the double-half (1/2) relation, e.g., (4, 2), (6, 3), (8, 4),
and (10, 5), for the number of winning and losing lots and performed their inferences based
on multiplicative reasoning for the Within relation. In these cases, they used half as a
ratio rather than as a basis strategy. Their unprompted introduction of the half concept,
in any case, clearly suggests that it holds a key role as a prime mover in the transition
from additive reasoning in the Within relation to multiplicative reasoning in the Between
relation and to multiplicative reasoning in the Within relation.

The occurrence of additive reasoning relating to ratio-related conceptual and procedu-
ral knowledge for Between relations and multiplicative reasoning for Within relations in
all three contexts indicates that in each of the contexts an association is formed between
ratio-related conceptual and procedural knowledge under additive reasoning and the struc-
tural change in the manner of thinking then leads to a formation of a new association under
multiplicative reasoning. The structural change is a basic change from an additive to a mul-
tiplicative algebraic structure that is the foundation of the children’s manner of reasoning
and corresponds to a structural change in level. The emergence of Additive reasoning for
Within relations can also be regarded as a qualitative change from the Between relation to
the Within relation in additive reasoning, and the emergence of multiplicative reasoning for
Between relations can be regarded as a qualitative change from the Between relation to the
Within relation in multiplicative reasoning.

We also found an increase from one to two in the number of events considered in ad-
ditive reasoning for the Between relation, with the proviso that although two events were
considered in all three contexts for ratio-related conceptual and procedural knowledge, in
those cases where equality was established for one event there was a tendency to perform
the determination based only on the other event.

These qualitative changes signify a change in the children’s mode of consideration from
one event to two and from the Between relation to the Within relation, and correspond
to a change in stage. Until the structural change from additive to multiplicative reasoning
occurs, children consistently perform inferences based on additive reasoning. In summary,
the findings indicate that the three contexts do not become integrated in terms of additive
reasoning until after ratio-related conceptual and procedural knowledge become linked in
additive reasoning in each of the three.

Additional note
This work was supported by JSPS KAKENHI Grant Number 25381204.
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Appendix 1
Example test problem for ratio-related conceptual knowledge in the comparative quantity
context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called “ A lots” and lots from
the other group are called “ B lots” . Both groups include winning lots and losing lots.
The “total number of lots” in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an “ easy winner ” .

The total number of A lots is the same as the total number of B lots.
There are more losing B lots than losing A lots.
If just one lot is drawn, it is easier to win with an A lot than with a B lot. | (Supposition)
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Which of the A lots or the B lots have a larger number of winning lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct. Note that in some questions, a circle can be drawn in all
of the boxes.

[l ] ]

There are more No difference between There are more
winning A lots. the A lots and B lots. winning B lots.

(Conclusion)

Test problem suppositions and correct conclusions for ratio-related conceptual knowledge
in the comparative quantity context

Supposition Correct conclusion
Question 1 Ay,C3, Do By
Question 2 Ay,Cq, Dy By
Question 3 _‘Al, Cg, D3 Bl, BQ, B3
Question 4 —Aq1,Co, Dy By
Question 5 -A1,Cy, Dy By
Question 6 -Aq1,C1, Dy By

Appendix 2
Example test problem for ratio-related conceptual knowledge in the base quantity context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called “ A lots” and lots from
the other group are called “ B lots” . Both groups include winning lots and losing lots.
The “total number of lots” in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an “ easy winner ” .

The total number of A lots is the same as the total number of B lots.
There are more winning A lots than winning B lots.
If just one lot is drawn, it is easier to win with an A lot than with a B lot. | (Supposition)

Which of the A lots or the B lots have a larger number of losing lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct. Note that in some questions, a circle can be drawn in all
of the boxes.

L] ] L]

There are more No difference between There are more
losing A lots. the A lots and B lots. losing B lots.

(Conclusion)

Test problem suppositions and correct conclusions for ratio-related conceptual knowledge
in the base quantity context
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Supposition Correct conclusion
Question 1 Ay, B, Do Cs
Question 2 Ay, By, Dy 4
Question 3 —Aj, Bg, D3 Cs
Question 4 _|A1, BQ, D2 Cl, Cg, 03
Question 5 —Aq, By, Dy Cy
Question 6 _'A17 Bl, D3 Cg

Appendix 3
Example problem for ratio-related procedural knowledge in the comparative quantity con-
text

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called “ A lots” and lots from
the other group are called “ B lots” . Both groups include winning lots and losing lots.
The “total number of lots” in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot “ chance of winning ” . If chance of
winning is high, we call the group an “ easy winner ” .

The total number of A lots is 5, and chance of winning is 0.6.
The total number of B lots is 5, and chance of winning is 0.2.

(Supposition)

Which of the A lots or the B lots have a larger number of winning lots, or is it the
same for the A lots and B lots? Draw a circle in the box above any of the following
answers that you think may be correct.

] ] []

There are more No difference between There are more
winning A lots. the A lots and B lots. winning B lots.

(Conclusion)

Test problem suppositions and correct conclusions for ratio-related procedural knowledge
in the comparative quantity context

Supposition Correct conclusion
Question 1 | n(Sa) =5,n(Sp) =5,P(X4) =0.6,P(Xp) =0.2 By
Question 2 | n(S4) =2,n(Sp) =6,P(X4) =0.5,P(Xp) =05 Bs
Question 3 | n(S4) =4,n(Sp) =5, P(X4) =0.75,P(Xp) =0.6 B
Question 4 | 1n(S4) = 4,1(Sp) = 4, P(Xa) = 0.25, P(X5) = 0.75 B;
Question 5 | n(S4) =4,n(Sg) =8,P(X4)=0.75,P(Xp) = 0.75 Bs
Question 6 | n(Sa) =4,n(Sg) =5,P(X4) =0.5,P(Xp) =04 B
Question 7| n(S4) =2,n(Sp) =5,P(X4) =0.5,P(Xp) =0.8 Bs
Question 8| n(S4) = 4,n(S5) = 6, P(X4) = 0.25, P(X5) = 0.5 Bs
Question 9 | n(S4) =4,n(Sp) =5,P(X4) =0.5,P(Xp) =0.6 Bs
Question 10 | n(S4) = 8,n(S5) = 10, P(X4) = 0.25, P(X5) = 0.3 Bs
Question 11 | n(S4) =4,n(Sp) =5,P(X4) =0.75,P(Xp) = 0.8 Bs
Question 12 | n(S4) =10,n(Sp) =6,P(X4) =0.4, P(Xp) =0.5 By
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Appendix 4
Example problem for ratio-related procedural knowledge in the base quantity context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called “ A lots” and lots from
the other group are called “ B lots” . Both groups include winning lots and losing lots.
The “total number of lots” in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot “ chance of winning ” . If chance of
winning is high, we call the group an “easy winner ”

Chance of winning of an A lot is 0.6, and the number of winning lots is 3.
Chance of winning of a B lot is 0.2, and the number of winning lots is 1.

(Supposition)

Which of the A lots or the B lots have a larger total number of lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct.

[l ] L]

The total number No difference between  The total number
of A lots is larger. the A lots and B lots.  of B lots is larger.

(Conclusion)

Test problem suppositions and correct conclusions for ratio-related procedural knowledge
in the base quantity context

Supposition Correct conclusion
Question 1 | P(X4) = 0.6, P(Xp) = 0.2,n(XA) = 3,n(Xp) = 1 A
Question 2 | P(X4)=0.5,P(Xp) =0.5,n(X4) =1,n(Xp) =3 As
Question 3| P(X4) = 0.75, P(X5) = 0.6,n(X4) = 3,n(Xp) = 3 A
Question 4 | P(X4)=0.25,P(Xp) =0.75,n(X4) = 1,n(Xp) = 3 Ay
Question 5 | P(X4)=0.75,P(Xp) =0.75,n(X4) = 3,n(Xp) = As
Question 6 | P(X4) =0.5,P(Xp) =0.4,n(Xa)=2,n(Xp) = 2 As
Question 7 | P(X4)=0.5,P(Xp) =0.8,n(X4)=1,n(Xp) =4 As
Question 8 | P(X4)=0.25,P(Xp)=0.5,n(Xa4)=1 n(XB) = As
Question 9 | P(X4) =0.5,P(Xp) =0.6,n(Xa) =2,n(Xp) = As
Question 10 | P(X4) =0.25,P(Xp) =0.3,n(X4) =2,n(Xp) = 3 As
Question 11 | P(X4) =0.75,P(Xp) =0.8,n(X4) =3,n(Xp) =4 As
Question 12 | P(X4) = 0.4, P(Xp) = 0.5,n(Xa) = 4,n(Xp) = 3 A,
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ABSTRACT. In this paper, we study the structure of projection methods for
variational inequality problems and then prove weak convergence theorems
which generalize Takahashi and Toyoda [W. Takahashi and M. Toyoda, Weak
convergence theorems for nonepxansive mappings and monotone mappings,
J. Optim. Theory Appl. 118 (2003), 417-428] and Nadezhkina and Taka-
hashi [N. Nadezhkina and W. Takahashi, Weak convergence theorem by an
extragradient method for nonexpansive mappings and monotone mappings, J.
Optim. Theory Appl. 128 (2006), 191-201]. Our proofs are different from
them. Furthermore, using these weak convergence theorems, we obtain some
new results.

1. INTRODUCTION

Throughout this paper, we denote by R the set of real numbers and by N the
set of positive integers. Let H be a real Hilbert space with the inner product (-, -)
and the norm | - [|. Let C' be a non-empty subset of H. Let T be a mapping of
C into H. We denote by F(T) the set of fixed points of T and by A(T) the set of
attractive points [23] of T, i.c.,

F(T)={ueC:Tu=u},

AT)={uve H: ||Tx —u| < ||z —u|, Yz € C}.
A mapping T : C' — H is said to be k-Lipschitz continuous if there exists & > 0
such that ||Txz — Ty|| < k|lz — y|| for all z,y € C. If a mapping T : C — H is
1-Lipschitz continuous, it is said to be nonexpansive, i.e., ||[Tz — Ty|| < |z — y||
for all z,y € C. A mapping T : C — H is called quasi-nonexpansive if F(T) # o
and [Tz —v|| < ||l — v for all z € C and v € F(T). We note that the condition
F(T) C A(T) always holds if T is quasi-nonexpansive. We denote by I the identity
mapping on H. A mapping A : C — H is said to be monotone if (z—y, Az—Ay) >0
for all x,y € C. Let a > 0. A mapping A : C' — H is said to be a-inverse strongly
monotone if (z —y, Az — Ay) > a||Az — Ay||? for all 2,y € C. It is obvious that if A
is a-inverse strongly monotone, then A is monotone and 1/a-Lipschitz continuous.
In the case a € (0,2q], it is known that I — aA is nonexpansive. In fact, we have
that for any z,y € C

I(T = ad)z — (I — ad)y|® < [lz — y[|* — a(2a — a) [ Az — Ayl|*;

2010 Mathematics Subject Classification. 47H10, 47TH09.
Key words and phrases. Variational inequality problem, extragradient method, attractive
point, fixed point, monotone mapping, generalized hybrid mapping.
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see, for instance, [21]. Assume that C' is non-empty, closed and convex. In this case,
for each x € H, there exists a unique z¢ € C such that ||z — zo|| = min{||z — y|| :
y € C}. The mapping Po defined by Pox = z for € H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by VI(C, A) the set of solutions of the variational
inequality for A, i.e.,

VI(C,A)={x e C: (y—uz, Az) >0, Yy € C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space R". Let A

be a monotone and k-Lipschitz continuous mapping of C' into R™ with VI(C, A) #
¢. For a € (0,1/k), let V,, and U, be a self-mappings on C' defined by

Vor = Po(I —aA)z, Uz = Po(I —aAVy)z, Yz e C.

Let 1 € C. Let {z,} and {y,} be sequences in C such that y, = V,x, and
Tpy1 = Ugx, for all n € N. This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {z,} and {y,} converge to the same point in VI(C, A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an a-inverse strongly monotone mapping of C' into H. Let {a,} be a sequence in
[c1,d1] as 0 < ¢1 < dy < 2a. For eachn € N, let V,,, be a mapping of C into itself
defined by V,, x = Po(I — a,A)x for all x € C. Let S be a nonexpansive mapping
of C into itself. Assume that F(S)NVI(C,A) # o. Let {a,} be a sequence in
[ca,da] as 0 < ¢y < dy < 1. Let 21 € C and let {x,,} and {y,} be sequences in C
defined by

Yn = Va,Tn,  Tny1 = SV, T + (1 — ay)x,, VYn e N.
Then {x,} and {y,} converge weakly to a point uw € F(S)NVI(C,A).
In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C' be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {a,} be a
sequence in [c1,d1] as 0 < ¢; < dy < 1/k. For each n € N, let V,, and U,, be
mappings of C' into itself defined by

Va, v = Pc(I —anA)x, U, v =Pc(I—a,AV,, )x, YzxeC.

Let S be a nonexpansive mapping of C into itself. Assume that F(S)NVI(C,A) # ¢.
Let {a,} be a sequence in [co,ds] as 0 < co < dy < 1. Let 1 € C and let {z,},
{yn} and {z,} be sequences in C defined by

Yn = Va, Zny 2n =Uq, Tp, Tpi1 = anSU,, xq + (1 —ap)z,, Yn € N.
Then {zyn}, {yn} and {z,} converge weakly to a point uw € F(S)NVI(C, A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. PRELIMINARIES

Let H be a Hilbert space. When {z,} is a sequence in H, we denote the strong
convergence of {z,} to x € H by z, — x and the weak convergence by x,, — .
From [21] we have that for z,y € H and A € R

(2.1) 1Az 4 (1= Nyl = Az ]|* + (1= Nyl = A1 = N)]lz —yl*
We also know that for z,y,u,v € H
(2.2) 2(z —y,u—v) = llz —ol* + ly = ull® =l —ull® = [ly — vl
A Hilbert space satisfies Opial’s condition [18], that is,

liminf ||z, — u|| < liminf ||z, — v||

if &, — w and u # v; see [18]. Let C be a non-empty subset of H. A mapping
T : C — H is called firmly nonexpansive if |[Tx — Ty||? < (Tax — Ty,z — y) for
all z,y € C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C — H is nonexpansive, then F(T') is closed and convex; see [21]. We also
know that the metric projection Pg is firmly nonexpansive, i.e.,

|Pox — Poy|® < (Pox — Pey, o —y)

for all z,y € H. Furthermore, (x — Pox,y — Pcx) < 0 holds for all x € H and
y € C. This inequality is equivalent to

(2:3) lz = Pox||* + ly = Pewl* < ||z -yl

for all x € H and y € C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C' be a non-empty subset of a Hilbert space H. Then a mapping
T :C — H is called generalized hybrid if there exist o, 8 € R such that

alTe = Tyl* + (1 = a)|la = Tyl]* < BlITw — y|* + (1 = Bz -y

for all z,y € C; see also [1]. Such a mapping T is also called («, 3)-generalized

hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized

hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
3

a=3and = % Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any =,y € C
sle =Tz <l =yl = |Te-Ty| < [z -yl

It is obvious that if 7' is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F(T) C A(T).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s € [0, 00) such that

(2.5) |z =Tyl < slle =Tzl + [lz —y[, Vo,yeC.
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We note that a nonexpansive mapping and a mapping satisfying Condition (C)
satisfy (2.5) as s = 1 and s = 3, respectively. We also note that (2.5) is stronger
than (2.4). In fact, if (2.5) holds and w € F(T'), then we have that [|[u—Ty|| < |lu—yl]|
for all y € C. A mapping T is quasi-nonexpansive if T" satisfies F/(T') # ¢ and (2.4).
We finally note that a generalized hybrid mapping satisfies (2.4). Let C' be a non-
empty subset of H and let S be a mapping of C into H. I — S is called demiclosed
at 0 if a sequence {z,,} in C' converges weakly to u € C' and lim,, ||Sz,, — x,| = 0,
then u € F(S). The following lemma was proved by Takahashi, Wong and Yao [25].

Lemma 2.1 ([25].). Let C be a non-empty subset of a Hilbert space H and let S be
a generalized hybrid mapping of C into itself. Let {x,} be a sequence in C which
converges weakly to u € H and satisfies lim,, [|Sx, — x,|| = 0. Then u € A(S). In
addition, if C is closed and convez, then u € F(S).

The following lemma was essentially proved in [19].

Lemma 2.2. Let C be a closed and convex subset of a Hilbert space H and let S be
a mapping of C into itself which satisfies (2.5). Let {x,} be a sequence in C which
converges weakly to u € C' and satisfies lim,, ||Sz,, — x,|| = 0. Then u € F(S).

Proof. Assume u # Su. Since {z,,} converges weakly to u, from the Opial property
we have liminf, ||z, — u|| < liminf, ||z, — Sul|. We also have that there exists
s € [0,00) such that

|xn — Su|| < sllzy — Szp|l + [|2n —ul|, Vn € N.

By lim,, || Sz, — @, || = 0, this implies that liminf,, ||z, — Su|| < liminf, ||z, — u.
We have a contradiction. This completes the proof. (I

Let C be a non-empty subset of a Hilbert space H. For a mapping A of C into
H, we define the set vi(C, A) as follows:

vi(C,A)={veC:{z—v,A2) >0, V2 € C}.
From [20, Lemma 7.1.7] we have the following:

Lemma 2.3. Let C be a convex subset of a Hilbert space H. Let A be a mapping
of C into H. Then the following hold:

(1) If A is continuous, then vi(C,A) C VI(C, A).

(2) If A is monotone then (y — u, Ay) > (y — u, Au) > 0 for u € VI(C, A) and
y € C. That is, if A is monotone then VI(C,A) C vi(C, A).

(3) If A is monotone and continuous, then VI(C,A) = vi(C, A).

3. LEMMAS

In this section, we present some lemmas which are connected with properties of
projection methods. The following lemma is well-known. For the sake of complete-
ness, we give the proof.

Lemma 3.1. Let C' be a non-empty, closed and convex subset of a Hilbert space
H. Let A be a mapping of C into H. Let a € (0,00) and let V, be a mapping of C
into itself defined by Voo = Po(I — aA)x for all x € C. Then F(V,) = VI(C, A).
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Proof. Let u € F(V,). Then u = Po(I — aA)u. From the property of Po we have
that for any y € C

0 <{(y—u,u—(u—adu)) = (y — u,adu) = a{y — u, Au) .

From a > 0 we have that (y — u, Au) > 0 for all y € C. This implies u € VI(C, A).
The reverse is similar. O

Lemma 3.2. Let ¢,k > 0 and {a,} C [c,00). Let C' be a non-empty, closed
and convex subset of a Hilbert space H and let A be a monotone and k-Lipschitz
continuous mapping of C' into H with VI(C,A) # ¢. Let {V,, } be a sequence of
mappings on C defined by V,, v = Po(I — ap,A)x for allz € C andn € N. Let
{zn} be a bounded sequence in C. Iflimy, ||Vo, 2n — || = 0, then the weak limit of
any weakly convergent subsequence of {x,,} is in VI(C, A).

Proof. Let y, = V,, x, for all n € N. Since {x,} is bounded, {x,} has a weakly
convergent subsequence. Let {x,;} be a subsequence of {z,} which converges
weakly to some v € C. By lim, ||V, 2, — 2,]| = 0, we also have that {y,,}
converges weakly to u. We first show (z —u, Az) > 0 for all z € C. Take z € C.
Since A is monotone, we have that <z — Yn,, Az — Aynj> >0 for all j € N, that is,

(3.1) <Z B y"j’AZ> 2 <Z o ynj,Ayn_,»> :
Using yn; = Po(@n; — an;Azy,;) and z € C, we also have from the property of Po
that
0= <Z ~ Yny» (xnj - anijnj) - ynj> :
From a,; > 0 we have that

1

(3.2) 0> T<z—ynj,xnj —ynj> — <z—ynj,Aa:nj>.

It follows from (3.1) and (3.2) that

1
<Z_y’njaAZ> Z T<Z_ynjamnj _y’ﬂ]> + <Z_y’n]‘7Ayn]' _A$n1>

4

Since 1/a,, < 1/c and A is k-Lipschitz continuous, we have that

1
33) (=g A2) = =l = H@n, =y | = Fllz =y, | llyn; — 2, |-

Since {yn, } converges weakly to u, we have that (z —u, Az) > 0. Since z € C is
arbitrary, we have that (z —u, Az) > 0 for all z € C. By the continuity of A and
Lemma 2.3 (1), we have u € VI(C, A). O

Remark 1. The inequality (3.3) is essential in the proof of Lemma 3.2. In the case
lim j a,,; = 0, we cannot prove the result. This problem appears when we deal with
Halpern’s type iterations with extragradient methods. We really know that there
are some articles which have mathematical errors for this problem.

The following lemma plays crucial roll in the proof of Theorem 4.1.

Lemma 3.3. Let C be a non-empty, closed and convex subset of a Hilbert space H .
Let A be an a-inverse strongly monotone mapping of C into H with VI(C, A) # .
Let {a,} be a sequence in [c,d] as 0 < ¢ < d < 2a. Let {V,, } be a sequence of
mappings on C defined by V,, x = Po(I — a,A)x for x € C. If {x,} is a sequence
in C' such that lim,, ||z, — u|| = lim, ||Va, n — u|| for some u € VI(C,A), then
lim, ||Va, 2n — x| = 0.

83
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Proof. Set y, = V,, xn = Po(I — apA)x, for all n € N. By Lemma 3.1, we have
that F'(V,,) = VI(C,A) for n € N. By our assumptions, {z,} and {y,} are
bounded. Since u € VI(C, A) and A is a-inverse strongly monotone, we have

lyn = ull* = |Pe(I = and)zn — Po(I — anA)ul®
< | = anA)z, — (I — apA)ul?
< lzn —ull® = an (20 — ag) || Az, — Aul?
for n € N. From a,, € [¢,d] C (0,2«), it follows that for n € N
c(2a — d)|| Az, — Aul® < an (20 — @) || Az — Aull? < [z — ull® = |lyn —ul*.

By ¢(2a—d) > 0 and lim,, ||2,, —u|| = lim,, ||y, —ul|, we have lim,, || Az,, — Au| = 0.
Since P¢ is firmly nonexpansive and I — a, A is nonexpansive, we have

2|lyn —ull® = 2||Pe(I — and)zn — Po(I — ay A)ul®
< 2(Pco(I — anA)x, — Po(I — anA)u, (I — apnA)x, — (I —a,A)u)
=2(yp —u, (I —apnA)z, — (I — anA)u)
= llyn — ul® + (I = anA)zy, — (I — anA)ul®
~(yn —w) = (I = and)zn — (I — anA)u)|®
< lyn — ull® + l|lzn — ul?
~l(yn = 20) + an(Az, — Au)||?
= llyn — ull® + [l — ulf?
— |y = Znll® = 2an (Y — Tp, Az, — Au) — a2 || Az, — Aul)?
for all n € N. Thus it follows that for n € N
Iy = zall?® < 2w —ull? =y — ull?
— 20y, (Yp — T, Az, — Au) — d2|| Az, — Aul®.
By lim,, ||, — u|| = lim,, ||y, — u|| and lim,, [|Az,, — Au|| = 0, we have
limy, ||y — zp|| = limy, | Ve, 20 — zn]| = 0.
This completes the proof. (I

Let {a,} be a sequence in (0, 00). Let C' be a non-empty, closed and convex subset
of a Hilbert space H. Let A be a mapping of C' into H such that VI(C, A) # o.
Let {V,, } be a sequence of mappings on C defined by V,,x = Po(I — a, A)z for all
x € C and let {W,} be a sequence of mappings on C' such that F(W,,) C A(W,,)
for all n € N. Then {W,} said to satisfy Condition (F) with {V, } if there exist
My, M5 > 0 such that for any n € N

(Er) |[[Whz —z| < Mh||V,,z — x|, VzeC;
(Eo) |l —V,,z|* < My(|z —ul|® = |Wha —ul|?), VxeC, ueVIC,A).
We note that F(W,) C A(W,) and F(W,) # ¢ if and only if W, is quasi-

nonexpansive.

Lemma 3.4. Let {a,} be a sequence in (0,00). Let C' be a non-empty, closed
and convex subset of a Hilbert space H. Let A be a mapping of C into H with
VI(C,A) # o. Let {V,, } be a sequence of mappings on C defined by V, x =
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Po(I — a,A)x for x € C. If {W,} is a sequence of mappings on C which satisfies
Condition (E) with {V,,}, then for each n € N

F(Va,) = F(Wy) =VI(C, A).

Proof. Fix n € N arbitrarily. We already know that F(V,, ) = VI(C,A). Let
ve F(V, )=VIC, A). From (E;) we have

[Whv — ol < Mi||V,,v —v|| =0.

Then ¢ # F(V,,) C F(W,). Let w € VI(C, A) and w € F(W,). From (E;) we
have

lw = Ve, w]* < Ma(|lw — ul* = [Wow — ul]?) = Ma(||w — ul]* = [Jw — ul|*) = 0.

Then F(W,,) C F(V,,). Thus F(V,,) = F(W,) =VI(C,A) for all n € N. O

The following lemma is a result to simplify the proof of Lemma 3.6.

Lemma 3.5. Let C' be a non-empty, closed and convex subset of a Hilbert space
H. Letk > 0 and let A be a monotone and k-Lipschitz continuous mapping of C
into H such that VI(C,A) # ¢. Let a € (0,1/k]. Let x € C, y = Po(x — aAx),
z = Po(x — ady) and v € VI(C, A). Then the following hold:

(1) (y — z,aAy) > (u— z,aAy);
(2) |z —2lP+2 (2 — y,ady) > (1= k)|l —y||* + (ak|z =yl = ly — 2[)* > 0;
3) llz—ull® <z —ull* = (1 = a®k)[lz — y|* < ||z — ul*.

Proof. We prove (1). Let u € VI(C, A). Since A is monotone, we have
(y —u, Ay) > (y — u, Au) > 0.
From a > 0 we have that
(y — z,aAy) — (u — z,aAy) = a{y —u, Ay) > a(y —u, Au) >0

and hence (y — z,aAy) > (u — z,aAy). We prove (2). By y = Po(z — aAx) and
z € C, we have

z—vy,(r—aAx) —y) <O0.

(z =, ( y

Then the following inequality holds:

(z—y,x—y)—(z —y,ady) = (z —y,(x —adz) —y) + a (2 — y, Az — Ay)
<a(z—y, Az — Ay) .
Since A is k-Lipschitz continuous and ak < 1, it follows that
lz = 2|1* +2 (2 — y, aAy)

= (llz =yl + 2 = yl* = 2(z =y, — y) ) +2(2 — y, ady)
> [l —ylI® + |z = ylI* = 2a (z — y, Az — Ay)
> |lz = ylI” + lly — 2l* = 2ak]|z =yl |z -y
= (1 - a’k?) ||z — y|* + (ak]|z — y|| - |ly = 2[)* > 0.
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We prove (3). Using z = Po(z — aAy), (1), (2) and properties of Pc, we have
Iz = ul® < [[(z — aAy) — ul* — [[(z — ady) — 2|
= (o —ul® + ady|® - 2 (z — u,aAy))
= (lz = 2|1* + laAy|]* - 2 (z - 2, aAy))

= |l — ul® — [lz — 2[|* = 2 (2 — u, ady)

< o= ul? = llz — 2)* = 2 (2 — y,aAy)

<z —ull® = (1 = a®k*) |z — y[|* — (akllz -yl — ||z = yl)*

< o=l = (1 = a®k*) [z —y|* <z —ul*.
This completes the proof. (I
Lemma 3.6. Let C' be a non-empty, closed and convex subset of a Hilbert space
H. Let k > 0 and let A be a monotone and k-Lipschitz continuous mapping of C
into H such that VI(C,A) # ¢. Let 0 < d < 1/k and {a,} be a sequence in (0,d].

Let {V,,} be a sequence of mappings on C defined by V, x = Po(I — a,A)x for
x € C and let {U,, } be a sequence of mappings on C defined by

Uy, = Pc(I — a,AV,,))x

for x € C. Then each U,, is a quasi-nonexpansive mapping such that F(V,, ) =
F(U,,)=VI(C,A) and {U,, } satisfies Condition (E) with {V,, }.

n

Proof. We show that {U,, } satisfies Condition (E;). Fix n € N arbitrarily. Since
0 < a,k < dk < 1, Pc is nonexpansive and A is k-Lipschitz continuous, we have
that for all z € C

|U,, x =V, z|| = || Po(x — anAV,, x) — Po(x — a, Ax)||
< |z —z) — an(AV,, x — Az)|| < ank||V,,z — x|
and hence
|Ua,z — 2| < |Ua,2 = Vo, 2l + |Va,z — 2|
< ank||Va,z — 2l + Vo, 2 — 2|
< (14 ank)||Vo,x — x| <2||Va,xz — x|

This implies that {U,, } satisfies Condition (E;) as M; = 2. We show that {U,,, }
satisfies Condition (Fs). Fix n € N arbitrarily. Let x € C, u € VI(C, A) and set
y = Vg, 2. By Uy, = Po(x — ap,Ay) and Lemma 3.5 (3), we have

a2 = ul® < flo —ull* = (1= apk?) |z — y||* < [lz — ul*.
Thus we have that for z € C and u € VI(C, A)
(@) |Ua,z = ull < [lz = ul);
®) (1 =dk*)||z = Vo,al* < (1 = agh®)|lo = Vo, z|* < llo — ul® = Va2 — ul®

From (b), it follows that {U,, } satisfies Condition (E3) as My = 1/(1 — d*k?). We
have from Lemma 3.4 that F(V,, ) = F(U,,) = VI(C, A) for each n € N. By (a),
each U,, is a quasi-nonexpansive mapping. This completes the proof. (I
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4. MAIN RESULTS
We present our main results.

Theorem 4.1. Let C' be a closed and convexr subset of a Hilbert space H and let
a > 0. Let A be an a-inverse strongly monotone mapping of C into H. Let {ay}
be a sequence in [c,d] as 0 < ¢ < d < 2. For eachn € N, let V,, be a mapping of
C' into itself defined by V,,x = Po(I — a,A)x for all x € C. Let S be a mapping
of C into itself such that F(S) C A(S) and I — S is demiclosed at 0. Assume
F(S)NVI(C,A) # ¢. Let {a,} be a sequence in [a,b] as0 < a <b< 1. Letxz, € C
and let {x,} and {y,} be sequences in C defined by

Yn = Vo, Tny,  Tpt1 = oSV, @ + (1 — ap)z,, VYn e N.
Then {x,} and {y,} converge weakly to a point v e F(S)NVI(C,A).

Proof. Under our assumptions, it follows that each V,, is a nonexpansive mapping
such that F(V,, ) = VI(C, A) # ¢. Since F(S) C A(S) and F(S) # ¢, S is also
quasi-nonexpansive. Let w € F(S)NVI(C, A). We have that

|11 — wl| < an||SVa,n — w| + (1 = an)lzn — ||
< apllen —w| + (1 = an)lzn —w] = [lzn - w|

for alln € N. Then {|z, —w]} is non-increasing and converges to some s € [0, c0).
It follows that {x,,} are bounded. We also have that

anllTngr —w| + (1 = an) ([T — wl| = [Jzn — w]))
< an||SVa, zn — w|| < anl|Va, 70 — wl| < apllz, —w|.
Since ay, € [a,b] and ||xp 11 — w| — ||z, — w]| <0, we have that
[#n1 = wll + 5 (|41 — w] = [[2n = w]]) < [[Va,2n — w]] < [lz, —w]|

for all n € N. This implies lim,, ||V,, 2, — w| = lim, ||z, — w|| = s. We have from
Lemma 3.3 that lim,, ||Va, z, — 2] = 0. On the other hand, we have from (2.1)
that for any z,y € H and a € R

oz + (1 = @)y[* = afz]* + (1 = a)|lyl]* — a(l - @)z — y|*.
Setting a = v, © = SV, — w, y = x, — w, we have that for any n € N
an(l— an)”SVanxn - anQ

an||SVa, zn — w||2 + (1 = ay)|lzn — w”2 — T+t — w”2

IN

Ty — w”2 + (1 —an)|zn - wH2 = |Tny1 — w”2

lzn = wll* = zns —wl*.

Since {||,, — w||} is a convergent sequence and «, € [a,b] for all n € N, we have
that lim,, | SV, ©n — 2, || = 0. Moreover, since

1SV, Tn = Va, @all < 1SVa, 20 — 2n|l + |Va, T — al|-
for all n € N, we have that
lim,, ||SYn — Ynl| = im,, || SVa, xn — Vi, xn|] = 0.

Since {z,} is bounded, there exists a weakly convergent subsequence. Let
{zn,} be a subsequence of {x,} which converges weakly to some u € C. From
lim,, [|Va, Zn — 2] = 0, {yn, } also converges weakly to u. Since A is monotone and
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1/a-Lipschitz continuous, from lim ; ||Van,j Tp; — ZTn, || = 0 and Lemma 3.2, we have
u € VI(C,A). Since I — S is demi—closed at 0 and lim, ||SV,, z, — V,, x,|| = 0, we
also have u € F(S). Thus u € VI(C, A) N F(S).

Finally, let us show that {x,} converges weakly to u € VI(C, A) N F(S). Let
{2y, } and {z,, } be subsequences of {x,, } which converge weakly tou,v € VI(C, A)N
F(S), respectively. To have the result, it is sufficient to show u = v. Assume u # v.
By the Opial property, we have that

lim; |2, —ul <lim; ||z, —ol = lim; ||z, — ||
< tin [, — ull = lim [l7, — ull

This is a contradiction. Then we have u = v. Therefore we have the desired
result. O

Theorem 4.2. Let C' be a closed and convexr subset of a Hilbert space H and let
k> 0. Let A be a monotone and k-Lipschitz continuous mapping of C' into H. Let
{an} be a sequence in [c,00) as ¢ € (0,00). For eachn € N, letV,, be a mapping of
C' into itself defined by V,, x = Po(I —a,A)x for allxz € C. Let {W,} be a sequence
of mappings on C with F(W,,) C A(W,,) such that {W,,} satisfies Condition (E)
with {V,, }. Let S be a mapping of C into itself such that F(S) C A(S) and I — S
is demiclosed at 0. Assume F(S)NVI(C,A) # ¢. Let {a,} be a sequence in [a,b]
as0<a<b<l. Letxy € C andlet {x,}, {yn}, {zn} be sequences defined by

Yn = Vi, Tny 2n = Wakyn, Tpi1 = anSWha, + (1 — o)z, Yn € N.
Then {zy}, {yn}t and {z,} converge weakly to a point uw € F(S)NVI(C, A).

Proof. By Lemma 3.4, we know that W, is quasi-nonexpansive and F(W,) =
VI(C,A) for all n € N. Since F(S) C A(S) and F(S)NVI(C,A) # ¢, S is also
quasi-nonexpansive. Let w € F(S)NVI(C,A). We have that

[Tnt1 — wl| < an|[SWhan —wll + (1 — an)|lzn — w]|

< apllzn —w|| + (1 = an)|lzn —w| = |l —w|

for alln € N. Then {||z,, —w||} is non-increasing and converges to some s € [0, 00).
Thus we have that {z,, } are bounded. As in the proof of Theorem 4.1, we also have
that

|| Tpg1 — w|| + (1 — an)(|2nt1 — wl| = |lzn — )
< an|SWha, — w| < an|[Whe, — w|| < apl|z, — w]|.

Since ay, € [a,b] and ||xn 11 — w| — ||on — w]| <0, we have
znt1 = wll + Z(lznrs = wl = llzn = wl)) < [Wazy — wl| < [lzn —wl|

for all n € N. This implies lim,, ||W,z, —w|| = s. By (E3) of Condition (E), there
is My > 0 such that

1Va, Tn — mnH2 < Ma(||zn — w||2 — Whzn — wHQ)

for all n € N. Since lim, ||z, — w| = lim, |[Wyz, — w|| = s, we have that
lim,, ||Va, n — 2, || = 0. By (E;) of Condition (E), we also have that lim,, ||W,z,, —
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Zn|| = 0. On the other hand, using (2.1), we have that for any n € N
an(1 = an)|SWha, — 2,2
= ap|[SWyz, — w|* + (1 = an) [z, — w]* = [Jzp401 — w]]?
< agllen —wl® + (1 = an) |z = w]? = oy — wl
= [lzn — wll* = lznss — w]*.

Since {||z,, — w||} converges and o, € [a,b] for all n € N, we have lim,, || SW,z,, —
Zn|| = 0. Moreover, since

ISWha, — Whay|| < |SWhan — xn|| + [Whn — 24|
for all n € N, we have that
lim,, ||Sz, — 2| = lim,, [|[SWha, — Wha,|| = 0.

Since {x,} is bounded, there exists a weakly convergent subsequence. Let {x,,} be
a subsequence of {x,} which converges weakly to some v € C. By lim,, ||Va, ©, —
oyl = 0 and lim, [[Wy,2, — 2,]| = 0, we also have that {y,;} and {z,,} converge
weakly to u. Since A is monotone and k-Lipschitz continuous, from lim ; HVanj Ty —
Tp,|| = 0 and Lemma 3.2, we have that v € VI(C,A). Since I — S is demi-
closed at 0 and lim ; |SW,,, 2, — Wy, 2y, || = 0, we also have u € F(S). Thus u €
VI(C, A)NF(S). To show that {z,} converges weakly to a point of VI(C, A)NF(S),
let {z,,} and {z,,} be subsequences of {z,} which converge weakly to u,v €
VI(C,A) N F(S), respectively. To have the result, it is sufficient to show u = v.
Assume u # v. As in the proof of Theorem 4.1, we have that

lim; |2, —ul <lim; ||z, —ol = lim; ||z, — ||
< limj ||z, — ul| = lim; ||z, — ul].

This is a contradiction. Then we have the desired result. O

5. APPLICATIONS

Using Theorems 4.1 and 4.2, we present some new results. The following are
extensions of Theorem 1.1.

Theorem 5.1. Let C' be a closed and convex subset of a Hilbert space H. Let A
be an a-inverse strongly monotone mapping of C into H. Let {a,} be a sequence
in[c,d] as 0 < ¢ < d < 2a. For each n € N, let V,,, be a mapping of C into
itself defined by V,, v = Po(I — a,A)x for allx € C. Let S be a generalized hybrid
mapping of C' into itself. Assume that F(S)NVI(C,A) # ¢. Let {c,} be a sequence
in [a,b] as 0 < a <b< 1. Letz; € C and let {z,,} and {y,} be sequences in C
defined by

Yn = Vo, Tn,  Tpi1 = anSVy, xn + (1 — ap)x,, Vn € N.
Then {x,} and {y,} converge weakly to a point uw € F(S)NVI(C,A).

Proof. Since S : C — C' is generalized hybrid, S satisfies F(S) C A(S). By
Lemma 2.1 we have that I — S is demiclosed at 0. Then, by Theorem 4.1, we have
the desired result. (]
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Theorem 5.2. Let C' be a closed and convex subset of a Hilbert space H. Let A
be an a-inverse strongly monotone mapping of C into H. Let {a,} be a sequence
infe,d] as 0 < ¢ <d < 2«a. For eachn € N, let V,, be a mapping of C into itself
defined by V, v = Po(I — an,A)x for allx € C. Let S: C — C' be a mapping such
that, for some s € [0,00),

(5.1) le =Tyl < slle =Tl + lz —yll, Va,yeC.

Assume that F(S)NVI(C, A) # ¢. Let {a,} be a sequence in [a,b] as0 < a < b < 1.
Let 1 € C and let {x,,} and {y,} be sequences in C defined by

Yn = Vo, Tn,  Tpt1 = anSVy, @ + (1 — a)x,, Vn e N.
Then {z,} and {y,} converge weakly to a point u € F(S)NVI(C,A).

Proof. Since S is a mapping satisfying (5.1), S satisfies F(S) C A(S). By Lemma
2.2 we have that I — S is demiclosed at 0. Then, by Theorem 4.1, we have the
desired result. O

Using Theorem 5.2, we have the following result.

Theorem 5.3. Let C be a closed and convex subset of a Hilbert space H. Let A
be an a-inverse strongly monotone mapping of C into H. Let {a,} be a sequence
inle,d] as 0 < ¢ <d < 2«a. For eachn € N, let V, be a mapping of C into itself
defined by V,, v = Po(I — apA)x forx € C. Let S : C — C be a mapping which
satisfies Condition (C). Assume that F(S)NVI(C, A) # ¢. Let {a,} be a sequence
in [a,b] as 0 < a <b< 1. Letxz € C and let {z,} and {y,} be sequences in C
defined by

Yn = Vo, Tny,  Tpi1 = anSVy, xp + (1 — ap)x,, Vn € N.
Then {xn} and {y,} converge weakly to a point uw € F(S)NVI(C,A).

Proof. If a mapping S satisfies Condition (C'), then we know that S satisfies (5.1).
Thus we obtain the desired result from Theorem 5.2. [l

As in the proofs of Theorems 5.1 and 5.2 we have the following extensions of
Theorem 1.2 from Lemma 3.6 and Theorem 4.2.

Theorem 5.4. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {a,} be a
sequence in [c,d] as0 < ¢ < d < 1/k. For eachn € N, letV,, and U, be mappings
of C into itself defined by

Va, v = Pc(I —anA)x, U, x=Pc(I—a,AV,, )x, YxeC,

respectively. Let S : C — C be a generalized hybrid mapping. Assume that F(S) N
VI(C,A) # ¢. Let {a,} be a sequence in [a,b] as 0 < a <b < 1. Let x; € C and
let {xn}, {yn}, {2n} be sequences defined by

Yn = Va, Zny 2n =Uq, Tn, Tpi1 = anSU,, xn + (1 — ap)z,, Yn € N.
Then {xn}, {yn} and {z,} converge weakly to a point u € F(S)NVI(C,A).

Theorem 5.5. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C' into H. Let {a,} be a
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sequence in [c,d] as0 < ¢ < d < 1/k. For eachn € N, let V,, and U,,, be mappings
of C into itself defined by

Va, 2 = Pc(I —a,A)x, U, x=Pc(I—a,AV,, )xr, YxeC,
respectively. Let S : C'— C be a mapping such that, for some s € [0, 00),
le =Tyl < sllz — Tzl + [z —yll, Vz,yeC.

Assume that F(S)NVI(C, A) # ¢. Let {c,} be a sequence in [a,b] as0 < a <b < 1.
Let 1 € C and let {x,}, {yn}, {zn} be sequences defined by

Yn = Va,Tny, 2n =Uq, Tn, Tpi1 = anSU,, xyp + (1 —ap)z,, VYn e N.

Then {zyn}, {yn} and {z,} converge weakly to a point uw € F(S)NVI(C, A).
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Higashinada-ku , Kobe 658-8501, JAPAN

(b’) yue@konan-u.ac.jp

(c) Queueing Networks, Performance Analysis and Modeling, Communications Networks, Operations Research, Markov
Processes, Probabilistic Methods, Systems Engineering

(a) Hiroaki Sandoh

(b) Graduate School of Economics, Osaka University, 1-7, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
(b’)sandoh@econ.osaka-u.ac.jp

(c) Operations Research and Management Science, Stochastic modeling

(a) Yoshio Tabata

(b) Takigi Ogaki 21, Kyotanabe, Kyoto 610-0341, Japan
(b’) tabata@econ.osaka-u.ac.jp

(c) Mathematical Finance, Sequential Decision Theory

(a) Katsunori Ano

(b) Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku Minuma-ku
Saitama-city, 337-8570, Japan

(b)’ k-ano@shibaura-it.ac.jp

(c) Optimal Stopping, Mathematical Finance, Applied Probability

(a) Koyu Uematsu

(b)Dept.of Economics and Finance,Faculty of Business Administration,Osaka International University
3-50-1 Sugi Hirakata Osaka,573-0192,Japan

(b’) uematsu@oiu.jp

(c)Stochastic Process and its Applications,Reliability Analysis,and Game Theory



(a) Yoshiki Kinoshita

(b) Dept. of Information Sciences , Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka-shi, Kanagawa
259-1293, Japan

(b’) yoshiki@kanagawa-u.ac.jp

(c) Software Science, Programming language semantics

(a) Shunsuke Sato

(b)2-6-20 Hanayashiki-Soen, Takarazuka,Hyogo 665-0808, Japan
(b”)ss_22362@nifty.com

(c) Mathematical biology in general, Neural networks, application of stochastic process

(a)Tadashi Takahashi

(b)Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto,
Higashinada, Kobe, Hyogo 658-8501, Japan

(b’) takahasi@konan-u.ac.jp

(c)Mathematics Education

(a) Benoit Collins

(b) Department of Mathematics, Faculty of Science, Kyoto University

(b") collins@math.kyoto-u.ac.jp

(c) Random Matrix Theory, Free Probability, Quantum Information Theory
Quantum Groups (operator algebra side), Operator Algebra

sfe sk sk sk sk sfe st sk sk sfe st sk sk sk sfeske sk sfe sfeske sk sk stk sk sk sk sieoske sk sk stk sk sk stk sk sk stk sk sk skl sk sk stk sk sk sk siosk sk stk sk sk skokosk sk skoloskoskoskokoskoskoskokoskokoskoiokoskoskokokokoskoskorokek

Managing Editor

Koyu Uematsu (Professor of Osaka International University)
International Society for Mathematical Sciences
1-5-12-202 Kaorigaoka-cho, Sakai-ku, Sakai-city, 590-0011,Japan
uematsu@jams.jp
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Submaission to the SCMdJ

In September 2012, the way of submission to Scientiae Mathematicae Japonicae
(SCMJ) was changed. Submissions should be sent electronically (in PDF file) to the

editorial office of International Society for Mathematical Sciences (ISMS).

(1) Preparation of files and Submission
a. Authors who would like to submit their papers to the SCMdJ should make
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty)
Submissions should be in PDF file compiled from the source files. Send the
PDF file to slbmt@jams.jp .
b. Prepare a Submission Form and send it to the ISMS. The required items to
be contained in the form are:
1. Editor’s name whom the author chooses from the Editorial Board

(http://www.jams.or.jp/hp/submission f.html )and would like to take in

charge of the paper for refereeing.
2. Title of the paper.
3. Authors’ names.
4. Corresponding author’s name, e-mail address and postal address (affiliation).

5. Membership number in case the author is an ISMS member.

Japanese authors should write 3 and 4 both in English and in Japanese.

At http!//www.jams.or.jp/hp/submission f.html, the author can find the

Submission Form. Fulfill the Form and sent it to the editorial office by pushing
the button “transmission”. Or, without using the Form, the author may send

an e-mail containing the items 1-5 to slbmt@jams.jp

(2) Registration of Papers
When the editorial office receives both a PDF file of a submitted paper and a
Submission Form, we register the paper. We inform the author of the
registration number and the received date. At the same time, we send the PDF
file to the editor whom the author chooses in the Submission Form and request
him/her to begin the process of refereeing. (Authors need not send their papers to
the editor they choose.)
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(3) Reviewing Process

a. The editor who receives, from the editorial office, the PDF file and the request
of starting the reviewing process, he/she will find an appropriate referee for
the paper.

b. The referee sends a report to the editor. When revision of the paper is
necessary, the editor informs the author of the referee’s opinion.

c. Based on the referee report, the editor sends his/her decision (acceptance of
rejection) to the editorial office.

(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the
editor’s decision, and informs it to the author.
b. When the paper is accepted, we ask the author to send us a source file and
a PDF file of the final manuscript.
c¢. The publication charges for the ISMS members are free if the membership dues
have been paid without delay. If the authors of the accepted papers are not the
ISMS members, they should become ISMS members and pay ¥6,000 (US$75,
Euro55) as the membership dues for a year, or should just pay the same

amount without becoming the members.

Items required in Submission Form

Editor’s name who the authors wish will take in charge of the paper
Title of the paper

Authors’ names

3. in Japanese for Japanese authors

- W=

Corresponding author’s name and postal address (affiliation)
4. 4.1n Japanese for Japanese authors

ISMS membership number

> o

E-mail address
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Call for ISMS Members

Call for Academic and Institutional Members

Discounted subscription price: When organizations become the Academic and Institutional
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the
yearly price of US$225. At this price, they can add the subscription of the online version upon
their request.

Invitation of two associate members: We would like to invite two persons from the
organizations to the associate members with no membership fees. The two persons will enjoy
almost the same privileges as the individual members. Although the associate members
cannot have their own ID Name and Password to read the online version of SCMJ, they can
read the online version of SCMJ at their organization.

To apply for the Academic and Institutional Member of the ISMS, please use the following
application form.

Application for Academic and Institutional Member of ISMS

Subscription of SCMJ
Check one of the two.

[OPrint [OPrint + Online
(US$225) (US$225)

University (Institution)

Department

Postal Address
where SCMdJ should be

sent

E-mail address

Name:

Person in charge Signature:

Payment
[JBank transfer [JCredit Card (Visa, Master)
Check one of the two.

Name of Associate Membership
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Call for Individual Members

We call for individual members. The privileges to them and the membership dues are shown
in “Join ISMS !” on the inside of the back cover.

Items required in Membership Application Form

Name

Birth date

Academic background

Affiliation

4’s address

Doctorate

Contact address

E-mail address

Special fields

0. Membership category (See Table 1 in “Join ISMS !”)

R e

Individual Membership Application Form

1. Name

2. Birth date

3.
Academic background

4. Affiliation

5. 4’s address

6. Doctorate

7. Contact address

8. E-mail address

9. Special fields

10.
Membership
category
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Contributions (Gift to the ISMS)

We deeply appreciate your generous contributions to support the activities of our
society.
The donation are used (1) to make medals for the new prizes (Kitagawa Prize,
Kunugi Prize, and ISMS Prize), (2) to support the IVMS at Osaka University
Nakanoshima Center, and (3) for a special fund designated by the contributors.

Your remittance to the following accounts of ours will be very much appreciated.

(1) Through a post office, remit to our giro account (in Yen only ):

No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS )
or send International Postal Money Order (in US Dollar or in Yen) to our
address:

International Society for Mathematical Sciences

2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan

(2)  A/C 94103518, ISMS
CITIBANK, Japan Ltd., Shinsaibashi Branch
Midosuji Diamond Building
2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan

B o o e e o o b o o o o o o o o R o o b o o o o S b ek e o e S

Payment Instructions:
Payment can be made through a post office or a bank, or by credit card. Members may
choose the most convenient way of remittance. Please note that we do not accept payment by
bank drafts (checks). For more information, please refer to an invoice.

Methods of Overseas Payment:

Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4)
UNESCO Coupons.

Authors or members may choose the most convenient way of remittance as are shown below.
Please note that we do not accept payment by bank drafts (checks).
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send
International Postal Money Order to our postal address (2) Remittance through a
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO
Coupons.

Methods of Domestic Payment:

Make remittance to:
(1) Post Office Transfer Account - 00930-3-73982 or
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING
CORPORATION, Sakai, Osaka, Japan.
All of the correspondences concerning subscriptions, back numbers, individual and
institutional memberships, should be addressed to the Publications Department,
International Society for Mathematical Sciences.
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Join ISMS !

ISMS Publications: We published Mathematica Japonica (M.J.) in print,
which was first published in 1948 and has gained an international reputation in
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online
and in print. In January 2001, the two publications were unified and changed to
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and
published both online and in print. Ahead of this, the online version of SCMdJ
was first published in September 2000. The whole number of SCMdJ exceeds 270,
which 1s the largest amount in the publications of mathematical sciences in
Japan. The features of SCMJ are:

1) About 80 eminent professors and researchers of not only Japan but also 20
foreign countries join the Editorial Board. The accepted papers are
published both online and in print. SCMJ is reviewed by Mathematical
Review and Zentralblatt from cover to cover.

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ
are introduced to the relevant research groups for the positive exchanges
between researchers.

3) ISMS Annual Meeting: Many researchers of ISMS members and
non-members gather and take time to make presentations and discussions
in their research groups every year.

The privileges to the individual ISMS Members:
(1) No publication charges
(2) Free access (including printing out) to the online version of SCMJ
(3) Free copy of each printed issue

The privileges to the Institutional Members:
Two associate members can be registered, free of charge, from an institution.

Table 1: Membership Dues for 2015

Categories Domestic Overseas Develoqlng
countries

L-year Regular ¥ 8,000 USS$80 , Euro75 USS$50, Eurod?
member
l-year Students

¥4,000 US$50 , Euro47 US$30 , Euro28
member
Life member* Calculatid US$750 , Euro710 US$440, Euro416

as below

Honorary member Free Free Free

(Regarding submitted papers,we apply above presented new fee after April 15 in
2015 on registoration date.) * Regular member between 63 - 73 years old can apply
the category.

(73—age ) x ¥3,000
Regular member over 73 years old can maintain the qualification and the privileges
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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