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Abstract

The fuzzification of (weak, strong, reflexive) hyper BCK-implicative ideals in hyper
BCK-algebras is considered. It is shown that every fuzzy (weak, strong, reflexive) hyper
BCK-implicative ideal is a fuzzy (weak, strong, reflexive) hyper BCK-ideal. We have
discussed the properties of (fuzzy) weak hyper BCK-implicative ideals, (fuzzy) hyper
BCK-implicative ideals, (fuzzy) strong hyper BCK-implicative ideals and (fuzzy) reflex-
ive hyper BCK-implicative ideals and also their relations are given. Characterization
of fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals is given. The hyper
homomorphic pre-image of a fuzzy (weak, strong, reflexive) hyper BCK-implicative
ideal is discussed. Lastly the properties of product of fuzzy (weak, strong, reflexive)

hyper BCK-implicative ideals are discussed.

Keywords: Hyper BCK-algebra; (fuzzy) hyper BCK-implicative ideal; (fuzzy) weak hyper
BCK-implicative ideal; (fuzzy) strong hyper BCK-implicative ideal; (fuzzy) reflexive hyper
BCK-implicative ideal.
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1 Introduction

In 1966, Tmai and Iseki [7] introduced the notion of BCK-algebra. In the same year, Iseki
introduced another notion called BClI-algebra. Liu et al. [13] discussed the concept of BCI-
implicative ideals in BCI-algebras. Dudek [2] introduced the class of medial BCI-algebras.
In 1983, Komori [11] introduced the notion of BCC-algebras as a new class of algebras. Then
Dudek [3, 5] studied BCC-algebras and discussed the number of subalgebras of finite BCC-
algebras. Dudek in [4] also gave the construction of BCC-algebras. After the introduction of
the concept of fuzzy sets by Zadeh [16], various researchers discussed the idea of fuzzification
of ideals in BCK/BCI/BCC-algebras. Khalid and Ahmad [10] considered the fuzzification of
H-ideals in BCI-algebras. Mustafa [15] introduced the concept of fuzzy implicative ideals in
BCK-algebras. Zhan and Jun [17] discussed generalized fuzzy ideals in BCI-algebras. Dudek
and Jun [6] applied the idea of fuzzy sets to ideals in BCC-algebras. Marty [14], in 1934
introduced the hyper structure theory at the 8th Congrass of Scandinavian Mathematicians.
Jun et al. [9] applied the hyper structures to BCK-algebras by introducing the concept of a
hyper BCK-algebras, which is a generalization of BCK-algebras. In this paper, we introduce
the concept of fuzzification of (weak, strong, reflexive) hyper BCK-implicative ideals in hyper

BCK-algebras and discuss some of their properties.

2 Preliminaries

Let H be a non-empty set endowed with a hyper operation “o”, that is, o is a function from
H x H to P(H) — (. For two subset A and B of H, denote by Ao B the set | J{aob | a € A,
b € B}. We shall use z oy instead of z o {y}, {z} oy or {z} o {y}.

Definition 2.1. [9] By a hyper BCK-algebra we mean a non-empty set H endowed with a
hyperoperation “o” and a constant 0 satisfying the following axioms:

(HK1) (xoz)o(yoz)<zoy

(HK2) (xoy)oz=(roz2)oy

(HK3) xzoH < {z}

(HK4) z<yandy < zimply x =y

for all z,y,z € H, where x < y is defined by 0 € x oy and for every A, BC H, A < B is
defined by V a € A, 3 b € B such that a < b. In such case we call “<” the hyper order in

H.
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Proposition 2.2. [9] In any hyper BCK-algebra H, the following hold:

(i) xo0={x} (vi) Ao {0} = {0} implies A = {0}
(i) xoy < x (vii) 0 <

(iii) 00 A = {0} (viii) 00 z = {0}

(iv) A< A (iz) 00 0 = {0}

(v) A C B implies A < B (r) y < z impliestoz K xoy

for all x,y,z € H and for all non-empty subsets A and B of H.

Let I be a non-empty subset of hyper BCK-algebra H and 0 € I. Then I is called a hyper
BCK-subalgebra of H if xoy C I, for all x,y € I , a weak hyper BCK-ideal of H if xoy C I
and y € I imply x € I, for all x,y € H, a hyper BCK-ideal of H if voy < I andy € [
mmply x € I, for all xz,y € H, a strong hyper BCK-ideal of H if voyNI # () and y € I imply
x €1, forallx,y € H. I is said to be reflexive if vox C I for allxz € H.

Lemma 2.3. [9] Let H be a hyper BCK-algebra. Then

e any reflexive hyper BCK-ideal of H is a strong hyper BCK-ideal of H.
e any strong hyper BCK-ideal of H is a hyper BCK-ideal of H.

e any hyper BCK-ideal of H is a weak hyper BCK-ideal of H.

Lemma 2.4. [8] Let I be a reflexive hyper BCK-ideal of a hyper BCK-algebra H. Then
xoyNnI#Q impliesxvoy << I, Vo,ye€ H.

Proposition 2.5. [8] Let A be a subset of a hyper BCK-algebra H. If I is a hyper BCK-ideal
of H such that A < I then A C I.

Definition 2.6. Let H be a hyper BCK-algebra. A non-empty subset / C H containing 0
is called
e a weak hyper BCK-implicative ideal of H if

((xoy)oy)ozC I and z € I imply zo(yo(yox)) C 1.
e a hyper BCK-implicative ideal of H if

((xoy)oy)oz< T and z € [ imply zo (yo(yox)) CI.
e a strong hyper BCK-implicative ideal of H if

((xoy)oy)oz)NI#Pand z € [ imply xo (yo (yox)) C I.

Theorem 2.7. Every (weak, strong, reflexive) hyper BCK-implicative ideal of a hyper BCK-
algebra H is a (weak, strong, reflexive) hyper BCK-ideal of H.

Proof. Suppose that I is a hyper BCK-implicative ideal of H. Then for any x,y,2 € H
((roy)oy)oz< T and z € [ imply zo (yo(youx)) CI.
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Putting y = 0 and z = y we get
((xo0)o0)oy < Iandy e limply zo(0o(0ox)) CI.
= (zoy)<Tandyel=zxel.
Hence [ is a hyper BCK-ideal of H. O

The converse of theorem 2.7 is not true in general. It can be observed by the following

example

Example 2.8. Let H = {0, 1,2,3} be a hyper BCK-algebra defined by the following table:

0] 1 2 3
{0y | {0} | {0} | {0}
{1} 1{0,1} [{0,1} | {0, 1}
2y {2} [{0.1}] {0}
By 35 | 88 {01}

WIN|—=|D| O

Take I = {0,1}. Then I is a hyper BCK-ideal of H but it is not a hyper BCK-implicative
ideal of H because
(203)03)ol={0} < Tand 1€ but20(30(302))={2} £ I
It can be observed from the above example that [ is a weak hyper BCK-ideal of H but it
not a weak hyper BCK-implicative ideal of H because
((203)03)ol1={0}CTand1leIbut20(30(302))={2} I
Also I is a strong hyper BCK-ideal of H but it is not a strong hyper BCK-implicative ideal
of H because
((203)03)ol={0}NI#0and 1€ but20(30(302))={2} £ I
Moreover it is clear that I is a reflexive hyper BCK-ideal of H but it is not a reflexive hyper
BCK-implicative ideal of H.

Theorem 2.9. Let H be a hyper BCK-algebra. Then

(i) Every hyper BCK-implicative ideal of H is a weak hyper BCK-implicative ideal of H.
(i1) Every strong hyper BCK-implicative ideal of H is a hyper BCK-implicative ideal of H.
(111) Every reflexive hyper BCK-implicative ideal of H is a strong hyper BCK-implicative ideal
of H.
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Proof. (i) Suppose that I is a hyper BCK-implicative ideal of H.

For any z,y,z € H, let (zroy)oy)oz C I and z € I. Then ((xoy)oy)oz C I implies
((xoy)oy)oz < I (by Proposition 2.2(v)), which along with z € I implies zo(yo(yoz)) C I.
Hence [ is a weak hyper BCK-implicative ideal of H.

(77) Suppose that I is a strong hyper BCK-implicative ideal of H. Let ((zoy)oy)oz < I
and z € I. Then for all a € ((xoy)oy) oz, I be I such that a < b. This implies 0 € aob
and thus (aob) NI # (. By Theorem 2.7, T is also a strong hyper BCK-ideal of H, therefore
(aob)N I # 0 along with b € I implies a € I, that is ((x oy) o y) o z C I. Therefore
(((xoy)oy)oz)NI+#0, which along with z € I implies z o (yo (yoxz)) C I. Hence [ is a
hyper BCK-implicative ideal of H.

(79i) Suppose that I is a reflexive hyper BCK-implicative ideal of H. For any x,y,z € H,
let ((zoy)oy)oz) NI # (0 and z € I. Being a reflexive hyper BCK-implicative ideal,
I is also a reflexive hyper BCK-ideal of H (by Theorem 2.7), therefore by Lemma 2.4,
((xoy)oy)oz) N I # 0 = ((xroy)oy)oz < I, which along with z € I implies
zo(yo(yow)) CI. Hence I is a strong hyper BCK-implicative ideal of H. O

The converse of Theorem 2.9 may not be true. It can be observed by the following

examples:

Example 2.10. Let H = {0, 1,2} be a hyper BCK-algebra defined by the following table:

{0y {1y | {2
{0y | {0y | {0}
{1} 10,1} {0, 1}
(23] {2} [{0,2}

N|—= ]| DO

Take I = {0,2}. Then I is a weak hyper BCK-implicative ideal of H but it is not a hyper
BCK-implicative ideal of H because
(1o0)o0)o2={0,1} < Tand2e€Ibutlo(0o(0ol))={1}ZI.

Example 2.11. Let H = {0, 1,2} be a hyper BCK-algebra defined by the following table:
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ol foy ] {1y | {2}
0] {0y {o}y | {0}
1 {1y] {0} | {0}
21 {2} [{1,2} | {0,1,2}

Take I = {0,1}. Then I is a hyper BCK-implicative ideal of H but it is not a strong
hyper BCK-implicative ideal of H because
((200)00) 0 1)NT={1,2} NI #Dand 1 €I but 20 (00 (002)) = {2} ¢ I.

Zadeh [16] defined fuzzy set p in H as a function
i H —[0,1]

Definition 2.12. [8] A fuzzy set p of a hyper BCK-algebra H is called
e a fuzzy weak hyper BCK-ideal of H if for all z,y € H,
11(0) > pu(x) > min {in foesoy p(a), u(y)}
e a fuzzy hyper BCK-ideal of H if x <« y implies pu(x) > p(y) and for all z,y € H,
:u(x) 2 min {infaEwoy ﬂ(a>a M(y)}
e a fuzzy strong hyper BCK-ideal of H if for all z,y € H,

infacaor p(a) 2 p(x) = min {supscaoy 1(b), n(y)}
e a fuzzy reflexive hyper BCK-ideal of H if for all z,y € H,

infacaor p(a) 2 p(y) and p(x) = min {supscaoy 1(b), pu(y)}
Theorem 2.13. [8] Let H be a hyper BCK-aglebra. Then
e Fvery fuzzy hyper BCK-ideal of H is a fuzzy weak hyper BCK-ideal of H.

o Fuery fuzzy strong hyper BCK-ideal of H is a fuzzy hyper BCK-ideal of H.
e Fvery fuzzy reflexive hyper BCK-ideal of H is a fuzzy strong hyper BCK-ideal of H.

3 Fuzzy hyper BCK-implicative ideals

Now we introduce the notions of fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals

in hyper BCK-algebras and discuss some of their properties.
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Definition 3.1. Let H be hyper BCK-algebra . A fuzzy set pu in H is called

e a fuzzy weak hyper BCK-implicative ideal of H if for all z,y,2z € H,

p(0) > p(x) and for all t € z o (y o (y o x)),
,u(t) > mn {infae((moy)oy)oz /,L(G), ,LL(Z)}

e a fuzzy hyper BCK-implicative ideal of H if for all z,y,z € H,

r < y implies pu(x) > p(y) and for all t € z o (yo (y o x)),
M(t) 2 min {infae((zoy)oy)oz /L(CL), /L(Z)}

e a fuzzy strong hyper BCK-implicative ideal of H if for all z,y,z € H,

infoczor p(a) > p(z) and for all t € z o (yo (y o x)),
p(t) = min {supse(@oy)oyo: H(b), 1(2)}

e a fuzzy reflexive hyper BCK-implicative ideal of H if for all z,y,z € H,

in faezon f1(a) > p(y) and for all t € zo (yo (yox)),
/j,(t) > min {Supbe((xoy)oy)o,z ,U'(b)7 :M(Z>}

Theorem 3.2. Let H be a hyper BCK-algebra. Then every fuzzy (weak, strong, reflexive)
hyper BCK-implicative ideal of H is a fuzzy (weak, strong, reflexive) hyper BCK-ideal of H.

Proof. Let j1 be a fuzzy hyper BCK-implicative ideal of H. Then for any z,y, 2 € H and for
allt € xo (yo(yox)) we have,

:u‘(t) > man {infae((xoy)oy)oz IU,(CL), H(Z)}
Putting y = 0 and z = y we get,

:u’(x) > min {infae((zOO)OO)oy M(a)v :u(y)}
which gives,

,LL(.’L') Z mzn {infaEroy /J,(CL), M(y)}

Thus p is a fuzzy hyper BCK-ideal of H. O

The converse of Theorem 3.2 may not be true. It can be observed by considering the
hyper BCK-algebra H = {0,1,2,3} defined by the table given in example (2.8). Define a
fuzzy set p in H by:
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1(0) = p(1) =1, u(2) =05, u(3) =03
Then p is a fuzzy hyper BCK-ideal of H but it is not a fuzzy hyper BCK-implicative ideal
of H because for 2 € (20 (30(302)))

(0(2) = 0.5 < 1 = min {infae(onyez)00 11(a), 11(0)}

From above example it can be observed that p is a fuzzy weak hyper BCK-ideal of H
but it is not a fuzzy weak hyper BCK-implicative ideal of H.

Also p is a fuzzy strong hyper BCK-ideal of H but it is not a fuzzy strong hyper BCK-
implicative ideal of H because for 2 € (20 (30 (302)))

w(2) =05 <1=min {Supae((2o3)o3)00 p(a), 1(0)}

Moreover it is clear that p is a fuzzy reflexive hyper BCK-ideal of H but it is not a fuzzy
reflexive hyper BCK-implicative ideal of H.

Theorem 3.3. Let H be a hyper BCK-algebra. Then

(i) Every fuzzy hyper BCK-implicative ideal of H is a fuzzy weak hyper BCK-implicative
ideal of H.

(i1) Fvery fuzzy Strong hyper BCK-implicative ideal of H is a fuzzy hyper BCK-implicative
ideal of H.

(iii) Every fuzzy reflexive hyper BCK-implicative ideal of H is a fuzzy strong hyper BCK-
implicative ideal of H.

Proof. (i) Let u be a fuzzy hyper BCK-implicative ideal of H. Since every fuzzy hyper
BCK-implicative ideal is a fuzzy hyper BCK-ideal (By Theorem 3.2) and every fuzzy hyper
BCK-ideal is a fuzzy weak hyper BCK-ideal (By Theorem 2.13), therefore p is a fuzzy weak
hyper BCK-ideal of H. Hence u satisfies p(0) > p(z) for all z € H. Also being a fuzzy
hyper BCK-implicative ideal, for any z,y, 2 € H and for all t € x o (y o (y o x)), p satisfies:

/J’(t) > min {infae((zoy)oy)oz /,L(CL), IU,(Z)}
Hence p is a fuzzy weak hyper BCK-implicative ideal of H.
(#4) Suppose that p is a fuzzy strong hyper BCK-implicative ideal of H. Since every fuzzy

strong hyper BCK-implicative ideal is a fuzzy strong hyper BCK-ideal (by Theorem 3.2) and
every fuzzy strong hyper BCK-ideal is a fuzzy hyper BCK-ideal (by Theorem 2.13), therefore
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w is a fuzzy hyper BCK-ideal of H. Hence for any z,y € H, if x < y then u(z) > p(y).

Also being a fuzzy strong hyper BCK-implicative ideal, for any z,y,z € H and for all
texo(yo(youx)), usatisfies
:u(t) > min {Supae((zoy)oy)oz /L((l), M(Z)}

(a) > u(b), for all b € ((x oy) oy) o z, therefore we get,

Since supae((woy)oy)or M
pu(t) = min {u(b), p(2)}, for allb € ((xoy)oy)oz

Since p1(b) > in fee((zoy)oy)o- H(c) for all b € ((x 0y) o y) o z, therefore we have,
pu(t) = min {u(b), p(2)} = min {infee(@oy)op)or #(c), p(2)}, that is
M(t) > min {infce((moy)oy)oz M(C)v /J‘(Z)}

Hence p is a fuzzy hyper BCK-implicative ideal of H.

(73i) Let p be a fuzzy reflexive hyper BCK-implicative ideal of H. Then pu satisfies

N foczor (a) > pu(y), for all x,y € H
= N foczor p(a) > p(x), for all z € H

Hence the first condition for p to be a fuzzy strong hyper BCK-implicative ideal of H is
satisfied. Also being a fuzzy reflexive hyper BCK-implicative ideal, for any z,y,z € H and
forall t € x o (yo (youx)), p satisfies

p(t) = min {supse((woyjoy)o- 1(b), 1(2)}

Hence p is a fuzzy strong hyper BCK-implicative ideal of H. O

The converse of Theorem 3.3 may not be true. Consider the hyper BCK-algebra H =
{0,1,2} defined by the table given in example (2.10). Define a fuzzy set u in H by:
1(0) = p(2) =1, u(1) =0
Then pu is a fuzzy weak hyper BCK-implicative ideal of H but it is not a fuzzy hyper BCK-
implicative ideal of H because:
l<2but u(l)=0<1=p(2)
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Example 3.4. Let H = {0, 1,2} be a hyper BCK-algebra defined by the following table:

ol {0y {1} | {2}
0] {o}| {oy | {0}
1({1}]{0,1}| {o,1}
2| {2} | {1,2} ] {0,1,2}

Define a fuzzy set p in H by:
1(0) = p(1) =1, u(2) =0
Then p is a fuzzy hyper BCK-implicative ideal of H but it is not a fuzzy strong hyper BCK-
implicative ideal of H because for 2 € (20 (20 (202)))
/'L(Q) =0<1=min {Supae(((202)02)00) M(a)v }L(O)}
Let p be a fuzzy set in a hyper BCK-algebra H. Then the set defined by i, = {x € H :
p(x) > t}, where t € [0, 1], is called a level subset of H.

Theorem 3.5. Let p be a fuzzy set in a hyper BCK-algebra H. Then u is a fuzzy (weak,
strong, reflexive) hyper BCK-implicative ideal of H if and only if for all t € [0,1], u # 0 is
a (weak, strong, reflexive) hyper BCK-implicative ideal of H.

Proof. Suppose that p is a fuzzy hyper BCK-implicative ideal of H. Since p; # ), so for any
x € g, p(x) > t. Since every fuzzy hyper BCK-implicative ideal is also a fuzzy weak hyper
BCK-implicative ideal (by Theorem 3.3(i)), so p is also a fuzzy weak hyper BCK-implicative
ideal of H. Thus p(0) > pu(x) > t, for all © € H, which implies 0 € .

Let ((zoy)oy)oz <« py and z € gy, for some x,y,z € H. Then for all a € ((zoy)o
y)oz, 3b € p such that a < b. So p(a) > p(b) > t, for all a € ((x oy) oy) o z. Thus
N fac((woy)oy)o= H(a) > t. Also p(z) > t, as z € p,. Therefore for all v € z o (yo (yox)),

satisfies

p(v) = min {infae((ocoy)oy)oz w(a), p(z)} = min {t,t} =t
= v €, forallvexzo(yo(youx))

=ao(yo(your)) Cm
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Hence pi; is hyper BCK-implicative ideal of H.

Conversely suppose that p; # 0 is a hyper BCK-implicative ideal of H for all ¢ € [0, 1].
Let x < y for some z,y € H and put u(y) =¢ Theny € py. Sox Ky € pp = x < juy.
Being a hyper BCK-implicative ideal, y is also a hyper BCK-ideal of H (by Theorem (2.7))
therefore by Proposition 2.5, © € ;. Hence u(x) >t = pu(y). That is z < y = p(zr) > p(y),
for all x,y € H.

Moreover for any x,y,z € H, let d = min {infoc(zoy)oy)o- #(c), p(2)}. Then u(z) > d =
z € pg and for all e € ((zoy) oy) oz, ule) > infee(woyjoy)o- f(c) > d, which implies e € f14.
Thus ((zoy)oy)oz C pg. By Proposition 2.2(v), ((zoy)oy)oz C ug = ((xoy)oy)oz < ug,
which along with z € g implies x o (yo (yox)) C pg. Hence for all u € x o (yo (yox)), we
get

p(w) > d = min {infee(@oyjoy)o= 1(c), 1(2)}

Thus p is a fuzzy hyper BCK-implicative ideal of H. O

Theorem 3.6. If 1 is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of H
then the set A= {x € H | p(x) = pu(0)} is a (weak, strong, reflexive) hyper BCK-implicative
ideal of H.

Proof. Suppose that p is a fuzzy hyper BCK-implicative ideal of H. Clearly 0 € A. Let
((xoy)oy)oz < Aand z € A for any z,y,z € H. Then for alla € ((zoy)oy)oz, Ibe A
such that a < b. Therefore p(a) > pu(b) = p(0). But being a fuzzy hyper BCK-implicative
ideal, p is also a fuzzy weak hyper BCK-implicative ideal of H (by Theorem 3.3(i)), so u
satisfies 1(0) > u(v), for all v € H. This implies u(0) > u(a), for all @ € ((xroy)oy) o z.
Therefore p1(a) = ;(0), for all a € ((xz oy) oy) o z, that is, in foe((@woy)oy)o- 1(a) = 1(0). Also
w(z) = 1(0). Being a fuzzy hyper BCK-implicative ideal, for all t € xo(yo(yox)), u satisfies

:u'(t) 2 min {infae((zoy)oy)oz ,u(a), M(Z)} =min {M(O)a N‘(O)} = H(())

Since p(0) > u(v), for all v € H, therefore u(t) = p(0), for all ¢t € z o (y o (y o x)).
Thus z o (yo (yox)) C A.

Hence A is a hyper BCK-implicative ideal of H. O
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The transfer principle for fuzzy sets described in [12] suggest the following theorem.

Theorem 3.7. For any subset A of a hyper BCK-algebra H, let v be a fuzzy set in H defined
by:

(2) = t ifreA
=Y 0 ifeea

for allx € H, where t € (0,1]. Then A is a (weak, strong, reflexive) hyper BCK-implicative
ideal of H if and only if 11 is a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal of
H.

Proof. Suppose that A is a hyper BCK-implicative ideal of H. Let x < y for some z,y € H
and put p(y) =t. Then y € py. So x K y € uy = x <K . Being a hyper BCK-implicative
ideal, p; is also a hyper BCK-ideal of H (by Theorem (2.7)) therefore by Proposition 2.5,
x € uy. Hence p(z) >t = p(y). That is ¢ < y = p(z) > p(y), for all z,y € H

Moreover for any x,y,z € H,
If (zoy)oy)oz < Aand z € A then zo(yo(yox)) C A. Since A is a hyper BCK-implicative
ideal of H, so by Proposition 2.5, ((zoy)oy)oz C A. Thus pu(a) =t, for alla € ((zoy)oy)oz
which implies in foe((zoy)oy)or p(a) = t. Also p(z) = t. Since z o (yo (yox)) C A, for all
uezo(yo(yox)), we have

p(u) =t = min {infoe(@oy)oy)o= 1(a), 1(2)}

If ((zxoy)oy)oz & Aand z ¢ A then
min {in foe((zoy)oy)or (@), 1(2)} =0 < p(u), for all u € x o (yo (yox))

If (zoy)oy)oz &k Aand z€ A (OR) If ((zroy)oy)oz < Aand 2 ¢ A
Then in both of these cases we have
min {in foe((zoy)oy)or H(a), 1(2)} =0 < p(u), for all u € x o (yo (yox))
Hence p is a fuzzy hyper BCK-implicative ideal of H.

Conversely suppose that p is a fuzzy hyper BCK-implicative ideal of H. Then by Theo-
rem 3.5, for all ¢t € (0,1], u = A is a hyper BCK-implicative ideal of H. O
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For a family {y; | i € I} of fuzzy sets in a non-empty set X, define the join V,e; p; and
meet A;e; p; as follows:
(Vier pi)(x) = supier pi(x)
(Nier pa)(w) = infier pi(z)
for all z € X, where [ is any indexing set.

Theorem 3.8. The family of fuzzy (weak, strong, reflexive) hyper BCK-implicative ideals of
a hyper BCK-algebra H is a completely distributive lattice with respect to join and meet.

Proof. Let {p; | i € I} be a family of fuzzy hyper BCK-implicative ideals of H. Since [0, 1]
is a completely distributive lattice with respect to the usual ordering in [0, 1], it is sufficient
to show that Ve p; and Ajey p; are fuzzy hyper BCK-implicative ideals of H.

For any x,y € H, if x < y then
(Vier ii)(x) = supier pi(w) = supier pi(y) = (Vier pi)(y)
= (Vier pi)(x) > (Vier p:)(y)

Moreover, for any x,y,z € H and for all ¢ € z o (y o (y o x)), we have
(Vier pi)(t) = supier pi(t) > supicr [min {in foe((zoy)oy)or Hi(a), pi(2)}]
= min {Supiel (infae((loy)oy)oz Mi( ))7 SUPier (Nz(z))}
= min {”lfae ((zoy)oy)oz (Supzel ,UZ( ))7 SUPicr (,Uz(z))}
= min {anae((zoy)oy)oz (( ier 11i)(a ))7 ( i€l Ni)(z)}
= (Vier p:)(t) = min {in foc((woyjoy)or ((Vier pi)(a)), (Vier pi)(2)}

Hence Vier p; is a fuzzy hyper BCK-implicative ideal of H.

Now we prove that Ajer p; is a fuzzy hyper BCK-implicative ideal of H.
For any =,y € H we have, if x < y then
(Nier pa)(x) = infier pi(x) > inficr pi(y) = (Nier p1:)(y)
= (Nier i)(@) = (Nier i) (y)

Moreover, for any x,y,z € H and for all ¢ € z o (y o (y o x)), we have
(Nier pi)(t) = infier pi(t) > infier [min {in foe(@oy)oyor 1i(b), 11i(2)}]
= min {in ficr (mfbe((moy)oy)oz wi(0)), infier (11i(2))}
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= min {in foe(woy)oy)o= (infier 1i(b)), infier (1i(2))}
= min {in foe((woy)oy)or ((Nier 1) (D)), (Nier pi)(2)}
= (Nier pa)(t) = min {infoe(@oy)oyyor ((Nier 1i)(b)), (Nier p:)(2)}

Hence Ajer i is a fuzzy hyper BCK-implicative ideal of H.

Thus the family of fuzzy hyper BCK-implicative ideals of H is a completely distributive

lattice with respect to join and meet. O

Let X and Y be hyper BCK-algebras. A mapping f : X — Y is called a hyper homo-

morphism if

(i) f(0)=0
(i) f(xoy) = f(x)o f(y), for all z,y € X.

Theorem 3.9. Let f: X — Y be an onto hyper homomorphism from a hyper BCK-algebra
X to a hyper BCK-algebra Y. If v is a fuzzy (weak, strong, reflexive) hyper BCK-implicative
ideal of Y then the hyper homomorphic pre-image o of v under [ is a fuzzy (weak, strong,
reflexive) hyper BCK-implicative ideal of X .

Proof. Suppose that v is a fuzzy hyper BCK-implicative ideal of Y. Since p is a hyper
homomorphic pre-image of v under f then p is defined by u = v o f that is u(z) = v(f(z))
for all z € X.

For any z,y € X and f(z), f(z) €Y
If # < y then 0 € x oy, which implies f(0) € f(z o y)
=0€ f(z)o fly) = fl) < f(y)

= v(f(x) 2 v(f([y) = wx) = py)
that is, © < y = p(r) > p(y), for all z,y € X

Now for all ¢ € wo (yo(yox)), f(t) € flzo(yo(yor))) = f(x)o (fy)o(f(y)o f(2))),
where z,y € X and f(x), f(y) € Y, we have

p(t) = v(f(t) > min {infraef@orw)orm)e V(f(a), v()}

where 2/ € Y. Since f : X — Y is an onto hyper homomorphism, so for 2/ € Y, 3 2z € X
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such that f(z) = z/. Hence we get
p(t) = min {infr@es@osw)osm)es =1 (@ononoz) V(f(a)), v(f(2))}
= u(t) = min {in foc((@oy)oy)o- 1(a), pu(2)} for all x,y,2z € X
Hence p is a fuzzy hyper BCK-implicative ideal of X. |

4 Product of fuzzy hyper BCK-implicative ideals

Definition 4.1. [1] Let (H;,01,0;) and (Hs,09,0;) are hyper BCK-algebras and H =
Hy x Hy. We define a hyper operation “o” on H by
(ay,b1) o (ag,by) = (a1 © ag, by o by)
for all (a1,b1), (ag,b2) € H, where for A C H, and B C H, by (A, B) we mean
(A,B) ={(a,b) :a € A,b € B}
and 0 = (01,02) and a hyper order “ < ” on H by
(a1,b1) < (az,bs) & a1 < ag and by < by
Thus (H, 0,0) is a hyper BCK-algebra.

Let p and v be fuzzy sets in hyper BCK-algebras H; and Hj respectively. Then p X v,
the product of p and v of H = Hy x Hj is defined as

(1 xv)((z,y)) = min {u(x), v(y)}
From now on, let H; and Hy are hyper BCK-algebras and let H = H; x Hs.

Definition 4.2. Let p be a fuzzy set in H. Then fuzzy sets p; and puy on H; and Ho

respectively, are defined as
() = p((2,0),  pa2(y) = p((0,y))

Theorem 4.3. Let p be a fuzzy set in H. If ju is a fuzzy (weak, strong, reflexive) hyper
BCK-implicative ideal of H, then p = py X pia, where p11 and po are fuzzy sets on Hy and Hy

respectively.

Proof. Suppose that u is a fuzzy hyper BCK-implicative ideal of H.
Then for any (z,u), (y,v), (z,w) € H, where x,y,2 € H; and u,v,w € Hy and for all
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(a,b) € (z,u) o ((y,v) o ((y,v) o (z,u))) = (xo(yo(yox)), uo(vo(vou))), we have
p((a, b)) = min {infieae((@u)oly.w))olyo)otzw) #{(c,d)), p((z,w))}

Putting y =v =2 =d =0 and w = u, we get

p((,w)) = min {in fieope(((euwo0,0)00.0)00u) #((¢;0)), 1((0,u))}
= p((z,u) = min {infcoew, wou) #((c,0)), ©((0,u))}
= p((z,u)) = min {p (), po(u)}
= p((z,u) = (1 x p2)((z,u))
= X pp S (1)

Conversely, since (z,0) < (x,u) and (0,u) < (z,u)

= p((2,0)) = p((z,u)) and p((0,u)) = p((z,u))
Thus we have
(11 X p2) (2, w)) = min {p(x), po(u)} =min {u(x,0), u(0,u)}
> min {pu(z,u), p(r,u)} = p(z,u)
= (1 X p2)((z,u)) = plz, u)
= 1 C X pio (2)
Hence from (1) and (2) we have, pq X po = i O

Theorem 4.4. Let = py X po be a fuzzy set in H. Then jn = py X pg s a fuzzy (weak,
strong, reflexive) hyper BCK-implicative ideal of H if and only if pn and pe are fuzzy (weak,
strong, reflexive) hyper BCK-implicative ideals of Hy and Ho respectively.

Proof. Let 1 be a fuzzy hyper BCK-implicative ideal of H and let x; < w9 for some
x1, 29 € Hy. Then (21,0) < (22,0) which implies p((z1,0)) = p1(z1) > p((22,0)) = pa(x2),
that is, puy(21) > pa(w2)

Moreover for any x1,y1, 21 € Hi, let t = min {infoe(@iopop)on H1(a), pi(z1)}

Then for all b € ((z10y1) 0 y1) © 21, f11(b) > N fae((@rop)opr)on H1(a) >t and pu(z1) >t

= 1((b,0)) >t and p((z1,0)) > ¢, for all (b,0) € (((x1,0) o (y1,0)) o (y1,0)) o (21,0)

= (b,0) € py and (21,0) € py, for all (b,0) € (((x1,0) o (y1,0)) o (y1,0)) o (21,0)
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= (((‘Tlvo) o (ylvo)) o (yla 0)) o (21,0) - Ht and (21,0) € [t

Since by Theorem 3.5, p; # @ is a hyper BCK-implicative ideal of H and so is a weak
hyper BCK-implicative ideal of H (by Theorem 2.9(i)). Thus

((((x1,0) o (41,0)) © (y1,0)) © (21,0)) € py and (21,0) € py imply
(21,0) o ((y1,0) o ((y1,0) o (21,0))) C s

Therefore u((s,0)) > t, for all (s,0) € (z1,0) o ((y1,0) o ((y1,0) o (21,0))) = (z1 0 (y1 ©
(yl Oxl))’ 0)

= p(s) =t =min {infoc(@ioy)oyi)on H1(a), p1(z1)},
for all s € x1 0 (y; 0 (y1 0 1))

Hence pi; is a fuzzy hyper BCK-implicative ideal of Hj.

Similarly we can prove that usy is a fuzzy hyper BCK-implicative ideal of H,.

Conversely suppose that p; and ps are fuzzy hyper BCK-implicative ideals of H; and Ho

respectively.

For any (z,u), (y,v) € H, where x,y € H; and u,v € Hy, let (z,u) < (y,v)
Since (z,u) < (y,v) © < yand u K v
= m(z) = m(y)
= min {yu (), po(u)} = min {m(y) 112
= (1 X M2)(( su)) = (X p2)((y, ))
p((@,u) = p((y,v))
Thus (z, ) < (y,0) = pl(z,u) = p((y,v))

Y
U

Moreover for any (z,u), (y,v), (z,w) € H, where x,y,2z € H; and u,v,w € Hy and for
all (a,b) € (z,u) o ((y,v) o ((y,v) o (z,u))) = (zo(yo(yox)), uo(vo(vou))), we have

p((a,0)) = (1 x p2)((a, b)) = min {p(a), pa(b)}
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> min [min {in fee((@oy)oy)or 11(¢), 11(2)}, min {in fae(uoviov)ow Ha(d), p2(w)}]
= min [min {infee(@oy)oy)or M1(¢); infae(uovyoryow ta(d)}, min { pu(2), pa(w)}]
= Min [in fee((woy)oy)oz, de((uov)ovyow 1MIN {1(c), pa(d)}}, min { pi(2), po(w)}]
= min {in f(ed)e((@oy)oy)oz ((wov)ov)ow) (M1 X p2)((c; d)), (1 X p2)((z,w))}
= min {in f(caye((woy)oy)oz, ((wov)ov)ow) H((c,d)), p((z,w))}
= (@, ) = min {in feare((@wwowo)owmoew) 1(e,d)), p((z,w))}

Hence p is a fuzzy hyper BCK-implicative ideal of H. O

5 CONCLUSION

Every (fuzzy) reflexive hyper BCK-implicative ideal of a hyper BCK-algebra H is a (fuzzy)
strong hyper BCK-implicative ideal of H and every (fuzzy) strong hyper BCK-implicative
ideal of H is a (fuzzy) hyper BCK-implicative ideal of H, each of which in turn is a (fuzzy)
weak hyper BCK-implicative ideal of H. Moreover a fuzzy (weak, strong, reflexive) hyper
BCK-implicative ideal of H is a fuzzy (weak, strong, reflexive) hyper BCK-ideal of H. The hy-
per homomorphic pre-image of a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal
is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative ideal in any onto hyper ho-
momorphism of two hyper BCK-algebras. The product of two fuzzy (weak, strong, reflexive)
hyper BCK-implicative ideals is also a fuzzy (weak, strong, reflexive) hyper BCK-implicative
ideal.
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ABSTRACT. The purpose of the present paper is to introduce g-deformations of finite
groups of low order, for examples, cyclic groups, symmetric groups, dihedral groups
and the quaternion group in the category of hypergroups. Moreover we discuss g-
deformations of certain finite hypergroups.

1 Introduction

We investigate g-deformations of finite groups and finite hypergroups in the category of
hypergroups. It is known that there is no ¢-deformations of finite groups in the category of
quantum groups ([24]). However we introduce that there are many g-deformations of finite
groups in the category of hypergroups.

Hypergroups Z,(2) of order two with a parameter ¢ (0 < ¢ < 1) are interpreted as
g-deformations of the cyclic group Zs. This fact is our motivation that we started to
investigate g-deformations of finite groups and finite hypergroups.

In section 3, we discuss g-deformations of the cyclic group Zs of order three and the
cyclic group Z4 of order four. In section 4, we discuss g-deformations of the symmetric group
Ss, the dihedral group D4 and quaternion group Q4. These ¢-deformations are obtained
by applying a notion of a semi-direct product hypergroup introduced by H. Heyer and S.
Kawakami (see [5]).

Moreover we study g-deformations of certain finite hypergroups of low order, the orbital
hypergroups K*(Zs) of Zs and K%(Z4) of Z4, the character hypergroups K(S3) of Ss, K(Dy4)
of Dy and IC(@) of @y, the conjugacy class hypergroups K(S3) of Ss, K(D4) of Dy and
K(Q4) of Q4 in section 5.

2 Preliminaries

For a finite set K = {cg,c1, -+ ,cn}, we denote by M?(K) and M'(K), the set of all
complex valued measures on K and the set of all non-negative probability measures on K
respectively, namely

MY(K) =14 a;d., : a;€C (j=0,1,2,-,n) 3,
j=0

n

MY K) =Y ajde, : a; >0 (j=0,1,2,---,n), ¥ aj=1
j=0 j=0

where the symbol 6. stands for the Dirac measure in ¢ € K. For p = agd., + a1d,, + -+ +
and., € M°(K), the support of u is

Supp(ﬂ’) = {CJ €K : a; 7&0 (J:0u1a27 7n)}

2010 Mathematics Subject Classification. 20N20, 20B05, 20C05.
Key words and phrases. Deformation, Finite group, Hypergroup.




114 SATOSHI KAWAKAMI, TATSUYA TSURII AND SATOE YAMANAKA

Axiom A finite hypergroup K = (K, M"(K), o, ) consists of a finite set K = {co,c1,- -+ ,¢,}
together with an associative product (called convolution) o and an involution * in M°(K)
satisfying the following conditions.

(1) The space (M(K),o, ) is an associative *-algebra with unit d,.

(2) For ¢;,¢; € K, the convolution 4., o d., belongs to M*(K).

(3) There exists an involutive bijection ¢; + ¢ on K such that §.- = J7 .
Moreover ¢; = ¢} if and only if co € supp(d,, o d.;) for all ¢;, ¢c; € K.

A finite hypergroup K is called commutative if the convolution o on M?(K) is commutative.

Let K and L be finite hypergroups. A mapping ¢ : K — L is called a (hypergroup)
homomorphism of K into L if there exists a *-homomorphism ¢ of M®(K) into M®(L) as
x-algebras such that () = P(dc). If @ is bijective, ¢ is called an isomorphism of K onto
L. In the case that L = K, an isomorphism ¢ : K — K is called an automorphism of K.
The set of all automorphisms of K becomes a group and it is denoted by Aut(K). Let G
be a finite group. A homomorphism « : G — Aut(K) is called an action of G on K.

For a commutative hypergroup K, a complex-valued function y on K is called a character
if  is linearly extendable on M(K) to be ¥(5.,) = x(c;) and satisfying that ¥(d.,) = 1,
X(0¢; ©9c;) = X(0¢;)X(0¢;) and x(07) = x(dc,) for all ¢;,c; € K. We denote the trivial
character by yo. Let K be the set of all characters of K. A convolution on K is defined by
n}ultiplication of functions on K. Then K becomes a signed hypergroup and the duality

K = K holds.

Conjugacy class hypergroup Let G be a finite group. For g € G, put ay(k) = Ady(k) =
gkg™t (k € G). Then « is an action of G on G. Hence we obtain the orbital hypergroup
K*(G) which we denote by (G) which is called a conjugacy class hypergroup of G.

Character hypergroup For a finite group G, G' = {mg, 71, -+, Tm} is the set of the all
equivalence classes of irreducible representations of G. For 7; € G, a character x; associated
with 7; is defined by

1
. _ t . )
x;(9) dim 7 r(m;(g))
Then IC(G’) = {Xo0, X1, ", Xm} becomes a commutative hypergroup with unit xo by the
multiplication of functions on G.

Hypergroup join For two finite hypergroups H = {ho, h1, -+ ,hm,} and L = {€y, ¢y, -
, {1}, a hypergroup join

H\/L - {h'Oahfla"' 7h’ma€1,"' 7£k}
is defined by the convolution ¢ whose structure equations are

On, ©0n; = O, ©0n;, On, © 0, = Op;,
5@ < 5gj = (5& o (ng when fj 7é ff,

k
8g, 007, = ndw(H) + Y _nléy,
j=1

where 8, 0 67 = n)dg, + Z?:l nzégj and w(H) is the normalized Haar measure of H.
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3 Deformations of finite abelian groups
Let K = {co,c1} be a hypergroup of order two. Then the structure of K is determined
by

5(11 o 501 = q(SCU + (1 - q)561

where 0 < ¢ < 1. We denote it by Z,(2) which is interpreted as a g-deformation of Zs.
Stimulating by this fact, we have started to study g¢-deformations of finite groups.

3.1 Deformation Z,(3) of Zs
First of all we discuss a g-deformation of Z3. It is easy to check the following proposition
directly and this fact is also described in the paper ([19], [23] and [25]).

Proposition 3.1 Let K = {cp,c1,c2} be a hypergroup of order three. For each ¢ (0 <
q < 1) there exists a unique hypergroup of order three such that ¢} = é., and d., o d., =
q(sco + a15cl + a26¢:2~

We denote the above K by Z,(3), which is interpreted as a ¢-deformation of Zz. The
structure equations of Z,(3) = {co,c1,¢2} (0 < ¢ < 1) are determined by

l—¢q 1—g¢
60105C2:q560+ 9 561+ 9 5cza
1—g¢q 1+gq
Ocy 000 = 3 5C1+72 Oy s
1+4+¢q 1—g¢q
By © Gy = 100y + —5 ey

—

o | C1 C2
X0 1 1 1
X1 1 Wy Fq
X2 1 Fq wq
—q-+i 242
where w, = —FE
—_—

By the symmetry of the character table we see that Z,(3) = Z,(3).

3.2 Deformation Z, 4 (4) of Z,4

We investigated several kinds of extension problem in the category of commutative
hypergroups, refer to [6], [8], [10], [11], [12], [13], [14], [15], [16], [17], [18]. The cyclic
group Z4 of order four is a non-splitting extension of Zs by Zs. Then one can consider a
non-splitting extension Z, 4)(4) (0 <p <1, 0 < ¢q < 1) of Zy(2) by Z,(2) as follows.

Proposition 3.2 (Example 4.2 in [14]) For (p,q) (0 < p <1, 0 < ¢ < 1) there exists a
unique hypergroup Z, q)(4) = {co, c1, c2, c3} of order four, which is an extension hypergroup
of Z4(2) by Z,(2) = {co, c2} such that ¢} = cs.
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The structure of Z, )(4) = {co,c1,¢2,¢c3} (0 <p < 1,0 < g < 1) is given by

1— 1—
G0y 000, = 8y 000, = T"(SCI + g, + Tq(s
1—p 1+
602 o 602 = p660 + (1 _p)6027 661 o 662 - 561 + 2 p6037
2pq 1—q q—pq 1—¢q
Ocy 00cy = ﬁéco + 2 Ocy + 15 p Ocy + 5 Ocs s
1 1—p
Goy 000y = “’501 + —603

Put Z@)\(Zl) = {x0, X1, X2, x3}. Then the character table of Z, 4(4) is

Co 1 2 c3
Yo | 1 1 1 1

xi| 1| iypg | —p | —iypg
X2 | 1 —q 1 —q
xs | 1| —ivpg | —p | ivpa

~

It is easy to see that Z, 4)(4) is interpreted as a (p, ¢)-deformation of Z4 and Z(:q)\(4)
Z(q.p)(4)-

4 Deformations of non-abelian finite groups

Let a be an action of a finite group G on a finite hypergroup H = (H, M?(H),o,*).
Then a semi-direct product hypergroup S := H X, G is introduced in [5]. A convolution
o, in M?(S) is defined by

(Ehl ® 591) Ca (Eh2 ® 592) = (Ehl © Eagl(hQ) ® 59192)7

where € and § stand for Dirac measures in M*(H) and M®(G) respectively. Unit element
is €, ® d.. An involution ~ is

(1 ®0y)" = ay (1) @Gy

for all u € M*(H) and g € G.

4.1 Deformation S;(3) of the symmetric group S;
The symmetric group S3 is a semi-direct product Zs X, Zs where « is an action of Zs
on Zs.

Let o be an action of Zs = {e, g} on a hypergroup Z,(3) = {ho, h1,ha} (0 < g < 1) such
that
O(g(hl) = hz, Oég(hg) = hl.

Then we obtain a semi-direct product hypergroup
Sq(3) :=Z4(3) Xqo Zo

which is a g-deformation of the symmetric group S3 = Z3 X, Zo.
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4.2 Deformation D, (4) of the dihedral group D,
The dihedral group Dy is written by a semi-direct product Z4 X, Zo.

Let H = Zp,q)(4) = {ho, h1,ha,h3} (0 <p < 1,0 < g < 1) be the (p, g)-deformation of
Z4 and « an action of Zy = {e, g} on Z, 4)(4) given by

Oég(hl) = h37 Oég(hg) = hg, Ozg(hg) = hl.
Then we obtain a semi-direct product hypergroup
D(p’q) (4) = Z(p’q) (4) Ao ZQ.
Hence, we obtain a (p, ¢)-deformation D, ;)(4) of the dihedral group Dj.

4.3 Another deformation W,(4) of the dihedral group D,
The dihedral group Dy is also written by a semi-direct product (Zs x Za) X g Zo where
[ is a flip action of Zy on Zg X Zo.

Let Zq(2) XZq(Z) = {(ho, ho), (ho, hl), (hl, ho), (hlv hl) 3 ho, h1 S Zq(Q)} be a q—deformat—

ion of Zy X Zs. Let 8 be a flip action of Zy = {e, g} on Z,(2) x Z4(2) given by
Bg((hishy)) = (hyj, hi) (i,5 =0 or 1).
Then we obtain a semi-direct product hypergroup
Wq(4) = (Zq(2) X Z4q(2)) X p Zo.
The hypergroup W,(4) is another g-deformation of Dy.

4.4 Deformation Q,(4) of the quaternion group Q4
The structure of the quaternion group Q4 = {+1, +4, +j, £k} is determined by

PP=2=k=-1, ij=kF.
Let « be an action of Zy = {e, g} on Zy = {ho, h1, ha, h3} such that
ag(h1) = hs, ag(he) = ha, ag(hs) = h.
Let ¢ be a Z4-valued 2-cocycle of Z, which is also given by
c(e,e) = cle,g) = c(g,e) = hg and c¢(g,g) = ho.
Then a twisted semi-direct product group Z4 x¢, Zs is defined by the product
(h,g)(W', g") = (hay(W)e(g,9'), 99")

for h,h/ € Z4 and g,¢" € Zs. The quaternion group @4 is isomorphic to Z4 ¢ Zs. Hence
we interpret Q)4 as a twisted semi-direct product group Zs x¢, Zs.

Let Z(1,4)(4) = {ho, h1, ha, h3} be a g-deformation of Z, with a subgroup {ho, h2} and c
a Z(1,q)(4)-valued 2-cocycle which is also given by

c(e,e) = C(eag) = C(g,e) = hO and C(gag) = h2~
Then, we obtain a twisted semi-direct product hypergroup
Qq(4) = Z(l’q)(ll) ><lg ZQ.
The hypergroup Q,(4) is a ¢-deformation of the quaternion group Q4 = Zy %, Zs.
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5 Deformations of finite hypergroups
In this section we discuss g-deformations of several kinds of finite hypergroups in a
similar way to the case of finite groups.

5.1 Deformations of orbital hypergroups

Given an action « of a finite group G on a commutative hypergroup H, we obtain a
orbit O = {ay(h) ; g € G} of h € H under the action a. Let {Og,O1,---,0,,} be the set
of all orbits in /. We denote an element c; which is corresponding to each orbit O; and
put H* = {co,c1,--+ ,cm}. Let MP(H)® denote the fixed point algebra of M®(H) under
the action a, namely

MP(H)* = {p € M°(H) ; a,(p) = pfor all g € G}.

We note that M°(H)® is a x-subalgebra of M®(H). For ¢; € H, put

8, = o > on = 1Zag(5h).
1051 Gl 7=,

heO;

Then 6., € M*(H)* N M'(H). K*(H) = (H*, M"(H)“, 0,*) becomes a hypergroup which

is called an orbital hypergroup of H by the action «.

Example 1 The orbital hypergroup K£*(Z,(3)) = {co, c1} is a g-deformation of IC*(Zs).
The structure equations are

§uy 080, = géco + (1 - %) 5o

Remark K(Zy(3)) =Z4(2).
Example 2 The orbital hypergroup K(Z, 4)(4)) = {co,c1,c2} is a g-deformation of
K*(Z4).

The structure equations are

501 © 561 :p5€0 + (1 - )5617 501 0662 = 5027
. Pg
ey ©0cy = 1+p5 +1+ de, + (1 —q)de,-

Remark K%(Zpq)(4)) = Zp(2) V Z¢(2).

5.2 Deformations of character hypergroups of semi-direct product hypergroups
Let S = H %, G be a semi-direct product hypergroup defined by an action « of a finite

abelian group G on a finite commutative hypergroup H (Refer to [5]). S = H/x:G is the
set of all equivalence classes of irreducible representations of S. For (w,H(w)) € S, the
character ch(m) of 7 is defined by

ch(m)((hg)) = - tr(n(h,g))

where (h, g) € H x4 G and tr is the trace of B(H(r)). Put K(S) = {ch(r) ; = € S}.

Proposition 5.1 ([5] and [7]) If the action « satisfies the regularity condition, then
K(H %, G) becomes a commutative hypergroup by the product of functions on S = H x,G.



DEFORMATIONS OF FINITE HYPERGROUPS 119

This hypergroup is called a character hypergroup of the semi-direct product hypergroup
S =H x,G.

Example 3 The character hypergroup IC(SZ(\S)) of 5,(3) = Zy(3) x4 Zs is a g-deformation
of K(S3).
Sf(\?)) = H/><1a\G = {x0 ® 70, x0 ©® 71,7}, where 7 is a two-dimensional irreducible

representation of S,(3). IC(S/q(\3)) = {ch(x0 ® 70), ch(x0 ® 71), ch(mw)}. The character table
is

(ho,€) | (h1,€) | (ha,e) | (ho,g) | (h1,9) | (h2,9)

0
Y0 = ch(xo ® 7o) 1 1 1 1 1 1
y1 = ch(xo ® 11) 1 1 1 -1 -1 -1
Yo = ch(m) 1 -2 -2 0 0 0

and the structure equations of K(S’/q(\S)) are

q q
MY =0 Y22 =t gt (1 - %) Y2, M2 = V2
Example 4 The character hypergroup IC(DJQ)\(ZL)) of Dpgy(4) = Zp,g)(4) Xa Zo is a
(p, q)-deformation of IC(BZ).
The structure equations of (D, 4y(4)) = {Y0,71,Y2, 73,74} are

YL =Y, Y2 =3, V1Y3 = V2,
Y22 = Y373 = qv0 + (1 = @)v2, 7273 = g1 + (1 — )3,

Pq q D P
= + + + +(1— ,
T m1+@7° m1+®71 m1+@72 2(1+q)73 (1=p)nu

Y17V4 = Y4, V274 = Y4, VY374 = Va-

—

Example 5 The character hypergroup K(Qq(4)) of Qq(4) = Z(1,9)(4) X§, Zg is a g¢-
deformation of IC(l/)Z).
The structure equations of (Q4(4)) = {70, 71,72, 73,74} are

Y171 = Yo, Y172 = V3, Y17V3 = V2,
Y2Y2 = Y373 = qv0 + (1 = @)v2, 7273 =g + (1 —q)7s,

Vit = s+ sy o+ ! Y2+ g
2(1+q) 2(1+q) 2(1+4q) 2(1+¢q) >
V1Y4 = Y4, V274 = V4, V3V4 = V4.

5.3 Deformations of generalized conjugacy class hypergroups
Let S = H X, G be a semi-direct product hypergroup. Then there exists the canonical
conditional expectation E from M®(S) onto the center Z(M?"(S)) of M?®(S). Put

K(H %o G) :={E(,q) ; (h,g) € HxyG}.

Proposition 5.2 ([6]) If the action « satisfies the regularity condition, then IC(H X, G)
becomes a commutative hypergroup with the convolution in the center Z(M®(S)). Moreover

K(H %o G) = K(H x4 G) holds.
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We call K(H x4 G) a generalized conjugacy class hypergroup of H x,, G.

Example 6 The generalized conjugacy class hypergroup KC(54(3)) of S;(3) is a g-deformation
of K(Ss).
The structure equations of IC(S,(3)) = {co,c1,c2} are

2

m5017 561 [e] 652 = 562°

Je, 080, = gaco n (1 _ g) Suys oy 00,, = q%% T

Example 7 The generalized conjugacy class hypergroup K(D, 4)(4)) of D, q)(4) is a
(p, q)-deformation of IC(Dy).
The structure equations of (D, 4)(4)) = {co,c1,¢2, 3, ¢4} are

pq q
501 o 561 = 504 [} 504 = 71 +p560 + (]_ — q)5C1 —+ 71 —|—p§c2’
p 1
502 0562 :p5c0 + (1 *p)(scza 563 0503 = 1 +p5€o + 1 +p562?

501 © 562 = 561; 601 © 563 = 6647 561 © 604 = q§03 + (1 - q)5C4’
Gy © 00y = Boys Doy © 00y = Boys Bug 60y = by

Example 8 The generalized conjugacy class hypergroup KC(Q4(4)) of Q4(4) is a g-deformation
of K(Q4).

The structure equations of K(Q,(4)) = {co, c1,c2,c3,c4} are
q q
601 e} 661 = 664 9 604 = 5650 + (1 — q)661 + 5602,

1 1
602 o 502 = 6007 6C3 o 603 = 5660 + 56027

561 o 602 = 6017 601 o 503 = 5047 601 o 564 = q6C3 + (1 - q)6647
562 o (5(;4 = (5(;47 5C2 o 663 = 6637 (5(;3 o 664 = 6C1'

By the above structure equations, we have the following theorem.

Theorem There are deformations S,(3) = Z4(3) x4 Zg of the symmetric group Ss,
Dpgy(4) = Zpq)(4) Xa Zy and Wy(4) = (Z4(2) x Z¢(2)) X Zy of the dihedral group
Dy and Qq(4) = Z1,¢)(4) %, Zso of the quaternion group @4 in the category of hypergroups.
These deformations have the following properties.

(1) K(5,(3)) = Z2 v 3 (2) and K(5,(3)) = Z3(2) V Zo.

(2) IC(D;;)\(ZL)) is a (¢, p)-deformation of IC(EZ) and (D, 4)(4)) is a (p, ¢)-deformation
of K(Dy). K(Qq(4)) is a g-deformation of K(Qx) and K(Q,(4)) is a g-deformation of K(Qy).

Moreover K(D(y,4)(4)) = K(m) and K(D1,4)(4)) = K(Qq(4)) although Dy 4y(4) is not
isomorphic to Qq(4).

(3) K(m) is not a hypergroup when g # 1.

Proof (1) We put Zs = {bo, b1} and Zs(2) = {co, 1}, where 6y, 06y, = dp, and dc, 0 dc, =
30co + (1 = 2)0., (0 < g < 1). The structure of IC(S/q-(E)) in Example 3 is the same of

the hypergroup join Zs V Z4(2). Hence IC(S/q\(?))) = ZsV Z4(2). In a similar way we get
K(S4(3)) =Za(2) V Zs as in Example 6.

a9
2
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(2) The former properties follow directly from above examples 4, 7, 5 and 8. Both of
D1,4)(4) and Q4(4) are extension hypergroups of Zy by Z; 4)(4). However Dy 4)(4) is of
splitting type but Q4(4) is of non-splitting type. Hence D(; 4)(4) is not isomorphic to Q,(4).

(3) We put Z,(2) x Z4(2) = {x0, X1, X2, X3} and 2; = {70, 71 }. Then

-

We(4) = {x0 ® 70, X0 ® 71, X3 © To, X3 © T1, 7},
where 7 is the two-dimensional irreducible representation of W, (4) given by

Wy (4)

T = inqu(2)XZq(2) (x1 ©710).

Hence,

—

K(W4(4)) = {ch(xo ® 70), ch(xo © T1), ch(x3 © T0), ch(xs © 1), ch(m)}.
Assume that IC(W//(I-(Z)) is a hypergroup for ¢ # 1. Then
ch(x3070)ch(x30T0) = apch(xo®70)+a1ch(xo®T1)+azch(x3©7)+asch(xsO11)+agch(n),
where Y0 ga; =1 and a; >0 (j =0,1,2,3,4). Since
ch(xo ©71)(ho,g) = =1, ch(xs © 71)(ho,g) = —1,
ch(m)(ho,g) =0 and ch(xs © m9)ch(xs © 70)(ho,g) =1
where hg is the unit of Z,(2) x Z4(2) and Zy = {e, g}, g*> = e, we see that
ag— a1 +as —az = 1.
This implies that a; = 0,a3 = 0, a4 = 0. Hence, we get
ch(xs © m0)ch(xs © 7o) = aoch(xo © T0) + azch(xs © 7o)
Restricting this equality to Z4(2) x Z4(2), we obtain
X3X3 = @oXo + a2X3-
This contradicts with the fact :

X3x3 = ¢°xo0 + q(1 — @)x1 + q(1 — q)x2 + (1 — ¢)*xs.

—

Hence, (W, (4)) is not a hypergroup when ¢ # 1. O
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ABSTRACT. We study idempotents and square roots in the upper triangular matrix
Banach algebras over real or complex numbers. We compute explicitly and determine
algebraically the idempotents and the square roots in the cases of size: two by two,
three by three, and four by four. We also consider their equivalence classes by homo-
topy and classify topologically the upper triangular matrix algebras in those cases and
in general by the groups generated by the homotopy classes. Moreover, we consider
some infinite dimensional, Banach algebras obtained as inductive limits of the upper
triangular matrix algebras and obtain several topological classification results for the
inductive limits.

1 Introduction We begin to study idempotents and square roots in the upper triangular
matrix Banach algebras over real or complex numbers. The upper triangular matrix algebras
are typical examples of finite dimensional non self-adjoint Banach algebras over real or
complex numbers. We compute explicitly and determine algebraically idempotents and
square roots of the upper triangular matrix algebras in the cases of size: two by two, three
by three, and four by four. The statements as lists as examples obtained should be useful
and convenient for the readers. We also consider the equivalence classes of the idempotents
and the square roots by homotopy and classify topologically the upper triangular matrix
algebras in the cases and in the general case by the groups generated by the homotopy
classes. Moreover, we consider some infinite dimensional, Banach algebras obtained as
inductive limits of the upper triangular matrix algebras, and obtain several (topological)
classification results for the inductive limits by our V-theory groups mentioned below and
also by the scales for the units

As a contrast, C*-algebras are self-adjoint Banach algebras over complex numbers with
the C*-norm condition. The full matrix algebras over complex numbers are typical ex-
amples of finite dimensional C*-algebras. Projections of C*-algebras, that are self-adjoint
idempotents, and unitaries of C*-algebras, with adjoints as inverses, play main roles in the
K-theory for C'*-algebras, and their associated K-theory classes generate K-theory groups
of C*-algebras ([1], [4] and [5]). By lack of self-adjointness for non self-adjoint Banach
algebras, as candidates as substitute, we consider idempotents and square roots and their
homotopy classes, that generate our named V-theory groups, first introduced in this paper.

As for inductive limit algebras, AF (approximately finite dimensional) C*-algebras, that
are inductive limits of finite direct sums of full matrix algebras, are classified by K-theory
groups (but Ky only since K; trivial) as ordered groups with the scales (see the corre-
sponding results in [1], [4], or [5], due to [2]). Our V-theory groups (Vj of Vp and V1) just
correspond to the scales in the C*-algebra K-theory, in which the symbol V is used for
indicating the sets of equivalence classes of projections of matrix algebras over a C*-algebra

2000 Mathematics Subject Classification. Primary 46K50, 46H20, 461.80, 19K 14.
Key words and phrases. Idempotent, square root, matrix algebra, upper triangular matrix, non self-
adjoint algebra, Banach algebra, inductive limit.
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and the symbol X is used for indicating the scales for a C*-algebra (see [1]). Note that, by
lack of self-adjointness, there are no non self-adjoint unitaries, and no unitary equivalence
and no stably unitary equivalence as for idempotents in non self-adjoint Banach algebras,
but can be used homotopy in the algebras.

However, the scaled ordered, C*-algebra K-theory groups (Kj) for the inductive limits
of non self-adjoint Banach subalgebras obtained in inductive limits of C*-algebras, such as
AF-algebras and UHF-algebras, have been already used to classify those non self-adjoint
inductive limit algebras, containing the case we consider here (see [3]). Therefore, our
classification results in application to inductive limit non self-adjont algebras are not new,
but our formulation in terms of non self-adjoint algebras only, Vg as well as V; (non-trivial
while K trivial in that case) seems to be new in this sense, and anyhow to be an equivalent
replacement as another method or attempt.

2 The two by two case We denote by T»(R) the algebra of all upper triangular 2 x 2
matrices over the real field R and by 75(C) the same algebra over the complex field C. We
give the topology on the algebras by the Euclidean norm, for convenience, via T5(R) = R3
and T»(C) =2 C? as a space. Let F be either R or C.

Recall that a matrix element A of T(F) is said to be an idempotent if A% = A.

Proposition 2.1. All idempotents of To(F') are listed up as

1 0 10 0 b 0 0
0 1)’ 0 0)’ 0 1)’ 0 0
for any b e F.

Proof. Let
A= (8 b) € Ty(F)

c

with A2 = A, so that a® = a, ¢ = ¢, and b(a +¢) = b. Hence a = 0 or 1, and ¢ = 0 or
1. O

Denote by P»(F) the set of all idempotents of T5(F'). Define the equivalence relation for
elements of P,(F') by that two elements of Py(F') are equivalent if there is a continuous path
within Py(F') between the two elements. Write by Fo(T2(F)) the set of all equivalence classes
by the equivalence relation. Denote by [---] the class of an idempotent P = (---) € Py(F).

Corollary 2.2. All classes of Eo(T2(F)) are listed up as

o i ol BB

As, possibly, a new notion to simplify the situation, we may introduce, as an attempt,

Definition 2.3. We now define the anti-diagonal transpose A% of A € T»(F) by

at _[C b _fa b
A —<0 a) for A—(O C).

We denote by T5(F)/ ~q+ the set of matrices of To(F') identified under the anti-transpose.
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Note that the anti-diagonal transpose corresponds to a permutation on Ty(F) = F3.

Also, one has
s ([0 1\ [a b\ [0 1\\' [c b\  ,a
LbAk}::{(1 0)(0 c)(l o)} =0 o) =4

with {---}* the usual transpose, but in Ms(F) the 2 x 2 matrix algebra over F.

Corollary 2.4. All idempotents of To(F)/ ~q are listed up as
1 0 1 0 0 0
0o 1)’ 0 0/’ 0 0
Corollary 2.5. All classes of Eo(To(F)/ ~at) are listed up as

10 10 00
0 1/” |0 0] |0 0Of"
Recall that a matrix element A of Ty(F) is said to be a square root if A2 = I the 2 x 2
identity matrix.

for any b € F.

Proposition 2.6. All square roots of To(F) are listed up as

+1 0 +1 b
( 0 :I:l) (compound 4 cases), ( 0 :Fl> (not compound 2 cases)

for any b € F non-zero.

Remark. In what follows, we make the difference of the compound (or composite) in order
case or not by denoting +1 usual or +1 bold as in the statement above.

Proof. Let
A:G ?eﬂ@)

c
with A2 = I, so that a® = 1, ¢ = 1, and b(a + ¢) = 0. Hence a =1 or —1, and ¢ = 1 or
—1, and if b is non-zero, then a = —c. ]

Denote by Ry(F') the set of all square roots of To(F'). Define the equivalence relation
for elements of Ry (F') by that two elements of Ro(F') are equivalent if there is a continuous
path within Ry (F') between the two elements. Write by E;(T5(F)) the set of all equivalence
classes by the equivalence relation. Denote by [---] the class of a square root R = (---) €
Ry (F).

Corollary 2.7. All classes of E1(Tx(F)) are listed up as

+1 0
0 =+£1

} (compound in order 4 cases).
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3 The three by three case We denote by T3(F) the algebra of all upper triangular
3 x 3 matrices over F', where F is either R or C. We give the topology on the algebra by
the Euclidean norm, for convenience, via T3(F) = F as a space.

Proposition 3.1. All idempotents of T5(F') are listed up as

0 0 O 1 =z vy 0 =z xz 0 0 vy
0 0 0], 0 0 0}, o1 =z, 0 0 2|,
0 0 O 0 0 O 0 0 O 0 0 1
1 0 y 1 =z —zz 0 = y 1 0 0
01 =/, 00 =z ], 01 0}, 0 1 0
0 0 0 00 1 0 0 1 0 0 1
for any x,y,z € F.
Proof. Let
a x Yy
A=10 b z| eTs5(F)
0 0 c

with A2 = A, so that a® = a, b> = b, ¢* = ¢, and (a+b)z = z, (b+c)z = 2, (a+c)y+xz = y.
Hencea=0or 1, and b=0or 1, and c=0 or 1.

Ifa=b=c=0,thenz=y=2=0.

Ifa=1and b=c¢=0, then z=0.

Ifb=1and a=c=0, then y = zz.

Ifc=1and a=0b=0, then z = 0.

Moreover, if a = b =1 and ¢ = 0, then = = 0.

Ifa=c=1and b =0, then y = —xz.

Ifa=0and b=c¢=1, then z =0.

Ifa=b=c=1,thenx=y=2=0.

These cases correspond to the matrices in the statement in this order. ]

Denote by P3(F) the set of all idempotents of T5(F'). Define the equivalence relation for
elements of P3(F) by that two elements of P3(F’) are equivalent if there is a continuous path
within P;(F') between the two elements. Write by Fo(T5(F)) the set of all equivalence classes
by the equivalence relation. Denote by [---] the class of an idempotent P = (---) € P3(F).

Corollary 3.2. All classes of Eo(T5(F)) are listed up as

00 0 100 00 0 00 0
000/, |ooofl, {01 o0, [0o0 o0,
0o 0o (000 |oo0o0o |00 1]
1 0 0] [t 0 0] oo 0] [t o0 0
010/, |ooof, |01 o0, (01 0.
000 oo 1 oo 1 |oo0 1]

Definition 3.3. We now define the anti-diagonal transpose A% of A € T5(F) by

Aat —

o o0
S o
ISERSERS

a x vy
for A=1[0 b =z
0 0 ¢

We denote by T5(F)/ ~q+ the set of matrices of T3(F) identified under the anti-transpose.
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Note that A% is just the transpose of J3AJ3:
AT = [J AT} = JLALTE = JyAt s,
with J5 the 3 x 3 matrix of (1,3),(2,2), (3,1) components as 1 and other components as 0.
Corollary 3.4. All idempotents of T5(F)/ ~q are listed up as

0 0 O 1 =z vy 0 =z xz

0 0 0}, 0 0 0}, 01 =z|,
0 0 O 0 0 O 0 0 O

1 0 y 1 =z —zz 1 0 0
01 z|, 00 =z , 01 0
0 0 O 0 0 1 0 0 1

for any x,y,z € F.
Corollary 3.5. All classes of Eo(T3(F')/ ~at) are listed up as

000 1 00 000
0 0 0o/, |00 o0, |01 of,
0 0 0 0 0 0 0 0 0
[1 0 0] 1 0 0] (1 0 0]
01 0/, |00 o0, [0 10
0 0 0] 0 0 1 0 0 1)

Proposition 3.6. All square roots of T3(F) are listed up as

+1 0 0 +1 =z 0 +1 0 0 +1 0 Y

0 £1 0], 0O F1 0], 0o +1 =z |, 0 1 0 |,
0 0 =1 0 0 =1 0 0 F1 0 0 =F1
+1 =z 0 +1 =z Y +1 0 y +1 =z Y

0o F1 =z |, 0O 1 0], 0 £1 =z |, 0 F1 =

0 0 =1 0 0 F1 0 0 F1 0 0 =+1

for any non-zero x,y,z € F, where x,y, z satisfy the equation 2(£1)y + xz = 0 in the last
case, so that y = 271 (F1)xz. There are compound or not 8 +4+4+4+2+2+2+2 =28
cases.

Proof. Let

A= GTg(F)

o O 2
oo R
o v

with A% = I3 the 3 x 3 identity matrix, so that a> =1, > =1, ¢ = 1, and (a + b)x = 0,
(b+¢)z=0, (a+c)y+xz=0. Hence a = £1, and b = £1, and ¢ = 1.

If y = 2z =0 and x is non-zero, a = —b.
If 2 =y =0 and z is non-zero, b = —c.
If x = 2 =0 and y is non-zero, a = —c.

If y=0and zz # 0, then a = —b and b = —c.

If y#0 and a = —¢, then x =0 or z = 0.

The rest case is that xyz # 0 with 2ay + zz = 0.

These cases correspond to the matrices in the statement in this order. O
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Denote by R3(F') the set of all square roots of T3(F'). Define the equivalence relation
for elements of R3(F') by that two elements of R3(F') are equivalent if there is a continuous
path within R3(F) between the two elements. Write by E;(T5(F)) the set of all equivalence
classes by the equivalence relation. Denote by [---] the class of a square root R = (---) €
Rs(F).

Corollary 3.7. All classes of E1(T5(F)) are listed up as

+£1 0 0
0 +£1 0 (compound in order 8 cases).
0 0 =1

4 The four by four case We denote by T, (F') the algebra of all upper triangular 4 x 4
matrices over F', where F is either R or C. We give the topology on the algebra by the
Euclidean norm, for convenience, via Ty(F) =2 F*+23+4 = 10 45 a space.

Proposition 4.1. All idempotents of Ty(F') are listed up as the zero matriz and

1 z12 213 714 0 2 i2T23 T127T24 0 0 @13 13734
0 0 0 0 0 1 €T23 o4 0 0 T3 T23T34
0 O 0 0 |’ 0 O 0 0 ’ 0 0 1 T34 ’
0 O 0 0 0 0 0 0 0 0 O 0
0 0 0 =4 1 0 z3 w14 1 212 —T12723 714
0 0 O T4 0 1 Io3 X24 0 0 xIos3 I23T34
0 0 0 x34 )’ 0 0 O 01|’ 0 0 1 T34 ’
0 0 0 1 0 0 O 0 0 0 0 0
1 x10 713 —T12%T04 — T13T34 0 z12 @13 T12%24 + 213734
0 0 0 Toy 0 1 0 To4
0 0 0 X34 ’ 0 0 1 X34 ’
0 O 0 1 0 0 0 0
0 =2 x12723 14 0 0 z13 714 1 0 0 214
0 1 X23 —T23X34 0 0 X233 T24 0 1 0 T24
0 0 0 T34 ’ 0 0 1 0 ’ 0 0 1 T34 ’
0 O 0 1 0 0 O 1 0 0 0 O
1 w12 —Z12we3 —x12724 1 0 =3 —Ti13w34 0 z12 713 714
0 0 T23 T24 0 1 T23 —I23T34 0 1 0 0
0 0 1 0 ’ 0 0 O T34 0 0 1 0 ’
0 O 0 1 0 0 O 1 0 0 0 1
for any x; ; € F (i < j), and the identity matriz.
Proof. Let
a1 Ti2 Ti13 Ti4
A— 0 az x23 724 € Ty(F)

0 0 as X34
0 0 0 a4

with A2 = 147 so that a? = aj; (1 S j S 4)7 and (a1 -+ (J,Q)Ilg = T12, ((ZQ -+ a3)x23 = T23,
(a3 +ag)r3s = w34, (a1 +a3)T13 +T12%23 = T13, (a2 + a4)To4 + T23T34 = Tog, (a1 +a4)T14 +
Z12%24 + 13034 = T14. Hence a; =0o0r 1 (1 < j <4).

Ifaj=0(1<j<4),thenz;; =0(1<i<j<4).
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Ifalzlandaj:O(ZS §4),thenm23=x34:0,x2420

If a9 = 1 and a; = 0 (] 75 ) then T34 — 0 and L1223 = T13, L12L24 — T14-

If az = 1 and a; = 0 (] ) then T12 — 0 and T23T34 — T24, 13L34 — T14-

Ifas =1and a; =0 (j #4), then x12 = x93 = 213 = 0.

Moreover, if a1 = as =1 and a3 = a4 = 0, then x5 = 234 = 0.

If a1 = agz = 1 and ag = a4 = 0, then 13 — —X12T23 and T4 — X23T34-

If a1 = a4 = 1 and a9 = az — 0, then T3 — 0 and T14 = —T12T24 — T13T34-

If ao = a3 =1 and a1 = a4 = 0, then x93 = 0 and x14 = T12T24 + T13T34.

If Ao = Qg4 = 1 and a1 = az = 0, then T13 — L1223 and To4 =— —I23T34.-

Ifa3:a4:1and a1 :CLQZO, thenx12:x34:0.

Furthermore, if a; = as = a3 =1 and a4 = 0, then x15 = x93 = 213 = 0.

If a] = as = a4 = 1 and Ao = 0, then T34 = O, T13 = —T12723, T14 — —T12T24.

If a1 = Q2 = A4 = 1 and as = 0, then T12 = O, T4 = —I23T34, T14 — —X13T34-

Ifa1 =0 and a2:a3:a4=0, thenx23:x34:x24:0.

Finally, if a; =1 (1 < j < 4), then z;; = 0 (1 <i < j < 4).

These cases correspond to the matrices in the statement in this order. ]

Denote by P,(F') the set of all idempotents of Ty(F'). Define the equivalence relation for
elements of P,(F') by that two elements of Py(F') are equivalent if there is a continuous path
within P;(F') between the two elements. Write by Eo(T4(F)) the set of all equivalence classes
by the equivalence relation. Denote by [- - -] the class of an idempotent P = (---) € Py(F).

Corollary 4.2. All classes of Eo(Ty(F)) are listed up as the zero class and

1 000 00 0 0 00 00
00 00 01 00 00 0 0
00 0 O0[” |00 0O (001 0|
0 0 0 0] 0 0 0 0] 0 0 0 0]
[0 0 0 0] 1 0 0 0] 1 0 0 0]
00 0 0 01 00 00 0 0
00 0 O[> |00 OO0 (001 0|
0 0 0 1] 0 0 0 0] 0 0 0 0]
1 0 0 0] [0 0 0 0]

00 0 0 01 00

00 0 0> |00 1 0]’

0 0 0 1] 0 0 0 0

[0 0 0 0] [0 0 0 0] (1 0 0 0]
01 0 0 00 0 0 01 0 0
000 0/ |00 1 o0f” (001 o0
0 0 0 1] 0 0 0 1] 0 0 0 0]
(1 0 0 0] [1 0 0 0] [0 0 0 0]
00 0 0 01 0 0 01 00
00 1 0/” |o0ooO0O0” (001 0|
0 0 0 1] 0 0 0 1] 0 0 0 1]

and the identity class.
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Definition 4.3. We now define the anti-diagonal transpose A" of A € Ty(F) by

Gy T34 T24 T14
0 a3 =x23 w13
0 0 a2 12
0 0 0 aq

Aat —

We denote by Ty(F')/ ~qt the set of matrices of Ty(F') identified under the anti-transpose.

Note that A% is just the transpose of JyAJy:

A% = (AT} = T, AN,

with Jy the 4 x 4 matrix of (1,4), (2,3),(3,2), (4,1) components as 1 and other components

as 0.

Corollary 4.4. All idempotents of Ty(F)/ ~at are

1 z12 113 714 0 w12 x12723
0 0 0 0 0 1 T3
0 O 0 0 |’ 0 O 0

0 0 0 0 0 0 0

1 0 x3 214 1 212 —w12w23
0 1 To3 X24 0 0 T3

0 0 O 0 ’ 0 0 1

0 0 O 0 0 0 0

1 z12 13 —%12724 — T13T34 0
0 0 0 T24 0
0 0 0 T34 ’ 0
0 O 0 1 0
1 0 0 T14 1

0 1 0 T24 0 0

0 0 1 T34 ’ 0 0 1

00 0 O 0 O 0

for any x; ; € F (i < j), and the identity matriz.

listed up as the zero matriz and

L1224

T23T34
T34
0

Ti12 X13 T12T24 + T13T34
1 0 T24
0 1 1‘34

0
Ti2 —T12223 —X12T24
Z23 3724
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Corollary 4.5. All classes of Eo(Ty(F)/ ~at) are listed up as the zero class and

1000 000 0
000 0 010 0
0000 000 O]
0000 |00 0 0
10 0 0] [1 0 0 0
010 0 000 0
000 0 001 0]
0000 [00 0 0
10 0 0] [o 0 0 0]
000 0 0100
000 0 001 0]
000 1 [0 0 0 0
10 0 0] [1 0 0 0]
010 0 000 0
0010 001 0]
0000 [00 0 1]

and the identity class.

Proposition 4.6. All square roots of T4(F) are listed up as, for any nonzero z;; € F,

+1 0 0 0 +1 x5 0 0 +1 0 0 0

0 +1 0 0 0 F1 O 0 0 +1 x93 0

0 0 +1 0 |’ 0 0o +£1 0 |’ 0 0 F1 0]’
0 0 0 =+£1 0 0 0 =1 0 0 0 +1
+1 0 0 0 +1 12 T13 0 +1 0 0 0

0 +1 0 0 0 +1 T23 0 0 +1 T23 T4
0 0 +1 w34 ’ 0 0 +1 0 ’ 0 0 F1 34 ’
0 0 0 =F1 0 0 0 41 0 0 0 +1
+1 x5 O 0 not compound in +1 z12 x13 O
0 F1 O 0 each bold and italic, 0 F1 x93 w04
0 0 +£1 x34 but compound ’ 0 0 £1 x34
0 0 0 F1 between both 0 0 0 =F1

with x1oTo4+x13T34 = 0, where possible cases in the following are written as matrix forms as
above, and there are impossible case as tuples as below, with non-zero components (x12, Ta3)
but x13 = 0 or with non-zero components (xa3, x34) but xo4 = 0 or with more other non-zero
components:

(217127 Z23; 3334),

($12,$23;$14,3334), ($12,$23;$24,3334),

($12,9€23;1’14), (1712,3323;9524)7
($12, €233 T14, $24),

or (12,2235 14, T2, T34),

and

(9623, 345113, 9014),

(1‘237$34;$12,$13,$14);

(33237 T34 3314),

or

(1‘23, T34 3313),

(1‘23,;1634;1‘12, $13)7
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and moreover,

£1 0 213 O +£1 0 0 0

0 £1 O 0 0 £1 0 294

0 0O F1 0 |’ 0 0 £1 o0 |’

0 0 0 =1 0 0 0 F1

and

+1 12 X13 0 +1 0 X113 0 +1 0 13 0
0 F1 O 0 0 £1 x93 O 0 +£1 O 0
0 0 =1 0]’ 0 0O =1 0]’ 0 0 F1 =34
0 0 0 =1 0 0 0 =1 0 0 0 =+£1
+1 12 X113 0
0 F1 0 0
0 0 F1 x34 ’
0 0 0 =+£1

and there is an impossible case with non-zero components (x13, Ta3, Tog, x34) but x14 = 0;

and
+1 0 0 0 +1 0 0 0 +1 x5 O 0
0 +1 T23 T4 0 +1 0 T4 0 :F]. 0 T4
0 0O F1 0 |’ 0 0 +1 z34|’ 0 0o 4+1 0 |’
0 0 0 =1 0 0 0 =F1 0 0 0 =1
+1 12 O O
0 :F]. 0 Y
0 0 F1 x34|’
0 0 0 =1

and there is an impossible case with non-zero compoents (x12, 13, Tag, To4) but x14 = 0; and
furthermore,

+1 0 0 X114 +1 12 0 X114 +1 0 0 14
0 +£1 0 0 0 F1 O 0 0 £1 0 194
0 0o +1 0 |’ 0 0 +1 0 |’ 0 0O +£1 0 |’
0 0 0 F1 0 0 0 F1 0 0 0 F1

+1 0 Tr13 T14 +1 0 0 T14
0 +£1 0 0 0 +£1 0 0

0 0O F1 0 |’ 0 0 £1 z34]’

0 0 0 F1 0 0 0 F1

+1 0 0 xua not compound in
0 £1I x93 0 each bold and italic,

0 0 F1 0 but compound ’

0 0 0 =F1 between both

and there are the cases which do not exist, with non-zero components:

(12, @13, T14, T4, T34) O  (T12, %13, T14, T23, T24, T34)
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(the full case); and moreover,

+1 0 a3 O not compound in +1 219 213 O

0 £1 0 1294 each bold and italic, 0 F1 0 x4

0 0 F1 O but compound ’ 0 0O F1 0 }|°
0 0 0 =F1 between both 0 0 0 =1
+1 0 T13 0 +1 0 X113 0 +1 12 X113 0

0 +1 T23 T24 0 :F]. 0 Y 0 :F]_ 0 T24

0 0O F1 0 |’ 0 0 F1 x34|’ 0 0 F1 x34)°
0 0 0 F1 0 0 0 =1 0 0 0 =1

and the two impossible cases with non-zero components (12,13, Tag, oa) and (13, Tag, Tog, T34);
and furthermore,

+1 0 Tr13 T14 +1 0 Tr13 T14
0 +1 0 T4 0 +1 To3 X224
0 0O F1 0]’ 0 0O F1 0]’
0 0 0 71 0 0 0 71

and there are five impossible cases with non-zero components:

($127$137m14>$24)a (-'1712’1'13;371473723’5(;24)7 (w12;3713737147x247$34)a

(213, T14, T2, X34), o0r (T13,%14, 223, T2d, T34);

and
+1 T12 X133 T14 +1 0 0 T14 +1 0 13 X14
0 :Fl 0 0 0 +1 0 T4 0 +1 23 0
0 0 F1 0 |’ 0 0 +£1 m34 |’ 0 0O F1 0 |’
0 0 0 =F1 0 0 0 =F1 0 0 0 =F1
+1 0 0 T14 +1 0 13 X14 +1 I12 0 T14
0 +1 To3 T4 0 +1 0 0 0 $1 0 T4
0 0O F1 0 |’ 0 0 F1 x34]’ 0 0o +1 0 |’
0 0 0 F1 0 0 0 =1 0 0 0 =+1
and finally,
+1 212 713 214 +1 212 713 T4
0 F1 203 0 0 F1 0 0
0 0 +1 0 ’ 0 0 :F]_ T34 ’
0 0 0 =1 0 0 0 =1
+1 0 0 X114 +1 12 0 14
0 F1 w23 724 0 F1 0 294
0 0 £1 x34]’ 0 0 F1 34
0 0 0 F1 0 0 0 =1

In total, with respect to the off diagonal part, there are 41 distinct possible cases and 23
distinct impossible cases in 64 = 25 all the cases. In more details, together with the diagonal
part of components compound or not, there are possible {24+3(23)+2(22)+2-2+2} +{2(23)+
3(22)+23+{3(2%) +2} + {23 +4(22)+2-2} +{2-2+4(2) } +{2(2) } +{4(2) +2(2%) +4(2)} = 166
cases.
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Proof. Let
ay Tiz T13 T4

0 ax x23 224
0 0 as T34 € T4 (F)
0

0 0 a4

A:

with A% = I, the 4 x 4 identity matrix, so that a? =1(1<j<4),and (a1 + az)r12 =0,
(ag + a3)$23 =0, (ag + a4)x34 =0, (a1 + a3)x13 + x19x93 = 0, (ag + &4)1‘24 + xo3x34 = 0,
(a1 + a4)x14 + x12294 + x13734 = 0. Hence aj = +1 (1 <7< 4)

If 212 # 0 and x;; = 0 otherwise, then a; + az = 0.

If x93 # 0 and x;; = 0 otherwise, then as + as = 0.

If 234 # 0 and z;; = 0 otherwise, then az 4+ a4 = 0.

If 215 # 0, wo3 # 0, then (a1 + as)x13 # 0 and a1 + az = 0 and as + ag = 0.

If 293 ?é 0, 34 7é 0, then ((12 + CL4)£E24 7é 0 and as + a3 =0 and ag + a4 = 0.

If 12 # 0, 234 # 0, and 2;; = 0 otherwise, then a; + a2 = 0 and a3 + a4 = 0.

There is another case with x10295x34 # 0, so that (a1 +as)x13 # 0 and (a2 +aq)zag # 0.

Note that x12x93 # 0 implies x13 # 0 and also that xo3x34 # 0 implies zo4 # 0, so that
several impossible cases with x1223 % 0 but 13 = 0 and with zs3x34 # 0 but x94 = 0 are
obtained.

Moreover, if 213 # 0 and z;; = 0 otherwise, then a; + a3 = 0. Also, if z24 # 0 and
245 = 0 otherwise, then as + as = 0.

And if 213 # 0, x12223 = 0, and x;; = 0 otherwise, then a; +as = 0 and either a; +ag or
as 4+ az = 0. In addition, there are two possible cases with x34 # 0 and another impossible
case with xs4 # 0.

And if oy # 0, wogxss = 0, and x;; = 0 otherwise, then as + a4 = 0 and either
as + a3 = 0 or ag + ag4 = 0. In addition, there are two possible cases with x12 # 0 and
another impossible case with x15 # 0.

Furthermore, if 14 # 0 and z;; = 0 otherwise, so that x12224 + z13234 = 0, then
a1 + a4 = 0. In addition, there are some other cases with x5 # 0 or xoy # 0; 13 # 0 or
234 # 0; 293 # 0 and more in what follows. But if (a; + a4)x14 # 0, then z15w94 # 0 if and
only if 13234 # 0, which implies a contradiction in sigh on the diagonal, so that impossible
are the case with (212,213, 14, T24, 34) and the full case.

Moreover, if z13724 # 0 and x;; = 0 otherwise, then a; + a3 = 0 and az + a4. In
addition, there are other four possible cases with several other non-zero components and
two impossible cases.

Furthermore, if 213214224 7# 0 and z;; = 0 otherwise, then a1 + a4 =0, a1 + a3z = 0 and
as + aq = 0. In addition, there are one more possible case with x435 # 0 and five impossible
cases by the contradiction of signs on the diagonal.

And there are the possible cases with ziox13714 # 0 or x14x24734 # 0 and with
T13T14%T23 7 00T X14223%24 7 0, and the possible cases with z13214234 7# 0 Or 19214724 # 0,
so that a; + a4 # 0.

Finally, there are four cases that complement the list above in all the cases, with a1 +a3 #
0, a1 + a4 # 0, ag + aq # 0, and a7 + a4 # 0, respectively.

These possible and impossible cases correspond respectively to the matrices and the
tuples in the statement in this order. O

Denote by R4(F) the set of all square roots of T4(F'). Define the equivalence relation
for elements of R4 (F') by that two elements of R4(F') are equivalent if there is a continuous
path (or a homotopy) within R4(F") between the two elements. Write by Ey(Tx(F')) the set
of all equivalence classes by the equivalence relation. Denote by [-- -] the class of a square
root R = (---) € Ry(F).
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Corollary 4.7. All classes of E1(T4(F)) are listed up as

1

—_

+ 0 0 0
8 :l(:) iol 8 (compound in order 16 cases).

0 0 0 =41

Proof. Note that any square root in the list of Proposition 4.6 has a homotopy class within
R4(F), equal to one of the 2* = 16 homotopy classes in the statement, by deforming off-

diagonal components to zero. ]

5 The general case by homotopy We denote by T,,(F) the algebra of all upper trian-
gular n x n matrices over F', where F' is either R or C. We give the topology on the algebra
by the Euclidean norm, for convenience, via T),(F) & Flt2+3+4+4n — p27 n(n+1) 5 4
space.

Denote by P, (F) the set of all idempotents of T,,(F'). Define the equivalence relation
for elements of P, (F') by that two elements of P,,(F') are equivalent if there is a continuous
path (or a homotopy) within P,(F) between the two elements. Write by Eo(T,,(F)) the
set of all equivalence classes by the equivalence relation. Denote by [---] the class of an
idempotent P = (---) € P,(F).

Let {ei}} ;-1 <; be the matrix unit for T,,(F).

Theorem 5.1. All classes of Eo(T,,(F)) are listed up as the zero class and the classes [e;]
for 1 < i <mn, and [e;; +e;;] for 1 <i < j <n, and [e;; + €j; + e for 1 < i < j <k,
and moreover, in general, [€;,i + €iyiy + -+ €i,4,] for 1 < iy <idg < -+ < iy < n with
3 <s<n-—1, and the class of the n x n identity matriz, and there are 2™ homotopy classes
in all.

Proof. One can prove the claim by induction. Indeed, let P € P,(F). Then there are two
cases of the block decomposition for P:

1 c 0 c
P= <0n1 Q) or P= <0n1 Q)

with @ € P,_1(F), calx (n—1) row vector and 0,_; the (n — 1) x 1 column zero vector,
such that Q% = Q and cQ = 0!,_; the transpose of 0,,_;. By induction, the class [Q] for Q
is one of the classes listed as in the statement in the case of n — 1. And then in both of two
cases, the class [P] can be one of the classes listed as in the statement just in the case of n,
by deforming ¢ to the 1 x (n — 1) row zero vector within P, (F') by a continuous path (i.e.
a homotopy). |

We define the semigroup (Eo(T,(F'))) generated by Eo(T,(F')) with the addition given
by [p|+q] = [p+q] for p,q € P,,(F) if p is orthogonal to ¢, i.e. if pg = 0 and by [p]+[p] = 2[p]
and by [p]+[q] = [p—pAql+2[pAql+[q—pAq]if pg # 0, where p A ¢ means the projection
corresponding to the intersection of their ranges. It follows that the semigroup (Eo (T, (F)))
becomes an additive semigroup with the zero class as the identity element by this operation.

We define an abelian group V5(T,,(F)) to be the Grothendieck group of the semigroup
(Eo(T)(F))). We say that Vo(T,,(F)) is the Vo-group of T,,(F').

Corollary 5.2. We obtain
Vo(Tu(F)) = Z".

137
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Proof. Indeed, the group Vo(T,,(F)) is generated by the classes [e11], [eaz], -+, and [enn],
and the isomorphism is given by the correspondence:

> ajless) < (ar,az, - ,an) € 27,

j=1

O

Corollary 5.3. The class of Banach algebras of all upper triangular matrices over real

or complex numbers is classified by their V-groups in the sense that T, (F) = T,,(F) as a
Banach algebra if and only if Vo(T,(F)) = Vo(Tin(F)) as a group.

Denote by R, (F') the set of all square roots of T),(F'). Define the equivalence relation
for elements of R, (F) by that two elements of R,,(F') are equivalent if there is a continuous
path (or a homotopy) within R,,(F') between the two elements. Write by E;(T,,(F)) the set
of all equivalence classes by the equivalence relation. Denote by [---] the class of a square
root R=(---) € R,(F).

Theorem 5.4. All classes of Ey(T,(F)) are listed up as
[(£e11) + (Fe22) + -+ - + (Fenn)],
2" classes in all.

Proof. One can prove the claim by induction. Indeed, let R € R, (F). Then there are two
cases of the block decomposition for R:

+1 ¢
=0 5)
with S € R,,_1(F), calx (n—1) row vector and 0,,_; the (n — 1) x 1 column zero vector,
such that S? = I,,_; the (n—1) x (n— 1) identity matrix and +c+cS = 0f,_; the transpose
of 0,—1. By induction, the class [S] for S is one of the classes listed as in the statement in
the case of n — 1. And then in both of two cases, the class [R] can be one of the classes

listed as in the statement just in the case of n, by deforming ¢ to the 1 x (n — 1) row zero
vector within R, (F') by a continuous path (i.e. a homotopy). O

We define the group Vi (T, (F)) generated by Ei(T,,(F)) with the multiplication given
by [r] - [s] = [rs] for r,s € R, (F). It follows that the group V;(T,(F)) is an abelian group
with the class of the n x n identity matrix I,, as the unit. We say that Vi (7T, (F)) is the
Vi-group of T, (F).

Let Zo = 7,/27 the cyclic group of order 2. Denote by ¢ the diagonal sum.

Corollary 5.5. We obtain
Vi(T,(F)) = (Zo)" = 11" Zs.

Proof. Indeed, the group Vi(T,,(F)) is generated by the classes [-1 ® I,,_1], 1 ® -1 @
I, 5], -, and [I,,—1 & —1], and the isomorphism is given by the correspondence:

W [ljm1@a; ® 5] =la1 @az @ ® ay)
— (ala az, - -- aan) € (ZQ)na
where each a; is 1 or —1 and I is removed to be empty. ]

Corollary 5.6. The class of Banach algebras of all upper triangular matrices over real

~

or complex numbers is classified by their V-groups in the sense that T,,(F) = T,,(F) as a
Banach algebra if and only if Vi(T,,(F)) =2 Vi(T,,(F)) as a group.
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6 Inductive limits by V-theory There is a canonical unital inclusion map %, ,, from
T, (F) to T, (F) if n divides m as m = kn for some k a positive integer, defined as iy, (p) =
@"p the k-fold diagonal sum. Note that there are some other embeddings in the diagonal.

Let Tioo(F) = im Ty, (F) be the inductive limit of {T;,; (F")}72; with unital connecting
maps iy, n,,, for an increasing sequence {n; }]O';l of positive integers such that n; divides
njy1 with njy1 = kjn,; for some k; a positive integer. Then T, (F) becomes a unital
Banach algebra as a Banach algebra completion of the infinite union U3, T, (F) of T, ().
Note that To, (F') does depend on the choice of a family of connecting maps in general, as
a non-trivial known fact (see [3, Exercises 6.3]).

Proposition 6.1. Let Too(F) = lim T, (F)). We obtain

Vo(Tool(F)) = i 2% = ln{Z[—] & - & Z[ 2]}

— n; n;
as inductive limits of scaled ordered groups, with [1] = limjﬁoo{[n%_] +- [Z—j}} as scale.
Also,
. Ny o e 1 n;
Vi(Too(F)) = 1im T Zo = lin{Zo[—] @ - © Zo[ 2]}

with [1] = limj oo {[L] + -+ [22]}.

Proof. The inclusion map 4y, »,,, induces the injective group homomorphism:

(injynjﬁ-l)* : ‘/O(TT' ( )) - ‘/0( ng+1(F))7
Jo- - oz[32]

s0 that (in, n,,, )« maps Z" = Z[-- ]69 -@L[L ] injectively to Z"mi+1 = 7[ -1 T

1
by Corollary 5.2, where we have (an,n,-“) (Ip ]) [@kip] for [p] € Vo(T,,(F)), so that the
class [p] is identified with [©% p] and with their limit class in Vo(Tso(F )) and each k-th
coordinate base for Z" is identified with n% for 1 <k < n;. Therefore,

Also, induced is the injective group homomorphism:
(inj,nj+1)* : Vl(Tnj (F)) - W(Tnj+1 (F))7
so that (in; n,,, )« maps 11" Zy = Zy[-- ] ®- B L[ ] injectively to IT"+1 7y & Zy[ L

-+ @ Zo[ =] by Corollary 5.5 and by 'the same reason as above.

nj+1

|®

’IL+1

Next, let lim ®%_, Ty, . (F) be a unital inductive limit of finite direct sums @&¥_, T, , (F)
with unital connecting maps iy x+1 such that each n; .41 is a weighted sum of n; ;, so that
Njkt1 = Zle ms kNsk for some integers msy > 0 and iy py1(2;) = @’s“:l[@;n‘l'”xl] for
x; € Ty, , (F). The diagram for such connecting maps is known as the Bratteli diagram (cf.

[3] and [4]).

Proposition 6.2. We obtain

Vo(lim @ T, () & I @f_y2+ = el (@1242( "))}
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”J‘,k[ s

as inductive limits of scaled ordered groups, with [1] = limy, oo {®%_, (BL2] [ —|)} as scale.

Also,

. ~ 13 n; ~ 13 g, 5
Vil £, (F)) & Dy 0], (22)"* 2 (@] (242 )

with [1] = limy oo {5_, (37223 [2])}.
Moreover, the V-theory groups Vi or Vi with the scaled unit classes are complete in-
variants for unital inductive limits of finite direct sums of upper triangular matriz Banach

algebras.

Proof. The last consequence follows from the classification theorem for unital AF C*-
algebras which contain canonically those non self-adjoint inductive limits as only subal-
gebras, by the same way as in [3]. O

On the other hand, let {n; }‘]”;1 be an increasing sequence of positive integers. We now
denote by K. (F) the inductive limit of T),;(#') by the non-unital inclusion maps given
by x = 2 ® Oy, ,—n, for x € Ty, (F), where On;,y—n; is the zero square matrix of size
n;y1 —n;. Then Ko (F') becomes a Banach algebra as a Banach algebra completion of the
infinite union of 7),;(F). Note that K. (F) does not depend on the choice of a family of
connecting maps. Also, K (F') is a non-unital algebra, so that it has no square roots.

For a non-unital Banach algebra B, one may define its Vj-group to be that of the
unitization B* by F, so that V;(B) = V1 (B™T), as one way.

But, on the other way, for a non-unital Banach algebra which can be written as an
inductive limit of unital Banach algebras, which may or not depend on a choice of a family
of connecting maps, we this time define its V-theory group V; to be inductive limits of their
V-theory groups Vi, so that the continuity in inductive limits do hold even in the non-unital
case, depending on the choice.

Proposition 6.3. We obtain

Vo(Koo(F)) & lim 6™ 7,

and Vi (K (F)) = h_H)l‘/l(Tnj (F)) = lim(Z2)™ .
Proof. Note that
Vo(Ksol(F)) = Vo(lm T, (F)) = lim 6792,
where n; — oo as j — oo. O]

In general,

Proposition 6.4. Our Vy-theory group is always continuous, with respect to inductive
limit Banach algebras, and the Vi-theory group is continuous only for unital inductive limit
Banach algebras with unital connecting maps.

Proof. Tt should follows from continuity of K-theory groups for inductive limits of C*-
algebras (see [5]), by the similar way. But omitted. O

Remark. A more general theory for V-theory groups may be continued to be investigated
somewhere else in the future.

Let {N;}72, be an increasing sequence of positive integers. Denote by h_n,1@§:1Tnj (F)
a canonical inductive limit of the block diagonal sums ®%_,T,,; (F) of T,,,(F) (1 < j < k)
in T, (F) with 2?21 n; = N and ny = N — Ny—1 and n; = Ny, where the non-unital
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connecting maps are given by x +— x @ 0, , for x in the k-fold diagonal sum. Then the

inductive limit is non-unital and is an infinite direct sum of block diagonal components, so

that lim ®%_, T, (F) = @2, T, (F). As well, let lim T, (F') be a non-unital inductive limit
— J J J iy k

of Ty, (F') by the same way as above.

Proposition 6.5. We obatin
Vo(lim &5, T, (F)) 2 lim @4, 2 = lim ZV = Vy(1im T, (F)),
as an inductive limit of groups, but not as an inductive limit of scaled ordered groups, with
(1] = Jim {[1n,] 4+ (L} ond (1) = Jim {[1w,]}
as the scales of the respective (extended) unit classes. Also,
Vi(lim @5, T, (F)) = lim &5, (Zy)" = lim(Zy) ™ 2 Vi (lim Ty, (F))

as an inductive limit of groups, but not as an inductive limit of scaled oredered groups.
Consequently,
lim &, Ty, (F) % lim T, (F).

Proof. The last consequence follows from the classification theory for non self-adjoint Ba-
nach algebras viewed as sub-Banach algebras of AF C*-algebras and UHF-algebras (see [3]
in details). O

To distinguish non-unital inductive limits of block diagonal sums of {7, (") }52; for any
sequence {n; };";1 of positive integers, we introduce a notion as follows. We may say that the
sequence {n;}22, of positive integers is a sequence of block diagonal sums of {7}, (F)}3;.
We define that two sequences {a,}°2, and {b,}52; of positive integers is equivalent up
to inductive permutation if for any m a positive interger, there are positive intergers k
and k" such that k, k" > m and the finite sequence {aj, - ,ax} is the same sequence as
{b1,- -+, by} by subtracting finitely many [ and I’ elements so that k — 1 =k’ — ' = m and
by a permutation of m elements left, so that the respective unions of left elements are the

respective sequences.

Proposition 6.6. Two non-unital inductive limits of block diagonal sums of {T),, (F') 521
and {Tyn,; (F)}52, for two sequences {n;}32, and {m;}32, of positive integers, respectively,
are isomorphic as Banach algebras if and only if these sequences are equivalent up to in-

ductive permutation.

Proof. The equivalence between those sequences {n;}3%, and {m;}32 implies that there ex-
ist isomorphisms of corresponding finite block diagonal sums of {7, (F)}52; and {1}, (F)}32,
by permutation of their direct summands, inductively. Therefore, there exists an isomor-
phism between those inductive limits by the density of unions of isomorphic finite block
diagonal sums in the inductive limits.

Conversely, the isomorphism denoted by ® between the inductive limits denoted by J
and R implies that each finite block diagonal sum of J is mapped into a finite block diagonal
sum of R by ®. Therefore, it follows that there is the equivalence between the sequences. [

Let J be a non-unital inductive limit of block diagonal sums of {T},;(F")}32; for a se-
quence {n;}32, of positive integers. Then the (inductive or extended) unit I associated to
J (but not in J) is equal to

@@?zlfnj, I, € Ty, (F) the units.
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We say that the limit is the inductive partition of the (extended) unit I. Or we may call it
the scale of the inductive limit J, and write 5. Similarly as in the case of sequences above,
we define that two inductive partitions lim @?zlfnj and lim @h_ Iy, of the respective units
associated to two inductive limits £ and R of {7}, (F)}32; and {Ty, (F)}52,, respectively,
are equivalent up to inductive permutation if for any m a positive interger, there are positive
intergers k and &k’ such that k,k’ > m and the element @?lenj is identified with the

element @?;ij by subtracting finitely many [ and [’ diagonal sum components so that
k—1=Fk —1 =m and by a permutation of m diagonal sum components left, so that the
respective left components add up to the respective units. In this case, we write X5 ~ Xg.

Corollary 6.7. Non-unital inductive limits 3 and & of block diagonal sums of {T,,,(F) G2
and {Tyn,; (F)}52, for two sequences {n;}32, and {m;}32, of positive integers, respectively,
are isomorphic as Banach algebras if and only if the respective inductive partitions of units

hi)n@;?:llnj and h_n}l@lefmj are equivalent up to inductive permutation, i.e., Xy ~ Xg.

Proof. The respective inductive partitions of units lim 69’?:1]”. and lim @"lelm. are by

— J — J
definition, equivalent up to inductive permutation if and only if the sequences {n; }?’;1 and
{m;}32, are equivalent up to inductive permutation.

Remark. Those isomorphisms between the inductive limits are given by permutations,
that are essentially equivalent to taking unitary equivalences, that are not allowed in the
inductive limits. Namely, the isomorphisms exist in the self-adjoint world. If not allowed,
i.e., in the non self-adjoint world, the inductive limits can not be isomorphic except the
trivial cases. Note also that block diagonal sums are essentially equivalent to direct sums.

We may call the unital or non-unital, inductive limits of finite direct sums of the upper
triangular matrix algebras as ATM algebras, in the sense of being approximately triangular
matrix algebras. As a summary,

Corollary 6.8. Two non-unital ATM algebras are isomorphic if and only if their scales are
equivalent in our sense, where we suppose that permutations are allowed in isomorphisms.

As well,

Corollary 6.9. Two unital or non-unital ATM algebras are isomorphic if and only if their
scaled V-theory groups are isomorphic.

Proof. Note that the unital case can be proved within the same context as in the non-unital
case above, without using the classification result in C*-algebras. O

Remark. This is a sort of classification result in non self-adjoint Banach algebras corre-
sponding to that of AF C*-algebras. However, our method for the classification is similar
to that of the C*-algebra case, and the results should be the same essentially as contents.
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g(z)-NIL CLEAN RINGS
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ABSTRACT. An element in a ring R with identity is called nil clean if it is the sum of an
idempotent and a nilpotent, R is called nil clean if every element of R is nil clean. Let
C(R) be the center of a ring R and g(z) be a fixed polynomial in C(R)[z]. Then R is
called g(x)-nil clean if every element in R is a sum of a nilpotent and a root of g(z). In this
paper, we investigate many properties and examples of g(z)-nil clean rings. Moreover, we
characterize nil clean rings as g(x)-nil clean rings where g(z) € (z—(a+1))(z—b)C(R)]x],
a,be C(R) and b—a € N(R).

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity and all modules are
unitary. The group of units, the set of idempotents and the set of nilpotent elements in R
are denoted by U(R), Id(R) and N(R) respectively. Following Han and Nicholson [11], an
element r € R is called clean if r = e + u for some e € Id(R) and u € U(R). A ring R is
called clean if every element of R is clean. The notion of clean rings was first introduced
by Nicholson [14] in 1977 in his study of lifting idempotents and exchange rings. Since
then, some stronger concepts have been considered (e.g. uniquely clean, strongly clean
and some special clean rings), see [4, 6, 15, 17, 18, 19, 20]. As well as some weaker ones
(e.g. almost clean and weakly clean rings), see [1]. Recently, in 2013, Diesl [9] studied a
stronger concept than clean rings, namely, nil-clean rings. They are rings in which every
element is a sum of an idempotent element and a nilpotent element. In fact, nil clean rings
were firstly presented in [12] as a special case of rings in which every element is a sum of
nilpotent and potent elements.

Let C(R) denotes the center of a ring R and g(x) be a polynomial in C(R)[z]. Then
following Camillo and Simén [5], R is called g(x)-clean if for each r € R, r = s + u where
u € U(R) and g(s) = 0. Of course (z* — x)-clean rings are precisely the clean rings.

Nicholson and Zhou [16] proved that if g(z) € (z — a)(z — b)C(R)[z] with a,b € C(R)
and b,b —a € U(R) and pM is a semisimple left R-module, then End(grM) is g(x)-clean.
Recently, Fan and Yang [10], studied more properties of g(x)-clean rings. Among many
conclusions, they prove that if g(z) € (z — a)(z — b)C(R)[z] where a,b € C(R) with
b—a € U(R), then R is a clean ring if and only if R is (x — a)(z — b)-clean.

In this paper, we define and study g(z)-nil clean rings as a special class of g(z)-clean
rings. For aring R and g(z) € C(R)[z], an element r € R is called g(z)-nil clean if r = s+b
for some b € N(R) and g(s) = 0. Moreover, R is called g(z)-nil clean if every element in
R is g(z)-nil clean.

2000 Mathematics Subject Classification. 16N40, 16U99.
Key words and phrases. clean ring, g(z)-clean ring, nil clean ring, g(x)-nil clean ring.
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In section 2, we study many properties of g(x)-nil clean rings analogous to those of nil
clean and g(x)-clean rings. In particular, for a commutative ring R, we justify a condition
under which the the amalgamated duplication R x I of aring R along an ideal I is g(z)-nil
clean. Also, we consider the idealization R(M) of any R-module M and prove that R(M)
is g(x)-nil clean ring if and only if R is so.

In section 3, we study (22 + cx + d)-nil clean rings where ¢,d € C(R). We give many
characterizations for a nil clean ring R in terms of some g(z)-nil clean rings. In particular
for n € N, we focus on (2% — (n — 1)z)-nil clean and (2" — z)-nil clean rings.

2. g(x)- NIL CLEAN RINGS

In this section, we give some properties of g(x)-nil clean rings which are similar to those
of g(x)-clean rings.

Definition 2.1. Let R be a ring and let g(z) be a fixed polynomial in C'(R)[z]. An element

r € R is called g(z)-nil clean if » = b+ s where g(s) = 0 and b is a nilpotent of R. We say
that R is g(z)-nil clean if every element in R is g(x)-nil clean.

Clearly, nil clean rings are (2 — z)-nil clean. However, there are g(z)-nil clean rings
which are not nil clean. For example, it can be easily proved that Z3 is an (2* + 2z)-nil
clean ring which is not nil clean. For a non commutative g(x)-nil clean ring we have the
following example.

a 2b
0

for any =,y € R, (v — 2?)(y — y?) = 0. Hence, R is (x — x?)?-nil clean.

Example 2.2. Consider the ring R = ta,b,c € 24} .Then one can see that

Proposition 2.3. Fvery g(x)-nil clean ring is g(z)-clean ring.

Proof. Suppose R is a g(x)-nil clean ring and let x € R. Then z — 1 = b+ s where b
is nilpotent and g(s) = 0. Thus, x = (b+ 1) + s where b+ 1 € U(R). Therefore, R is
g(x)-clean. O

The converse of Proposition 2.3 is not be true in general. For example, one can verify
that Zig is (7 — z)-clean ring which is not (27 — x)-nil clean ring.

Let R and S be rings and ¢ : C(R) — C(S) be a ring homomorphism with ¢(1z) = 1s.
For g(z) = Zazx € C(R)[z], we let g*(z) = f}ﬁ(ai)xi € C(9)[z]. In particular, if
o) € Zla], then g°(x) = (). -

Proposition 2.4. Let § : R — S be a ring epimorphism. If R is g(x)-nil clean, then S is

g*(x)-nil clean.
Proof. Let g(x Zazm € C(R)[z] and consider g*(z) := i@ (a;)z' € C(9)[z]. For every
=0

a € S, there eX1st r E R such that 6(r) = «a. Since R is g(;r) nil clean, there exist s € R
and v € N(R) such that r = u+s and g(s) = 0. Soa = 0(r) = 0(u+s) = 0(u) +0(s) with
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O(u) € N(S) and ¢g*(0(s)) = Zﬁ(al)( (5)) = Zﬁ%@(ai)ﬁ(si) = EG(aisi) =40 <i2:)aisi> =
0(g(s)) = 0(0) = 0. Therefore S is ¢*(x)-nil clean. - O

Proposition 2.5. If R is a g(z)-nil clean ring and I is an ideal of R, then R = R/I is
g*(x)-nil clean. Moreover, The converse is true if I is nil and the roots of g*(x) lift modulo
1.

Proof. For the first statement, we use Proposition 2.4 and the fact that ¢ : R — R/I
defined by 0(r) =7 = r + I is an epimorphism. Now, suppose R/I is g*(x)-nil clean and
let 7 € R. Then 7 = 5+ b where b € N(R) and ¢*(3) = 0. Since the roots of g*(z) lift
modulo 7, we may assume that s € R with g(s) = 0. Now, r — s is nilpotent modulo T
and [ is nil imply that » — s is nilpotent. Therefore, R is g(z)-nil clean. O

k

Proposition 2.6. Let Ry, Rs, ..., Ry, be rings and g(x) € Z[z]. Then R = [] R; is g(x)-nil
=1

clean if and only if R; is g(x)-nil clean for all i € {1,2,...,n}.

Proof. =) : For each i € {1,2,...,k}, R; is a homomorphic image of H R; under the

projection homomorphism. Hence, R; is g(x)-nil clean by Proposition 2. 4

k
<) : Let (zq,%9,...,x) € [ R; . For each i, write x; = n; + s; where n; € N(R;),

i=1
g(s;) = 0. Let n = (ny,ng, ...,ni) and s = (s1, 2, ..., S¢). Then it is clear that n € N(R)and
g(s) = 0. Therefore, R is g(z)-nil clean. O

In general, the ring of polynomials R[¢] over a ring R is not g(x)-clean. This is also true
for commutative g(z)-nil clean rings.

Proposition 2.7. If R is any commutative ring, then the ring of polynomials R[t] is not
nil clean (and hence not (z* — )-nil clean).

Proof. Since R is commutative, N (R[t]) = {ap+art+ast?+- - -+at* | ag,as,- -+ ,ar € N(R)
and k € N}. If ¢ is nil clean, we may write t = ag + a1t + agt® + - - + ait* + e where
e € Id(R[t]) = Id(R) and ag,aq, - ,a;, € N(R). Hence, 1 = a; € J(R) which is a
contradiction. Therefore R[t] is not nil clean. O

Let 0 : R[[t]] — R be defined by 6(f) = f(0). As a consequence of Proposition 2.3, if
R[[t] is g*(z)-nil clean, then R is g(x)-nil clean.

Let R be a commutative ring and M an R-module. Nagata [13] introduced the ideal-
ization R(M) of R and M. The idealization of R and M is the ring R(M) = R & M
with multiplication (r1,mq)(ra,mg) = (ri7r9, 71ma + 72my). This construction has been
extensively studied and has many applications in different contexts, see [2] and [3].

Note that if (r,m) € R(M), then (r,m)* = (r* kr*~'m) for any k& € N. The proof of
the following lemma is immediate.

Lemma 2.8. Let R be a commutative ring and M an R-module. Then (b, m) is nilpotent
in R(M) if and only if b is nilpotent in R.
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We recall that R naturally embeds into R(M ) via r — (r,0). Thus any polynomial
g(x) = Zazw € R[x] can be written as g(z) = Z(ai70)xi € R(M)[x] and conversely.

=0

Theorem 2.9. Let R be a commutative ring and M an R-module. Then the idealization
R(M) of R and M is g(x)-nil clean if and only if R is g(x)-nil clean.

Proof. =) : Note that R ~ R(M)/(0 @ M) is a homomorphic image of R(M). Hence R is
g(x)-nil clean by Proposition 2.4.

<) : Let g(z) = Za,x € R[z] and r € R. Write r = b+ s where b € N(R) and

g(s) = 0. Then for m € M, (r,m) = (b,m) + (s,0) where (b,m) € N(R(M)) by Lemma
2.8. Moreover, we have

9(5,0) = ap(1,0) 4+ ai(s,0) + as(s,0)* + ... + a,(s,0)"
= ao(1,0) + ai(s,0) + ax(s%0) + ... + a,(s",0)
= (ao + a5+ ays® + ... +a,s",0) = (g(s),0) = (0,0).

Therefore, R(M) is g(x)-nil clean. O

Let R be a commutative ring with identity 1 and let I be a proper ideal of R. The
amalgamated duplication of R along [ is defined as R x [ = {(a,a+ i) :a € Rand i € I}.
It is easy to check that R x I is a subring with identity (1,1) of R x R (with the usual
componentwise operations). Moreover, ¢ : R — R x I defined by ¢(a) = (a,a) is a ring
monomorphism and so R = {(a,a) : « € R} C R x I. For more properties of R x I, one
can see [7] and [8]. In the following theorem, we investigate the g(z)-nil cleanness of R x 1.

Theorem 2.10. Let R be a commutative ring, I be a proper ideal of R and g(x) =
Sarz® € Rlx] . If R is g()- nil clean ring and I € N(R), then R % I is g(x)- nil clean
k=0

ring. Moreover, the converse is true if R w I is domain-like (every zero divisor of R x I
is milpotent).

Proof. Assume R is g(z)-nil clean. Let (a,a + i) € R x I and write a = b + s where

b€ N(R) and g(s) = 0. Then (a,a+1i) = (b+s,b+s+1i) = (b,b+1) + (s,s). Since

I € N(R), then (b,b+i) € N(R x I). Moreover, we have g((s,s)) = >_ (ax, ax)(s,s)* =
k=0

S (ag, ag)(s¥, s%) = (32 aps®, S axs®) = (0,0). Therefore, R x I is g(z)-nil clean.
k=0 k=0 k=0

Conversely, suppose that R x [ is domain-like g(z)-nil clean. Let (0)xI = {(0,a) : a € I}.
Then clearly (0) x [ is an ideal of R x I with R x I/(0) x [ ~ R. Thus, R is g(z)-nil clean
by Proposition (2.3). Let ¢ be a nonzero element in I and consider (0,7) € R x I . Then
(0,4)(2,0) = (0,0) and so (0, ) is a zero divisor in R x I. By assumption, (0,7) € N(R x I)
and so (0,7)™ = (0,0) for some m > 1. Therefore, i™ = 0 and I C N(R). O

The proof of the following Lemma is straightforward.

Lemma 2.11. Let R be a ring. For any n € N, we have
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Nil(R) R R - R R
0  Ni(R) R -~ R R
N(T,(R)) = : : RS : : where T, (R) is the upper
0 0 0 Nil(R) R
0 0 0 0 Nil(R)

triangular matrixz ring over R.

Theorem 2.12. Let R be a ring, g(z) = > a;x" € C(R)[z] and n € N. Then R is g(x)-nil
i=0
clean if and only if T,(R) is g(x)-nil clean.

Proof. <) : Define f : T,,(R) — R by f(A) = ai; where A = (a;j) € T,,(R). Then clearly
/ is a ring epimorphism and R is g(x)-nil clean.

=) : Suppose that R is g()-nil clean and let

ap; a2 a3 ... Aip-—1 Q1n
0 ax axs ... a2 n—1 Q2n
A= : : o : : € T,(R). Since R is g(x)-nil clean, then
0 0 0 cev Qp—1n-1 Gp-1n
o o0 0 ... 0 G,
for every 1 < i < n, there exist u; € N(R) and s;; € R such that a; = u;; + s;; with
U bz bz ... b1,n71 bin
0 up boz ... b2,n—1 bay
g(si) = 0. Write A = B + C where B = : : o : : and
0 0 0 cee Up—1n—1 bnflvn
o o0 o0 ... 0 Unn
S11 0 .. 0
0 S99 ... 0
cC=1| . . . e Then B is nilpotent in T,,(R) and g (C') = aol,, + a;C + ... +
0 ... Spn
9(811) 0 SN 0 0 0 0
0 g(Sgg) e 0 0 0 0
Ay C™ = : : . 0 = : ol Therefore, T,,(R) is g(x)-nil
0 0 e g(Sun) 00 0
clean. 0

Theorem 2.13. Let A and B be rings and let M =g M, be a bimodule. If the formal
triangular matriz T = [ ]é[ g ] is g(x)-nil clean, then both, A and B are g(x)-nil clean.

A0
Proof. Let T' = M B

[a 0} = [nl X ]Jr[sl 0 ] where [nl 0 ] EN(T)andg({S1 0 ])0
m b Ny N3 Sy S3 Ny N3 Sy S3

Then a = ny + s; and b = n3 + s3. It is easy to see that n; € N(A), ny € N(B) and
g(s1) = g(s3) = 0. Therefore, A and B are g(z)-nil clean. O

be g(x)-nil clean. For every a € A, b € B and m € M, write
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3. (2% + cx + d)-NIL CLEAN RINGS

In this section we first consider g(z)-nil clean rings where g(z) = (x — (a + 1))(z — b),
a,b € C(R). Then we turn to some special types of polynomials such as 2" — 1, 2" — x
and 2" + 2.

For a ring R, a semisimple R-module zpM and a,b € C(R), Nicholson and Zhou [16]
proved that if g(z) € (x — a)(z — b)C(R)[z] where b,b —a € U(R), then End(gM) is
g(x)-clean. More recently, Fan and Yang proved the following.

Lemma 3.1. [10]. Let R be a ring, a,b € C(R) and g(z) € (z — a)(x — b)C(R)[z] where
b—a€U(R). Then

(1) R is clean if and only if R is (v — a)(x — b)-clean

(2) If R is clean, then R is g(z)-clean.

Now, we prove the following main result.

Theorem 3.2. Let R be a ring and a,b € C(R).Then R is nil clean and b — a € N(R) if
and only if R is (x — (a + 1))(z — b)-nil clean.

Proof. =) : Let r € R. Since R is nil clean, then z;_(g)tll) = e+ u , where ¢ = e and

uw € N(R). Hence, r =e((b—a) — 1)+ (a+ 1)+ u((b—a) — 1) = t + v where ¢ is a root of
(x —(a+1))(x—b) and v € N(R). Indeed,
le(b—a)=1)+(a+1) = (a+1)][e(b—a) = 1)+ (a+1) = b]
= ((b—a)—1)—e((b—a)—1)((b—a)—1)=0

Thus, R is (z — (a+ 1))(z — b)-nil clean.

<) : Conversely, suppose R is (z — (a + 1))(z — b)-nil clean. Then a = s + u where
(s—(a+1)(s—b)=0and u € N(R). Thus, s —a € N(R) andso s —a—1€ U(R). It
follows that s = b and b — a € N(R). Now, let » € R. Since R is nil (x — (a + 1))(z — b)-
clean, then r((b —a) — 1) + (a + 1) = s + u where s is a root of (z — (a 4+ 1))(z — b) and

u € N(R). Hence, r = % + a1 Where g—— € N(R) and

<s—(a+1)>2 (5= (a+1)(s—b+b—(a+1))

(b—a)—1 ((b—a)—1)?
_ =@+ =b+s—(atD)b—(a+1) s—(at+]1)
((b—a)—1)? (b—a)—1"
Therefore, R is nil clean. O

Next, we give some special cases of Theorem 3.2.

Corollary 3.3. Let R be a ring and a € C(R). Then R is nil clean if and only if R is
(22 — (2a + 1)z + a(a + 1))-nil clean.

Proof. We just take a = b in Theorem 3.2. O

For example, we conclude that (2% — 3z 4 2)-nil clean rings, (z? — 5z + 6)-nil clean rings
and (2? — 7z + 12)-nil clean rings are equivalent to nil clean rings.
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Lemma 3.4. [9]. If a ring R is nil clean, then 2 is a (central) nilpotent element in R.

As 2 is a central nilpotent in any nil clean ring R, then 2n € N(R) for any integer n.
So the, previous lemma provides us with more characterizations of nil clean rings.

Corollary 3.5. Let R be a ring and n be any integer. For any b € C(R), the following
are equivalent

(1) R is nil clean.
(2) R is (#* — (2b+ 1 — 2n)x + (b* + b(1 — 2n))-nil clean.
(3) R is (2% — (2b+ 1 + 2n)z + (b* + b(1 + 2n))-nil clean.

Proof. In Theorem 3.2, we take a = b—2n to get (1)<(2) and a = b+2n to get (1)<(3). O

In particular, a ring R is nil clean if and only if R is (z* — (2n + 1)x)-nil clean (
(%4 (2n—1)z)-nil clean). For example, (22 +z)-nil clean, (22 +3z)-nil clean, (z* — 3z)-nil
clean and (2% — 5x)-nil clean rings are all equivalent to nil clean rings.

Remark 3.6. The equivalence of (22 + z)-nil clean rings and nil clean rings is a global
property. That is, it holds for a ring R but it may fail for a single element. For example,
1 € Zi9 is nil clean but it is not (2% + z)-nil clean in Zs.

Remark 3.7. In [10], The authors give more characterizations of clean rings in terms of
g(x)-clean rings under the additional assumption that 2 is a unit. But in a nil clean ring
R, if we assume that 2n + 1 € N(R) for some integer n, then 1 € N(R) by lemma 3.4.
Thus, 1 =0 and R = {0}.

Definition 3.8. A ring R is called g(z)-nil*clean if every 0 # r € R, r = s + b where
b€ N(R) and g(s) = 0.

Of course, every g(x)-nil clean ring is g(x)-nil*clean. On the other hand, the following
are examples of g(x)-nil*clean rings which are not g(x)-nil clean.

Example 3.9. Let p be a prime integer. Then the field Z, is (27~ — 1)-nil*clean which is
not (zP~! — 1)-nil clean.

Proof. Let 0 # r € Z,. Then r = 0+ where 0 € N(R) and *~! — 1 =0 in Z, by Fermat
Theorem. Hence, Z, is (##~* — 1)-nil*clean. On the other hand, since Z, is reduced, then
0 can’t be written as a sum of a nilpotent and a root of z*~' — 1. Therefore Z,, is not
(2P~! — 1)-nil clean. O

Next, we give a general example.

Example 3.10. Let R be anon zero ring, n € Nand g(z) = 2"+ a,_12" ' +...+a1z+aqg €
C(R)[z] where ap € U(R). Then R is not g(x)-nil clean. In particular, If R is any non
zero ring and n € N, then R is not (2™ — 1)-nil clean.

Proof. Suppose R is g(x)-nil clean and write 0 = s+b where b € N(R) and g(s) = 0. Then
s(s" 14+ a, 15" 2+ ... +a;) = —ap € U(R) and so s € U(R). Since also s = —b € N(R),
then R = {0}, a contradiction. O
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Remark 3.11. Let R be a ring and g(x) € C(R)[x], The concepts of g(z)-nil clean and
g(x)-nil*clean coincide if there is a non unit root of g(x) such that 0 = s+ b for some
b € N(R). In particular, they coincide if all roots of g(x) are non units.

Proposition 3.12. Let R be a ring and n € N. Then R is (2" — 1)-nil*clean if and only
if for every 0 £r € R, r =v +b where b € N(R) and v" = 1.

Proof. =) Let 0 # r € R and write r = s+b where b € N(R) and s —1 = 0. Then s" =1
and the result follows.

<) Conversely, let 0 # r € R and write = s + b where b € N(R) and v" = 1. Then
clearly v is a root of 2™ — 1 and R is (2" — 1)-nil*clean. O

It is well known that if a ring R is commutative, then the sum of a nilpotent element
and a unit in R is again a unit. Thus, we have the following Corollary.

Corollary 3.13. Any commutative (x™ — 1)-nil*clean is a field.

Proposition 3.14. Let R be a ring and 2 < n € N. If R is (2"~ — 1)-nil*clean, then R
is (" — x)-nil clean.

Proof. If r = 0, then clearly r is an (2™ — z)-nil clean element. Suppose 0 # r € R. Then
r =uv+b where b € N(R) and v"~! = 1 and so v is a root of " — z. Therefore, R is
(™ — x)-nil clean. O

The converse of Proposition 3.14 is true under a certain condition.

Theorem 3.15. Let R be a ring and let 0 # a € R such that (a+1)R or R(a+1) contain
no non trivial idempotents. Then a is (™ — x)-nil clean if and only if a is (x"~! — 1)-nil
clean. In particular, if for every a € R, (a + 1)R or R(a + 1) contain no non trivial
idempotents, then R is (2™ — x)-nil clean if and only if R is (2"~ ' — 1)-nil*clean

Proof. <) : We use Proposition 3.14.

=) : Suppose a is (2" — x)-nil clean and (a + 1)R contains no non trivial idempotents.
Then a = s+ b where b € N(R) and s" = s. Now, as"! = s+ bs""! and so a(l —s"!) =
b(l—s"1). Set y=1+4b. Theny € U(R) and (a+1)(1 —s" 1) = (b+1)(1 —s"!) =
y(1—s"1). This implies that y(1—s""1)y™! = (a+1)(1—s"1)y~! € (a+1)R. obviously,
y(1—s""1)y~! is an idempotent. If 1 — "1 £ 0, then y(1 — s" 1)y~! #£ 0. Thus, (a +1)R
contains a non trivial idempotent, a contradiction. If R(a + 1) contains no non trivial
idempotents, then we get a similar contradiction. Therefore, 1 —s""! = 0 and s is a root of
2"t —1. Thus, a is (z"' —1)-nil clean. The other part of the Theorem follows clearly. [J

Recall that for a ring R and n € N, U,,(R) denotes the set of elements in R that can be
written as a sum of no more than n units. If R is (2" — 1)-nil*clean and 1 # r € R, then
r—1=wv+0bwhereb € N(R) and v" = 1 and so r = v+ (b+ 1) € Uy(R). Since also
clearly 1 € Uy(R), then R = Uy(R). This result can be generalized as follows.

Proposition 3.16. let R be a ring, n € N and g(z) = 2™ + ap_12™ ' + ...+ a1z + ag €
C(R)[x] where 1 £ ag € N(R). If R is g(x)-nil*clean, then R = Uy(R). In particular, if R
is ("2 + 2" 3 + ..+ x + 1)-nil* clean, then R = Us(R) is (2" — x)-nil clean.
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Proof. Let 1 #r € R and write r —1 = s+b where b € N(R) and s"+a,_18" ' +...+a;s+
ag = 0. Then r = s+ (b+1) where b+ 1 € U(R). Moreover, s(s" ' +a, 15" 2+ ...+a;) =
—ag € U(R) and so s € U(R). Thus, r € Uy(R). Since also 1 € Uy(R), then R = Us(R).
In particular, suppose R is ("2 + 2" + ... + 2 + 1)-nil* clean, then R = Uy(R) by
taking ag = 1 € U(R). Now, if r = 0, then r is clearly an (2" — x)-nil clean element. Let
0# 7 € R and write r = s+ b where b € N(R) and s" 2 +s" 3+ ...+ s+ 1=0. Then
s"—s=s(s—1)(s"?+s"3+..+s+1)=0and so Ris (z" — z)-nil clean. O

By choosing n = 4 in the previous proposition, we conclude that if R is (22 + z + 1)-
nil*clean, then R = Us(R) is (z* — )-nil clean.

In the next Proposition, we determine conditions under which the group ring RG is
(™ — x)-nil clean for some integer n.

Proposition 3.17. Let R be a Boolean ring and G any cyclic group of order p (prime).
Then RG is (" — )- nil clean ring.

Proof. Let G =< g > be a cyclic group of order p and x = ag+a1g+asg*+...+ap_1g™ ' €

m—1

RG. Using mathematical induction, it can be shown that 22" = 3 a;¢*™* k=1,2,.... It
i=0
m—1
follows from Fermat theorem that 27! = 14-np for some n € N. So, 2% = 3 a;9% ¥ =
i=0
m—1 m—1
S agt T = S q,9' = & Thus, RG is (22 — 2)-nil clean ring. O
i=0 i=0

Next we give examples showing that (z" — x)-nil cleanness of a ring R does not imply
nil cleanness of R whether n is odd or even.

Example 3.18. The field Z; is (23 —z)-nil clean which is not nil clean. Also, by Proposition
3.17 the group ring Z,(C3) is (z* — 2)-nil clean which is not nil clean.

Proposition 3.19. Let R be a ring and n € N. Then R is (ax** — bx)-nil clean if and
only if R is (az®" + bx)-nil clean.

Proof. =) : Suppose R is (az*® — br)-nil clean and let r € R. Then —r = u + s where
u € N(R) and as®® — bs = 0. Thus, r = (—u) + (—s) where —u € N(R) and a(—s)?" +
b(—s) = as®™ — bs = 0. Therefore, R is (az®" + bx)-nil clean.

<) : Suppose R is (ax®"+ bx)-nil clean and let r € R. Then —r = u+s where u € N(R)
and as® + bs = 0. Thus, r = (—u) + (—s) where —u € N(R) and a(—s)*" — b(—s)
as® + bs = 0. Therefore, R is (az*" — bz)-nil clean.

o

By Proposition 3.19, we conclude that Z,(Cs) is also (z* + z)-nil clean. On the other
hand, the equivalence in Proposition 3.19 need not be true if we replace the even power 2n
by an odd power 2n+1. By a simple calculations, we can see that the field Zj is (z® —z)-nil
clean ((2° — z)-nil clean) but not (22 + z)-nil clean ((2° + z)-nil clean). However, we don’t
know whether (2" + 2)-nil cleanness implies the (2™ — z)-nil cleanness of R or not.

Recall that a ring R is called unit n-regular if for any a € R, a = a(ua)" for some
u € U(R). In [10], the authors ask about the relation between the following conditions on
aring R
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(1) Ris (z™ — x)-clean for all n > 3.
(2) R is a unit n-regular.

In general, condition (1) does not imply condition (2) for odd or even integer n. For
example, the ring Z, is (2*® — x)-clean which is not unit 3-regular and the ring Zg is
(2% — r)-clean which is not unit 4-regular. However, we still don’t know whether condition
(2) implies condition (1) or not. On the other hand if we replace (2" — x)-cleanness by
(™ — z)-nil cleanness in condition (1), then non of the two conditions implies the other.
For example, Z, is also (2* —z)-nil clean which is not unit 4-regular and Zs is unit 4-regular
which is not (z* — x)-nil clean.
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ABSTRACT. The C-integral was introduced by Bongiorno as a minimal constructive
integration process of Riemann type which contains the Lebesgue integral and the
Newton integral. Moreover Bongiorno, Piazza and Preiss gave some criteria for the
C-integral. On the other hand, Nakanishi gave some criteria for the restricted Denjoy
integral. In this paper we will give new criteria for the C-integral in the style of
Nakanishi.

1 Introduction and preliminaries Throughout this paper we denote by (L)(S) and
(D*)(S) the class of all Lebesgue integrable functions and the class of all restricted Denjoy
integrable functions from a measurable set S C R into R, respectively, and we denote by
|A| the measure of a measurable set A. We recall that a gauge ¢ is a function from an
interval [a,b] into (0,00) and a d-fine McShane partition is a collection {(Iy,xy) | k =
1,...,ko} of non-overlapping intervals I, C [a,b] satisfying I, C (v — 0(zx), zx + 0(zk))
and 211:021 [Ix| = b—a. If ZZO:l |I| < b — a, then we say that the collection is a J-fine
partial McShane partition.

In [3] Bongiorno, Di Piazza and Preiss gave a minimal constructive integration process
of Riemann type which contains the Lebesgue integral and the Newton integral. It is given
as follows:

Definition 1.1. A function f from an inteval [a,b] into R is said to be C-integrable if there
exists a number A such that for any positive number e there exists a gauge § such that

ko

D fa)lIk - A

k=1

<e

for any 0-fine McShane partition {(Ix,zx) | k= 1,...,ko} with Zi"zl d(Ii,z) < L, where
d(I,xy) = infer, d(z,z1). The constant A is denoted by

A=(C) f(z)dz.
[a,b]

We denote by (C)([a,b]) the class of all C-integrable functions from [a, b] into R.

We say that a function f from an interval [a,b] into R is Newton integrable if there
exists a differentiable function F' from [a,d] into R such that F' = f on [a,b]. We denote
by (N)([a,b]) the class of all Newton integrable functions from [a, b] into R. In [3] they also
gave a criterion for the C-integral as follows:

Theorem 1.1. Let f be a function from an inteval [a,b] into R. Then f € (C)([a,b]) if
and only if there exists h € (N)([a,b]) such that f —h € (L)([a,b]).

2010 Mathematics Subject Classification. 26A36, 26A39.
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By the theorem above (C)([a,b]) is the minimal class which contains (L)([a,b]) and
(N)([a, b]). Moreover it is contained in the class of all restricted Denjoy integrable functions.
Now we refer to the following theorems given by Bongiorno [1,2].

Theorem 1.2. Let f € (C)([a,b]). Then for any positive number € there exists a gauge &
such that

<e

f(r)|Ik] = (C) ’ f(z)dz

k=1
for any 0-fine partial McShane partition {(I,xg) | k= 1,..., ko} with 220:1 d(I, xk) < %

Throughout this paper, we say that a function defined on the class of all intervals in
[a,b] is an interval function on [a, b]. If an interval function F' on [a, b] satisfies F(I; UI) =
F(I,) + F(I) for any intervals Iy, I C [a,b] with I;" N I;" = ), where I’ is the interior of
I, then it is said to be additive. For an interval function F' on [a,b], for a positive number
g, for a gauge § and E C [a,b] let

{(Ig,2r) | E=1,...,ko} is a d-fine partial McShane
partition with 23 € E and Zﬁil d(Ip, ) < 1 ’

ko
%(F767E) = sup { Z |F(Ik)|

k=1
Moreover let

Ve F(E) = sup ir(slfVE(F7 0, E).
€

Theorem 1.3. An interval function F on [a,b] is the primitive of a C-integrable function
if and only if Vo F' is absolutely continuous with respect to the Lebesgue measure, that is,
for any Lebesgue measurable set E, if |E| =0, then Vo F(E) = 0.

Definition 1.2. Let F be an interval function on [a,b]. Then F is said to be C-absolutely
continuous on F C [a,b] if for any positive number e there exist a gauge 6 and a positive
number 7 such that

ko

S IFI)| <e

k=1
for any o-fine partial McShane partition {(Ix,zx) | k =1,..., ko} satisfying

(1) xp € E for any k;
(a2) 2y d(Ip,zp) < L5

(az) S, [l <.

We denote by AC¢c(E) the class of all C-absolutely continuous interval functions on E.
Moreover F is said to be C-generalized absolutely continuous on [a,b] if there exists a
sequence {E,,} of measurable sets such that | J,>_, E,,, = [a,b] and F € AC¢(E,,) for any
m. We denote by ACG¢([a,b]) the class of all C-generalized absolutely continuous interval
functions on [a, b].
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Theorem 1.4. For any F € ACGc([a,b]) there exists - F([a,x]) for almost every x €
[a,b], and there exists f € (C)([a,b]) such that f(z) = <L F([a,z]) for almost every x € [a,b]
and

FU%:KU[f@Mx

for any interval I C [a,b].
Conversely the interval function F defined above for any f € (C)([a,b]) satisfies F €
ACGc([a. B).

On the other hand, in [7,10] Nakanishi gave the following criteria for the restricted
Denjoy integral. Firstly Nakanishi considered the following four criteria for the pair of a
function f from [a,b] into R and an additive interval function F on [a, b].

(A) TFor any decreasing sequence {e,} tending to 0 there exists an increasing sequence
{F,} of closed sets such that

(1) UnZy Fo = la,8];
(2) fe (L)(F,) for any n;

ff(m@>wy/

f(x)dx)
k=1 I.NF,
{I; | k=1,...,ko} of non-overlapping intervals in [a, b] with I} N F,, # 0.

3)

< &, for any n and for any finite family

(B) For any decreasing sequence {e,} tending to 0 there exist increasing sequences {M,, }
of non-empty measurable sets and {F},} of closed sets such that

(1) Unty My = [a,0];
(2) F, C M, for any n and |[a,b] \ U;—, Fn| = 0;
(3) [ e (L)(Fy) for any n;

ﬁi(ﬂh)—ﬂd/

fayis)
k=1 I NF,
{It | k=1,...,ko} of non-overlapping intervals in [a,b] with I, N M,, # (.

< €y for any n and for any finite family

(C) There exists an increasing sequence {F,} of closed sets such that
(1) Unzy Fu = [a,0];
(2) € (L)(F,) for any n;

(3) for any n and for any positive number e there exists a positive number 7 such

that

ko

Y F(Iy)| <e

k=1
for any finite family {I; | k = 1,...,ko} of non-overlapping intervals in [a,b]
satisfying

(3.1) IpNF, #0 for any k;
(32) Yp%y [kl <.
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(4)  for any n and for any interval I C [a, b]
FO =) [ fwda+ Y P
INF, =

where I is the interior of I, {Jp | p=1,2,...} is the sequence of all connected
components of I* \ F,, and J, is the closure of J,.

(D) There exist increasing sequences {M,} of non-empty measurable sets and {F,} of
closed sets such that

(1) UZO:1 M, = [a,b];

(2) F, C M, for any n and |[a,b] \ U,—, Fu| = 0;
(3) f e (L)(F) for any n:

(4)

4) for any n and for any positive number ¢ there exists a positive number 7 such
that
ko
Z F(Iy)| <e
k=1
for any finite family {I; | k = 1,...,ko} of non-overlapping intervals in [a, ]
satisfying

(4.1) Iy M, #( for any k;
(42) S [l <.
(5) for any n and for any interval I C [a, b|

ﬂn:mﬁwme+ZF@x

where I’ is the interior of I, {J, | p=1,2,...} is the sequence of all connected
components of I* \ F;, and J), is the closure of J,,.

It is clear that (A) implies (B) and (C) implies (D). Next Nakanishi gave the following
theorems for the restricted Denjoy integral.

Theorem 1.5. Let f € (D*)([a,b]) and let F be an additive interval function on [a,b]
defined by

Fm:wmﬁmm

for any interval I C [a,b]. Then the pair of f and F satisfies (A).

Theorem 1.6. If the pair of a function f from an inteval [a,b] into R and an additive
interval function F on [a,b] satisfies (A), then the pair of f and F satisfies (C). Similarly,
if the pair of a function f from an inteval [a,b] into R and an additive interval function F
on [a,b] satisfies (B), then the pair of f and F satisfies (D).
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Theorem 1.7. If the pair of a function f from an inteval [a,b] into R and an additive
interval function F on [a,b] satisfies (D), then f € (D*)([a,b]) and

F(I) = (D) / f(@)de

holds for any interval I C [a,b].

By Theorems 1.5, 1.6 and 1.7 we obtain the following criteria for the restricted Denjoy
integral.

Theorem 1.8. A function f from an interval [a,b] into R is restricted Dengjoy integrable if
and only if there exists an additive interval function F on [a,b] such that the pair of [ and
F satisfies one of (A), (B), (C) and (D). Moreover, if the pair of f and F satisfies one of
(A), (B), (C) and (D), then

F(I) = (D7) / f(x)dz

holds for any interval I C [a,b].

In this paper, motivated by the results above, we will give new criteria for the C-integral
similar to Theorems 1.5, 1.6, 1.7 and 1.8.

2 Main results Firstly we consider the following four criteria for the pair of a function
f from [a,b] into R and an additive interval function F' on [a, b].

A)c  For any decreasing sequence {e,} tending to 0 there exists an increasing sequence
y
{F,} of closed sets such that

(1) UnZy Frno=a,];
(2)  f e L)(Fy) for any n;
(3) for any n there exists a gauge ¢ such that

5 (Fao-w [

k=1 I,NF,

< éEnp

f@)m)

for any finite family {I | & = 1,...,ko,ko + 1,...,k1, 0 < ko < ky} of
non-overlapping intervals in [a, b] which consists of a finite family {I} | k =
1,...,ko} with Iy N F,, # 0 and a d-fine partial McShane partition {(Iy,zy) |
k=ko+1,...,k} satisfying

(3.1) axp e F, forany k=ko+1,..., ky;
k1
(3.2) Zk:k0+1 d(Ik,a:k) < i

B)c  For any decreasing sequence {&, } tending to 0 there exist increasing sequences { M,
y g
of non-empty measurable sets and {F},} of closed sets such that

(1) UZO:1 M,, = [a,b];
(2) F, C M, for any n and |[a,b] \ U;—, F,| = 0;
(3) f e (L)(F) for any n:
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(4)  for any n there exists a gauge 0 such that

fﬂﬂm—m/

k=1 I.NF,

< Enp

f(a:)dz)

for any finite family {Ix | k = 1,...,ko,ko + 1,..., k1, 0 < ko < ki} of
non-overlapping intervals in [a,b] which consists of a finite family {I | k =
1,...,ko} with Iy N M,, # 0 and a §-fine partial McShane partition { (I, xx) |
k=ko+1,...,k} satisfying

(4.1) =z, € M, for any k =ko+1,..., ky;
k1
(4.2) Zk:ko—H d([k,dik) < i
There exists an increasing sequence {F),} of closed sets such that
(1) UnZy Fo = [a,8];
(2)  fe (L)(F) for any n;

(3) for any n and for any positive number ¢ there exist a positive number 7 and a
gauge 0 such that

ko

> F(Iy)

k=1

<e€

for any o-fine partial McShane partition {(Iy,xr) | & = 1,...,ko} in [a,}]
satisfying

(3.1) xy, € F, for any k;
(3:2) Ly d(le o) < &
(33) oply 1Tl <.
(4) for any n and for any interval I C [a, b

mnzwzwme+ZF@»

where I' is the interior of I, {J, | p=1,2,...} is the sequence of all connected
components of I* \ F,, and J, is the closure of .J,,.

There exist increasing sequences {M,,} of non-empty measurable sets and {F,} of
closed sets such that

(1) Uzo:1 M, = [a, b];

(2) F, C M, for any n and |[a,b] \ U,—, Fu| = 0;
(3)  f e (L)(Fy) for any n;
(4)

4) for any n and for any positive number ¢ there exist a positive number n and a

gauge § such that

<e

ko
> F(Iy)
k=1

for any o-fine partial McShane partition {(Iy,xx) | ¥ = 1,...,ko} in [a,}]
satisfying
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(4.1) xp € M, for any k;
(42) YRy I, or) < &

k
(43) TR Il <.
(5) for any n and for any interval I C [a, D]

F(I) = (L) / e+ Y F ().
nF, =1

where I' is the interior of I, {J, | p=1,2,...} is the sequence of all connected
components of I* \ F,, and J, is the closure of .J,,.

It is clear that (A)c implies (B)¢ and (C)¢ implies (D)e. Now we give the following
theorems for the C-integral.

Theorem 2.1. Let f € (C)([a,b]) and let F be an additive interval function on [a,b] defined
by

F(I) = (C) / f(@)de

for any interval I C [a,b]. Then the pair of f and F satisfies (A)c.

Proof. Since f is C-integrable, it is restricted Denjoy integrable. Let {e,} be a decreasing
sequence tending to 0. By Theorem 1.5 for {%“} there exists an increasing sequence {F, }
of closed sets such that (1) and (2) hold. Moreover

5° (Fuo-w [ sw)

k=1 IL.NF,

for any finite family {Ix | k = 1,..., ko} of non-overlapping intervals in [a, b] with I NF,, # (.
Since f is C-integrable, f— fxr, is also C-integrable, where x 7, is the characteristic function
of F,,. Since f — fxr, =0 on F,,, by Theorem 1.2 there exists a gauge J such that

k1
k=%:+1 (F(Ik) - /lan f(m)dx)
k1
- (€) (f = fxr,)(x)dx
k:kZoJrl /Ik X
k1
- > ((o) / (= )odda = (1~ fxn ) o) 1k|> ’
En
)

for any o-fine partial McShane partition {(I,zr) | k = ko + 1,...,k1} in [a, ] satisfying
(3.1) and (3.2). Therefore

,; (Fa0-w [ . fayis)
< ,§<F(I’“)(L) | fla)ds )| + _k2+ (P - @) /. fla)ds
o,
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for any finite family {I}, | & = 1,..., ko, ko + 1,...,k1, 0 < ko < k1} of non-overlapping
intervals in [a,b] which consists of a finite family {I |k =1,...,ko} with I, N F,, # 0 and
a 0-fine partial McShane partition {(Ix,zx) | k = ko + 1,..., k1 } satistying (3.1) and (3.2),
that is, (3) holds. O

Theorem 2.2. If the pair of a function f from an inteval [a,b] into R and an additive in-
terval function F on [a,b] satisfies (A)¢c, then the pair of f and F satisfies (C)c. Similarly,
if the pair of a function f from an inteval [a,b] into R and an additive interval function F
on [a,b] satisfies (B)c, then the pair of f and F satisfies (D)c.

Proof. Let {e,} be a decreasing sequence tending to 0. Then there exists an increasing
sequence {F,} of closed sets such that (1) and (2) of (C)¢ hold. By Theorem 1.6 (4) of
(C)c holds. Next we show (3) of (C)c. Let n be a natural number and let € be a positive
number. Since f € (L)(F,), there exists a positive number p(n, €) such that, if |E| < p(n, €),
then

< £
3"

\(L) RCE

Take a natural number m(n,e) such that e,y < § and m(n,e) > n, and put n =
p(m(n,e),e). By (3) of (A)c for m(n,e) there exists a gauge 0p,(n,c). Let {(Ip,zx) | kK =
1,...,ko} be a 0, o)-fine partial McShane partition in [a, b] satisfying (3.1), (3.2) and (3.3)
of (C)¢. Then we obtain

ko
€
> <F(Ik) — (L) / f(x)dx) < Emne) < 5-
k=1 Tk F(ne)
Moreover, since 220:1 || < n = p(m(n,e),e), we obtain
Z(L)/ fla)de| < 3.
k=1 IkmFm(n,s)
Therefore
ko ko ko
SR < (F(Iw -/ f(ar)dx> m [ e
k=1 k=1 TN Fin(n,e) =1 It F(n,e)
< fhio.
2 2 7

Similarly, we can prove that, if the pair of f and F satisfies (B)¢, then the pair of f
and F satisfies (D)¢. O

Theorem 2.3. If the pair of a function f from an inteval [a,b] into R and an additive
interval function F on [a,b] satisfies (D)c, then f € (C)([a,b]) and

F(I) = (C) / f(2)de

holds for any interval I C [a,b].
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Proof. By (1) and (4) we obtain F € ACG¢([a, b]). By Theorem 1.4 there exists - F([a, 2])

for almost every « € [a,b], and there exists g € (C)([a,b]) such that g(z) = - F([a,x]) for

— dx
almost every z € [a, b] and

F(I) = (C) / o(x)da

for any interval I C [a,b]. We show that g = f almost everywhere. To show this, we
consider a function

| flz), ifxekF,,
9n(2) _{ g(x), ifzégF,.

By [12, Theorem (5.1)] g, € (D*)(I) for any interval I C [a,b] and by (3)

(D*) /1 g(@)dz = (D) /1  fade+ 3 (D) /Tg(x)dx
NF, s ,

p

w [ | fds s f_ojlm /Jpgmdx

(L) / @t g F(J,),

where {J, | p = 1,2,...} is the sequence of all connected components of I* \ F,. By
comparing the equation above with (5), we obtain

F(I) = () [ @)

Therefore we obtain %F([a7 x]) = gn(z) = f(x) for almost every = € F,,. By (2) we obtain

g(z) = d%F([a,x]) = f(z) for almost every x € [a, b]. O

By Theorems 2.1, 2.2 and 2.3 we obtain the following new criteria for the C-integral.

Theorem 2.4. A function f from an interval [a,b] into R is C-integrable if and only if
there exists an additive interval function F on [a,b] such that the pair of f and F satisfies
one of (A)c, (B)c, (C)o and (D)c. Moreover, if the pair of f and F satisfies one of (A)¢,
(B)c, (C)e and (D)¢, then

F(I) = (C) / f(@)de

holds for any interval I C [a,b].
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OF ROUGH SINGULAR INTEGRALS ASSOCIATED TO SURFACES

K6z0 YABUTA
Received March 30, 2015 ; revised August 19, 2015

ABSTRACT. In the present paper, we consider the boundedness of the rough singular integral operator
Ta,n,s along a surface I' = {z = ¢(|y|)y/|y|)} on the Triebel-Lizorkin space ng(R”) with o € R,
1< p,g<oofor Qe HY(S"!) and Q belonging to some class W.F,(S™™'), which relates to the

Grafakos-Stefanov class. We improve recent results about these operators.

1 Introduction. The purpose of this paper is to improve recent results in [10].
Let R™ (n > 2) be the n-dimensional Euclidean space and S”~! be the unit sphere in R™ equipped

with the induced Lebesgue measure do = do(+). Suppose 2 € L' (8" 71) satisfies the cancellation condition
(1) [ el dst) o

where y' = y/[y.
For a suitable function ¢ and a measurable function h on [0,00), we denote by Tq 4 5 the singular

integral operator along the surface

L={z=0¢(y)y :y cR"}

defined as follows:

© Tonof(2) =pov. [ MO0 o — oy ay

for f in the Schwartz class S(R™). If ¢(t) = t, then Tq 4 is the classical singular integral operator Tt j,
which is defined by

®) N e L

When h = 1, we denote simply T ¢ and T, by T, and Tq, respectively.

Let us recall the definitions of some function spaces. First recall the definitions of the homogeneous

@ B2, R") = {f € SR/PERY: iy, = | (Z2erlwes f|q)1/q

k€EZ

Triebel-Lizorkin spaces Fz?,q = F;Q(R") and the homogeneous Besov spaces B;"q = B;‘_q(R”). For 0 <
p,qg < oo (p#o00)and a € R, ng(R”) is defined by
< o0
Lr
2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B25, 47G10 .
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and B$4(R™) is defined by

1/q
) Bg,(R") = {f € S'RN/PE) s Ifllag, = (2w 12 ) < oo},
keZ
where §'(R™) denotes the tempered distribution class on R™, and P(R™) denotes the set of all polynomials
on R"™, @(5) = ®(27F¢) for k € Z and & € O (R") is a radial function satisfying the following conditions:
(1) 0 < ® < 1 (ii) supp @ C {€: 1/2 < [¢] < 2}; (ifi) & > ¢ > 01 3/5 < |¢] < 5/3; (iv) 0, 2(2796) = 1
(€ #0). Note that the space Soo(R™) given by

Se@®") = ) {f e S(R™) : / 2 f(x) de = o}
ae(NU{o})n "

is dense in F.‘Ij’q(]R") and B;{q(]R”) as long as a € R and p, ¢ € (0,00) ([9, Theorem 5.1.5]).

The inhomogeneous versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted by
Fgr (R™) and By (R™) respectively, are obtained by adding the term [|®g * f|, to the right-hand side of
(4) or (5) with Y, ., replaced by Y7, where @y € S(R™), supp ®o C {& : [¢] < 2}, and Po(§) > ¢ >0
if €] < 5/3.

The following properties of the Triebel-Lizorkin space and Besov space are well known. Let 1 <
p,g<oo,a €R,yand 1/p+1/p' =1,1/¢+1/¢ = 1.
(a) Fg{z = 3872 =12 FI(J)Q = LP and F:p = B;’p for 1 < p < oo, and Fgo,Q = BMO;
(b) Egy~ Ep 0 LP and || fllpg, ~ [1fllgo +Ifllze (> 0);
(c) By~ By, NI and ||fllgg, ~ Ifllgs +|Ifllze (o> 0);
(d) (Fpp)"=F, % and (F7,)" = F, %
(
(

(Bg,q)* - B;f;, and (Bg,q)* = Bz;ffz’;

(Fpoj(lthpojlez)g,q = Bg,q (al # 062,0 <p< 0070 <q,q1,q2 < 00,

a=(1-0)a; +0a,0<60<1).

See [9] for more properties of Fl‘qu and Bz‘i .
Next, we give the definition of the Hardy space H'(S"71).

sup
0<r<1

/ W) Py (¥ )do(y')
Snfl

HY (S = {w e L'(S" I flarsn-1y =

< oo} |
Li(sn-1)
where P, (z') denotes the Poisson kernel on "1 defined by P, (2') = (1 —72)/|ry’ —2/|", 0 <r < 1
and z/,y’ € S*L,
Besides H'(S™71), there are two important function spaces L(log L)(S™~1) and the block spaces
B((IO’O)(S”_l) in the theory of singular integrals. Let L(log L)*(S"~1) (for @ > 0) denote the class of all
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measurable functions © on S™~! which satisfy
[ Log Ly~ (sm-1) = /S 190 g™ (2 + [2(y) ) do(y') < e
Denote by L(log L)(S™~1) L(log L)*(S™~1). A well-known fact is L(log L)(S"~!) ¢ H'(S"~1), cf. [8].
We turn to the block space Btgo’v)(S"*l). Let 1 < ¢ < oo and v > —1. A ¢-block on S"~!
is an L9(S™1) function b which satisfies suppb C and ||bl|, < [I|7"/7, where |I| = o(I), and I =
B(x),00) NS is a cap on S"~! for some zf, € S"~! and 6, € (0,1]. The block space Béo’“)(S"*l) is
defined by

7) B (S7) = {1 € LHS™ 1 2 = 30 Aby, MEV((AD) < o),
j=1
where \; € C and b; is a g-block supported on a cap I; on S"~1 and
© MO = 30 {1+ 100D (1)),
j=1
For Q € B,§°*“)(S”—1), denote

[e o]
190 g0 51y = inf{Mq(O’“)({/\j}); Q=Y Ab.bisa q—block}.

Jj=1

Then |- g0, gn-1y is @ norm on the space B (Sn=1) and (Béo’v)(sn_l)v Il g (gn-1y

space. The following inclusion relations are known.

) is a Banach

(a) B(SO’"l)(S"*l) C Bgo’”?)(Snfl) if v > v > —1;
(b) Btg?’w(S“’*l) C B((Ig"“)(snfl) if 1 < g < q for any v > —1;
(c) U r(s™h ¢ B(go,u)(an) for any ¢ > 1, v > —1;

p>1
9) @ UBPsm ¢ |J s ") forany v> —1;
q>1 q>1

(e) Béo””)(S”“l) C H'Y(S" )+ L(log L)*™(S™™ 1) for any ¢ > 1, v > —1;
(f) U BéO,O)(snfl) c Hl(snfl).
q>1
Besides them, there is another class of kernels which lead LP and Triebel-Lizorkin space boundedness of
singular integral operators Tq j. It is closely related to the class F, introduced by Grafakos and Stefanov
[4].
For B > 0 we say Q € Fg(S"~1) if

2
(10) sup / 1Q(y")|log” ———do(y') < oo,
E/ESn—l gn—1 Y-
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and Q € WFz(S"1) (Fs(S™1) in [6]) if

(11) 5'2151871</sn 1 /Sn 1 ()] log” ﬁda(y’)da(%)) ’ < 0.

We note that U, L"(S"™ 1) C WFg, (S 1) € WFs, (S"71) for 0 < 1 < B2 < o0

About the inclusion relation between Fg, (S"~1) and W Fg,(S™ 1), the following is known: when
n =2, Lemma 1 in [3] shows F3(5') C WF3(S?). It is also known that W Faq (S1)\ (Fa(SHUH(S1)) #
0. ct. [7].

To state our claims, we need one more function space. For 1 < < oo, A, (Ry) is the collection of

all measurable functions h : [0,00) — C satistying
1 R 1/y
Inlls, =su (3 [ o) <o
r>0\R Jo

L¥(Ry) = Asc(R4) C Ap(Ry) C Ag(Ry)  for a <,

Note that

and all these inclusions are proper.
In this short note, we report that Theorems 1.1, 1.2 and 1.3 in [10] are improved essentially in the

following form. In the following theorems, the statement “Tgq j 4 is bounded on F;q(R")” means that

1To.n,sf

F;’q(Ru) < CHTQ,h,¢f|

Fg (R™))

for all f € So(R™). In any case, by density we can extend the above inequality and have them for all
fe F&(R") We use similar abbreviation to Bg‘q(R”)

Theorem 1. Let ¢ be a nonnegative (or nonpositive) and monotonic function on (0,00) satisfying

(12) o(t) = ¢(t)/(t¢'(t)) € L>(0, 00).

Let h € A, for some 1 < v < co. Suppose Q € HY(S"™1Y), satisfying the cancellation condition (1). Then

(i) To,n,e is bounded on F, .‘" 4(R") for a € R and p,q with (l l) belonging to the interior of the octagon

P1P2R2P3P4P5R4P6 (he:mgon Py PyP3PyPsPs in the case 1 < v < 2), where P, = (f — m,% —

rnax{Q’y }) P2 = (%7% - max{Z 'y’})’ P3 = (5 + ma,x{IQ’y}’ 2) P4 = (5 + max{IQ'y}’% + max{12,'y’})’ P5 =
(33 + maxqzyy): Po :(%_m72) Ro = (1~ g5, 595), and Ry = (55,1 55).

(ii) Ta,n.g is bounded on By (R™) for a € R and p, q satisfying |- f| < min{3, } and 1 < g < 0.

See the following Figures 1-1 and 1-2 for the conclusion (i) of Theorem 1.
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1/ 1/
/a o1 q o P, 5
(1,1) (1,1)
Ps
Py Ry
Ry
Py Py P P
3
Ry
. Ry
) Py
(0,0) (1,0) 1/ O P (1.0) 1/p
Figure1—1 (1<v<2) Figure1—2 (2<7< )

The following theorem shows that if  belongs to Llog L(S™~!) or block spaces, then we can get
better results than Theorem 1.

Theorem 2. Let ¢ be a nonnegative (or nonpositive) and monotonic function on (0,00) satisfying the
same condition as in Theorem 1. Let h € A, for some 1 < v < oo, and Q € LY(S"™1) satisfy the

cancellation condition (1). Then

1

(i) if Q € L(log L)(S"Y), Taone is bounded on Fl‘ffq(]R") for a € R and p,q with (%, ;) belonging to
the interior of the hexagon Q1Q2Z2Q3Q4Zy when 1 < v < 2 and Q1Q25:Q3Q4S4 when 2 < v < oo,
where Q1 = (0,0), Q2 = (5,,0), @3 = (1,1), Qe = (5, 1), S2 = (1, ), S1=(5,0), Z2 = (1, 3), and
Zy=(3,0).

(i) if Q € U1<q<OOB[§0’O)(S"*1), Toh,e is bounded on Fpo‘q(R") for a € R and p,q with (%, %) belonging
to the interior of the hexagon Q1Q252Q3Q4S4

(iii) if @ € L(logL)(S" 1)U (U1<q<OOB(§0’O)(S"*1)), Tone s bounded on BS (R") for o € R and
1 <p,qg<oo.

See the following Figures 1-3 and 1-4 for the conclusion of Theorem 2(i).
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1/q 1/q
(0.1) Qs Qs (0.1) @

Qs

(L)

Sy
Zy

(L)

Q1 (0,0 Pt o) 1 Q1 (0,0

Figure 1 -3 (1 <vy<?2)

@ (1.0) 1/p

Figure 1 —4 (2 <y < )

As a corresponding result to the case {2 belongs to W F,, we have the following:

Theorem 3. Let ¢ be a nonnegative (or nonpositive) and monotonic function on (0,00) satisfying the

same condition as in Theorem 1. Let h € A, for some 1 < v < co. Suppose Q € WFz = W Fg(S"™1)

for some B > max(', 2), and satisfies the cancellation condition (1). Then

(i) the singular integral operator Tq p. e is bounded on Fpofq(R”), if « € R and (%, %) belongs to the
interior of the hexagon Q1Q282Q93Q4Ss, where Q1 = (7“13)((7/’2)77max2(gl’2)); Q= (F+ 7max(7,’2)(% -

24

¥ B R
max(v/,2) 1 max(v/,2) /1 1 _ /max(v’,2) 1 max(v',2) /1
(71_ 23 oy T E] (;_5))7and84*( 2B )’y B (5

(i) Ta,n,e s bounded on B;Q(R"), ifaeR 2

See the Figure 1-5 for the conclusion (i) of Theorem 3.

max(y,2 max(y’,2 max(v’,2 max(y',2
L), 2y gy = (1m0 g max(A)) g, = (L maxOA 1

vy B

l), 1— xnaXQ(g 2))} 82 _

2p 3B
» 2B—max(v/,2) < p < max(+,2) and 1 < q < 0.
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1/q
(0.1) Q1 Qs
(L.1)

Q
Qs

Sy

[

@ (0.0) [} (1,0) 1/p

Figure 1 — 5

Remark 1. In [10] we have shown these theorems under the stronger assumption on ¢, i.e, when ¢ is a
positive increasing function on (0, 00) satisfying the doubling condition ¢(2t) < ¢1¢(t) (t > 0) for some
¢1 > 1 besides (12). Note also that we improve Theorems 1.2 and 1.3 in [10] even in the case ¢(t) = t.

Ezample 1. As typical examples of ¢ satisfying the condition (12), we list the following four: t*e* (o > 0),
t*log’(1+1) (a >0, 8> 0), (262 — 2t + 1)t'* (a > 0), and ¢(t) = 262 +¢ (0 < t < T), = 2t> + tsint
(t > 7). Note that linear combinations with positive coefficients of functions ¢’s satisfying the above two
conditions also satisfies them. Note that the first example satisfies (12), but does not satisfy the doubling

condition.

2 Proofs of Theorems. One can prove these theorems by a change of variable and the corresponding
theorems in case ¢(t) = ¢ in [10], like in [2] or [5].
To prove the theorems, we prepare the following three lemmas: Lemma 1, Lemma 2 and Lemma 4.

The first one is Lemma 2.2 in [2], and the second one is Lemma 2.3 in [2].

Lemma 1. Let ¢ and ¢ be the same as in Theorem 1. If b € A, for some v > 1, then

1 R
(13) E/o b(le|~ (@)@~ )" dt < Ch(llell Xt + llell), B> 0,

that is, b(]®|~H)p(|®]71) € A,.
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Lemma 2. Let ¢ and ¢ be the same as in Theorem 1. Then

To,p(o-1yhie—1)f(2), if ¢ is nonnegative and increasing,
—Ta.p(6-1)no-1)f (), if ¢ is nonnegative and decreasing,
sz,¢(¢—1(7~))h(¢—1(7-))f(x)v if ¢ is mnonpositive and decreasing,

_Tfl,w(wl(—-))h(wl(—-))f(x)’ if ¢ is nonpositive and increasing,
where Q(u) =Q(-y).

To state the third one we prepare some definitions and a lemma. For Q € L'(S"7!), h € A, for
some 1 <y < 00, a suitable function ¢ on Ry, and k € Z, we define the measures o ¢ on R" and the

maximal operator o¢, ;, , f(x) by

x
(15) [ @ donnon) = [ 100ele) I s oy 0
(16) 6,0 f () = suploaneil * f(z)],
keZ
where is defined in the same way as o j.6.k, but with € replaced by || and & by |h|.

we also define the maximal functions Mgq .4 by

(1) Mosof @) =swpore [ 06D~ ol dy

We see easily that Mo p,e is equivalent to of, j, s(|f])-

In [10], we have shown the following auxiliary lemma.

Lemma 3. Let ¢ be a positive increasing function on (0,00) satisfying ¢(2t) < c16(t) (¢t > 0) for some
c1 > 1, and o(t) = ¢(t)/(t¢'(t)) € L>=(0,00). Let h € A, for some 1 <y < oo. Then, fory < p,q < oo

we have

(Z \Mﬂ,h,gﬁfjlq)%

JEZ

(S1n0)

JEZ

(15) |

LP(R™) ' Lp(Rn).
Using this we get our third lemma.

Lemma 4. Let ¢ be the same as above, and ((j) € Z for j € Z. Then, if (%, %) belongs to the interior
of the hexagon QQ1Q252Q3Q 454, we have

(Z |00, h,,007) * fjlq) ’

JEL

where Ql = (050)7 Q2 = (%7 0)7 Q3 = (17 1); Q4 = (%7 1)7 SQ = (17 %)’ and S4 = (%7 O)

(19) |

(S 151)°

JEZ

I

Lr(R™)

<C‘

Lr(R™)



REMARK ON THE TRIEBEL-LIZORKIN SPACE BOUNDEDNESS
OF ROUGH SINGULAR INTEGRALS ASSOCIATED TO SURFACES 173

Proof. By Lemma 3, we see that
’ (Z |00, h,,007) * fj\q)q

JET
if v/ < p,q < oco. By duality, we see that the estimate (19) holds if 1 < p,q < ~. Interpolating

(S1n)’

JEZ

I

Lr(R™)

< CH(Z \Mﬂ,h,asfjlq)%

JEZL

<c
)

Lr(R™) Lr(R

these two cases, we see that the estimate (19) holds, if (%, %) belongs to the interior of the hexagon

Q10Q2520Q3Q454. O

Now we can prove our theorems.

Using Lemmas 1 and 2 and applying Theorem 1.1 in [10] for ¢(t) = ¢, we get our Theorem 1.

Next, using Lemma 4 in place of Lemma 2.4(ii) in [10], we modify the proof of the inequality (3.4) in
[10], and obtain that estimate if & € R and (%, %) belongs to the interior of the hexagon Q1Q2S3Q3Q45;.
Thus we get our Theorem 3(i) under the additional assumption ¢(2t) < c14(t) (t > 0) for some ¢ > 1,
in particular when ¢(¢) = t. Similarly, we get our Theorem 2(ii) under the additional assumption
d(2t) < c19(t) (t > 0) for some ¢; > 1. So, using Lemmas 1 and 2 and applying Theorems 2(ii) and 3(i)
for ¢(t) = t, we get our Theorems 2(ii) and 3(i), respectively.

Next, we consider Theorem 2(i) i.e. the case € L(log L)(S™~!). Similarly to the case Q belonging
to block spaces, we see that T 5, ¢ is bounded on Fﬁq(R”) if « € R and (%, %) belongs to the interior of
the hexagon Q1Q252Q30Q454.

On the other hand, by Theorem 1.3 in [1] we know that Tq j is bounded on LP(R™) = 1519,2(R")7
1<p<oo,if Qe LlogL)(S™ ') and h € A, for some 1 < v < co. So, using Lemmas 1 and 2, we see
that T, is bounded on LP(R") = F2,(R"), 1 < p < oc.

Hence, interpolating between this case and the case a € R and (%, %) belonging to the interior of the
hexagon Q1Q252Q3Q4S54, we see that T p ¢ is bounded on FEQ(R") if « € R and (%, %) belongs to the
interior of the quadrilateral Q1Q222724 or Q3Q4Z47>. Interpolating between the cases Q1Q2727, and
Q3Q4Z47Z5, we have the desired conclusion of Theorem 2(i).

Theorems 2(iii) and 3(ii) follow by using the property (f) of Triebel-Lizorkin spaces and interpolating

the cases FE; HR") and F;; L(R™). This completes the proofs of our theorems. O
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ON THE FIRST-PASSAGE TIME OF AN INTEGRATED GAUSS-MARKOV
PROCESS
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ABSTRACT. It is considered the integrated process X (t) = x + fot Y (s)ds, where Y (¢) is a
Gauss-Markov process starting from y. The first-passage time (FPT) of X through a constant
boundary and the first-exit time of X from an interval (a,b) are investigated, generalizing
some results on FPT of integrated Brownian motion. An essential role is played by a useful
representation of X, which allows to reduces the FPT of X to that of a time-changed Brownian
motion. Some explicit examples are reported; when theoretical calculation is not available,
the quantities of interest are estimated by numerical computation.

Keywords: Diffusion, Gauss-Markov process, first-passage-time
Mathematics Subject Classification: 60J60, 60H05, 60H10.

1 Introduction First-passage time (FPT) problems for integrated Markov processes arise both
in theoretical and applied Probability. For instance, in certain stochastic models for the move-
ment of a particle, its velocity, Y'(¢), is modeled as Ornstein-Uhlenbeck (OU) process, which is
indeed suitable to describe the velocity of a particle immersed in a fluid; as the friction parameter
approaches zero, Y (t) becomes Brownian motion B; (BM). More generally, the particle velocity
Y (t) can be modeled by a diffusion. Thus, particle position turns out to be the integral of Y (¢),
and any question about the time at which the particle first reaches a given place leads to the
FPT of integrated Y'(¢). This kind of investigation is complicated by the fact that the integral
of a Markov process such as Y (¢), is no longer Markovian; however, the two-dimensional process
Yt) = <f0t Y(s)ds,Y(t)) is Markovian, so the FPT of integrated Y (¢) can be studied by using
Kolmogorov’s equations approach. The first apparition in the literature of Y(t), with Y(¢t) = B; ,
dates back to the beginning of the twentieth century (see [24]), in modeling a harmonic oscillator
excited by a Gaussian white noise (see [25] and references therein).

The study of f; Y (s)ds has interesting applications in Biology, in the framework of diffusion
models for neural activity; if one identifies Y'(£) with the neuron voltage at time ¢, then + fot Y (s)ds
represents the time average of the neural voltage in the interval [0, ¢]. Moreover, integrated Brow-
nian motion arises naturally in stochastic models for particle sedimentation in fluids (see [22]).
Another application can be found in Queueing Theory, if Y () represents the length of a queue
at time ¢; then fot Y (s)ds represents the cumulative waiting time experienced by all the “users”
till the time ¢. Furthermore, as an application in Economy, one can suppose that Y (¢) represents
the rate of change of a commodity’s price, i.e. the current inflation rate; hence, the price of the
commodity at time ¢ is X (¢) = X(0) + fot Y (s)ds. Finally, integrated diffusions also play an im-
portant role in connection with the so-called realized stochastic volatility in Finance (see e.g. [8],
117], [20)).

FPT problems of integrated BM (namely, when Y'(¢) = B;) through one or two boundaries,
attracted the interest of a lot of authors (see e.g. [10], [18], [22], [26], [27], [29], [35] for single
boundary, and [25], [32], [33] for double boundary); the FPT of integrated Ornstein-Uhlenbeck
process was studied in [10], [30]. Motivated by these works, our aim is to extend to integrated
Gauss-Markov processes the literature’s results concerning FPT of integrated BM.

Let m(t), hi(t), hao(t) be C'-functions of ¢ > 0, such that ho(t) # 0 and p(t) = hy(t)/ha(t) is
a non-negative and monotonically increasing function, with p(0) = 0.

If B(t) = By denotes standard Brownian motion (BM), then

(1.1) Y (t) = m(t) + ha(t) B(p(2)), t > 0,

2000 Mathematics Subject Classification. 60J60, 60H05, 60H10.
Key words and phrases. Diffusion, Gauss-Markov process, first-passage-time .
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is a continuous Gauss-Markov process with mean m(t) and covariance c(s,t) = hy(s)ha(t), for
0<s<t.
Throughout the paper, Y will denote a Gauss-Markov process of the form (1.1), starting from
y =m(0).

Besides BM, a noteworthy case of Gauss-Markov process is the Ornstein-Uhlenbeck (OU)
process, and in fact any continuous Gauss-Markov process can be represented in terms of a OU
process (see e.g. [36]).

Given a continuous Gauss-Markov process Y, we consider its integrated process, starting from

X(0) :
(1.2) X(t)=X(0)+ /tY(s)ds.
0

For a given boundary a, we study the FPT of X through a, with the conditions that X(0) =z < a
and Y(0) = vy, that is:

(1.3) To(z,y) =inf{t > 0: X(t) = a|X(0) =2,Y(0) =y};

moreover, for b > a and = € (a,b), we also study the first-exit time of X from the interval (a,b),
with the conditions that X (0) = z and Y (0) = y, that is:

(1.4) Tap(x,y) =inf{t > 0: X(t) ¢ (a,0)|X(0) = z,Y(0) = y}.

In our investigation, an essential role is played by the representation of X in terms of BM, which
was previously obtained by us in [1]. By using this, we avoid to address the FPT problem by Kol-
mogorov’s equations approach, namely to study the equations associated to the two-dimensional
process (X (t),Y(¢)); many authors (see the references cited above) followed this analytical ap-
proach to study the distribution and the moments of the FPT of integrated BM, and they ob-
tained explicit solutions, in terms of special functions. On the contrary, our approach is based
on the properties of Brownian motion and continuous martingales and it has the advantage to
be quite simple, since the problem is reduced to the FPT of a time-changed BM. Actually, for
Y (0) = y = 0 we present explicit formulae for the density and the moments of the FPT of the
integrated Gauss-Markov process X, both in the one-boundary and two-boundary case; in partic-
ular, in the two-boundary case, we are able to express the nth order moment of the first-exit time
as a series involving only elementary functions.

2 Preliminary Results on Integrated Gauss-Markov Processes We recall from [1] the
following:

Theorem 2.1 Let Y be a Gauss-Markov process of the form (1.1); then X (t) = z + f; Y (s)ds is
normally distributed with mean x + M(t) and variance v(p(t)), where M(t) = fot m(s)ds, y(t) =
fo —R(s) )2d3 and R(t fo ha(p~1(s))/p (p~1(s))ds. Moreover, if v(+00) = +00, then there

emsts a BM B such that X( ) = x + M(t) + B(p(t)), where p(t) = y(p(t)). Thus, the integrated
process X can be represented as a Gauss-Markov process with respect to a different BM.

O

Remark 2.2 Notice that, if v(4+00) = 400, though X is represented as a Gauss-Markov process
for a suitable BM E, X is not Markov with respect to its natural filtration F; (i.e. the o—field
generated by X up to time ¢). In fact, a Gaussian process X enjoys this property if and only if
its covariance K (s,t) = cov(X (s), X (t)) satisfies the condition (see e.g. [16], [31], [34]) K (u,t) =

%, u < s < t. Really, if X is e.g. integrated BM with y = 0, 2 = 0 (that is, X(¢) =

f(f Byds), one has K(s,t) = cov( [, Budu, fot Bydu) = %(315 —8) (see e.g. [39], pg. 654 or [23],
pg. 105), and so the above condition does not hold. On the other hand, the two-dimensional
process (f(fB du, fot B,du) has not the same joint distribution as (B(ﬁ(s)),é(ﬁ(t))), because
cov( (P(s)), B(p(t ) = E[B(p(s))-B(p(t))] = p(s) = s3/3, for s < t (see Example 1 below), which
is different from K (s,t). However, the process (X, B) is Markov, and the marginal distributions of
the random vector (X (s), X(t)) are equal to the distributions of B (p(s)) and B (p(t)), respectively;
this is enough for the FPT problems we aim to investigate.
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Remark 2.3 By Theorem 2.1 the FPT problem for integrated Gauss-Markov process is reduced
to the FPT problem for another suitable Gauss-Markov process. Thus, to compute the FPT
densities involving one or two boundaries, one can use the methods (both analytical and numerical)
developed in [15] and [37] for general Gauss-Markov processes, in which the FPT densities are
obtained as solutions to non-singular second-kind Volterra integral equations.

Example 1 (integrated Brownian motion)
Let be Y (t) = y+ By, then m(t) =y, hi(t) =t, ha(t) = 1 and p(t) = ¢. Moreover, R(t) = fg ds=t
and () = [Ot(t — 5)2ds = t3/3. Thus, p(t) = t3/3, v(+00) = 400, and so there exists a BM B
such that X (t) = z + yt + B(t3/3) (see [4]).

The following three examples are taken from Section 3 of [1]; notice that the process here denoted
by Y was there indicated by X.

Example 2 (integrated OU process)
Let Y (t) be the solution of the SDE (Langevin equation):

dY (t) = —p(Y(t) = B)dt + odBy, Y(0) =y,
where p,0 > 0 and 8 € R. The explicit solution is (see e.g. [2]):

(2.1) Y(t)=B+e My — B+ Blp(t)],

where B is Brownian motion and p(t) = % (et —1). Thus, Y is a Gauss-Markov process with

m(t) = B+ e H(y—B), h(t) = % (eHt —e™H) | ho(t) = et and c(s,t) = hi(s)ha(t). The
functions M (t), R(t) and ~(t) defined in the statement of Theorem 2.1 can be easily obtained
in closed form (see Example 2 of [1] for calculations and more details). Then, by Theorem 2.1,
we get that X(t) = = + fot Y (s)ds is normally distributed with mean z + M (t) and variance
p(t) = v(p(t)). Moreover, as easily seen, lim;_, 1~ 7(t) = +00, so there exists a BM B such that
X(t)=z+M(t)+ B (p(t)).

Notice that in both Example 1 and 2 it holds p(+00) = 400, so the condition y(400) = +o0 is
equivalent to p(+o00) = +oc.

Example 3 (integrated Brownian bridge)
For T > 0 and «a, 8 € R, let Y (¢) be the solution of the SDE:
- Y(t
Yy (t) = /61“71(6) dt+dB;, 0<t<T, Y(0)=y=a.
This is a transformed BM with fixed values at each end of the interval [0,7], Y (0) = y = a and
Y (T) = 8. The explicit solution is (see e.g. [38]):

nﬂ:aﬂfﬁﬂ+ﬁUT+Gfﬂ/t dB(s)

o I'—s
~ t

2.2 =a(l—t/T T+ (T—-t)B| —— <t<T

(22) @ (U= t/T)+ 8/T+ (T =08 (7= ) 01 =T,

where B is BM. So, for 0 <t <7, Y is a Gauss-Markov process with:

m(t) = a (1 —t/T) + Bt/T, hy(t) = /T, hao(t) =T —t, p(t) = , (s, t) = ha(s)ha(t).

t
(T — 1)

Notice that now p(¢) is defined only in [0,7). The functions M (¢), R(t) and 7(t) defined in
the statement of Theorem 2.1 can be easily obtained in closed form (see Example 3 of [1] for
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calculations and more details). Then, by Theorem 2.1, we get that X (¢) = z+ jo s)ds is normally
distributed with mean z + M (¢) and variance p(t) = v(p(t)). As easily seen, ilmt_y]'* p(t) = 4o0;
moreover, by a straightforward, but boring calculation, we get that lim; ;- p(t) = 71 (+00) =
+00, so there exists a BM B such that X(t) =z + M(t) + B (p(t)), t € [0, 7).

Example 4 (the integral of a generalized Gauss-Markov process)
Let us consider the diffusion Y (#) which is the solution of the SDE:

dY (t) = m/(t)dt + o(Y (t))dBy, Y(0) =y,

where o(y) > 0 is a smooth deterministic function In this Example, we denote by p(t) the
quadratic variation of Y (), that is, p(t) : Y = fo 9))d9 and suppose that p(4+00) = +o0;
then, it follows (see Example 4 of [1]) that Y( ) = ( )+ B( (t)), t >0 (m(0) = y), where B
is BM; here, p(t) is an increasing, but not necessarily deterministic function, namely it can be
a random function. For this reason, we call Y a generalized Gauss-Markov process. By using
the arguments leading to thc proof of Theorem 2.1, we conclude that, under certain conditions,
for fixed ¢ the law of fo s)ds, conditional to p(t ), is normal with mean M(t) = fot m(s)ds and
variance p(t), where p(t ) is increasing and bounded between two certain deterministic functions
(see [1] for more details).

In the sequel, we suppose that all the assumptions of Theorem 2.1 hold, and v(+00) = +00; we
limit ourselves to consider the special case when m(t) is a constant (that is, m(t) = Y (0) =y, Vt),
thus Y () = y+ha(t)B(p(t)) and X (t) = x+yt+f(f ha(s)B(p(s))ds. Our aim is to investigate the
FPT problem of X, for one or two boundaries. One approach to the FPT problem of X consists
in considering the two-dimensional process (X (t),Y(t)) given by:

{X(t) =z + [y Y(s)ds
Y(t) =y + ha(t) B(p(t))dt

or, in differential form:

dY (t) = hy(t) B(p(t))dt + ha(t)\/p/(t)dBy

and to study the associated Kolmogorov’s equations.

Many authors (see e.g. [19], [25], [26], [27], [29]) followed this way in the case of integrated BM,
namely for Y'(t) = y 4+ B; . In fact, for 7 = 7, or 7 = 74, the law of the couple (7(x,y), Br(s,y))
was investigated. Let us denote by G the generator of (X, B), that is:

{dX(t) =Y (t)dt

of 10%f

- 2.
9 Y 23y2’f60’

Sf(z,y) =

if one considers, for instance, the one boundary case, then the Laplace transform of
(Ta(x,y),BTa@,y)) , defined for < a, y € R, by u(\,v) = E [exp (=M a(z,y) — VBTa(zvy))]
(A, v >0), is the solution of the problem with boundary conditions:

Su(z,y) = Au(z,y), v <a, yeR
(2.3) u(a”,y)=e ", y>0
ulat,y) =e", y <0

(see e.g. [27], Lemma 3, or ref. [4], [5], [7], therein). Moreover, for n = 1,2,... the nth order
moments T, (x,y) = E(7*(x,y)) are solutions to the equations §T,, = —nT,,_1 (Tp = 1), subjected
to certain boundary conditions; however, these boundary value problems are not well-posed (see
[22], where some numerical methods to estimate T;, were also considered).

Notice that, in the case of integrated BM, explicit, rather complicated formulae for the joint
distribution of (74(2,y), Br,(2,)) (and therefore for the density of 7,(z,y)) were found in [18],
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[26], [35]). In order to avoid not convenient formulae, we propose an alternative approach, based
on the representation of the integrated process X as a Gauss-Markov process, with respect to the
BM B (see Theorem 2.1); this way works very simply, almost in the case when y = 0. Thus, in the
following, we suppose that Y (¢t) = y + ha(t)B(p(t)) and y(+00) = +00, so the integrated process
is of the form X (t) = = + yt + E(ﬁ(t))7 where p(t) = v(p(t)) and B is a suitable BM. Notice
however, that the integrated OU process and the integrated Brownian bridge belong to this class
only if y = B, and o = 8 = y, respectively; this easily follows from the explicit expressions of M (t)
given in Examples 2 and 3 in [1].

3 FPT through one boundary Under the previous assumptions, let a be a fixed constant
boundary; for x < a and y € R, the FPT of X through a can be written as follows:

(3.1) To(z,y) = inf{t > 0: z + yt + B(p(t)) = a}.
Thus, if we set 7o (z,y) = p(7.(z,y)), we get:
(3.2) Tulz,y) = inf{t > 0: B, = h(t)},

where h(t) = a —x — yp ~1(t), and so we reduce to consider the FPT of BM through a curved
boundary. Since, for z < a and y > 0 the function h(t) is not increasing, we are able to conclude
that 7, (z,y) is finite with probability one, if y > 0. In fact, as it is well-known, the FPT of BM B,
through the constant barrier h(0) = a — z, say 7(x), is finite with probability one; then, if y > 0,
from h(t) < h(0) we get that 7,(z,y) < 7(z) and therefore also 7,(z,y) is finite with probability
one. Finally, if y > 0, we obtain that P(7,(z,y) < +00) = 1, because 7,(z,y) = p~ 1 (Tu(z,y)) <
P 1(7a(z)). Note, however, that this argument does not work for y < 0.

A more difficult problem is to find the distribution of 7,(x,y), and then that of 7,(z,y). However,
if h(t) is either convex or concave, then lower and upper bounds to the distribution of 7,(x,y) can
be obtained by considering a “polygonal approximation” of h(t) by means of a piecewise-linear
function (see e.g. [3], [6]), but in general, it is not possible to find the distribution of 7,(z,y)
exactly.

Remark 3.1 Actually, it is possible to find explicitly the density of the FPT of X through certain
moving boundaries, by using results on the FPT-density of BM (see [7], [9], [11], [13], [14], [21],
[40], [41]). Let v(t), t > 0, be a curved boundary for which the FPT-density f,(¢|z) of BM
through v, when starting from x < v(0), is explicitly known; if S(¢) = v(p(¢)) + yt, one can easily
find the density of the FPT of X through S, with the condition that z < S(0) = v(0). In fact,
if 7g(x,y) = inf{t > 0 : X(t) = S(¢)|X(0) = 2,Y(0) = y}, one gets 7'5( ,y) = inf{t > 0 :
z+ty + B(p(t)) = S(t)}; then, 7 (z,y) := plrs(z,y)) = inf{t > 0: 2 + B(t) = v(t)} has density
)?U and so the density of 7¢(z,y) turns out to be

(3.3) Fs(tlz) = Lo (B)|2)7(¢).

For instance, if X is integrated BM (p(t) = ¢3/3), and we consider the cubic boundary S(t) =
a-+ty+bt3 (a>0, b<0),it results S(t) = v(p(t)) + yt, with v(t) = a+ 3bt and so, for z < a we
reduce to consider the FPT of BM startlng from x through the linear boundary a + 3bt. Since this
has the inverse Gaussian density i.e. —Z=57e ~(Bbtta=a)7/2t (500 e.g. [6]), the density of 7g(x, )

can be easily recovered from (3.3).

Formula (3.2), with y = 0, allows to find the density of 7,(x,0) in closed form; in fact, 7,(x,0)
is the FPT of BM B through the level a — x > 0, and so its density is:

~ d a—x 2
4 = —P(7, <t)= ——— e (a0 /2

from which the density of 7,(z,0) = p~ (7. (=, 0) follows:

(35)  faltl2) = < P(ra(2,0) < ) = fa(p()|2)7(t) = (\‘Fz)( )3(2 o—la=2)/25(1).
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If X is integrated BM, we have X (t) = z + B(p(t)), with p(t) = t3/3, so we get (cf. [18]):

33/2(a — ) _gia_ a2 o
_ 2 \®=4 (a—z)* /2t
(3.6) fo(t|z) = Jon e .

If X is integrated OU process, the density of 7,(z,0) can be obtained by inserting in (3.5) the
function p(t) deducible from Example 2, but it takes a more complex form.

Remark 3.2 Formula (3.5) implies that the nth order moment of the FPT, E (77 (x,0)), is finite
if and only if the function t"7 (t)/p(t)3/? is integrable in (0, 4+00).

Now, let us suppose that there exists o > 0 such that p(t) ~ const - t*, as t — +oo; then, in order
that E(72(x,0)) < oo, it must be a = 2(n+4§), for some 6 > 0. For integrated BM, we have a = 3,
then for n = 1 the last condition holds with § = 1/2, so we obtain the finiteness of E(7,(z,0))
(notice that the mean FPT of BM through a constant barrier is instead infinite). Of course, this
is not always the case; in fact, if X is integrated OU process, we have p(t) ~ const - €2t ~(t) ~
const-In(2ut/a?), as t — +oo, and so p(t) = v(p(t)) ~ const-t, as t — +oo, namely o = 1 and the
condition above is not satisfied with n = 1; therefore E(7,(z,0)) = 40c0. Not even E((7,(x,0))'/?)
is finite, but F((7,(x,0))*/*) is so. Notice that the moments of any order of the FPT of (non
integrated) OU through a constant barrier are instead finite.

As for the second order moment of the FPT of integrated BM, instead, we obtain £ {(Ta(:c7 O))Q] =
+00, since the equality o = 2(n + §) with & = 3 and n = 2 is not satisfied, for any ¢ > 0.

From (3.4) we get that the nth order moment of 7,(x,0), if it exists finite, is explicitly given
by
E|[(ra(2,0))") = E [(p ~*(Ta(,0)))"]

(3.7) _ /JrOQ(A fl(t))nﬂg(aﬂfﬂtdt
. =, D NorTIE .

For instance, if X is integrated BM, one has:

B(ra(2,0)) = (3 7l 0)*) = [ s L gy

—F— €
0 RV 2t3/2
_3a—a) [ 1 —(a—)?/2t gy
= Tﬂ— t7/6e .

By the variable’s change z = 1/¢, the integral can be written as:

o o 1/6
* 1 67(G7I)2Z/2d7’ _ r (%) 21/6 * ((I - x)z / 1 21/67167 (a;m)zzd7
25/6 T (a—x)13 )y 2 r(%) i

_Tr@E2”

T (a—a)/3”
where we have used that the last integral equals one, because the integrand is a Gamma density.
Thus, for integrated BM, we finally obtain:

(3.8) E(ra(x,0)) = (;)1/3r (é) % .

Notice that an asymptotic expression of E(r,(z,y)) for large y > 0 was obtained in [22].

3.1 Random starting point Until now we have supposed that the starting point X (0) < a
is given and fixed. We can introduce a randomness in the starting point, replacing X (0) with a
random variable x, having density g(u) whose support is the interval (—o0o, a); the corresponding
FPT problem is particularly relevant in contexts such as neuronal modeling, where the reset value
of the membrane potential is usually unknown (see e.g. [28]). In fact, the quantity of interest
becomes now the unconditional FPT through the boundary a, that is, inf{t > 0 : X (¢) = a|]Y (0) =
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y}. Notice that results on FPT problems for general Gauss-Markov processes in the presence of
random initial position are available in [15].

In particular, if X is integrated BM and y = 0, one gets from (3.8) that the average FPT through
the boundary a, over all initial positions = < a, is:

(3.9) T, = /m E(ra(u,0))g(w)du = (g) v i\/? /; (a — w)2Pg(u)du.

For instance, suppose that a — z has Gamma distribution with parameters a, A > 0, namely, =
has density

Cik(aiu) (CL - u)a71 : H(—oo,a.) (u)

Then, by the change of variable z = @ — u one obtains that the above integral is nothing but
FE (ZQ/ 3) , where Z is a random variable with the same distribution of @ — x; then, recalling the
_ I(atd)

expressions of the moments of the Gamma distribution, one obtains (Z 2/ 3)
by inserting this quantity in (3.9), it follows that:
3 \1/3 1 2
7 _ ) TEr(+3)
‘ Ve I(a) ’

Remark 3.3 For y = Y(0) = 0, we have considered the FPT of X through the boundary a from
“below”, with the condition zz = X(0) < a; if one considers the FPT of X through the barrier a
from “above”, with the condition X (0) > a (namely, inf{t > 0: X(¢) < a|X(0) = 2,Y(0) = 0}),
then in all formulae a — x has to be replaced with x — a. More generally, if one considers the first
hitting time of X to a (from above or below), a — z must be replaced by |a — z|.

4 First exit time from an interval Assume, as always, that y(+o00) = +o0; for = € (a,b)
and y € R, the first-exit time of X from the interval (a,b) is:

(4.1) Tap(z,y) =nf{t >0: x4+ yt + B(p(t)) ¢ (a,b)}.
Set Tap(z,y) = p(Tap(z,y)), then:
(4.2) Fap(z,y) =inf{t >0: 0+ B, <a—yp '(t) or 24 B, >b—yp '(t)}.

If 7, 5(x,y) is finite with probability one, also 744(2,y) is so. In the sequel, we will focus on the
case when y = 0, namely we will consider 7,,(z,0) = p~1(7,5(2,0)), where 7, (z,0) = inf{t >
0:z+ B ¢ (a,b)}; as it is well-known, 7, ;(x,0) is finite with probability one and its moments
are solutions of Darling and Siegert’s equations (see [12]).

First, we will find sufficient conditions so that the moments of 7, ;(x,0) are finite; then, we
will carry on explicit computations of them, in the case of integrated BM.

Proposition 4.1 If p is convez, then E (1q5(x,0)) < 0o; moreover, if there exist constants ¢, 6 >
0, such that 0 < p=(t) < -1, then E (1ap(2,0))" < oo, for any integer n.

Lis concave, and the finiteness of E (7,4(x, 0)) follows by Jensen’s

Proof. If pis convex, then p—
inequality written for concave functions. Next, denote by f_q o (t|z) the density of the first-exit
time of = 4+ By from the interval (—«, ), a > 0; we recall from [12] that the Laplace transform of

~ + P .
f—a.,a(t‘x)v namely, 0 “e th—a,a(ﬂm)dt 1s:

(4.3) L [f_w] (0)z) = % ,—a<z<a, 0>0.

By inverting this Laplace transform, one obtains (see [12]):

(4.4) Fraaltlz) = % ki)(nk (k + %) cos [(k + %) ”—(ﬂ exp { (k + %)2 ;”;’;} .
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The case of an interval (a,b), b > a, is reduced to the previous one; in fact, as easily seen, if
a = (b—a)/2 one has:

~ ~ a+b

Foatle) = P (1o = “52 ).

Of course, the density of 7,(z,0) turns out to be ]?a,b( p(t)|z)p (t). For the sake of simplicity, we

take a = —a, b=, a > 0; then, for z € (—a, «) and an integer n :

(45)  El(ras(@0)") = El(aa(@,0)"] = B[ F-aal(,0)"] = ZAk

where

(4.6)  Ap(z) = %(71)’“ (k + %) cos ((k + %) %) /fo e (br1/2%m5 205 (o1 ()" .

The integral can be written as:

ﬁff (P ()"

where Zj is a random variable with exponential density of parameter A\, = (k + 1/2)%7%/2a?; so:

Ap(x) = (—1)" cos (<k+ 2) M) ﬁE ()"

Recalling that E[(Z,)"] = J352, by the hypotheses we get B ((571(Zx))") < ¢"B[(Z)") =
T'(14+nd)
(kt1/2)2n0

const - thus:
‘ const’
— (k + 1/2)1+2n6’

from which it follows that the series >, Ay (z) is absolutely convergent for every z € (—a, a), and
therefore E [(T—a,a(2,0))"] < 4oc. The finiteness of E [(7,(x,0))"] in the general case is easily
obtained.

|4k (2)

O

Remark 4.2 The condition 0 < p~'(t) < ¢ - t° is satisfied e.g. for integrated BM, since p~!(t) =
31/341/3 (see Example 1), and for integrated OU process, because from the expression of p(t)
deducible from Example 2, it can be shown that ¢1t < p(t) < eot for suitable ¢1,c¢o > 0 which
depend on u and o, and therefore it <pit) < it.

Now, we carry on explicit computations of E [7,4(z,0)] and E [(Ta,b(:v, 0))2] , in the case of

integrated BM. Inserting p(t) = t3/3, (p~'(y) = (3y)*/?), and n = 1,2 in (4.5), (4.6), after some
calculations we obtain:

33270 (2) (b — a)?/3 & 1 m(2k + 1) a+b
(4.7) Elrap(z,0)] = 7r§/3 1;)(71)16 e cos |: b—a (z - )} .
C12(b—a)t & 1 m(2k +1) a+b
(4'8) E |:(Ta¢b(3370))2] - T ];:0:(_1)16 (2]6 n 1)4 €os |: b—a (I - 2 ):| :

Notice that it is arduous enough to express the sums of the Fourier-like series above in terms
of elementary functions of x € (a,b), and then to obtain the moments of 7,(x,0) in a simple
closed form; actually, by using the Kolmogorov’s equations approach, in [32], [33], it was obtained
a formula for E(7,(x,0)) in terms of hypergeometric functions. This kind of difficulty does not
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Figure 1: Plots of the mean exit time, E(7_1 1(z,0)), of integrated BM from the interval (—1,1)
(lower curve), and of the function z(z) = 1.35-(1—22)/? (upper curve), as functions of z € (—1,1).

arise, for instance, in the case of (non-integrated) BM; in fact, by using formula (4.5) with p(t) =t
and n = 1, one obtains:

e}

3202 . 1 .
E[Tﬂha(x)]_ 3 ;(*1) mcob (2k+1)%x ;

on the other hand, the well-known formula for the mean first-exit time of BM from the interval
(—a, a), provides that the sum of the series must be a? — 2.

However, (4.7) and (4.8) turn out to be very convenient to estimate the first two moments
of 744(x,0) for integrated BM; in fact the two series converge fast enough, so to obtain “good”
estimates of the moments, it suffices to consider a few terms of them. As for E [r,(z,0)], it
appears to be fitted very well by the square root of a quadratic function; this was obtained by least
square interpolation implemented in MATLAB. In the Figure 1, for integrated BM, we compare
the graphs of E(74,(z,0)), calculated by replacing the series in (4.7) with a finite summation over
the first 20 addends, and that of C'- [(b—x)(z —a)]'/?, as functions of = € (a,b), fora = —1, b= 1,
and C' = 1.35; the two curves appear to be almost undistinguishable.

We have also calculated the second order moment of the first-exit time of integrated BM, by

summing the first 20 addends of the series in (4.8). In the Figure 2, we plot F |:(Ta7b(l’, O))2] ,

E?[1,4(x,0)] and the variance Var [r,,(,0)], as a function of 2 € (=1,1), for a = —1, b= 1; as
we see, the maximum of Var [14(z,0)] is about 10% times the maximum of E(7_1 1(z,0)).

4.1 Random starting point As in the one boundary case, if we introduce a randomness in the
starting point, replacing X (0) € (a,b) with a random variable z, having density g(u) whose support
is the interval (a,b), we can consider the average exit time over all initial positions = € (a,b). If
y = 0, this quantity is:

b
Top = / B (7a(u,0))g (1) du.

Notice that results on first-exit times for general Gauss-Markov processes, in the presence of
random initial position, are available in [37].
In the case of integrated BM, T, ; can be calculated by using the expression of E(7,(w,0)) given
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Figure 2: From top to bottom: plot of the second moment (first curve), the square of the first
moment (second curve), and the variance of the first-exit time 7_1 1 (z, 0) (third curve) of integrated
BM from the interval (—1,1), as functions of z € (—1.1).

by (4.7). We obtain:
(49)

_ 31/32780(4)(b — a)?/3 & . 1 b m(2k +1) a+b
Top = 7ré/3 Z(—l) ok / cos [ b —a (u - )} g(u)du
k=0 @

(it has been possible to exchange the integral of the sum with the sum of the integrals, thanks to
the dominated convergence theorem); the integral in (4.9) equals E(Uy), where

Uy, = cos [% (77 - ‘%b)] < 1. Therefore:

~3MBTBD(3) (b — a)? & 1

Y S
/3 2V

(4.10) Tap E(Ug).

In the special case when g is the uniform density in the interval (a,b), we get by calculation:

_ 3BYBI()b-a)P S, 1 b (24 1) atb 1
Top = v kzzo(fl) 7(2]64_1)5/3/{1 cos[ b a (17 5 >:| b—adl

B 31/3210/3F(%)(b _ 0,)2/3

> 1
8/3 Z 8/3
78/ k:0(2k3+1)/

(4.11)

Thus, T, = const - (b — a)?/%. This confirms the result by Masoliver and Porra (see [32], [33]),
obtained by the Kolmogorov’s equations approach in the case of integrated BM, with y = 0 and
uniform distribution of the X — starting point, according to which, the dependence of T, ;, on the
size L = (b — a) of the interval, is L%/

As far as integrated OU process is concerned, the moments of 7, (x,0) can be found again by
formula (4.5), where p(t) can be deduced from Example 2; however, it is not possible to calculate
explicitly the integral which appears in the expression of Ag(x), so it has to be numerically
computed. Since the integrand function decreases exponentially fast, it suffices to calculate the
integral over the interval (0,10), to obtain precise enough estimates. In the Figure 3 we have
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Figure 3: Plot of numerical evaluation of the mean exit time, E (7_11(x,0)), of integrated OU
with 8 = y = 0, from the interval (—1,1), as a function of z € (—1,1), for 0 = 1 and several
values of p. From top to bottom, with respect to the peak of the curve: u =2;1.8;1.6;1.4;1.2; 1.

plotted, for comparison, the numerical evaluation of the mean exit time of integrated OU process
with y = 8 = 0, from the interval (—1,1), as a function of z € (—1,1), for 0 = 1 and several values

of u; in the Figure 4 we have plotted the numerical evaluation of E | (7_1 1 (z, 0))2] , B2 [7-1.1(z,0)]

and the variance Var[r_11(x,0)] of the first exit time of integrated OU process, for ¢ = 1
and g = 1. As we see, the maximum of Var [7_11(x,0)] is about 5% times the maximum of
E (T—l,l(x7 0)) .

Finally, we mention the exit probabilities of the integrated Gauss-Markov process X through
the ends of the interval (a,b), namely:

Ta(2,y) = P (1a(z,y) < 7(2,y)) = P (X(70(2,9)) = a),

and
m(z,y) = P (n(2,y) < 7a(2,y)) = P (X(1ap(z,y)) =)

Recalling the well-known formulae for exit probabilities of BM, we get, for y =0 and = € (a,d) :

r—a

b—a’

. bh— ~
7al@,0) = P (24 B(as(w,0) = a) = 7=, m(2,0) = P (2 + B(Fap(2,0)) = b) =
Notice that, in the case of integrated BM, several probability laws related to the couple (Ta,b, B, b)
were evaluated in [25] (in particular, explicit formulae for m,(z,0) and 7,(x,0) were obtained),
but they are written in terms of special functions.
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Figure 4: From top to bottom: plot of the second moment (first curve), the square of the first
moment (second curve), and the variance of the first-exit time 7_1 ;1 (z,0) (third curve) of integrated
OU with y = 8 =0, from the interval (—1,1), as a function of z € (—=1,1), for o = 1, u = 1.
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(a) Moto O'uchi

(b) Dept. of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University, Sakai City,
Osaka 599-8531, Japan

(b") ouchi@mi.s.osakafu-u.ac.jp

(c) C*-algebras, C*-modules, groupoid C*-algebras

(a) Wataru Takahashi

(b) Shiratoridai 52-27, Aoba-ku, Yokohama 227-0054, Japan
(b’) wataru@is.titech.ac.jp, wataru@a00.itscom.net

(c) Nonlinear Functional Analysis

(a) Shigeo Akashi

(b) Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science,
2641, Yamazaki, Noda-City, Chiba-Prefecture, 278-8510, Japan

(b)) akashi@is.noda.tus.ac.jp

(c) Information Theory, Entropy Analysis, Applied Mathematics, Functional Analysis



(a) Yoshitsugu Kabeya

(b) Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku,
Sakai, Osaka 599-8531, Japan

(b)) kabeya@ms.osakafu-u.ac.jp

(c) Partial Differential Equations, Ordinary Differential Equations

(a) Atsushi Yagi

(b) Dept. of Applied Physics, Graduate School of Engineering, Osaka Univ., 2-1 Yamadaoka, Suita, Osaka 565-0871,
Japan

(b’) yagi@ap.eng.osaka-u.ac.jp

(c) Nonlinear partial differential equations, Infinite-dimensional dynamical systems

(a) Yoshimasa Nakamura

(b) Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
(b)’ ynaka@i.kyoto-u.ac.jp

(c) integrable systems, numerical linear algebra, special functions

(a) Yasumasa Fujisaki

(b) Department of Information and Physical Sciences, Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

(b”) fujisaki@ist.osaka-u.ac.jp

(c) Control Systems Theory

(a) Naruhiko Aizawa

(b) Department of Mathematics and Information Sciences,Graduate School of Science,Osaka Prefecture
University,Sakai,Osaka 599-8531,Japan

(b’)aizawa@mi.s.osakafu-u.ac.jp

(c) representation theory

(a) Hisao Nagao

(b) 5-1-25-506, Senrioka, Settu, Osaka 566-0001, Japan

(b”) nagao@sb.dcns.ne.jp

(c) Multivariate Analysis, Sequential Analysis, Jackknife Statistics and Bootstrap Method

(a) Masamori Ihara

(b) 18-8 Neayagawa, Osaka, 572-8530, Japan

(b’) ihara@isc.osakac.ac.jp

(c) Structural equations modeling, Statistical Quality Managment, Factor analysis, Multivariate Analysis

(a) Masanobu Taniguchi

(b) Dept. of Applied Mathematics, School of Fundamental Science & Engineering, Waseda University,
3-4-1, Okubo, Shinjuku-ku, Tokyo,169-8555, Japan, Tel & Fax: 03-5286-8095

(b’) taniguchi@waseda.jp

(c) Statistical Inference for Stochastic Processes

(a) Masao Kondo

(b) Dept. of Mathematics and Computer Science, Faculty of Science, Kagoshima University, 1-21-35 Korimoto,
Kagoshima 890-0065, Japan

(b”) kondo@sci.kagoshima-u.ac.jp

(c) Time Series Analysis

(a) Masao Fukushima

(b) Dept. of Systems and Mathematical Science, Faculty of Science and Engineering,
Nanzan University, Nagoya, Aichi 466-8673, Japan

(b)’ fuku@nanzan-u.ac.jp

(c) Mathematical Programming, Nonlinear Optimization



(a) Ryusuke Hohzaki

(b) Department of Computer Science, National Defense Academy, 1-10-20, Hashirimizu,
Yokosuka, 239-8686, Japan

(b’) hozaki@cc.nda.ac.jp

(c) Reviewable area: Operations Research, Search theory, Game theory

(a) Hiroaki Ishii

(b) Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

(b’) ishiihiroaki@kwansei.ac.jp

(c) Operations Research and Fuzzy Theory, especially Mathematical Programming (Stochastic Programming,
Combinatorial Optimization, Fuzzy Programming), Scheduling Theory, Graph and Network Theory, Inventory control,
Mathematical evaluation method

(a) Junzo Watada

(b) Graduate School of Information, Production and Systems (IPS) Waseda Univ., 2-7 Hibikino, Wakamatsuku,
Kitakyushu, Fukuoka 808-0135, Japan

(b’) junzow@osb.att.ne.jp

(c) Fuzzy systems, Management Engineering

(a) Kensaku Kikuta
(b) School of Business Administration, University of Hyogo,
8-2-1 Gakuen-nishi-machi, Nishi-ku, Kobe City 651-2197 JAPAN
(b’) kikuta@biz.u-hyogo.ac.jp
(c) Game Theory, Operations Research,

(a) Wuyi Yue

(b) Dept. of Intelligence and Informatics, Faculty of Intelligence and Informatics, Konan University, 8-9-1 Okamoto,
Higashinada-ku , Kobe 658-8501, JAPAN

(b’) yue@konan-u.ac.jp

(c) Queueing Networks, Performance Analysis and Modeling, Communications Networks, Operations Research, Markov
Processes, Probabilistic Methods, Systems Engineering

(a) Hiroaki Sandoh

(b) Graduate School of Economics, Osaka University, 1-7, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
(b’)sandoh@econ.osaka-u.ac.jp

(c) Operations Research and Management Science, Stochastic modeling

(a) Yoshio Tabata

(b) Takigi Ogaki 21, Kyotanabe, Kyoto 610-0341, Japan
(b’) tabata@econ.osaka-u.ac.jp

(c) Mathematical Finance, Sequential Decision Theory

(a) Katsunori Ano

(b) Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku Minuma-ku
Saitama-city, 337-8570, Japan

(b)’ k-ano@shibaura-it.ac.jp

(c) Optimal Stopping, Mathematical Finance, Applied Probability

(a) Koyu Uematsu

(b)Dept.of Economics and Finance,Faculty of Business Administration,Osaka International University
3-50-1 Sugi Hirakata Osaka,573-0192,Japan

(b’) uematsu@oiu.jp

(c)Stochastic Process and its Applications,Reliability Analysis,and Game Theory



(a) Yoshiki Kinoshita

(b) Dept. of Information Sciences , Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka-shi, Kanagawa
259-1293, Japan

(b’) yoshiki@kanagawa-u.ac.jp

(c) Software Science, Programming language semantics

(a) Shunsuke Sato

(b)2-6-20 Hanayashiki-Soen, Takarazuka,Hyogo 665-0808, Japan
(b”)ss_22362@nifty.com

(c) Mathematical biology in general, Neural networks, application of stochastic process

(a)Tadashi Takahashi

(b)Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto,
Higashinada, Kobe, Hyogo 658-8501, Japan

(b’) takahasi@konan-u.ac.jp

(c)Mathematics Education

(a) Benoit Collins

(b) Department of Mathematics, Faculty of Science, Kyoto University

(b") collins@math.kyoto-u.ac.jp

(c) Random Matrix Theory, Free Probability, Quantum Information Theory
Quantum Groups (operator algebra side), Operator Algebra

sfe sk sk sk sk sfe st sk sk sfe st sk sk sk sfeske sk sfe sfeske sk sk stk sk sk sk sieoske sk sk stk sk sk stk sk sk stk sk sk skl sk sk stk sk sk sk siosk sk stk sk sk skokosk sk skoloskoskoskokoskoskoskokoskokoskoiokoskoskokokokoskoskorokek

Managing Editor

Koyu Uematsu (Professor of Osaka International University)
International Society for Mathematical Sciences
1-5-12-202 Kaorigaoka-cho, Sakai-ku, Sakai-city, 590-0011,Japan
uematsu@jams.jp
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Submaission to the SCMdJ

In September 2012, the way of submission to Scientiae Mathematicae Japonicae
(SCMJ) was changed. Submissions should be sent electronically (in PDF file) to the

editorial office of International Society for Mathematical Sciences (ISMS).

(1) Preparation of files and Submission
a. Authors who would like to submit their papers to the SCMdJ should make
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty)
Submissions should be in PDF file compiled from the source files. Send the
PDF file to slbmt@jams.jp .
b. Prepare a Submission Form and send it to the ISMS. The required items to
be contained in the form are:
1. Editor’s name whom the author chooses from the Editorial Board

(http://www.jams.or.jp/hp/submission f.html )and would like to take in

charge of the paper for refereeing.
2. Title of the paper.
3. Authors’ names.
4. Corresponding author’s name, e-mail address and postal address (affiliation).

5. Membership number in case the author is an ISMS member.

Japanese authors should write 3 and 4 both in English and in Japanese.

At http!//www.jams.or.jp/hp/submission f.html, the author can find the

Submission Form. Fulfill the Form and sent it to the editorial office by pushing
the button “transmission”. Or, without using the Form, the author may send

an e-mail containing the items 1-5 to slbmt@jams.jp

(2) Registration of Papers
When the editorial office receives both a PDF file of a submitted paper and a
Submission Form, we register the paper. We inform the author of the
registration number and the received date. At the same time, we send the PDF
file to the editor whom the author chooses in the Submission Form and request
him/her to begin the process of refereeing. (Authors need not send their papers to
the editor they choose.)
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(3) Reviewing Process

a. The editor who receives, from the editorial office, the PDF file and the request
of starting the reviewing process, he/she will find an appropriate referee for
the paper.

b. The referee sends a report to the editor. When revision of the paper is
necessary, the editor informs the author of the referee’s opinion.

c. Based on the referee report, the editor sends his/her decision (acceptance of
rejection) to the editorial office.

(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the
editor’s decision, and informs it to the author.
b. When the paper is accepted, we ask the author to send us a source file and
a PDF file of the final manuscript.
c¢. The publication charges for the ISMS members are free if the membership dues
have been paid without delay. If the authors of the accepted papers are not the
ISMS members, they should become ISMS members and pay ¥6,000 (US$75,
Euro55) as the membership dues for a year, or should just pay the same

amount without becoming the members.

Items required in Submission Form

Editor’s name who the authors wish will take in charge of the paper
Title of the paper

Authors’ names

3. in Japanese for Japanese authors

- W=

Corresponding author’s name and postal address (affiliation)
4. 4.1n Japanese for Japanese authors

ISMS membership number

> o

E-mail address
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Call for ISMS Members

Call for Academic and Institutional Members

Discounted subscription price: When organizations become the Academic and Institutional
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the
yearly price of US$225. At this price, they can add the subscription of the online version upon
their request.

Invitation of two associate members: We would like to invite two persons from the
organizations to the associate members with no membership fees. The two persons will enjoy
almost the same privileges as the individual members. Although the associate members
cannot have their own ID Name and Password to read the online version of SCMJ, they can
read the online version of SCMJ at their organization.

To apply for the Academic and Institutional Member of the ISMS, please use the following
application form.

Application for Academic and Institutional Member of ISMS

Subscription of SCMJ
Check one of the two.

[OPrint [OPrint + Online
(US$225) (US$225)

University (Institution)

Department

Postal Address
where SCMdJ should be

sent

E-mail address

Name:

Person in charge Signature:

Payment
[JBank transfer [JCredit Card (Visa, Master)
Check one of the two.

Name of Associate Membership
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Call for Individual Members

We call for individual members. The privileges to them and the membership dues are shown
in “Join ISMS !” on the inside of the back cover.

Items required in Membership Application Form

Name

Birth date

Academic background

Affiliation

4’s address

Doctorate

Contact address

E-mail address

Special fields

0. Membership category (See Table 1 in “Join ISMS !”)

R e

Individual Membership Application Form

1. Name

2. Birth date

3.
Academic background

4. Affiliation

5. 4’s address

6. Doctorate

7. Contact address

8. E-mail address

9. Special fields

10.
Membership
category
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Contributions (Gift to the ISMS)

We deeply appreciate your generous contributions to support the activities of our
society.
The donation are used (1) to make medals for the new prizes (Kitagawa Prize,
Kunugi Prize, and ISMS Prize), (2) to support the IVMS at Osaka University
Nakanoshima Center, and (3) for a special fund designated by the contributors.

Your remittance to the following accounts of ours will be very much appreciated.

(1) Through a post office, remit to our giro account (in Yen only ):

No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS )
or send International Postal Money Order (in US Dollar or in Yen) to our
address:

International Society for Mathematical Sciences

2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan

(2)  A/C 94103518, ISMS
CITIBANK, Japan Ltd., Shinsaibashi Branch
Midosuji Diamond Building
2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan

B o o e e o o b o o o o o o o o R o o b o o o o S b ek e o e S

Payment Instructions:
Payment can be made through a post office or a bank, or by credit card. Members may
choose the most convenient way of remittance. Please note that we do not accept payment by
bank drafts (checks). For more information, please refer to an invoice.

Methods of Overseas Payment:

Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4)
UNESCO Coupons.

Authors or members may choose the most convenient way of remittance as are shown below.
Please note that we do not accept payment by bank drafts (checks).
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send
International Postal Money Order to our postal address (2) Remittance through a
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO
Coupons.

Methods of Domestic Payment:

Make remittance to:
(1) Post Office Transfer Account - 00930-3-73982 or
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING
CORPORATION, Sakai, Osaka, Japan.
All of the correspondences concerning subscriptions, back numbers, individual and
institutional memberships, should be addressed to the Publications Department,
International Society for Mathematical Sciences.
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Join ISMS !

ISMS Publications: We published Mathematica Japonica (M.J.) in print,
which was first published in 1948 and has gained an international reputation in
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online
and in print. In January 2001, the two publications were unified and changed to
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and
published both online and in print. Ahead of this, the online version of SCMdJ
was first published in September 2000. The whole number of SCMdJ exceeds 270,
which 1s the largest amount in the publications of mathematical sciences in
Japan. The features of SCMJ are:

1) About 80 eminent professors and researchers of not only Japan but also 20
foreign countries join the Editorial Board. The accepted papers are
published both online and in print. SCMJ is reviewed by Mathematical
Review and Zentralblatt from cover to cover.

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ
are introduced to the relevant research groups for the positive exchanges
between researchers.

3) ISMS Annual Meeting: Many researchers of ISMS members and
non-members gather and take time to make presentations and discussions
in their research groups every year.

The privileges to the individual ISMS Members:
(1) No publication charges
(2) Free access (including printing out) to the online version of SCMJ
(3) Free copy of each printed issue

The privileges to the Institutional Members:
Two associate members can be registered, free of charge, from an institution.

Table 1: Membership Dues for 2015

Categories Domestic Overseas Develoqlng
countries

L-year Regular ¥ 8,000 USS$80 , Euro75 USS$50, Eurod?
member
l-year Students

¥4,000 US$50 , Euro47 US$30 , Euro28
member
Life member* Calculatid US$750 , Euro710 US$440, Euro416

as below

Honorary member Free Free Free

(Regarding submitted papers,we apply above presented new fee after April 15 in
2015 on registoration date.) * Regular member between 63 - 73 years old can apply
the category.

(73—age ) x ¥3,000
Regular member over 73 years old can maintain the qualification and the privileges
of the ISMS members, if they wish.

Categories of 3-year members were abolished.




CONTENTS

UHAMMAD TOUQEER AND M. ASLAM MALIK:
'UZZY HYPER BCK-IMPLICATIVE IDEALS OF HYPER BCK-ALGEBRAS ........ 93

> ATOSHI KAWAKAMI, TATSUYA TSURIT AND SATOE YAMANAKA:
DEFORMATIONS OF FINITE HYPERGROUPS ... ... 113

TAKAHIRO SUDO :

CLASSIFICATION OF IDEMPOTENTS AND SQUARE ROOTS

IN THE UPPER TRIANGULAR MATRIX BANACH ALGEBRAS

AND THEIR INDUCTIVE LIMIT ALGEBRAS ... ... s 125

HANI A. KHASHAN AND ALI H. HANDAM:
(2)-NIL CLEAN RINGS . ..ottt e e 145

COSHIHARU KAWASAKI AND ICHIRO SUZUKI :
CRITERIA FOR THE C-INTEGRAL .. ... .0t 155

KOZO YABUTA:
REMARK ON THE TRIEBEL-LIZORKIN SPACE BOUNDEDNESS
DE ROUGH SINGULAR INTEGRALS ASSOCIATED TOSURFACES .. .............. 165

MARIO ABUNDO:
ON THE FIRST-PASSAGE TIME OF
N INTEGRATED GAUSS-MARKOV PROCESS 175

Notices from the ISMS

Call Tor Papers 1or SCUIVLY . ... . e 1]
Call for ISMS Members. . ...............oouuuuunnuneeieeeeeeennn... ol





 
 
    
   HistoryItem_V1
   InsertBlanks
        
     場所: 最後のページの後
     ページ番号: 1
     現在と同じ
      

        
     1
     1
            
       D:20150502141848
       841.8898
       a4
       Blank
       595.2756
          

     1
     Tall
     925
     409
    
            
       CurrentAVDoc
          

     SameAsCur
     AtEnd
      

        
     QITE_QuiteImposingPlus2
     QI+ 2.0f
     QI+ 2
     1
      

   1
  

 HistoryList_V1
 qi2base





