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THE ORDER-PRESERVING PROPERTIES OF ESTIMATES IN
POLYTOMOUS ITEM RESPONSE THEORY MODELS WITH
APPROXIMATED LIKELIHOOD FUNCTIONS
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ABSTRACT. In this study, we consider the ordering properties of the estimates of the rating scale
model(RSM) and related polytomous item response theory (IRT) models. First, we propose
a kind of approximation to the likelihood functions for these IRT models. The approximated
likelihood functions are derived from the inequality of arithmetic and geometric means. We then
evaluate upper limits of the functions based on the mathematical result of Specht(1960). Next, we
derive the order-preserving statistics for these polytomous IRT models. All sets of statistics are
derived by using the characteristics of arrangement increasing functions (Hollander et al., 1977,
Marshall et al., 2011). We also carry out simulation study and confirm that our order-preserving
statistics work well in typical educational testing. Finally, it is shown that the order-preserving
statistics of the RSM in three major three estimation methods coincide.

1 Introduction In this study, we consider the order-preserving properties of the estimates of the
rating scale model (RSM;Rasch, 1960; Andrich,1978a, 1978b; Andersen,1996) and related poly-
tomous item response theory (IRT) models. First, we introduce the RSM. Consider that a test
comprises k items administered to n subjects and suppose that each item can take m categories.
The response variable for the i-th subject and the j-th item becomes X;;, = {0, 1}. When the i-th
subject responds with an h to the j-th item, the corresponding probability of the RSM is

_ exp(wpb; + ajn) .
>oney exp(wnbi + a;n)

(D Pijn(0;, o) = P(X45n = 1;0;, at;)

Here, 0; is the ability parameter for the i-th subject, c;, is the item parameter for the h-th category

of the j-th item (a; = (a1, a2, - -, ojm) and wy, is the weight coefficient for the h-th category.
Note that wy, is assumed as given. In addition, & = (61, --- ,0,,) is an n-dimensional vector of the
ability parameters and & = (a1, , Q1,5 Qk1, -+, Q) 18 @ k X m-dimensional vector of

the item parameters. To estimate parameters in (1), we often use the maximum likelihood principle.
In the RSM, the form of the likelihood function is

n kE m
L(0,alX) = H H 11 P(Xijn = 2i5n)

k k 3 )
exp (Z;L:1 0; Zj:l Z;anl WhTijh + Zj:l szl Qjh Z?:l xijh,)
k
H?:l Hj:1 thzl exp(wnbi + a;n)

n k m
exp (Zi:l Oiti + > 51 2 hea %‘h?‘jh)
2 =
( ) C (0’ a) 9
2010 Mathematics Subject Classification. 62P15,62B05.
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where X is a response matrix that consists of all the response variables, ¢; = Z’;zl 22"21 WhTijh
is the score for the i-th subject, 7, = >, ;;;, is the number of subjects who response 1 to the
h-th category of the j-th item and C'(0, o) =[]}, H?Zl Yoy exp(wpb + o).

In IRT, three major estimation methods have been proposed that use a the likelihood function
as in (2) : joint maximum likelihood estimation (JMLE),marginal maximum likelihood estimation
(MMLE; Bock and Lieberman, 1970, Thissen, 1982), and conditional maximum likelihood estima-
tion (CMLE; Andersen, 1972). JMLE estimates 6 and o« simultaneously by maximizing (2) in the
RSM. By contrast, CMLE and MMLE remove 8 from (2) and estimate « separately. In particu-
lar, CMLE uses a conditional likelihood function in which we assume that the score ¢; for the i-th
subject is already given and thus remove 6 from the function. We focus on JMLE in this paper.

The RSM has many relations with other polytomous IRT models. For example, when we repa-
rameterize o, = ZZ:1 VjnpTp in (2), we obtain the linear rating scale model(LRSM; Fischer and
Parzer, 1991). Here, 7,, is the "basic parameter," ¢ < m is a dimension of the basic parameter vector
1 and vjy,), is the weight coefficient which is assumed as already given. The likelihood function of
the LRSM corresponding to (2) is

eXp(Z?:l 0;t; + 22:1 77177’;)
C(6,m) ’

where 7}, = i Z?:l VjnpTijn, C(8,m) = [[i, H§:1 > ohe exp(wpf; + 22:1 Ujnptlp) and
1 is the ¢g-dimensional vector of the basic parameters.

Another important model related to the RSM is the partial credit model (PCM; Masters, 1982).
The PCM is special case of the RSM. In other words, when we substitute w;, = h for the probability
function of the RSM (1), we get the that of the PCM. The likelihood function of the PCM is

_ oxp(i Ot + S E o Binrin)
Cc(0,8) 7

where 3;y, is the item parameter for the h-th category of the j-th item, 3 is the £ x m-dimensional
vector of the item parameters, ¢} = Zle Sor haijn, C0,8) =1, Hj':l S, exp(h8; +
ﬁjh)a and B = (Bi1,-- , Bims - B11s - 5 Bt -+, Bit, - Brm)- In (4), by reparameterizing
Bin = ZZ:1 UjnpYp, We drive the linear partial credit model (LPCM; Glas and Verhelst,1989;
Fischer and Ponocny, 1994). Here, v, is the basic parameter and u;j, is the weight coefficient
which is assumed as already given. The likelihood function of the LPCM is

G) L(6,n|X) =

4) L(6, 8| X)

_ eXP(Z?ﬂ nit; + Zgzl 'YqT;)
C(6,7) ’

where 1 = 370, 25:1 > he1UinpTijns C(0,7) I1izy H§:1 D oher exP(hli + D20 winpVp)
and ~y is the p-dimensional vector of the basic parameters.

Specht(1960) considered the upper limit of an inequality between the arithmetic mean and geo-
metric mean. Following Seo (2000), let y1, - - , Ym € [d, D] with D > d > 0. Then, this inequality
is such that

) L(6,8|X)

>y1+y2+"'+ym

(6) S(2) %/yiye - Ym > ,

m

where z = D/d and S(z) are defined as

(z— 1)2%

elog z

(7 S(z) = (z>1)and S(1) =1 (2 =0).
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Here, we call S(z) Specht’s ratio. Then, we consider the approximation below:
®) mAM(y) =y1 +y2+ -+ Ym XM Y/Y1y2- - ym = mGM(y),
where y = (1,2, , Ym ). We can evaluate the difference in the above approximation by using a

ratio, that is

:y1+y2+"'+ym

m /iy Um

Here, we call DR(y) the "difference ratio" between AM (y) and GM (y). From (6), it holds that
S(z) > DR(y) > 1. This means that we can evaluate the upper limit of the least difference for (9)
from S(z) in (6).

By substituting (8) with y;, = exp(wy,0; + ;) for each ¢ and j into (2), we get

(€) DER(y)

m

(10) > exp(wni + ajn) = m 7| [ explwnb + a;n)
h=1 h=1

k
exp(3oiy Oiti + 2251 Doney @jnrin)
k
mrk T, Hj:l [T, exp(wpb; + ojp)
k
exp(diy Oiti + Zj:l D het QGhT )

) = C(0.0) = L(6, a|X),

L0, a|X) =~

where C(8, ) = m" [, H?zl /T, exp(wy0; + o). These approximations of the like-
lihood functions can also be applied to (3), (4), and (5), which means that we can consider approxi-
mated likelihood functions to the the models related to the RSM.

In this study, we consider the ordering properties of the estimates in the RSM and the related
polytomous IRT models with the approximated likelihood functions as in (11). We assume that
the response matrix X is already given, all estimates derived from X exist, and each estimate is
unique. Note that most conventional studies (e.g., Hemker et al.,1997;Van der Ark,2005, 2010)
have considered the properties of other ordering: stochastic ordering (SO). In other words, they
regard X as a matrix that consists of random variables and consider the ordering properties of
estimators with SO.

The remainder of the paper is organized as follows. The preliminaries and main results are pre-
sented in section 2. Some performances that the approximations denoted above holds are evaluated
by simulation studies in section 3. Finally, section 4 discusses our results and concludes.

2 Preliminaries and main results In this study, we use some characteristics of arrangement in-
creasing (Al) functions (Hollander et al., 1977) to consider the order preserving properties of the
estimates. First, we introduce some definitions, as per Marshall et al. (2011), Boland and Proschan
(1988) and Mori(2015).

Definition 1. Let a and b be n-dimensional vectors. We define equality = as

(aIl, bII) £ (a, b),

where I is an arbitrary n x n permutation matrix. In this definition, we find (a, b) = (ally, bII;) =
a a

(as,bll;) = (ally, bll;) = (a,blly), where II; is a matrix such that all; = a4 and I, is a
matrix such that all, = a . Here, we use the ordered vectors a4 and a |, which are vectors with
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the components of a arranged in ascending order and descending order, respectively. Note it is not
always hold that bII; = b4 or bll; = b,. For detail, see below Example 3.

a
Then, we define a partial order < for the vector arguments.
Definition 2. Let a and b be n-dimensional vectors. First, we permute a and b so that

(12) (aab) = (G’Tabl)'

Here, b’ = bll; and II; form the permutation matrix such that all; = a+. Then, we generate a
vector by, from b’ in (12) by interchanging the I-th and m-th component (I < m) of b such that

b; > byy,. Finally, we define the partial order % as
(a’Tv b ) S (G’Tv bl m)

Therefore, it holds that (a+, by) < (ay,bs) < (a,b)a(aT,bT) (ay,by).

Here we show an example for the equality < and the inequality §.
Example 3. Leta = (7,5,3,1) and b = (6,4, 8,2). Then,

(a,b) < ((1,3,5,7),(2,8,4,6)) < ((1,3,5,7), (2,4,8,6))
<((1,3,5,7),(2,4,6,8)) £ ((7,5,3,1), (8,6,4,2)).

Definition 4. An Al function is a function, g, with two n-dimensional vector arguments that pre-
a
serve the ordering <. Thus, if g is AL it holds that g(a, b) < g(a+, b} ,,,) for n-dimensional vectors

a
ab,ay,b; ., such that (a,b) < (a4, b;},,).
Here, we find

(13) g(ar,by) = g(ay,by) < g(a,b) < g(ay,by) = g(ay, b))

for AT function g.

Next, we prepare a general result as lemma (without proof) that describes the necessary and
sufficient condition for Al functions containing summation forms.
Lemma 5. (Marshall et al., 2011, p.233) If g has the form g(a,b) = >_""_| ¢(a;, b;), then g is ALif
and only if ¢ is L-superadditive.
Here, L-superadditive is the function that satisfies

9
> 0.
ey 2@ 20

Then, we consider the log likelihoods derived from (11) for preparation:

m

(14) log L(6, at, ) Zﬁt —|—ZZO¢J}LT]}L log C(0, ).

Jj=1h=1

As C(8, ) is invariant for the rearrangement within 6 and «, C'(0, ) = C(1I;, all,) for any
permutation matrices II; and IT5. Thus, we can only focus on parts of log likelihood function (14)
for evaluating order-preserving properties, which are

m

(15) Zet +Zza]hrjh =1,(0,t) + Iz (a,7)

j=1h=1
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Here, t and r are vectors that consist of {¢;} and {7, }, respectively.

Now, we propose our propositions.
Proposition 6. Let 6 and & be maximum likelihood estimates for the log likelihood function
log L(, a[t, ) in (14). Then, 8* and &* maximizes log L(6, a|ty, ry) if and only if * = 6,
and &* = &y
Proof. First, we assume the maximum likelihood estimates 6 and é are already given. Then, we
find that 1 (6, t) and I5(é&, ,7) in (15) are permutation-invariant within each set of vectors (6,t) and
(é, ), which means that [1(0,t) = I1 (011, tII;) and Iy (&, ) = l3(&lly, rIl,) for any permuta-
tion matrices, II; and Ils. From this permutation invariance and the uniqueness of the maximum
likelihood estimates, we obtain

l (0 t) + lg(a 7‘) = 11(0H1,tT) + ZQ(dHS,TT) = l~1 (é*,tT) + ig(&*, TT)’

where II7 and II3 are permutation matrices such that t1I7 = ¢4 and 7115 = r. Thus, we find that
both 8* and &* are rearranged forms of 6 and &, respectively.

On the contrary, as l](é, t) is L-superadditive for variables 0; and t;, it follows that l](é, t) is
AT according to the Lemma 5. We find that [5(&, ) is Al in the same the manner. Then, from the
property of the Al functions described in (13), it holds that

ll(é*7tT) < il(éT7tT)7

2(6%,74) < lp(Gep, 7).

l
IN A

As 0* and &* are the estimates that maximize I; (8, ty) and lo(é, 7+ ) respectively, it follows that
0 =0 and &* = &y
Conversely, if we set @ = 64 and &* = &, we find that {1 (0, t1) and Io(&, ) reach their

maximum because [; and I, are AL Then, it is shown that 6* and &* maximize log L (0, a[ty, 7+).
0O

Our results in Proposition 6 hold in related models such as the LRSM, PCM and LPCM. The
approximated likelihood functions corresponding to (11) in the the LRSM are

eXP(Z:‘L:l Oiti + ZZ:I 77:07’;;)

(16) L(6,n|X) = Zo.n

)

Here, C(8,m) = m™* T[], H§:1 m\/HZl:l exp(wpb; + Y11 VinpMp) - In (16), we focus on

n q
Z 0it; + anr; =10(0,t) +l2(n,r'),
i= p=1

Then, below Proposition 6 holds.

Proposition 7. Let 6 and 7) be the maximum likelihood estimates for the log likelihood function

log L(6,m|t,r') from (2). Then, #* and * maximize log L (8, n[ty, r}) if and only if 6% = 9T and
=1 .
Proof. The proof is done in the same way as in Proposition 1. We assume that@ and 7) are already
given. [1(6,t) and lg(’l’], ') are permutation-invariant. Then, we find that both 8* and #* are
rearranged forms of @ and 1, respectively. As 1,(0,t) and lz(n, ") are Al l; and l5 reach the
maximum when ll(OT, t;) and lg(m, r}). Consequently, 6" = OT and n* = 7. Conversely, if we
set 6% = 0¢ and * = 1), it holds that 6* and * maximize log L (6, nt+, 7)) because I; and I
are AL O
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The approximated likelihood functions in the PCM and LPCM are
n k m

= ex YOt LB

(17) L0, gl ¢y = SO Ot X5 X Bintin).
c(0,8)
= ex nomtt 4 0

(18) L@t ) = "Rzt ¥ 2ps Wrp)

C(6,7)
We also find that below Corollary 8 and 9 from these likelihood functions hold.

Corollary 8. Let 6 and B be the maximum likelihood estimates for the log likelihood function
log L(0, B|t*,r) from (17). Then, 8* and B3* maximize log L(0, Blt:, 1) if and only if 0 = 64

and B* = B.

Corollary 9. Let 6 and 7 be the maximum likelihood estimates for the log likelihood function
log L(0,~[t*, ) from (18). Then, 8" and 4" maximize log L(6, [t} r}) if and only if 6" = 6,
and 4 = Ay.

3 Simulation studies In the next step, we evaluate the ranges within which approximation (10)
holds in the RSM by using simulation studies. We set n = 50,100, & = 10, 20,30, and m =
3,5,7,9,11 and generate parameters from the settings below:

0; ~ N(0,1%), ajp ~ N(0,1%),wp, = wy, + 1wy, ~ [N(0,2%)]"
(19) 7;:1727"'vn7j:172a"'7kah:1727"'7m7

where N denotes a normal distribution. Here, [a]™ is a positive part of real value a, which means
[a]* = a with a > 0 and [a]" = 0 with a < 0. These settings are practical for educational testing.
Then, we generate response matrix X, statistics ¢;, and ¥, from (1). We also calculate a kind of
"capacity factor" that is CF' = DR(y)/S(z) for the approximation (10). Here, DR(y) and S(z)
are defined in (9) and (7), respectively. Finally, we evaluate Kendall’s rank correlation coefficients
for (¢,0) and (y, ) as efficiency indexes for the difference in approximation (10). We repeat the
procedure above 1000 times.

Table 1, Table 2, and Table 3 show the medians of Kendall’s correlations for (¢, 0) and (y, o).
First, all the correlation coefficients for (¢, 0) are quite high and stable because each ¢, is a suffi-
cient statistic for #;, as Andersen(1996) pointed out. We also find that the correlation coefficients
for (y, ) are high and depend on the size of category m. In other words, the correlations for
(y, &) worsen as m increases. In section 1, we found that the least difference of the upper limit for
the approximation (10) was evaluated by S(z) in (7) and that S(z) only depends on the maximum
and minimum values of the elements (y1, 2, - - , ym). Indeed, the correlation coefficients actually
decrease with the size of category m under usual conditions, although the least difference corre-
sponding to S(z) in (7) does not depend on a such criterion. This is because the differences in (10)
are relatively better than the least differences, as evaluated below.

Table 4, Table 5, and Table 6 present the medians of CFs. All of the CFs are very small, which
means that the DRs are very small compared with the least differences. Thus, our approximation
works well in these settings. Then, we evaluate more detail of the the CFs. For each k and m, the CF
increases with the size of category m. This finding means that the difference by (10) worsens as m
becomes large. This result is consistent with the decreasing of the correlation coefficients denoted
above.

Finally, we conclude that approximation (10) shows relatively strong performance and that this
approximation and the order-preserving statistics ¢ and y are acceptable in typical educational test-
ing.
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k 10

n 50 100

m 3 5 7 9 11 3 5 7 9 11

Cor (t,0) | 0.879 | 0.908 | 0.914 | 0.916 | 0.913 | 0.888 | 0.908 | 0.916 | 0.920 | 0.920

Cor(y, @) 1| 0.847 | 0.831 | 0.826 | 0.824 1|0.872 | 0.851 | 0.846 | 0.851
Table 1: Medians of Kendall’s correlations for (¢, 0) and (y, o) (L = 10)

k 20

n 50 100

m 3 5 7 9 11 3 5 7 9 11

Cor (t,0) | 0.935 | 0.948 | 0.950 | 0.952 | 0.955 | 0.941 | 0.953 | 0.955 | 0.954 | 0.953

Cor(y, a) 1|0.872 | 0.831 | 0.828 | 0.822 1| 0.872 | 0.852 | 0.849 | 0.852
Table 2: Medians of Kendall’s correlations for (¢, 0) and (y, o) (L = 20)

k 30

n 50 100

m 3 5 7 9 11 3 5 7 9 11

Cor (¢,0) | 0.954 | 0.963 | 0.964 | 0.966 | 0.966 | 0.956 | 0.966 | 0.967 | 0.968 | 0.969

Cor(y, « 1| 0872 | 0.838 | 0.827 | 0.820 1| 0.872 | 0.850 | 0.846 | 0.852
Table 3: Medians of Kendall’s correlations for (¢, 0) and (y, o) (L = 30)

k 10

n 50 100

m 3] 5] 7] 9] 1 3] 5] 7] 9] 1l

CF [ 287 x10° | 370 x 100 | 499 x 10° | 5.95 x 100 | 929 x 109 | 4.15 x 107 | 559 x 107 | 7.71 x 107 | 914 x 107 | 114 x 107

Table 4: Medians of the CFs for approximation (10) (L = 10)

k 20

n 50 100

m 3] 5] 7] 9] i 3] 5] 7] 9] i1

CF [ 1.95x 1070 [4.18 x 10 % [3.69 x 1075 | 7.75 x 100 [ 7.92 x 10 ° [ 2.98 x 1077 [ 6.92 x 107 [ 7.32 x 107 [ 1.08 x 107 | 1.45 x 107

Table 5: Medians of the CFs for approximation (10) (L = 20)

k 30

n 50 100

m 3] 5] 7] 9| 1l 3] 5] 7] 9] 1l

CF | 2.99 x 1070 | 346 x 1077 | 5.64 x 10° | 6.16 x 100 | 8.92 x 10° | 1.94 x 107 | 495 x 107 | 6.48 x 10~7 | 7.72 x 107 | 1.03 x 10~

Table 6: Medians of the CFs for approximation (10) (L = 30)
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4 Conclusion and discussion In this study, we considered the ordering properties of the RSM
and related polytoumous IRT models in JMLE with approximation (10). We also evaluated the
difference in such an approximation by using simulation study and concluded that this approxima-
tion and the order-preserving statistics proposed in this study are acceptable in typical educational
testing.

For the other estimation methods in RSM, namely CMLE and MMLE, the order-preserving
statistics concur with those in JMLE when (10) holds. First we consider the relations between the
estimates in JMLE and CMLE. The estimates in JMLE are biased comparing with those in CMLE
(e.g. Andersen, 1980, Theorem 6.1) and the bias is positive. Thus, the ordering of estimates in JMLE
and CMLE concur, although the estimates in JMLE are biased. Consequently, the order-preserving
statistics in JMLE agree with those in CMLE.

Then, we consider the relations between the estimates in CMLE and MMLE. Andersen(1996)
found that CMLE and MMLE agree when n is large, that means that estimates in the CMLE and the
MMLE concur. Thus, it is clear that the ordering of estimates and the order-preserving statistics in
these estimations concur. Finally, we find that the order-preserving statistics in all three estimations
agree.
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comments. This work was supported by JSPS Grant-in-Aid for Young Scientists (B) Grant Number
26750075.
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Abstract

In this paper, the classroom consists of three different kinds of students, and we discuss the
problem how to divide these students into three person groups. The benefit of one group is the sum
of three students’ benefit by cooperation game. The benefit of each person is given by the Shapley
value from the characteristic function we defined. Our goal is how to divide 18 students into
subgroups with three persons to make the total benefit of the classroom maximal.

It is impossible to get the maximal score by using different 18 students having different potentials
and six different coefficients for the combinations of three different levels of potentials. Especially,
the number of combinations for dividing 18 students by 3 persons evenly is tremendous. Therefore,
we can investigate some numerical examples under some limited conditions. Finally, we can obtain
the theorem to make the total benefit of the classroom maximal under the limited condition.

The authors believe that this research can apply to group learning and the field of Education in the

real life.

1. Introduction

There is a proverb, “Two heads are better than one”. In school life, groups form spontaneously,
and usually smart people study with other smart people. People who cannot be in that smart team
gather and construct other groups. Seen from a big picture, in Japan, every university, high school,
and even private junior high school is ranked. Each student is sent to a specific school based on their
score on a paper examination which is given by each school.

I am not sure if it is good to divide students ordered by smartness for the classroom and for society,
or not. The way to divide proper groups is affected by what is considered as priority. If your purpose
is to make the smartest student smarter, the way we are adopting the structure of the deviation value
now is obviously correct. However, to make the benefit of the entire classroom or entire society
biggest, we are not sure if it is correct that the deviation value structure we have now in Japan is the
best way. Therefore, we are going to talk about the structure, which makes the benefit of the entire
group the biggest.

In this paper, the classroom has three different kinds of students, and we divide these students into
three person groups. We assume that they cooperate and study together in groups. We anticipate that
three smart students compete or work together with each other and their score should go up.
Conversely, we assume, if three students who don’t like to study gather, they will not gain anything.
On this paper, we set one classroom with 6 smart students, 6 neutral students, and 6 not good

students. We divide them into 3 persons groups, so there are 6 groups in the classroom. The benefit

Mathematics Subject classification 2010. 91A12
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of one group is the sum of three students’ benefit by cooperation game. The benefit of each person is
given by the Shapley value from the characteristic function we defined. Also, in this model, we think
and simulate how and where to put these groups in the classroom. If a group talks to another group,

possibly they will gain something by conveying and receiving information.

2.1 Model of the classroom with 18 students

We figured out some dispositions from this problem when we construct the problem as a general
form. After giving the concrete numbers to the functions and others, we find the proper structure of
the classroom after finding proper groups by computational simulations.

Let X={ X, X5, X3, X4, X5, X¢ } be the set of 6 smart students.

Let Y={Y1, Y2, Y3, Y4, Ys, Y } be the set of 6 neutral students.

Let Z={ Z,, Z,, Z3, Z4, Zs, Z¢ } be the set of 6 not good students.

Let S = {sy, s, 83, S4, Ss, S¢} be the set of relationship between two students.
It is assumed that s; >>s; foranyi<j, 50 s;>>s;>>835>845>85>>ss.

> means that the relationship of s; is better than that of s; .

W; e W={X,Y,Z} 5 (j=1,2,---,18) W is the set of all students.

W, Xi, Y}, and Z; represent people.

Wi, Xi, ¥j , and z;represent values v(Wj), v(Xj), v(Y;), and v(Z;) respectively.
Let s, be the state of the relationships between X; and X;.

Let s, be the state of the relationships between X; and Y;.

Let s; be the state of the relationships between Y; and Y;.

Let s, be the state of the relationships between X; and Z;.

Let ss be the state of the relationships between Y; and Z;.

Let s¢ be the state of the relationships between Z; and Z;.

So we have assumed the quality of the relationship is highest for good students with good students
and lowest for poor students with poor students. This is probably the strongest assumption in the
paper and only reasonable in some situations. In some situations, it is possible that two average
(neutral) students will be able to combine and really both grow, but good students will not have
much room for growth. In other situations (modeled here), two average students gain but less than
two good students. So, we have the following value ordering. Another part of this assumption is
that two average or neutral students gain more than a good student combined with a poor student.
This would not always be true.

[Definition I ]
We define the characteristic function of the reward that both W; and W; corporate together.
V(Wi U Wj, s)=s(w; + w; ), where W represents an arbitrary person with value wi=v(W)). s is an

arbitrary element of S={s;... s¢}. m
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s represents the state of the relationship between two persons and is real value.
Let G1=(Wi, Wa, W3),  Go=(Wi, Ws, We),..., Ge=(Wig, Wiz, Wig),
where W; € W={X,Y,Z} (j=1,2,---,18).

In this coalitional game of three players, the Shapley value of player W; in G; = ( W;, Wiy, Wiy ) is

W) = ZEVW) = V(@) }+ L v(Wi U Wiy, ) = V(Wie)}

+ %{ V(WU Wi, 87) = v(Wii) }

2!
+ ;{ VWU Wit U W) = V(Wi U Wi, 877 ) e e eeerereeseeeceeenns (2-1-1)

>

s’,s",s

999

€S (P isan empty set.)

s’ depends on combination of W;and W, so there are 6 possible values.
v(W;U Wi UWiy,) is defined as

%{V(Wi U Wi, s") + v(WiU Wi, 87) + V(Wi U Wi, s77) 1.

From (2-1-1),

fiw)) = %{2wi— (Wir1 + Wira)} + %{Z{V(Wi U Wi, ")+ v(WiU Wiy, s7) }

_ V(Wi+l U Wi+2a S”’) } ......................................... (2_1_2)

Gy’s group value is defined as F(G;) = f(W)) + W) + f{Wis2)

The Sum of Group Values: SGV=29_; F(Gi) =~ +rererrrrerrreeeractnanns (2-1-3)

SGV represents the total score of whole classroom. Our objective is to find the grouping the make

the SGV maximal.

2.2 The comparison of two kinds of the classroom

There are so many ways to make six groups with three people each having different values. We

will observe the total value of classroom with two examples. We let ¥, x; > ¥ yi > 3¢ 7 and

812 8283 = 842 S5 S,
[Example I]
Let us consider the situation where the groups are divided by matching abilities.
X; and Xjhave different numbers.
Welet G =(X, Xs, X3), G=(X4, X5, X4), G3=(Y1,Y2Y3), G&=(Ys4, Ys, Ye),
Gs=(Z21,725,75), and G¢=(Zy,Zs, Zs).
fX0) = 2(2x1- (00 +x3)} + 220+ x)s1+ (1 + )81}~ (0t x5)s0 }
f(Xy) = %{2X2* (x1 +x3)} + é{Z{(Xz X181+ (X +X3)s1} — (X1 + X3)81 }
f(Xs3) = ;{2X3* (X1 +x2)} + %{2{(X3 TXDs1+ (X Hx0)81 F — (Xt Xo)sy }
F(Gy)= X))+ fXo)+ f(X3)= %{ (X1 x2)81 + (X1 F x3)81 HXa +X3)81 } = (X1 + X2 +x3)s
F(Go)= (x4t Xs +x)s1,  F(G3)=(yi+y2tys)ss, F(Ga)=(yatys +yo)ss
F(Gs)= (z1+ 20 +z3)s6,  F(Go)= (24 25 +2¢)S6 -

201
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[Example II]

Next, let Gy = (X1, Y1, Z1), Go=(Xs, Y2, Z5),. .., and G¢=(Xs, Y¢, Zs)-
fXy) = %{le—(}ﬁ Tz} + %{2{(?(1Jr yus2 + (X1 +z1)sg § —(y1+21)ss }
fY1) = 2 (2y1- (a1 +20)} + £ {2{0a+ Yo + (i 2085 § = (xi+ 254 )
f(Z1)= 2271 (i +y)} + {20+ 2085+ (+ z0)se b — (it y)s: |
F(G) = %{(Xl TyDsat (X1 z)sg+ (yi+z)ss |
Call the total value for these groups

SGV, = s2tst |6 ([ Xi+ Sz;rss i6:1 yi + 54455 w6 6 7 e (2-2-2)
We show a situation where SGV; > SGV, and one where SGV,; < SGV,.
SGV|—SGV, = (s, S“S“) z DX (5T By (s ) X 12
The first coefficient, s, — , is bigger than 0. The third coefficient, s —

5, is smaller than 0.
But the second coefficient, s;—g, is the thing we cannot know in this setting.
1) Ifwe let the si-values differ by a constant increment ,
then sg < s5= Sg+A< 54= 5612A < $3= 8413 A < 5,= 54H4A < 51= 86+5A.

And we get,

4A+2A 4A+A 2A+A

SGV;-8GV, = (5A— ) I+ (3A— )leyﬁr(()* )21121

72A2 1 Xi Tt 21 1yi — _Z =1%Zi >0

Therefore SGV, > SGV,.
2) However, if we lets;=s,=53=54=155> 5S¢,
SGV| - SGV,=(s¢ — s5) 22,7 <0.
Therefore SGV; <SGV,.
The two examples above show that it is hard to find the maximal SGV. That is because the total

value of the classroom changes with s-values.

2.3 Finding all possible groupings
We want to make these models simple. So, now we examine all possible groupings where all the

X;’s have the same value. The Y;’s and Z;’s have a single y-value and z-value respectively.
X=XXXXXX).r=N\Y.Y.Y.Y.Y),Z2=(Z2,2,2,7,7,7)
To represent a group’s makeup, we use the following notation:
( number of X members in the group, number of y members, number of z members).

Group H; : (X,X,X)=(3,0,0), Group H,: (X,X,Y)=(2,1,0),

Group H;: (X,X,2)=(2,0,1), Group Hs: (X,Y,Y)=(1,2,0),
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Group Hs: (Y,Y,Y)=(0,3,0), Group He: (Y,Y,2)=(0,2,1),
Group H7 : (Y,Z,Z):(O,l,z), Group H8 : (X,Y,Z):(l,l,l),
Group Hy : (X,Z2,2)=(1,0,2), Group Hyy:(Z,2,2)=(0,0,3).

The alphas in the following equation represent the number of groups of each makeup.

3 2 2 1 0 0 0 1
al (0) + a2 (1) + a3 (0) + a4 (2) + a5 (3) + a6 (2) + a7 (1) + a8 <1> +
0 0 1 0 0 1 2 1
1 0 6
0(9 (0) + (XlO (0) = (6) .............................. (2_3_1)
2 3 6

Equation (2-3-2) represents that the sum of alphas needs to be 6 because we have six groups.

Equations (2-3-3), (2-3-4), and (2-3-5) come from the equation (2-3-1).

‘We will solve these with matrices.

0t O+ 0y H0u 05 H0lg T g FOl T =6t (2-3-2)
0=0a;=6,0,€ N

3o+ 200+ 203 +o, +oig +og =6 s (2-3-3)

0 +204 +3 055 +20, T017 T0g =6 v (2-3-4)

03 +oe 207 tog 209 30 g =6 et (2-3-5)

By using a computer programming language VBA, we found there are 103 solutions meeting
(2-3-2) through (2-3-5). (Appendix) These solutions correspond to possible groupings. As we
did before, we find the group values for different group makeups.

2
( ) .F(H;)=3xs, (1) .. .F(Hy)=xs;+ xs,+ ys,
0
2 1
(0) .. . F(H3)=xs8;+ x84+ 284 (2) .. . F(Hy)=xsp+ ysot+ ys3
1 0
0 0
(3) .. .F(Hs)=3ys; (2) .. .F(Hg)= ys3+ yss+ zss
0 1

0 1
(1) .. . F(H7)= yss+ zss+ zs¢ (1) .. . F(Hg)=1/2{x(s2+ s4) +y(s2+ S5)+ Z(S4+ S5) }
2 1

0
> . F(Ho)= x84+ zs4 + 756 (0) .. .F(Hy)= 3zss
3

The possible groupings given by the alpha values are in the following tables. They were found by
Program 3 which is given an appendix.
Also, we have the chart of all possible groupings given by alphas at an appendix. We sort the

numbers of groupings by ascending order.
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This chart is all Possible Groupings Given by Alphas. We set through s; to sq the characteristic
numbers because this case, we assume that good student and good student can help each other the
most. In other words, we assume that poor student and poor student don’t cooperate each other much
because they don’t know the material they need to do. Finally, we sort this by highest score to lowest

score.

S1 S2 S3 S4 S5 S6 X y Z
1.25 | 1.2 1.15 | 1.1 1.05 |1 80 60 40
NO a Qo Qg ay as Qg a; ag [ aqo SGV
99 2 0 0 0 2 0 0 0 0 2 1254
94 1 1 0 1 1 0 0 0 0 2 1252
60 0 3 0 0 1 0 0 0 0 2 1251
76 1 0 0 3 0 0 0 0 0 2 1251
54 0 2 0 2 0 0 0 0 0 2 1250
98 2 0 0 0 1 1 1 0 0 1 1246
93 1 1 0 1 0 1 1 0 0 1 1244
59 0 3 0 0 0 1 1 0 0 1 1243
89 1 1 0 0 1 0 1 1 0 1 1242.5
96 2 0 0 0 0 3 0 0 0 1 1242
97 2 0 0 0 1 0 3 0 0 0 1242
73 1 0 0 2 0 0 1 1 0 1 1241.5
85 1 0 1 1 1 0 1 0 0 1 1241
91 1 1 0 0 1 1 0 0 1 1 1241
51 0 2 0 1 0 0 1 1 0 1 1240.5
57 0 2 1 0 1 0 1 0 0 1 1240
75 1 0 0 2 0 1 0 0 1 1 1240
92 1 1 0 1 0 0 3 0 0 0 1240
41 0 1 1 2 0 0 1 0 0 1 1239
53 0 2 0 1 0 1 0 0 1 1 1239
58 0 3 0 0 0 0 3 0 0 0 1239
71 1 0 0 1 1 0 0 1 1 1 1238.5
87 1 1 0 0 0 2 0 1 0 1 1238.5
82 1 0 1 0 2 0 0 0 1 1 1238
95 2 0 0 0 0 2 2 0 0 0 1238
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5 0 0 1 1 0 1 0 2 1 0 1220

13 0 0 2 0 1 1 0 1 1 0 1219.5

101 |0 0 0 1 0 0 0 4 1 0 1219

3 0 0 1 0 1 0 0 3 1 0 1218.5

21 0 0 3 0 0 3 0 0 0 0 1218

11 0 0 2 0 0 2 0 2 0 0 1217

100 |0 0 1 0 0 1 0 4 0 0 1216

103 |0 0 0 0 0 0 0 6 0 0 1215
When you see the difference between top 5 groups,

Highest No.99 (XXX),(XXX), (Y.Y,Y) (Y,Y,Y), (Z,2,2) (Z,2,Z)

Second highest No.9%4 (X,X.X),(X,X.Y), X\Y.Y) (Y.Y.Y), (Z,2,2) (Z,2,Z)

Third highest No.60 X, XY),(X,X,Y), X.X.,Y) ,(\.Y.Y), (Z,Z2,2) (Z,2,Z)

Fourth highest No.76 (XX X).(XY.,Y), (XY,Y) . (X.Y,Y), (Z.Z.Z) (Z,.Z,Z)

Fifth highest No.54 (XX Y).(XX.Y), (XY.Y),(X.Y.Y), (Z.Z.Z) (Z.Z,Z) .

As you can see, for creating the group with second highest score in this situation, you need to
exchange one of X for one of Y on the highest grouping. And then, No.94 is created from No.99 with
one exchange. Next, No.60 is created by No.94 with an exchange X for Y. By fifth highest group in

this situation, the ranking changes only by exchanging X for Y.

From 6™ highest to lower, the ranking changes by exchanging something for Z. The group with

lowest score, 103th, is (X,Y,2),(X,Y,Z), (X,Y,Z) ,(X,Y.2), (X.Y.Z) (X, Y,2).

2-4 Some numerical calculations with different conditions

[Numerical example T |

We selected a simple constant decrease in the s-values favoring the good students working together.

We also selected values for the X and the Z. For getting the different result, we change the value of Y

from 50 to 70 by 10.

sl s2 s3 s4 sb s6 X v z

1.25] 1.2] 115 11| 1.05 1 80 60[ 40

207



208

NAOYA UEMATSU* AND KOYU UEMATSU **

Ranking | y=50 y=60 y=70
1 99 99 99
2 94 94 94
3 60 60 60
4 76 76 76
5 54 54 54
6 98 98 98
7 93 93 93
8 96** 59* 59%
9 97 89 89
10 59* 96** 73
11 89 97 51
12 92 73 85
13 95 85 91
14 73 91 57
15 85 51 75
16 91 57 41
17 58 75 53
18 51 92 96%*
19 87 41 97
20 57 53 71
21 75 58 49
22 41 71 82
23 53 87 92
24 84 82 30
25 90 95 58

This chart is describing the ranking by ys’, respectively. For example, 99 in this chart means
grouping No0.99, which is (X,X,X),(X,X.X), (Y.Y)Y) (Y.Y.Y), (Z.Z.Z) (Z.Z.Z).
When we change ys’ from 50 to 70 by 10, we describe the top 25 groupings by descending order. We
cannot see the difference above 7 but we can see the difference under the 8". The No.59 goes up
from IOth, 8" to Sth, respectively. On the other hand, No0.96 goes down from 8[}', 10" to 18“1,
respectively.
No.59 is (X, X,Y),(X.X,Y),(X. X, Y)(Y,Y,2)(Y.Z,Z)(Z,.Z,.Z).
No0.96 is (X.X,X),(X.X,X), (Y,Y.Z) (Y,Y.,2), (Y,Y.Z) (Z.Z,Z).
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By giving y the difference, y has more advantage when Y is with Xs. Therefore, the rankings change.
We can see that the degree of tops and lows don’t change at all. But we can also see that some

groupings around middle of the rankings change much.

[Numerical example I1]
We didn’t change anything but the value of s;. Numerical example II changes the value of s; from

1.12 to 1.18 by 0.03

NO s3=1.12 | s3=1.15 | s3=1.18
1 54** 99* 99*
2 60 94 94
3 76 60 60
4 94 76 76
5 99* 54** 54**
6 59 98 98
7 93 93 82
8 58 59 91
9 98 89 85
10 51 96 89
11 92 97 93
12 73 73 96
13 89 85 97
14 96 91 71
15 97 51 57
16 41 57 75
17 53 75 73
18 87 92 59
19 57 41 40
20 75 53 49
21 95 58 80
22 85 71 41
23 91 87 53
24 46 82 84
25 52 95 90

Since s; is the coefficient for the relationship between Y and Y, when the value of s; decreases, the

value of (Y,Y,Y) decreases as well. Therefore, the ranking of N0.99 goes down. When s; is 1.12, the
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grouping having the highest score is No.54, which is (X, X,Y),(X,X,Y), (X,Y,Y) ,(X)Y)Y),

(Z2,2,2) (Z,2,7). The grouping of just Ys was disappeared, and groupings with X and Y have

advantage more than Ys.

[Numerical example III]

Numerical example III changes the values of coefficients s’s. There are three ways to change

coefficients, which are concave, linear, and convex. This chart below is how we set them.

State concave | Linear | Convex
S1 1.25 1.25 1.25

S2 1.15 1.2 1.24

s3 1.07 1.15 1.22

S4 1.03 1.1 1.18

S5 1.01 1.05 1.1

S6 1 1 1

1.3

1.25

1.2

1.15

1.1

e
—e—concave
——m—linear
convex
B
s1 s2 s3 s4 s5 s6

state

This chart describes the ranking by ascending order from top to 25th.

No0.99 is the top when we use concave and linear ways. No.14 is the top with convex way.

NO concave | linear convex
1 99 99 14
2 94 94 2
3 98 60 29
4 60 76 23
5 76 54 66
6 96 98 6
7 97 93 10
8 54 59 40
9 93 89 82
10 95 96 17
11 59 97

12 92 73 9
13 89 85 25
14 58 91 30
15 73 51 36
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16 87 57 18
17 85 75 49
18 91 92 54
19 51 41 3
20 86 53 71
21 57 58 7
22 75 71 31
23 84 87 60
24 90 82 76
25 41 95 13

We cannot see the difference a lot between concave and linear. But when we apply the
convex way, the rankings change a lot.

What we need to check out is No.14. No.14 is changed from 100th, 90th, to 1st by different
settings, respectively.

No.14 is (X,X,2), (X,X,2),(Y, YY), (Y,Y,Y),(X,Z,2),(X,Z,Z).

s5 (relationship between Y and Z) and s (relationship between X and Z) causes this
result because the values of ssand s5go up drastically. No.99 which is the top at other’s
setting becomes 34th with convex situation.

We have observed just groupings whose rankings are increasing or decreasing, but we
found the groupings doing weird movement in rankings. For example, No.60 places 4th,
3rd and 23th, respectively.

No.60 is (X,X,Y), (X,X,Y),X,X,Y), (Y,Y,Y),(Z,Z,2),(Z,Z,7).

2-5 The Model with limited sequence {s;}
In this part, X; and X; have different numbers which is x; and x; respectively.
Let {s;} be sequence of numbers with common difference d (constant),
si=sHO—1)d, and X=Xy 2 * "2 Xe> YIZ Y2 2y 1= 2 20t 2 7
We let Gi= (Xi, Xa, X3) , Go= (X4, Xs, X6) » G3= (Y1, Y2, Y3) , Go= (Y4, Y5, Ye) ,
Gs= (21, Zy, Z3) , and G¢= (Z4, Zs, Z¢) and call this grouping “the group of likes”.
The SGV .« denotes the sum of group values of “the group of likes”.
[ Theorem ]
The SGVax  1s the maximum in the all groupings. m
Proof:
No matter how you exchange arbitrary X;and X; between the two X-only groups {X;, X5, X3} and
{ X4, Xs, X¢}, the value of SGV 5 doesn’t change. It is the same for {Y, Y,,** *,Ys} and {Z,,
Z5,"*+,Zsy. When you exchange an arbitrary Xjin G, or G, for an arbitrary Y;in G; or G, we let
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SGV’. We have already obtained SGV ., from Example 1.
Weleta= Y8 x ,p= X2,y ,andy= X8,z
SGVima= 81 X Xi +8:50, ¥i +56 Loy Zi
=810+ 83+ sgy = s(at+Pty) + Sda+ 3dp  (by si=s+H(6—i)d )

If X; and Y, belong to the same group with X and Y, and Y, belong to the same group with Y;, we
exchange X; for Y; to be able to get SGV” easily, where I, m, p, and q € {1, 2,3,4,5, 6}.

SGV’= s(at+B+y)+5da—(d/2)(x+ X)) —dxi+3dB+dy+(d/2)(ypt yg)

SGVimax — SGV’= dxiH(d/2)(x+ Xpm) — dy;— (d/2)(yp+ yg)

= d(xi— )t @2t )~ (vt ¥} >0 ( since x;>y; )
In “the group of likes”, exchanging one of X for one of Y makes the value of SGV ., small.
From the same process, we can tell easily that exchanging one of X for one of Z makes the value of
SGVnax small.  Therefore, we can show that any exchange to “the group of likes” reduce SGV .
[
From numerical example 1 ,1I ,and ITI, we have predicted that the sum of group values of “likes

grouping” became the maximum. But under 216:1 X; > Z?zl v > Zle z; and S| > $,>83> 84> 85> Sg,
we can’t prove the theorem. This proofis done with giving {s;} the condition of sequence of

numbers with common difference.

3. Conclusion

We divide 18 students into six groups. We let each group do a coalitional game. Our
purpose is that we find the benefit of whole classroom maximal. As we saw the results of
numerical example I and Theorem of chapter 2-5, No.99 makes the highest benefit. That
means we make groups from better students in order. However, we noticed that we have
the different proper groupings from numerical example II and Il with the different
coefficient si. The rank of No.99 has chances to become not the highest under the
condition, s1 >s2 >...>s6. We want to focus on the result with the convex way. No.14
became the highest with the convex way. Under the condition that the only relationship
between Z and Z creates less benefit than others, to group Z and X creates the whole

benefit bigger.
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Appendix
Sub MIPS()
k=-1
Fora=0To 6
Forb=0To 6
Forc=0To 6
Ford=0To 6
Fore=0To 6
For f=0To 6
Forg=0To 6
Forh=0To 6
Fori=0To 6
Forj=0To 6
If WorksheetFunction.And(3 *a+2 *b+2*c+d+h+i=6,b+2*d+3*e+2*f+g+h=0,
ctf+2*g+h+2*i+3*j=6,atb+c+td+e+f+g+h+i+j=06)=True Then
Cells(1, 1).Activate
k=k+1
With Application. WorksheetFunction
ActiveCell.Offset(0, k) =a
ActiveCell.Offset(1, k) =b
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ActiveCell.Offset(2, k) =c¢
ActiveCell.Offset(3, k) =d
ActiveCell.Offset(4, k) =e¢
ActiveCell.Offset(5, k) = f
ActiveCell.Offset(6, k) =g
ActiveCell.Offset(7, k) =h
ActiveCell.Offset(8, k) =1
ActiveCell.Offset(9, k) =]
End With
End If
Next j
Next i
Next h
Next g
Next f
Next e
Next d
Next ¢
Next b
Next a
End Sub
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ABSTRACT. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.

In this paper we are concerned with multiclass feedforward queueing networks with cus-
tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(> 1) classes and the network is composed of J(> 1) service stations with unlimited

capacity where J < K. Customers of each class k € K(= {1,...,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(-) maps K
onto J(= {1,2,...,J}) in a many-to-one fashion. In such networks customers change their

classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows

2000 Mathematics Subject Classification. 60K25, 60F17, 90B22, 60J25, 93E15 .
Key words and phrases. diffusion approximation, multiclass feedforward queueing network, customer
abandonment, state-space collapse.
*School of Science and Technology, Kwansei Gakuin University.
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from a lower numbered station to a higher numbered one, or remains in the original station
(as a new class customer). After at most a finite number of such class changes, customers
will eventually leave the network. In this paper, the FCFS (firsr-come, first-served) service
discipline is investigated in our multiclass feedforward queueing networks with abandon-
ments and we establish the diffusion approximation for those networks in heavy traffic.

Related research. Diffusion approximations for (single-class) generalized Jackson queue-
ing networks (GJNs) in heavy-traffic were established in Reiman [22] under typical moment
conditions on primitive variables of the network. However, some counterexamples were
found to the validity of heavy-traffic limit for multiclass queueing networks (MQNs) (cf.
Dai and Wang [9]), which is in contrast with the case of GJNs. So the identification of the
category of the MQNs subject to the heavy-traffic analysis has been one of the main topics
in queueing theory. Due to the feature that a single server processes more than one class
of customers in MQNs and also to the class-transition nature of a customer, the increased
complexity is brought so that the heavy-traffic limit of scaled K-dimensional queue length
vector in an MQN is understood to be difficult to obtain without additional restrictive
conditions not appearing in such limits of GJNs.

In late 1990s, such problem was solved by Bramson [3] and Williams [26] for some types
of MQN with important service disciplines such as FCFS, processor-sharing and buffer-
priority ones. More specifically, Williams [26] established heavy-traffic limit theorems for
MQNs with the limit referred to as a semimartingale reflecting Brownian motion, assuming
the condition of state-space collapse. Loosely speaking, state-space collapse corresponds
to an asymptotic-law version of Little’s formula for MQNs in heavy traffic. Further, [206]
indicated that state-space collapse is also a necessary condition for the heavy-traffic limit
theorem in MQNs with FCFS disciplines. (Cf. Appendix B in [26]). At the same time,
Bramson [3] constructed the framework on state-space collapse for MQNs in which the initial
condition on strong state-space collapse is proved to imply multiplicative strong state-space
collapse (cf. Theorem 1 in [3]), which forms the basis for the use of state-space collapse in
[26]. In addition, [3] showed that state-space collapse is exhibited after a brief period of
time under the relative compactness (tightness) of initial scaled workload (cf. Theorem 3
in [3]), which is used to prove that state-space collapse holds for a multiclass single-server
queue in stationarity (cf. Katsuda [15]).

On the other hand, for the last decade, the study of a many-server queue with abandon-
ment in the so-called Halfin-Whitt heavy-traffic regime has attracted considerable attention,
because it is relevant to practical large-scale service systems such as call centers. (Cf. Dai
and He [8] and references therein). Furthermore, the heavy-traffic analysis of a (single-
class) single-server queue, and more generally, that of a GJN are associated with customer
abandonment. (Cf. Ward and Glynn [23], [24], Reed and Ward [21] for the former study,
and Huang and Zhang [13] for the latter). In particular, the works [24] and [21] identi-
fied a reflected Ornstein-Uhlenbeck process and a more general reflected diffusion process,
respectively, as the heavy-traffic limit of a GI/GI/1(+GI) queue with abandonment. In
all of those works, for the scaling of abandonment (or, patience time) distribution, the
continuous or locally-bounded hazard-rate scaling and more generally, the locally-Lipschitz
hazard-type scaling were employed because of their technical tractability. ;From a unified
point of view, those scalings are extended to the most general hazard-type one by Katsuda
[17] for a G/Ph/n+GI queue in the Halfin-Whitt regime. According to such general scal-
ing, practical and yet previously intractable examples of abandonment distribution become
subject to the analysis of diffusion approximation. For instance, the Gamma distribution
with scale parameter less than unity is such case. (See the introduction of Katsuda [17]).

Main result. In this paper we will state and prove a diffusion approximation for a
multiclass feedforward queueing network with abandonment under the FCFS service disci-
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pline. Our main result is a generalization of two previous works [24] and [21] cited above.
Specifically, we extend their diffusion approximation results via a one-dimensional Ornstein-
Uhlenbeck type diffusion for a GI/GI/1+GI queue to a multiclass feedforward queueing
network with GI-type abandonment. Furthermore we employ the general hazard-type scal-
ing of abandonment distribution which includes the locally Lipschitz hazard-type scaling
used in [24] and [21]. Our limit process for (scaled) workload is the unique solution to a
multidimensional reflected stochastic differential equation with a nonlinear drift and the
limit for queue length in each class is a constant times the limit of workload at the station
serving the class, which is a consequence of state-space collapse for our queueing network
with abandonment.

Methodology. In addition to thei.i.d. (independent and identically distributed) condition
of primitive model variables with general probability distributions and also their parameters
convergence, we impose the following four main assumptions:

(A.1) Initial condition on the weak convergence of (scaled) workload.

(A.2) Initial condition on strong state-space collapse.

(A.3) Tightness of initial queue length.

(A.4) Completely-S condition of reflection matrix in the limit equation for the workload.

To derive the diffusion approximation result from those assumptions, the following steps
will be taken in our argument:

Step 1. Using assumptions (A.1) and (A.3), we show the stochastic boundedness of scaled
queue length and workload in our queueing network with abandonment. In particular, the
feedforward property of class routing is crucial to this step.

Step 2. For each k € K, the C-tightness of scaled abandonment-count process of class k is
proved, using the stochastic boundedness of scaled workload in Step 1.

Step 3. According to (A.2) and Step 1, the condition corresponding to strong state-space
collapse in a multiclass FCFS queueing network (without abandonment) is shown. Com-
bining it with the condition characterizing the FCFS discipline with abandonment, we have
state-space collapse for our queueing network with abandonment.

Step 4. Using the results of Step 2 and Step 3, we have the C-tightness of the sequence
of scaled workloads satisfying the heavy-traffic condition, and then derive a .J-dimensional
reflected stochastic differential equation (SDE) satisfied by any limit process of the sequence.
Step 5. Observe that our limit SDE has a nonlinear drift term as the limit of scaled
abandonment-count process due to the general hazard-type scaling of abandonment dis-
tribution. (The solution to the equation may be regarded as a semimartingale reflecting
Brownian motion (SRBM) with a nonlinear drift term). Thus, applying the Girsanov trans-
formation to the localized SDE and using (A.4), the uniqueness in law of the solution to
the original SDE is achieved. Consequently we have the desired weak convergence of scaled
workload to the unique solution to the SDE. The limit for queue length in each class is
an immediate consequence of state-space collapse and the limit for workload at the station
serving the class.

Overview of the contents. The rest of the paper is organized as follows. In Sect. 2,
we introduce some primitive variables and processes for a multiclass queueing network
with abandonment under study. In terms of those primitives, we construct a piecewise
deterministic Markov process for the dynamical description of our queueing network in
Sect. 3. In other words, the performance measures for our network are adapted to the
history of the process. In Sect. 4, we state our main result, i.e., a diffusion approximation
theorem for a multiclass feedforward queueing network with abandonment, and Sect. 5
is devoted to its proof, in which the methodology mentioned above are employed. In the
appendix, we put some lemmas used in the demonstration of state-space collapse in Sect.
5.
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Notation. For a random variable X defined on a probability space (2, F,P), the ex-
pectation of X on an event A € F is denoted by Ep[X; A]. For a local martingale M, the
optional quadratic variation process of M is denoted by [M]. (Cf. (1.8.3) in Liptser and
Shiryayev [20]).

The symbols Z, N, R! and Ri_ denote the set of integers, positive integers, real numbers
and nonnegative real numbers, respectively. For a,b € R!, a A b = min{a,b}, a Vb =
max{a,b}, at =aVv0,a” =(—a) V0, [a] =max{i €Z:i<a} and [a] =max{i €Z :i <
a}.

For d € N, R? denotes the d-dimensional Euclidean space. Every vector in R? is
envisioned as a column vector. For example, a = (ax, k € L) denotes the L-dimensional
column vector with L the number of elements in the index set £. The transpose of a vector
or a matrix is denoted by putting a tilde on its top. The vector e € R denotes (1,1,...,1).

The norm |u| of a vector u = (u1,...,uq) € R? is defined by |u| = |ui| + --- + |ug|. The
matrix diag(u) with a vector u = (u1, ..., uq) € R? denotes the d x d diagonal matrix with
(i,1)-diagonal element equal to u;, ¢ =1,...,d.

The space of functions f : [0, 00) — R? that are right-continuous on [0, 00) and have left-
hand limits in (0, 00) is denoted by D([0, 00), R?) or simply by D?. The space D? is endowed
with the Skorohod Jj-topology. Similarly, the space of R%-valued continuous functions on
[0, 00) is denoted by C([0,00),R%). For f € D? and ¢ > 0, f(t—) denotes its left-hand limit
at t and Af(t) = f(t) — f(t—). For a sequence of random elements {X"},>; taking values
in a metric space &, the symbol X" = X in & as r — oo means the weak convergence of
X" to X in & as the index r tends to infinity.

2 Multiclass feedforward queueing networks with abandonments and their
Markovian description of dynamics

2.1 Model primitives In this section we first introduce some primitive random variables
(r.v.’s) on a probability space (2, F,P) to construct the model of a multiclass queueing net-
work with abandonment studied in this paper. The network is composed of J service stations
indexed by j = 1,...,J, and the set of service stations is denoted by J = {1,2, ..., J}. Each
of the service stations has a single server and a waiting buffer of unlimited capacity. Each
customer (or job) belongs to one of K classes with K > J, indexed by £ = 1,..., K, and
the set of the classes is denoted by K = {1,2,..., K}. For each k € K, customers of class
k are served at service station s(k) € J exclusively. The mapping s(-) maps K onto J in a
many-to-one fashion. In addition, we let C(j) = {k € K: s(k) = j}, j € I.

Customers of classes in A, which is a non-empty subset of K, enter the network from
outside and no external arrival is allowed for any class in K — A. Upon arrival, a customer
is assigned the abandonment time (or, patience time) whose probability law depends on
his class, and if the time until the customer is supposed to enter service, called the offered
waiting time, exceeds his abandonment time, then he will abandon the system as soon as his
remaining abandonment time is exhausted. Otherwise, i.e., if the customer is supposed to
receive service eventually, he is assigned the service time on his arrival, which also depends
on his class. The service of customers by the server is performed according to the first-
come-first-service (FCFS) discipline, i.e., in the order of their arrivals independently of
their classes. (We also take the convention that customers within each class are numbered
on the first-in basis). On service completion, a customer either changes his class and waits
for service as the new class customer in the end of the queue, or leaves the system.

FExternal arrivals
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The external arrival process E(t) = {E(t), k € K}, ¢ > 0, counts the number of arrivals
at each class from outside the network. For each k € A, we define Ej(-) by

Ei(t) = max{n € N : Uyp(n) < t}

with max ¢ = 0, where

(1) Ur(n) = ch(i)

with U, (0) = 0. For each k € A, the external interarrival times {ux(i),71 = 2,3,...} are
ii.d. (independent and identically distributed) positive r.v.’s with the distribution function
(d.f.)

Fi(z) = P(ur(2) < x), x>0,

the mean 1/ay, = [ xdFy!(x) > 0, and the finite variance aj, = [~ (z — 3-)?dF(z) > 0.
The r.v. u(l) > 0, corresponding to the remaining interarrival time of the customer
entering first after time ¢ = 0, is independent of {ug(i),i = 2,3,...}. For each i =2,3,...,
the r.v. wug(i) corresponds to the interarrival time between the (i — 1)-th customer and i-th
customer in class k. For conveniece, we set

Ep()=0 and a;=0

for k € K — A. The vector o = (ay, k € K) is referred to as the arrival rate.

Service times

For each k € K, there are two sequences of service times, i.e., a sequence of original
service times and a sequence of subsequent service times. The sequence of original service
times {vQ(i),i =1,2,...} gives the (remaining) service times for class k customers who are
in the system at time 0 and will eventually receive service. (There are more elements in the
infinite sequence than needed). Those initial customers are assumed to have the prescribed
order of arrivals at or before time 0, and if there is such i-th customer in the system, the
original service time v (i) is assigned to him for i = 1,2,.. ..

For each k € K, the original service times {vy(i),7 = 2,3,...} are i.i.d. positive r.v.’s
with

(2) FY(x) =P(f(2) < x), = >0,

the mean my, = [~ xdF{ () > 0 and the finite variance b, = [ (z —my)?dF (z) > 0. The
constant p; = 1/my, is referred to as the service rate of class k. Ther.v. vQ(1), corresponding
to the (remaining) service time of initial class k customer who arrived the longest time
ago among those eventually receiving service, is independent of {vf(i),7 = 2,3,...}. The
cumulative original service time process Vi (n),n € N,k € K, is given by

(3) Vi) = vi(0)

with V7 (0) = 0.

The subsequent service times {vi(i),i = 1,2,...}, k € K, are i.i.d. positive r.v.’s with
P(vi(1) < z) = FY(z),z > 0. For each k € K, vj(i) corresponds to the service time
assigned to the i-th class k customer among those arriving after ¢ = 0 from outside or due
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to class change and eventually receiving service. The cumulative subsequent service time
process Vi(n),n € N,k € K, is given by

(4) Viln) =) ui(i)
i=1

with V3 (0) = 0.
Abandonment times

Similar to the service times above, we introduce the abandonment times in two dis-
tinct sequences, i.e., the original abandonment times and subsequent abandonment times.
For each k € K, the original abandonment times {yg(7),i = 1,2,...} is a sequence of in-
dependent positive r.v.’s which corresponds to the remaining abandonment times of the
customers of class k initially at the network. (The assignment of those abandonment times
to each customer is done in the same way as in service times, but distinct to that case, the
abandonment time is assigned to every customer at the system, whether he will abandon it
or not). For each k € K, the subsequent abandonment times {v{ (i), = 1,2,...} are i.i.d.
positive random variables with
() F(z) =P(y(1) <z), x>0,
and correspond to the abandonment times assigned to the customers of class k arriving
after ¢t = 0.

Class routings
The class-routing process ®(n) = {®*(n),k € K}, n € N, is defined by

where {¢" (i) = (¢F(i),l € K),i = 1,2,...,} are i.i.d. random vectors taking values in the
set {0,e1,...,ex} with e, denoting the unit basis vector parallel to the k-th coordinate
axis in R, k € K. The identity ¢*(i) = ¢; indicates that the i-th customer served at
class k changes his class to class [ after the service, and the identity ¢*(i) = 0 indicates his
departure from the system.

Let Py = P(¢*(1) = ¢;) and Py = P(¢*(1) = 0), k,1 € K. Then the K x K substochastic
matrix P = [Py k,l € K], called the class-routing matrix, is assumed to have spectral
radius strictly less than unity. Thus

Q=(I—-P) '=I+P+(P>+---
is finite where P denotes the transpose of P. It is readily seen that for each k € K,
E[¢*(1)] = P..  and
Couv[¢*(1)] = [Cov(¢f (1), ¢, (1)), I, m € K]
(6) ="

where Pj,. denotes the k-th row vector of P and Y* denotes the K x K matrix such that

Tfm _ {Pkl(l —Pkl) if = m,

(7) .
_PklPkm if [ 75 m.
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In this paper we will impose on the class-routing probability {Py, k,l € K} the following
condition:

Feedforward class-routing condition
For each k,l € K,

(8) if Py >0, then s(k)<s(l).

When J = 1(i.e., a multiclass single-server queue), condition (8) is obviously satisfied.

Remaining time processes

Associated with the interarrival, service and abandonment times introduced above, we
define their remaining time processes as follows. For each k € K and t > 0, let R} (t)
and R} (t) denote the remaining interarrival time and remaining service time of class k
customer at time t, respectively. (For k € K — A, we set R}!(-) = —1). In particular,
Ri(0) = up(l),k € A, R(0) =P (1),l e K.

Now, for each k € K, let

(9) Z(t), t>0,

denote the number of class k customers who are either being served or waiting in queue at
time ¢, which is referred to as the queue length of class k at time ¢. Then the remaining
abandonment time process of class k, k € K, is represented by

Ry(t) = (Ry,;(t),i=1,2,...), t>0,

in which, for each 1 < < Z(t), Ry ;(t) denotes the remaining abandonment time of i-th
customer of class k at time ¢, and for i > Zy(t) + 1, we set Ry ;(t) = —1. In particular,
R;.;(0) = 72(i) for each 1 < i < Z;(0) and k € K. If the remaining abandonment time
RZ1() expires at t =ty and the service of the corresponding customer began before time
to and continues at t = to, then we set R} | (t) = 0 for each ¢ € [to, 1) where ¢; denotes the
time at which the service finishes.

Class designation processes

Relevant to the FCFS discipline investigated in this paper, we have to track the designa-
tion of the class of each customer in each service station in order to describe the dynamics
of the network. For the purpose, we introduce the {0, 1, ..., 2K }*°-valued process

(10) o) =(0;), jel), t=0,
where

0;(t) = (0;,(t), i > 1), jel,
and for j € Jand 1 <i <37 ;) Zm(t),

k if 4-th customer in the queue of station j at time ¢ is
of class k and will eventually receive service;
(11) 0;4(t) = Y

K+1 if 4-th customer in the queue of station j at time ¢ is
of class [ and will eventually abandon the system,

and for i > 37 o) Zm(t) +1, we set O;;(t) = 0. (The variable O}, (t) corresponds to the
class of the customer being served at time ¢, whenever }-, ;) Zm(t) = 1).
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Note that under our assumptions on the primitives, simultaneous (exogenous or internal)
arrivals of customers from different classes are allowed. So, to determine the components of
the process O(-) without ambiguity, a rule is needed for the specification of the ordering of
such customers. Following page 41 of Williams [26], we henceforth take a deterministic tie
breaking rule to treat that case. For example, we adopt the convention that for customers
with simultaneous arrivals, a customer of higher numbered class is ordered ahead of a
customer of lower numbered class in the queue of each station.

Offered waiting times

To determine whether each customer will abandon the network or not either on his
arrival to a class or at initial instant, we assign to him the offered waiting time as follows.
Foreach k € Kand i = 1,2, ..., the original offered waiting time wy () is the amount of time
the i-th customer of class k initially in the system would have to wait in queue (i.e., waiting
line) until getting into service if his abandonment time were infinite, with the convention
that wQ (i) = 0 for i > Z;,(0) +1. Thus, if v2(7) < wy(7), then such i-th class k customer will
eventually abandon the network, and otherwise, he will receive service of class k. Similarly,
for each k € K and i = 1,2,..., the subsequent offered waiting time wj (i) is such amount
of time for the i-th customer arriving at class & from outside or from other classes due to
class change after ¢t = 0.

Specifically, w; (i) is G; (i)-measurable for each ¢ = 1,2,... and k € K, where

i (1)
= o{ur(m + 1), 0 (m),vi(m),m <i =13 v \/ ofw(m),vi(m),7 (m),m > 1}
leK,l#k
(12) v\ o{ogm),75(m), 67 (m),m > 1} v o {O(0)}.
peK

Mutual independence assumption on the primitives

Finally in this subsection, we impose the following mutual independence assumption on
the primitive variables introduce so far, which is fundamental to our argument in the rest
of the paper:

The families of variables
{R"(0), R7(0), 0(0)},{R;:(0) = uk(1)}, k€A,
up, K EA, vl 0T,

(13) Uf?"'a”?{v ’Yf,"'a’ﬁ(, ¢17"',¢K

are mutually independent, where

2.2 Performance measure processes and their equation As the performance mea-
sures for our multiclass queueing network with abandonment, we define the following pro-
cesses:

The K-dimensional (column) vector-valued process

Z(t) = (Zu(t), k€ K),  t>0,
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with Zj(t) in (9) is referred to as the queue length process. For each j € J, let
Wi(t), t=0,

denote the total amount of immediate work (measured in units of service time) embodied
by the customers in the station j at time ¢. Set

W(t) = (Wj(t)a.j € J)’ t>0,

which is referred to as the workload process. Also, for each j € J,

denotes the cumulative amount of time that the server at station j is idle during the time
interval (0, ], and set

Y(t) = (Yj(t),5 €J)

that is referred to as the cumulative idle time process. To describe the dynamics of Z(-),
W(-) and Y (+), we also introduce the following processes.

For each k € K and ¢t > 0, Ay(t) denotes the total number of the (exogenous and
internal) arrivals of class k customers during (0,t], Dy (t) denotes the total number of the
service completions of class k customers during (0,t], Ix(t) denotes the total number of
the abandonments of class k customers during (0, ¢], and Tj(¢) denotes the total amount
of time that the server has processed customers of class k during (0,¢]. Furthermore, let
A} (t) denote the number of customers who arrive at class k during (0, ¢] and will eventually
receive service (and not abandon), and let Z,"(¢) denote the number of class k customers
who are either being under service or waiting in queue at time ¢ and going to receive service.

We represent those processes in (column) vector form as

A(t) = (Ak(t), k € K),
AT(t) = (A (1), k € K),
D(t) = (Dy(t), k € K),
I(t) = (Ix(t), k € K),
T(t) = (Tk(t), k € K),
ZT(t)=(ZF(t),keK), t>0
Let
(14) X(t) = (A(t), AT(6), D(t), I(t), T(t), W (t), Y (1), Z(t), Z* (1)), t=0,

and the process X(+) is called the performance measure process for our multiclass queueing
network with abandonment. Then the dynamical equation for the components of X(t),t > 0,
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is represented as follows:

(15) A(t) = E(t)+ F(t)

K
(16) with  F(t Z
an) 20 = 20)+ AW - D)~ 10,
(18) ZF(t) = Z7(0) + AT(t) — D(t)

Z(0)

Ak(_t)
(20) and A;:(t) = Z 1{“’2(7‘)<77€(2)}’ k e K,
(21) W(t) =W(0)+ CVSl(A+(t)) —CT(t)
(22) with W (0 ):CVO(Z+(0)),
(23) CT(t)+Y(t) =
(24) / W;(s)dY;(s) =0, Vjel,

for all t > 0, where C' = [Cjx, j € J,k € K] is the J x K matrix with
1, if j=s(k):
Cjk:{ j = s(k)

0, otherwise.

Associated with the abandonment-count process I (-), k € K, we now define the process
Nk()ak S K? by

(25) Nip(t) =2,/ (0) + A (1),  t=0,

where
Zk(0)

(26) Z (0) = Y Lisprzugn = Zu(0) = Z(0),
42l

(27) AL (t) = Z Liye(iy<ws (i) = Ax(t) — A (t).
i=1

We observe that under the FCFS service discipline, for each k € K, ¢ > 0 and ¢ > 0,

(28) Ni(Co(ry(t) =€) < In(t) < Ni(2)

with

(29) ¢i(t) =inf{s > 0: s+ W;(s) > t}, jel,

and

(30) Zy, () < Ii(t + Wy (1) — Ii(t)

with

81 Z,; (t) = Zu(t) = Z ().
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2.3 Markovian description of a multiclass queueing network with abandonment
In the following we introduce the Markovian description process for a multiclass queueing
network with abandonment in a similar way to Katsuda [15]. The process will be constructed
from the primitive variables and the associated processes introduced so far. Conversely those

primitives can also be represented by the description process.
Let
V(t) = (Vi(t), k € K)

where Vi (t) = (Vii(t), i = 1,2,...) with
Vi (t) = Ri(1),

for 2 <i < ZF (1),

Vki(t){vg(Dk(t)—&—iL it Dy(t)+i < Z(0),

v (Di(t) +i — Z,7(0)), otherwise,

and for i > Z;7(t) + 1,

Vk’i(t) =0.
We define the stochastic process Z = (Z(t),t > 0) by
(32) E(t) = (0(t), R(1), V(£), R7(t))
where

Then E = (E(t),t > 0) is a piecewise deterministic Markov process (PDMP). Generally the
PDMP is a strong Markov process. (Cf. Davis [10]).
Let
_7-',5E =0(E(s);0<s<t), t=>0.

Then (FF)s>o is right continuous, i.e., N3, 1 = FE for each t > 0. As stated in the

next proposition, the performance measure processes X(-) is (F7)i>o-adapted. In other
words, the process Z(-) describes the dynamics of our multiclass queueing network with
abandonment. For this reason, the process Z(+) is called the Markovian description process
for the network.

We denote the probability law of Markov process Z(t),t > 0, starting with the value
£eS by

(33) P«(E), EcFi(=\/ 7)., (€S,

t>0

such that P¢(Z2(0) = &) = 1, where S denotes the state space of the process Z(-). For each
E € FZ, P¢(E) is B(S)-measurable w.r.t. .

Now let {6;}+>0 denote the family of shift transformations associated with the process
E(t),t > 0. Namely,

E(t) o b, =E(t +3)

for each s,t > 0. Corresponding to Proposition 2.1 of Katsuda [15], we have the following
proposition on the shift-transformed performance measure process. (Since the proof is done
in a similar way, we omit it).
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Proposition 2.1.
The performance measure process

X()=(A(), AT (), D), (), T(), W (), Y (), Z(:), Z"(-))

is (F7)i>o-adapted. Thus X(-) 0 0;, t > 0, is well-defined and each component of the shift
transformed process is given by the following:

(34) A(t)obs = A(s +t) — A(s),
(35) At (t) o0y = AT (s+1) — AT (s),
(36) D(t)ofs = D(s+1t) — D(s),
(37) I(t)obs =1I(s+1t)—1(s),

(38) T(t)obOs=T(s+1t)—T(s),

(39) W(t)obts=W(s+t),

(40) Y(t)obs =Y (s+1t)—Y(s),
(41) Z(t) 0 0, = Z(s+1),

(12) Z(0)0 0, = Z* (s +1),

for any s,t > 0.

The quantity Z, (t), defined by (31), is the number of class k customers who are in the
system at time ¢ and will eventually abandon it. According to (41) and (42),

(43) Z; (t) = Z; (0) o b,

for each ¢ > 0.
The condition characterizing the FCFS discipline with abandonment is represented as

(44) Di(t + Wy (8)) — Di(t) + Z; () = Zi(t)

for each ¢t > 0 and k € K. In virtue of Proposition 2.1, the identity (44) is a consequence of
the operation of shift transformation 6;,¢ > 0, to the initial relation

(45) Dp(Ws)(0)) + Z, (0) = Z,(0), k€K,

and can be regarded as the extension of the FCFS characterization condition without aban-

donment, i.e.,
Dy(t+ Ws(k)(t)) — Dy (t) = Zi(t), t>0, kek,

that is equivalent to (2.25) in Bramson [3].

3 Heavy-traffic assumptions and scaling

In the rest of the paper we consider a sequence of multiclass FCFS queueing networks
with abandonments each of which satisfies the feedforward class-routing condition (8). Each
network in the sequence is indexed by r, where r tends to infinity through a sequence of
values in [1,00). (Note that the index r may possibly take non-integer values). For slight
abuse of notation, denote such r-th network by X" (-), whose primitive variables are defined
on the probability space (Q", F",P") for each r > 1. The number of classes K, the subset
A of K with exogenous arrivals, and the map s(-) : K — J are fixed for all X"(-),r > 1.
Also the service discipline investigated is FCFS in every network of the sequence. We
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put a superscript r on each of the stochastic processes, primitive variables and constants
associated with them introduced so far, in order to indicate the associated network in the
sequence. For example, Z"(-), A"(-), A7"(-), vy" (i), v*"(4), o, etc.

On the sequence of the parameters associated with the primitive variables in X" (-),r > 1,
we impose the following limit conditions:

(46) ap — ar(>0) asr — oo, Vk € A,

(47) mj, — my(>0) asr — oo, Vk € K,

(48) ay — ax(>0) asr — oo, Vk € A,

(49) b, — bp(>0) asr — oo, Vk € K,

(50) Pl — Py asr— oo, Yk € K,l € KU{0},

where P = [Pylk, ek is a substochastic matrix such that its spectral radius is less than
unity and for each | € K — A, there exist some k € A and m € N such that

(51) P >0

where P™ = [P}}] with P™ denoting the m-th power of P.
We define A" = (A}, k € K) to be the unique solution to the traffic equation:

(52) AT =a" + P"\,
that is,

)\T — QTOKT
with
(53) Q = (I—-P) L.

For each r and k € K, A}, is referred to as the nominal total arrival rate to class k in the
r-th network. It is readily seen that A = lim,_, ., A" satisfies

(54) A >0

for each k € K, because of (51).
We also define

(55) pr=CM"\" = (p},j€J)

with M" = diag(m},, k € K), which is referred to as the traffic intensity vector.
We impose the limit condition on the sequence {p"},:

(56) r(p" —e) —

as r — oo, where ¥ is some constant vector in R”. The condition (56) is referred to as the
heavy-traffic condition.

In addition, to obtain the proper limit for appropriately scaled abandonment-count
processes (cf. (74) below) as 7 — oo under the heavy-traffic condition, we assume the
following scaling condition of abandonment distribution F}""(z) = P"(y," (1) < z),z >
0,keK,r>0:

General hazard-type scaling of abandonment distribution. (Cf. Katsuda [17]).
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For each k € K and « ¢ Disc(Hy),
(57) rE) " (ra") — Hp(z) as r — oo,

whenever 2" — x as r — 0o, where Hy(x),z > 0, is a non-decreasing function and Disc(Hy,)
is the set of discontinuities for Hy(-).

We impose the following uniform integrability condition:

(58) {u}(2)?},>1 is uniformly integrable,
(59) {v;"(1)*},>1 is uniformly integrable,

for each k € A and [ € K. We will also assume the following three conditions on the initial
primitive variables, the first two of which correspond to (3.5) in [3] and (82), (83) in [26]:

Foreach k € A, l e Kand T > 0,

(1
(60) ui(L) — 0 in pr.,
r
o]
(61) o () — 0 in pr.,
T
(62) Jmax {0072 O) 0 brm| — 0 inpr,
as r goes to infinity, where
(63) Vor(t) = v (VO ([r2t]) — m” - |r3t)),
(64) ZJF’T(t) =r 27277 (r%).
(The convergence (62) is restated as
Zl'*"r(rm)
Pr( ‘7 T (i) o 0, —m? ‘ ) 7 ’)
OSIPnagiTTX ; (v (i) 0 6 mi)|>¢e) —0, Ve>0

as r — 00).

Concerned with the asymptotic behavior of the performance measures for our multiclass
queueing network with abandonment under the heavy-traffic condition, we perform the
diffusive and fluid scaling on the associated stochastic processes as follows:
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Diffusion scaling.

Finally in this section, we note the fundamental weak-convergence result that is based
on the Donsker theorem for renewal processes (cf. Billingsley [2]) and the convergence of

parameters (46)-(50):

SERVICE DISCIPLINES

Z"(t

—,r

) =771 27 (%),
(t)=r"'Z7"(r?),
Wr(t) = r "W (re),

t) = r_er(TQt),

t) =r HE"(r’) — o' r?t),

N

Y7(
E"(

V() = e W ([r2) —m - [rR),
AT(t) = rm (AT (%) — ATrR),

ATy =1 AT (%),

Dr(t) = r~H(D"(r?t) — N'r%t),

I7(t) = r 17 (r?0),
N”(t) =r 'N"(+*t),

S7(t) = r~ NS (r2t) — pr3t),
47 (t) = 1 (@47 (1)) — PLLrH)).
Z"(t) =122 (1),
E'(t) =r2E"(r*1),
A" () =r2A7(rt),
Z+’T(t) =r2ATT(r%),
D'(t) =r72D"(r?),
T°(t) = r 21" (r%t),
S'(t) = 128" (r?t),
T (t) = r 217 (r21).

E"() = E*("),

V() = V()

P = dF*(),  keK,

S() = S*(),
)

E;‘( = :ulL(')7 le ]K7
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as r — oo, where

E*(t) = VII- BP(t),
Vi(t) = VE - BY(t),
OF* (1) = (DY (1), ..., B (1)),
K
B () = Z(m>l "BE(),  kleK,

with BF(-) and BY () K-dimensional standard Brownian motions,

a I ?-dimensional standard Brownian motion,
I = diag(aday, ..., a%ak),
¥ =diag(by, ..., bk),

and T* in (6) and (7) for each k € K. (These standard Brownian motions are mutually
independent).

4 Main result; diffusion approximation theorem

To derive the diffusion approximation theorem for our multiclass feedforward queueing
network with abandonment under the FCF'S discipline, the following four main assumptions,
i.e., (A.1)-(A.4), are imposed in addition to the conditions on primitive variables assumed
so far:

(A.1) For some proper r.v. W*(0),

Wr(0) = W*(0) in R’
as r — 00.
(A.2) For each k € K,

sup  r Y|Di(t) — A\it| — 0 in pr.
0<ESW T, (0)

as r — OQ.

(A.3) The sequence {2’"(0)}7,21 is tight in RE | i.e.,

lim Tim P"(|Z7(0)] > M) = 0.

M —o00 r—00

(A.4) (Assumption 7.1 in Williams [26]).
The matrix R = (I + G)~! is completely-S, where

G=CMQPA = lim CM"Q"P"A"
and M" = diag(m},, k € K),A" = diag(\,k € K),r > 1, and M = lim,_,, M", etc. (Of

course, it is implicitly assumed that I 4+ G is invertible. For the definition of completely-S
condition, see Definition 6.2 in Williams [26], for example).
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Condition (A.2) corresponds to the initial condition on strong state-space collapse for a
more general multiclass FCFS queueing network without abandonment. (Cf. Bramson [3],
Williams [26]). While condition (A.3) is implied by (A.1) and (A.2) for such network without
abandonment, we have to assume it in our network with abandonment. As established
in [26], assumption (A.4) is satisfied under the asymptotically Kelly-type condition, i.e.,
my, = my if s(k) = s(lI). The completely-S condition on R in (A.4) is a necessary and
sufficient condition for the existence and uniqueness (in law) of a semimartingale reflecting
Brownian motion (SRBM) with the reflection matrix R and the data on the covariance,
drift and initial measure of the Brownian motion in the SRBM. (Cf. Definition 6.1 in [26]
and the references in its comment).

The following theorem is the main result in this paper. It is on the weak convergence
for the sequence of scaled performance measure processes

(V7). Y7(, 27 (D}
In the statement of the theorem, we use the following symbol:
K
(91) r= Rc{ArV +MQ (FE +y Akrg)(gM}éR,
k=1
According to (54), we see that T is strictly positive definite. We also let
(92) H*(w) = CMQA - H(w), weR,
with H(w) = (Hx(wsr)), k € K), Hi(-),k € K, in (57).

Theorem 4.1. (Diffusion approzimation for a multiclass feedforward queueing network
with abandonment under the FCFES discipline).

Under the main assumptions (A.1),(A.2) and (A.3), and also the conditions imposed on
the primitive variables and processes so far, we have the weak convergence

(93) (W7, Y7(), 27 () = (W*(),Y*(-), Z*(")) in D([0,00), R*/*K)

as r — oo, where W*(-) is the unique solution to the following J-dimensional reflected
stochastic differential equation:

(94) W*(t) = X*(t) + RY*(1),

(95) X*(t) = W*(0) + VT B*(t) + 9"t — /O t H*(W*(u))du,

where B*(+) is a J-dimensional standard Brownian motion, 9* = RY and v(-) = P(W*(0) €
-). Furthermore,

Z*(t) = ACW*(t), t>0.

5 Proof of Theorem 4.1; propositions and lemmas

This section is devoted to the proof of the diffusion approximation theorem stated in
the last section. We begin with the following stochastic boundedness of scaled queue length
and workload in a multiclass feedforward queueing network with abandonment under any
work-conserving service discipline.
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5.1 Stochastic boundedness of diffusion-scaled queue length and workload In
this subsection we present two propositions on the stochastic boundedness of diffusion-
scaled queue length and workload in our multiclass feedforward queueing network with
abandonment. Each of them plays a key role in the proof of our main theorem, specifically
in proving the C-tightness of diffusion-scaled abandonment-count process and deriving state-
space collapse in the network.

Proposition 5.1.

For a sequence of multiclass feedforward queueing networks with abandonments, {X"},>1,
satisfying the assumptions stated so far, the sequence {Z"(-)}r>1 is stochastically bounded,
i.e.,

lim lim P"( sup |Z7(t)] > M) =0

M—o0 1—00 0<t<T

for each T > 0.

Proof.
Let N R N
frt)y=CM"Q Z7(t) = (fj(t),j €J)
where R R R
fi () = fi(t) + fia(t)
with

Z my, Z leZz

keC(j leC(4)

Z mj, > QnZi (1)

keC(y) leC(1)u---uC(j—1)

for each j € J, where we have used the feedforward class-routing condition (8). (We set
fla(-) = 0).
From
Z"(t) = Z"(0) + E"(t) + Z OLT(ST(T7 (1)) — S™(T (1)) — I"(t)
=1
with S™(T7(t)) = (S;(Ty (1)), k € K), we have the following scaled identity in vector form:

Z7(t) =Z"(0) + E"(t) + a"rt + > (8] (T; (1)) — (1 — Pr)S"(T" (1))
leK

(96) YU kAl Gl

with the diffusion and fluid scalings given above. Multiplying (96) by CM"Q" from the
left, we have

Fity=F o)+ cmr@{E®+ Y 84 (S (T (1)}
leK
(97) —CM"S"(T"(t)) = CM"Q"T"(t) +r(p" — e)t + Y (t).

Since

(98) / f1 le / f11 le s) =0,
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from (97) we have

(99) B =e(xe - > m Z QI () (®)

kec(1)  lec(l

where ¢ is the one-dimensional reflection map, i.e.,

(100) p(x(-))(t) = x(t) + Oi‘i&<‘m<3>)+’ z € D([0,00),RY), t >0,
and
X7 () Z P> QRAEN )+ (S, (T, (1)}
cc(1 zec1) peK
) +r(pf —1)t,  t>0.

(101) Z Sy
eC(1

Since each component in I" () is nondecreasing, we have

i)

= A7 (1) — Z mj, Z lell )+ sup <—X17'() Z m, Z lell )
keC(l)  1eC(l) Oss<t keC(l)  lec(l)

< X7 () + sup (=7 (s)*
0<s<t

(102) = (X7 (-))(®).

Thus, according to the Lipschitz continuity of the map ¢, (A.3), the heavy-traffic condition
(56), and the convergences (86)-(90), (47) and (50), we obtain

(103) lim Tim P"( sup Zj(t) > M) =0

M —o00 r—00 0<t<T

for each k € C'(1) and T > 0.
Suppose that (103) holds for each k € C(1)U---UC(j — 1) with some 2 < j < J. Then,

since
/ dYT (s) =0,
we have

108 FO=e(-FpO+x0- 3w Y Qulio)®

keC(j) leC(1)U---uC(j)

where
X =F0)+ > omp > QuiE®)+ (S (T, 1))}
keC(5) leC(1)u---UC(4) peK
(105) — > mipSp(TL(®) +r(p; —)t,  t>0.
keC(j)

Thus, similar to the above reasoning, the inequality

(106) Fr(t) < (= Fla() + XF())(t)
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holds so that

(107) lim Tim P"( sup Z(t) > M) =0,

M —o0 7—00 0<t<T

is derived for each k € C(j) and T > 0, using (103) for each k € C(1)U---C(j — 1).
Consequently we have the desired result inductively.
O

Using Proposition 5.1, we also have the corresponding result for diffusion-scaled workload
in the next proposition.

Proposition 5.2.
For {X"},>1 in Proposition 5.1, the sequence {WT(')}r21 is stochastically bounded, i.e.,

lim Tim P"( sup [W'(t)] > M) =0
M — o0 r—o0 OStST

for each T > 0.

Proof.
JFrom (21), (23), (67) and (68), we have

(108) W' (t) = W (0) + CVS" (AT (1)) + CM"(A"(t) — A" (8)) + r(p" — )t + Y7 (¢)

with V=7 () in (70) and A" (¢) in (81).
(From (65), (69), (71), (73), (74), (77) and (82), we see that

A(t (t)+>_ " (Dj () + PrD"(t)
leK
= E"(t)+Y_ 0" (D; (1)) + Pr(Z7(0) — Z"(t) - T"(t) + A" (t)).
leK

Solving it for Xr(t), we have
(109) AT(t) = Q'{E"(t) + > o )+ P(Z7(0) — Z"(t) — T"(1)) }.
leK

Substituting (109) into (108), we have

W (t) =W (0) + CV* (A7 (1))

+CMTQT{E" (1) + Y 8"(D) (1)) + Pr(Z7(0) — 2" (1))}
leK
+r(p" —e)t — CM"A™"(t) — CM™Q"PTT" (1) + Y (¢).

Let
V'(t) = W(0) + CV (A7 (¢))

+COMTQ{E"(t) + Y (D] (1)) + P(Z7(0) - Z" (1))}
leK
+r(p" —e)t.
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Then, since

oo —~ A~
(110) /o Wi(s)dY; (s) =0, vjeld,
we have that for each j € J,

Wi =e(Y0 = > mAT (= 3 mi Y QPO () )

keC(5) keC(j) leK
=V = Y mpALT) — > mp Y (QUPTuG(t)
keC(j) keC(j) leK
— ~ +
+ sup (- Z + Y Mm@ Puli(s))
Ossst ec( keC(j)  leK

(4)
<Y+ s (- y’“())+

—o(¥7))®)

with ¢(+) in (100), where the inequality follows from the non-decreasing property of each
component in A7"(+) and I"(-). Thus, using the Lipschitz continuity of ¢, Proposition 5.1,
and (A.1), we have the desired result.

O

Remark 5.1.

The conclusions of Propositions 5.1 and 5.2 are valid under any work-conserving (or
non-idling) service discipline, which is embodied as (98) and (110). We note that if the
stochastic boundedness condition on scaled queue length is verified for a more general multi-
class queueing network, then that condition on scaled workload does hold for such network,
which will be seen by mimicking the proof of Proposition 5.2.

5.2 C-tightness of diffusion-scaled abandonment-count process In this subsec-
tion, we show the C-tightness of the sequence of scaled abandonment-count processes
{Ik( )}r>1, k € K, which will be seen to follow from that of the sequence {Nk( Vh>1,k €K,
as follows.

Proposition 5.3.
For each k € K, the sequence {f};()}r is C-tight in D([0, 00), RY).

Proof.
Similar to (29), let

G(t)=inf{s >0:s+Wj(s) >t}, t>0,j€l,
and E;(t) = r_QC;-"(TQt). Then we have that for each "> 0 and j € J,

(111) sup \C (t)—t| — 0 in pr.
0<t<T

as r — 0o, which follows from the inequalities

CW+WHC®) =t and () <t,
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and Proposition 5.2.
(From (28), the inequality

- 1

(112) Ny (Cogy (1) —

follows, so that according to (111), the proof of C-tightness for {IA,’;()}T, k € K, is reduced
to that for {N[(-)},,k € K, which is done in the next lemma.
O

Lemma 5.1.
For each k € K, the sequence {ZV,:()}T is C-tight in D([0,0), RY).

Proof.
Assumptions (A.1) and (A.2) yield that for each k € K,

7+, 1 r r
ZT(0) = *Dk( s(k) (0))

as T goes to infinity, so that the tightness of {E;T(O)}T follows from (A.3). Thus we are
left to show the C-tightness of {4, ""(-)},, because of the identity

-~

Ni(t) = Z7(0) + AL (1), ¢ 2 0.

JFrom (27) and (75), it follows that

1 A (r?t) 1 A (r2t)
AW =15 Y (pprocepay = FT@ETO) + 2 X FT6)
i=1 i=1
(113) = M (AL (1)) + Cp (AL (1))
where
rt)
(114) MET(0) = = > (Mg @zupry = BT} (@)),
=1
L
11 )=-— F(w
(115) . Z

Observe that M\ZT( -) is a purely-discontinuous martingale since wy" ( ) is G, (i)-measurable
and ;" (i) is independent of G;’"(¢) for each i = 1,2, - - -, where G,;"" (i) is given in the form
(12). Then its optional quadratic variation process [Mz "](-) is given by

MT)(t = > |AM)™" (s)
0<s<t
Lr*t] )
(116) = Z Lopr@zupray — FR 7 (@)

(Cf. (1.8.3) of Liptser and Shiryayev [20]).
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We now show that
(117) MI"()=0 in D(0,00),RY),

as 7 — o0 in a similar way to the proof of Lemma 4.3 in Dai and He [7] as follows.
Observe that for each t > 0,

[t
BN (M) = o5 B (F i (0) — F (" (0))?)
i=1
<UET( sup  FPT(wi(0)))
1<i<|r2t]

where the equality follows from the G;'"(¢)-measurability of w;" (i) and the independence
of 77" (i) and G;"" (i).

Since Af(s) > Ej(s) for each s > 0 and Ej(-) = a(-) as 7 — oo, we can take an
appropriate constant ¢t* > 0 such that

(118) lim P (A} (r*t*) < |r?t]) = 0.

T™—00

Thus we have
lim E"[ sup  F]"(w."(i))]
T—00 1<i< [r2t]

< TmET swp FYT(ul () AL > 1]
T 1<i<[r2t]
< lim E"[  sup  FY"(wy"(4))]

—00 1<i<AT (r2t%)

< lim E"[F}"( sup Wiy (r u))]

r—oeo 0<u<t*

< lim ET[F’Y’ ( sup W(k)(T u)); sup W(k)( )<M}

r—oo 0<u<t* 0<u<t*
(119) + lim P"( sup Wg(k)( u) > M).
r—00 0<u<t*

According to Proposition 5.2, limp;_,, (the second term in (119)) = 0, while the first term
in (119) is majorized by

1
lim F""(rM) = lim —-rE)"(rM)

T—00 r—00 T

=0
for each fixed M > 0, because of (57). Therefore we have that for each ¢ > 0,

lim_ E7([M]7)(£) = 0

T—00

so that the convergence (117) is established, according to Theorem 7.1.4 in Ethier and Kurtz
[11].
Let By (t) = Ej(t) + Z{il S (t),t > 0. Then, since Aj,(t) < By (t) for each t > 0 and
- K
(120) B () = Bi(r*) = anu() + 3 ()
=1
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as r — 0o, we have
(121) M (AL() =0 in D([0,00),RY),
as r — 00. R
Thus the proof of the C-tightness of {4, " (:)}, is reduced to that of the C-tightness of
{Cr(A,(-)}», and so it is enough to show the following two conditions:

(122) lim Lim P"(CL(A,(T)) > M) =0

M —o00 r—00

for each T' > 0, and
(123) lim Tim P’ (wp(Ch(AL(-),8) >¢) =0

S—0r—oo

for each ¢ > 0 and T > 0, where

(124)  wr(z(-),0) = sup |z(s) —x(t)], () €D(0,00),RY), §>0,T>0,deN.
0<s,t<T
[s—t|<é

(Cf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
Observe that
BY(CL(AL(T)) > M) <P (CL(AL(T)) > M, sup W'(t) < L)
0<t<T
(125) +P"( sup W'(t) > L).
0<t<T

Then, limz, .o lim, . (the second term in (125))= 0 according to Proposition 5.2, and the
first term in (125) is majorized by

P (A,(T) - rEFY"(rL) > M) < P"(B(T) - rF)"" (rL) > M)

so that limps . lim,_, « (the first term in (125))= 0 for each fixed L > 0, according to (57)
and (120). Thus we have (122).
Furthermore, observe that
P (wr(Ci (4L (")), 8) > €)
<P'( sup |Cr(AL(s)) — Cp(AL(1)] > e, sup W'(t) < L)
0<s,t<T 0<t<T
ls—t|<o
(126) +P( sup W'(t) > L).
0<t<T

Then, the same as above, limy,_. o lim, o (the second term in (126))= 0, and the first term
in (126) is less than or equal to

P’ (rF,Z’T(rL) x wr(AL(-),8) > 5).

Therefore, noting
wr (A (), 6) < wr(EL(),6) + > wr (S (
leK
(123) is seen to be satisfied, according to (57).
Consequently we have the C-tightness of {E;T()}T and so the conclusion of the lemma

has been proved.
O
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5.3 State-space collapse in multiclass feedforward queueing networks with
abandonments under FCFS service disciplines In this subsection, under the assump-
tion (A.2), we prove the following proposition on multiplicative strong state-space collapse
and state-space collapse in a multiclass feedforward queueing network with abandonment
under the FCFS service discipline.

Proposition 5.4. (Multiplicative strong state-space collapse and state-space collapse).
Suppose that in addition to the assumptions in Sect. 3, conditions (A.1), (A.2) and (A.3)

hold. Then we have the following convergences:

For each k e K and T > 0,

12 SUPo<1 <7 SUWPo< o< Tr, (1) | r= Dy (r?t + rs) — r 1Dy (r?t) — \i.s |
127 -

— — 0 n pr.
SUPg<i<T WST(,C) (t)yvi

as r — o0, and also,

(128) sup | Z5(t) = NWig (8)| — 0 in pr.
0<t<T

asTr — oQ.

To demonstrate the proposition, we need to modify slightly the proof of Theorem 1 in
Bramson [3] by incorporating the customer abandonment to it. Specifically, to the statement
of Proposition 5.1 in [3], we have to add the identity on the weak law of large numbers for
I™™(-) that is defined in the same way as in [3] as follows.

For the performance measure process X"(-),r > 1, in (14), let

1

Zr,0

(129) xrm(t) = {

XT(mT’Ot)} 00
for m =0,1,2,..., where z,o = |[W7"(0)| V |Z7(0)| V r and {6;,t > 0} is the shift transfor-
mation associated with Markov description process Z"(+). For example, using Proposition

2.1, we have

Zmm(t) =

Z" (xrmt +rm),

xr,m

1
rm(t) =

(I"(xymt +rm) — I"(rm)),

Lrm
where . = 0 0 Opy, = W (rm)| V |Z7(rm)| V r for m =0,1,2,. ...

Proposition 5.5. (Weak law of large numbers for I™™(-) ).
For each e >0, T >0,L >0 and k € K,

Jim B o 17(L) > €) = 0.

Since I} (t) < N[ (t) for each ¢ > 0, the above proposition is a consequence of the
following proposition.

239



240 TOSHIYUKI KATSUDA *

Proposition 5.6.
For each e > 0,7 >0,L >0 and k € K,

Jon B, gmax, N"(L) > ) =0,

where N, (-) is defined as in (129).

Before giving the proof of Proposition 5.6, we define the following variables which cor-
respond to (5.25) in Bramson [3]:
(130) w7 = max{ul (i) : UL (i — 1) < r?T,i=1,2,...},
o T = max{v" (i) V(i — 1) < i =1,2,...,27(0)}
(131) Vmax{v)" (i) : VPT(Z,T(0) + VT - 1) <rPTi=1,2,...)
with max ¢ = 0, for each k € A, [ € K and T > 0. Then we have the inequalities

(132) Uf (1) 0 Oy < w0,
(133) 00" (1) 0 Oy < 0] TT
for each m =0,1,--- ,[rT] =1, T >0, k € A and | € K. Indeed, for each m,
UL (EL(rm)) < rm <UL (B} (rm) + 1),
up(1) 0 Opm =Ry (0) 0 Oy
=R, (rm)
=Up (EL(rm) + 1) —rm,

from which the inequality (132) follows.
The next lemma corresponds to Lemma 5.1 in [3].

Lemma 5.2.
Foreachke A,leKand T > 0,

1

(134) T | in pr.,
r
1

(135) | in pr.,
r

as r goes to infinity.

Proof.

We have only to prove the latter convergence (135), because the derivation of the former
(134) is the same as in Lemma 5.1 in [3]. First we observe that for each ¢ and By with
0<d< Bl,

1
IP’T(fvlmax’T’r > )
r
1
< PT(;UZWM’T’T > €, VZO’T(Z;“T(O)) + VIS’T(LT231J) > 2T, Zf’r(()) < 7"25>

P (V27 0) + V(2 Bi)) < 7T, 277 (0) < 1)
(136) +2P"(Z,77(0) > r?5).
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The second term in (136) tends to zero as r goes to infinity, since
(137) Pr (VY ([r?6]) + V([ B1)) < r*T) — 0

as r tends to infinity for an appropriate constant B; > 0, according to the weak law of large
numbers. We also have

(138) P"(Z,77(0) > r?6) — 0
as r tends to infinity, according to assumption (A.3).
Furthermore, the first term in (136) is majorized by

1
IP’T<7 X max v"(i)V  max v]"(i) > 6)
r 7 1<i<|r2s) 1<i<[r? B, |

< IP’T(%UZO’T(l) > 5) +([r?6] + [ B1]) - (Ti)ﬂ(%)

(139) — 0
as r goes to infinity, where

n(R) =supE" [v]""(2)%0)7(2) > R], R >0,

and the convergence to zero follows from assumptions (61) and (59). So the proof is com-
pleted.
O

Proof of Proposition 5.6.

First we observe that according to (25) and Proposition 2.1,

T,m 1 -7 ! T
NP™(t) = {sz’ (0)} © Oy + {x—OAk’ (@r,0t) } © Op-

1

IT‘,O

(140)

IN

| - T -,
;Zk T(rm) + { A (mnot)} 0O,
and also that

1 N
(141) max _—7,"(rm) < sup Z,"(t).

(142) Z7T() =0

as r — 00, which yields

1 €
lim PT( m ~zr *) =0
rioo OSmags”T rok (Tm) - 2 ’
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according to (141). So, in virtue of (140), it suffices to show that for each k € K,

(143 ti P max {477 (000} 0 0 > 5) = 0

r—00 0<m<rT * Ty 2

in order to obtain the conclusion of the lemma.
Now we have that for each § > 0 and M > 0,

]P’T< max {LA,;’T(xT,OL)} 0 0ppm > E)

0<m<rT " Ty 2
< IP)T( max {LA_’T(Q: L)} 06 > = e <4
- 0<m<rT * Xy k 0 gy -7
max max (VO"(Z " (0))| 00y, <9I, su Wrt)| <M, sup |[Z"(t)] < M)
peK 0<m<rT | P (2,7 (0) 0§t§$+L| )| ogt£T| @l
. |umaz,T,r| . Sor T
+P (7>5)+]P’ (max max Vo (Z," (0)) o&rm>5)
r peK 0<m<rT | P p
(144)
+IP’T( sup  |[W'(t)| >M)+IP”“( sup |27 (t)| >M)
0<t<T+L 0<t<T

where 9;”“(-),]) € K, and 7;’T(~),p € K, are given in (63) and (64), respectively. According
to Lemma 5.2,

lim (the second term in (144)) = 0,

T—00

and according to assumption (62),

lim (the third term in (144)) = 0.

T—00

Further, according to Propositions 5.1 and 5.2,

lim lim (the fourth term in (144)) = 0

M—o0 r—00

and

lim lim (the fifth term in (144)) = 0.

M —oo r—00

Observe that in addition to (132) and (133),

(145) 1Z7(0)] 0 i < sup |Z7(t)],
0<t<T
(146) sup |Wr(t)|09rm§ sup |Wr(t)|,

0<t<L 0<t<T+L
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for each 0 < m < rT. Then, in use of the Markov property of =Z"(-), we see that

(the first term in (144))
€ |umaz7T,r|

T 1 —,r
<r( U {{xTOAk (2:0L)} © brm > = <3
0<m<rT ’
max (Vg7 (Z, " (0))] 0 6y < 6. sup W7 (D] 0y < M,|Z7(0)] 0 by < M)
peK 0<t<L
< Z 10 ) A CRPERRRRR Fam)
0<m<rT
r[pr | e Jur(1)]
= Z E |: =Zr(rm) (aAk (zr,OL) > 57 r < 57
0<m<rT )
max [V (Z, " (0)| <6 sup [W7(t)] < M,|Z7(0)] < M)]
peK 0<t<L

Thus, in order to show (143), it is enough to prove that for each € > 0,

1 ., e |u"(1)] Sostor
r \T < < o,r d <
P*(mnoAk (erol) > 5. < dmax [Vp7(Z, " (0))] <6,
(147) sup W7 (0)] < M,|Z"(0)] < M) < °
0<t<L T

if  is sufficiently large independently of the initial value *.
Observe that

1 1 A};(va-,oL)
A*ﬂ“ - L — 1 ER R
P (zr0L) oo ; (e (@) <wiT ()}

and if supg<, <, |W’"(t)| < M, |Z"(0)] < M and r > M > 1, then

wy' (i) < sup Wi (t) < sup Wiy () <r sup [W(t)]
0<t<w, oL 0<t<rML 0<t<L

<rM

for each ¢ = 1,2,--- , A (x,oL). Thus, if » > M > 1, then the left-hand side of (147) is
dominated by

) Af(zroL) e Sor T [u"(1)]
P*(xr,o ; Loyer@y<rny > 27 ek V(2 (O))’ <9 r = 5>
1 lexr o] c
<Pi(5s X torrosn > 3)
P2 (Aol > e 9272, "0)| < 6.2 <)
peK r

(148) = (4) + (id),

where ¢ is any positive constant. (The value of ¢ will be appropriately determined below).



244 TOSHIYUKI KATSUDA *

We first evaluate the term (7) in (148). Note that

LCI’T,OJ

Y Ly

=1

1 [CET,OJ

= > (ppriyerany — B (’"M))+

Tro “— Zr0
=1

Zr,0

Fl"(rM)|cxrp].
Then, since F}/""(rM) — 0 as r — oo because of (57), we have that

1 €
pr ( F’Y "(rM ” 7) =1, | .. =
gtk PMOLemrol > ) = 1 pre oany a4} = O

for sufficiently large r independently of the value x.
Further, we have that for each € > 0,

L"Dr Otj
€
su 1 N<r DT (rM))| >y, )
(O<tl<>c| Z; (07 <y — )| > @0y
44 [zr0c] - 4
< o B 2 Geprwzon - R ]
: i=1
44 768¢2 768¢2
< 3(zy00)? ;
= (zr0e)* (@r00)” < (@r0)2et = r2et

where the first inequality is due to Doob’s submartingale inequality. Therefore, if r is
sufficiently large such that

1.
768227
then
(149) the term (i) < =
.

We next evaluate the term (i7) in (148). Because of (149), it is enough to show that for
each k € K, there exists some constant ¢ > 0 such that

b (1
(150)  PI(AL(reol) = crpomax[Ppr 2 )] < 6, D < 5) < 2

if r is sufficiently large independently of *. Because of (15) and (16), we have only to show
that for each £ € A and [ € K, there exists some constant ¢, ¢q, ¢a, c3 > 0 such that

A 1 lu"(1)] 5
(151) P (E}C(xnoL) > 5CTr0; — < 6) < c1s
152 P (F7 (2y0L) > ~ vor(zh o) <o =
(152) (Y (o) > Sewno max |V (2,7 (0))] <6) < (2 +es)

if r is sufficiently large independently of x. Using Lemma 7.2 in the Appendix, we immedi-
ately have (151) with ¢ > 2sup,. o} L+1 and any ¢ € (0,1). Further, using Lemmas 7.3 and

7.4, we have (152) with ¢ > 4 25:1 sup, Py pp + 1. Therefore (150) has been established so
that the conclusion of the lemma follows.
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Proof of Proposition 5.4.

According to Proposition 5.5, the methodology employed in Bramson [3], specifically
the contents of Sect. 5 and Sect. 6 in [3], also applies to the demonstration of multiplicative
strong state-space collapse, i.e., (127) in our multiclass feedforward queueing network with
abandonment under the FCFS service discipline. Thus, using Proposition 5.2, we see that
strong state-space collapse holds, i,e.,

sup sup | P~ Dy (r?t 4+ rs) — r 'DL(r?t) — A\js |— 0 in pr.
0stST 0<s<Wr ) (1)

as r — oo, for each k € K. In particular, we have

(153) OiltlgT | 7=t Dy (r?t + r/V[ZT(k) (t)) — r DL (r?t) — )\ZAST(,C) (t)|— 0 in pr.

as r — o0.
On the other hand, because of the FCFS service discipline with abandonment, we have

(154) P D+ 1 W (1) — T Dy (%) + 2,7 (1) = ZE(t)
for each k € K. Also recall that for each T > 0,
(155) sup Z;r(t) — 0 in pr.

0<t<T

as r — 00, as established in (142). Then, combining (155) with (153) and (154), we have
the condition of state-space collapse (128).
O

5.4 Proof of the diffusion approximation theorem (i.e., Theorem 4.1) Before
presenting the proof of the theorem, we show the next lemma on the fluid limits of {A"(-)},
and {D"(-)},, which corresponds to Lemma 8.2 in Williams [26].

Lemma 5.3.
For each k e K and T >0 ,

sup |4y (t) — A\gt| — 0 in pr.,

0<t<T
sup |Dy(t) — At| — 0 in pr.,
0<t<T
as r— oo.
Proof.

(From (17), (78), (80), (82) and (83), we have
Z(t) = Z(0) + Ay (t) = Dy(t) — T, (t)
for each k € K and t > 0. Because of Propositions 5.1 and 5.3, we see that for each T > 0,

sup Z,(t) — 0 in pr.,
0<t<T

sup T,(t) — 0 in pr.
0<t<T
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as r — 00. So we have that for each T" > 0,

(156) sup [A(t) = Dy(t)] — 0 in pr.
0<t<T

as r— 00.

Fix any ¢ > 0. Then, according to (120), {4, (¢)}, is tight in R' for each k € K, which
yields that for any subsequence {r'} of {r}, there exists some further subsequence {r”} of
{r'} such that

A (1) = ap(t) in R

as r” — oo, for some r.v. ai(t). Thus we also have

D, (t) = ar(t) in R
as r” — oo, because of (156). Therefore, from (15), (46) and (86), it follows that

K

ak(t) = ait + Z ]leal(t)
=1

for each k € K, which implies ay(t) = Axt, k € K. Consequently we have proved that
AL (t) = Mt in RY,

Dy(t) = M\t in R!

as r — 00, for each ¢t > 0 and k € K. Therefore, in virtue of Polya’s theorem (cf. Problem
5.3.2 in Liptser and Shiryayev [20]), we obtain the conclusion.
O

The next lemma identifies the weak limit of scaled abandonment-count process as a
functional of the limit of scaled workload process, which is similar in form to the case
of heavy-traffic limit for a many-server queue with abandonment under the hazard-type
scaling of abandonment distribution (cf. Lemma 2.7 in Katsuda [17]), with the difference
of multiplicative constant due to our multiclass setting.

Lemma 5.4.
Suppose that .
WT() = W*() in D([Oa OO)7RJ)5

as r — oo. Then we have that
(157) i) = M [ H(Wigy)du in D(0.0).R),

as r — oo, for each k € K.

Proof.
According to (25), (112) and (155), we have that for each k € K,

sup |If(t) — A" ()] — 0 in pr.
0<t<T

as r — oo. Thus, because of (113) and (121),

(158) sup |I7(t) — CL(AL(t))] — 0 in pr.
0<t<T
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as r — oo, with CJ/(-) in (115).
Observing that according to (115),

/0 P (0 W (u=))d AL (u) < Ch(AR(1) < / P (0 W () dAy (u)

for each ¢ > 0, we have the convergence (157) in virtue of (57), (158) and Lemma 5.3 in the
same way as in the proof of Lemma 2.7 in [17].
O

Proof of Theorem 4.1.

The first half of the proof uses an analogous argument to the proof of Theorem 7.1 in
Williams [26] as follows.
From (21), (67) and (68), we have that for each j € J,

AT (r2t)

T T 1" ST r Lo rigr -

W (t) =W70)+ > - (" () —mp) + > ;mk(Ak(rzt)—Ak”“(rzt))
keC(5) i=1 keC(j)

—rt+1??"<t)
=W+ Y VAT + Y miA ) — Y mp ML (AL)
keC(j) keC(j) keC(j)
(159) = > miCL(AL®) + (o) - i+ Y] (¢)
keC(j)

with ]7,;”() in (70), /\//YZT() in (114) and CJ(-) in (115) for each k € K. In vector form,
(159) is represented as

W (t) = W (0) + CVS" (AT (1)) + CMT AT (t) — CM" MY (A (1))
(160) —CM"C" (A" (1)) +r(p" — )t + Y7 (2).

On the other hand, using (109), we have
K
CM"A"(t) = CM™Q"{E"(t)+ Y _ @""(D; (1))}
—CM"Q"P(Z" (¢t ) —Z7(0)) — CM"Q"PT"(t)
= CM"Q"{E"(t) +Z<1>““ D;(t)} — CM™Q"P (€ (t) — €(0))
(161) —GT (W (t) =W (0 ( ) — CM"Q"P"I"(t)

where

() = (1), k €K) with €(t) = Zg(t) — MWl (1), k €K,
G"'=CM"Q"P"A".

Therefore, substituting (161) into (160) and using assumption (A.4), we have
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(162) Wr(t) = X"(t) + R'Y"(t)
for sufficiently large r, where
Rr=(1+G"),
(163) X7(t) = W (0) + RN(E (1) + 7" (1) + " (1))
with
o~ o~ ~ K o~
(1) = OV (A (1) + CMTQ {E" (1) + Y (D (1))}
=1
—cM (AT (1),
Tt =r(p" —e)t —CM™Q P (t) — CM"C" (A" (t)),
{'(t) = CM™Q"P" (€ (0) — € (t)).
Using (86), (87), (88), (121) and Lemma 5.3, we see that
(164) g()=¢&() in D(0,00),R”)

as r goes to infinity, where
K

(165) £ (t) = CV* (M) + CMQ{E*(t) + Y _ @' (\it)}.
1=1

Applying the oscillation inequality in Williams [25] to (162) as in (120) of Williams [26],
we have that for wrp(x(-),d) in (124),

Osc(z(+),I) = sup |z(u) — z(v)], ICcR!,

u,vel
and sufficiently large r,
wp(W'(-),8) = sup  Osc(W(), [u,u+d])
w€[0,T—4]

< const- sup Osc()A(T(), [, u + (5])
u€e[0,7—4]

= const - wp(X"(-), ),

so that

~

wr (W' (), 6) < const - {wr(€(),8) + wr(@ (), ) + wr(C"(),8)}
for each T' > 0 and 0 > 0, because of (163).

The convergence (164) implies

lim Tim P"(wp(€7(),8) > &) =0, Ve > 0.

d§—0r—oo

(Ctf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
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In addition, from the heavy-traffic condition (56) and the C-tightness of both {f,;()}r and
{Cr (A, (-))}» already established, we have

lim lim P"(wr(7"(-),6) >¢) =0, Ve >0.
6—0r—00

Therefore, by virtue of the condition of state-space collapse (128), we have

(166) lim Tim P" (wr(W7(-),6) > ) =0, Ve>0.

6—0r—oo

Combining (166) with Proposition 5.2, we obtain the C-tightness of {/VVT()}T

Let W*(t),t > 0, be any limit process of the sequence {W’”(-)}r, and suppose that a
subsequence {r'} of {r} satisfies

W7,():W*() in D([07OO)7RJ)>

as 1’ — oo. Then, according to Lemma 5.4, we have that for each k € K,

(167) f;;’(.):mk/()' Hy(Wpy(w)du — in D([0,00), RY)
and
(168) G (A () = M / Hi(Wigy()du — in D([0,00),RY)

as r’ goes to infinity. Therefore, using (167), (168) and (56), we have

/

(169) n () =n"()

as v’ goes to infinity, where
t
0t (t) = 0t — CMQ ()\k/o Hy (Wi (u))du, k € K), t>0.

Consequently, substituting assumption (A.1), (164), (128) and (169) into (163) and using
assumption (A.4), we have

(170) X" () = X*()

as v’ goes to infinity, where

(171) X5(t) = WH0) + RE* (&) +0° (1),  t=>0.

Therefore, any limit process W*(-) of the C-tight sequence {W”()}r is a semimartingale
reflecting Brownian motion (SRBM) with a nonlinear drift term, i.e., (94) and (95). Apply-
ing the Girsanov transformation technique to the localized version of such SRBM (cf. the
proof of Theorem 2.1 in Katsuda [17], for example), we can reduce the uniqueness in law of
W*(-) to that of SRBM, so that the desired convergence

(172) W), Y () = (W*(), Y (),
as r — oo has been shown. Combining (172) with the result on state-space collapse, i.e.,
Proposition 5.4, we also have the convergence

Z"() = Z"(")

as r — oo, where Z*(-) = (MW (), k € K), so the proof of the theorem has been

completed.
O
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6 Final remarks

As an example of our diffusion approximation with the unstable random behavior of
abandonment time near the origin, consider a GI/GI/14+GI queue for which the abandon-
ment time is distributed according to the Gamma distribution

Gp(r) = /Ox gp(u)du,x >0, gp(u) = ((p)) "' uP e ™, u >0,

with p € (0,1). Then, its hazard-rate function h,(z) = g,(z)/(1 — Gp(x)) is not locally
bounded so that the diffusion approximation result in the literature such as [24] and [21]
is inapplicable. However, in virtue of our general hazard-type scaling, our main result does
hold in ths case.

In this paper we impose the feedforward routing condition on our multiclass queueing
networks (MQNs) and the only place where it is used is the proof of the stochstic bound-
edness of queue length. So, if it is established without such restriction, our main result is
valid for general MQNs with abandonment.

One of the most important studies around diffusion approximations of queueing systems
is the application of such approximations to the validation of steady-state approximations of
those systems. Gamarnik and Zeevi [12] is a seminal work of the study, in which steady-state
approximations for generalized Jackson networks have been validated under the condition
of the existence of moment generating functions for primitive model variables. It is also
noted that such relatively restrictive assumption can be relaxed to moment condition of p-th
order with p > 2 by the work of Budhiraja and Lee [5] in conjunction with the appendix of
Krichagina and Taksar [19]. Furthermore, the author’s works [15, 16] used the Lyapunov
function method of [12] and the framework on the uniform moment bounds of the Markov
state process in [5], respectively, to study such steady-state analysis of a multiclass single-
server queue in heavy traffic under various service disciplines.

In this paper we have proved the diffusion approximation theorem for multiclass feed-
forward queueing networks with abandonments under FCFS service disciplines, and so we
are interested in steady-state approximations of those networks as an application of our
theorem. Restricting our attention to a multiclass single-server queue with ¥ < 0 (in
heavy-traffic condition (56)), we are able to validate such approximation of the queue with
abandonment in a similar fashion to [15] and [16], in which conditions (A.1), (A.2) and
(A.3) of this paper may be verified to hold in stationarity. However, checking the case with
1 > 0 remains unresolved and is worth pursuing in future research. More specifically, it is
solved if the following two tasks are done:

(i) To seek a sufficient condition for the stability of multiclass feedforward queueing networks
with abandonments.

To be expected from the literature (cf. Baccelli et al. [1], Dai [6]), the condition is such
that the traffic intensity at each station may possibly be greater than unity in such a way
that its excess over unity can be balanced out by the effect of abandonment;

(ii) To show the tightness of stationary workload and queue length in the queue with
abandonment for the verification of conditions (A.1), (A.2) and (A.3) in stationarity.

As concerns the issue (i), in his recent work [18] the author has given a stability condition for
those networks, which involves the total probability mass of abandonment time in addition
to the model parameters of networks.

7 Appendix

This appendix corresponds to Sect. 5 of Bramson [3] in which hydrodynamically scaled
performance measure processes for multiclass queueing networks are asymptotically esti-
mated as approximately Lipschitz continuous. Different from [3], our argument employs
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such scaling in association with the shift transformation of the description process Z(-) in
Sect. 3 and uses its Markov property to obtain such asymptotic estimation of performance
measure processes in our queueing network.

The next lemma corresponds to Proposition 4.2 in Bramson [3] and plays a fundamental
role in proving the rest of the lemmas as in [3].

Lemma 7.1.

Suppose that the sequence of r.v.’s {X"(i),i > 1} dsi.i.d. for eachr > 1, and {X7(1)2},>1
is uniformly integrable. Let 8" (i) = 22:1 X"(j3),i>1, and p% =E"[X"(1)], r > 1. Then,
for each e > 0,

5
P T T <
sup (lrg%xn 87 (i) — ip| > en) < -

if n is sufficiently large.
Lemma 7.2.
For each ¢ > 0 and k € K, there exist constants 61 > 0 and ¢; > 0 such that

"(1
(173) P sup |EL(t) - ajt] > wnoe, [ (1)
0<t<z, oL r

< 51) <c - =

r
if v is sufficiently large independently of *, where P”(-) is the probability law of Markov
process =" () starting with the value * for each r > 1. (Cf. (33)).

Proof.
First observe that the inequality

sup  |EL(t) — agt] >z 0
0<t<w, oL

implies that there exists some t € [0, x,.0L] such that either

(174) EL(t) > apt + z, 08
or
(175) EL(t) < ajpt — z,0¢.

The inequality (174) and condition (46) implies that

1 .
(176) UL (Lot + Troe)) — |aft + Tppe| — < — 205

ay, 20y,
if r is sufficiently large. Similarly, the inequality (175) implies that

1 Ty 0E
(177) U (gt — xroe) +1) — (lagt — zrpe) +1)— > 222
ay, 20,
if r is sufficiently large.
Thus, noting that for each ¢ € [0, 2, 0L],

(178) lagt + zr0e] < 2ro(arl +1)
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if r is sufficiently large, where we suppose ¢ € (0, %), and using (176), (177) and (178), we

have
"(1
Pr( s B — aft] > mooe, L <)
0<t<z, oL r
1 r (1
(179) < P:( max Ur(i) — —i| > 208, W] 5).
1<i< @y 0(ap L+1) ] ay, 20 r

Suppose that the constant §; > 0 satisfies the inequality

oS 2
4oy, agr
for sufficiently large r satisfying 4ik — air > 0. Then, when W:ﬂ < 61, we have that for
each i > 1,
(s r 1 : r 1
U = | < wp) + — + |3 (wit) - )|
k = Qg
i ) 1
<51T+7+‘Z(u (])——T)‘
j=2
Ty 0€ : 1
r,0 T =
o 12 (50 - )|
Jj=2
where we set 2222 -+ =0 when ¢ = 1. Therefore, applying Lemma 7.1 and observing that

Zr,o is a function of % on the event inside P, we have that the display (179) with § = §; is

dominated by

r - T 1 Tr,0€
P (2§i§Lz§lo%§kL+1)j ‘j_Q (u’“(]) 0‘2)‘ - 4oy, )
Tr,0E y 1
~ da, (lzro(a L +1)] —1)2
< Tr0€ % 1
T oo {zro(aL +1)}2

< ! X c
~ (oL +1)2 7 1’

we have the conclusion of the lemma.

if r is sufficiently large. Letting ¢ = m,
O

The next lemma corresponds to Lemma 5.2 in Bramson [3], and it will be used in the
proof of Lemma 7.4 below.

Lemma 7.3.
For each € > 0 and k € K, there exist constants 6 > 0 and co > 0 such that

PT

*

r r o,r 5T
sup  (|Dj(t2) — Di(ta)] — pkltz — ta]) = 206, V" (Z 7 (0)] < 5)
t1,t2€[0,x 0 L]

&
180) <o,
(180) c2
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if r is sufficiently large independently of x. In particular,

(181) PL(Di(anoL) = 2oL, [V (Z(0)] < 8) < e :,
if r is sufficiently large independently of *.
Proof.

Let

&h(s) =max{n € N: Vj(n) < s}, §>0, kek,
where
(182) Vi(n) =V (Z,7(0) An) + V(0= 2,77 (0)7).
Then
D) = L(T(),  t>0, kek.

Since

Di(t2) — Di(t1) — pi(te — t1) < (T (t2)) — & (Ty (t1)) — pi (T (t2) — Ty (1))
for each ¢1,%2 € [0, 2, 0L] such that t; < to, we have

sup  {|Dj(t2) — Dy(t1)| — pylt2 — t1]}
tl,tQE[O,.’ﬂ,"oL]

< osup {l€(s2) — E(si)| — whls2 — i)}
Sl,Sze[O,Er,UL]

<2 s [6(s) — sl
s€[0,z,0L]

Thus, it suffices to show

(83) P sup fgils) - pps| =
SE[O,IT70L]

Tr.0€

Soor 5T 9
VNEZT ) <6) <en

if r is sufficiently large independently of *. In the same way as in the derivation of (179),
the left-hand side of (183) is majorized by

(184) P ma

X Vi(i) —mii
(1§i§[mr,o(#kL+1)J k( ) g

Tr,0€ yo,r T
— “(Z; (0 0.
> s T 0)] <)

Suppose that the constant § > 0 satisfies the inequality 6 < i. Then, when i > Z;“T(O)
and [V27(Z,"(0))] < 6, we have
[Vi(@@) — mpi| <ré+ VP76 — 277 (0) — mi(i — Z,77(0))]

xr,OE ER T . T
(185) < sun T VeT (i = 2,77(0)) —mi(i — Z7(0))]-
Therefore we have
(184) < P:( max ‘Vz’r(j) —mpj| > M)
1<5< @0 (i L+1) | —Z;" (0) 8t
Tro€ 1
T 8wk (laro(ukl + 1)) — Z77(0))?
Tr o€ 1
< = 5
2u (@ opxl)
1 €

< x-
T2l o
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if r is sufficiently large, where the second inequality is a consequence of the application
of Lemma 7.1 and the third inequality follows from Z,j’T(O) < z,9. Consequently the
conclusion (180) follows with ¢o = 2#3’;#”
Substituting ¢, = 0 and ¢y = x, oL into (180) and letting € € (0, up L), we immediately
have (181).
O

Lemma 7.4.
For each € > 0 and k € K, there exist constants 6 > 0 and ¢z > 0 such that

K
r 3
1 pr . ‘F’l‘ _ Pr DT ’ ” o,r + Lo
(1s6)  Pi( sup |FL(1) D PRD; (0] > 02 max (2 O <6) <es- =

p
0<t<z, oL

if r is sufficiently large independently of x, where F"(-) is given in (16).
Proof.

(The left-hand side of (186))

KDz(*)
l(t) lr r € o,r +7‘
<pr (meupj Z (@ () = Pi)| > “52% max V97 (Z, 7 (0))] < 9)
< r Df(t) lr T »Tr0€
(187) S;P*(OJEE,OL‘ > (670 = | > T B 2 ;T (0)] < 8).

Each term in the summation w.r.t. [ in (187) is dominated by

PL(Df (2roL) = 2oL, V7" (2,77 (0))] < 6)
DI (t)

(188) +P( swp \Z (617 (0) = Ph)| >
1=

0<t<z, oL

Tr0€

D (z,0L) < 2mxT,OL)

According to Lemma 7.3,
(the first term in (188)) < czf
,

if r is sufficiently large independently of *. Furthermore we have that

(the second term in (188))

J
< P’;<1<j<16213§m“ ’Z(aﬁir() Ph)| > %05)
J
<Pr(_ max ]Z(W(z) Ph)| > 2mevoL] - 55 )
€ 1 _< € €

< : <
2wLK  [2maroL] — (uLl)*Kz.o ~ (wL)?*Kr
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if r is sufficiently large independently of %, where the third inequality follows from the
application of Lemma 7.1.

-2
O

Consequently we have the conclusion of the lemma with ¢5 = Keg + (mingeg g - L)
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ABSTRACT. We consider contractible spaces and the corresponding C™*-algebras to
show that contractible spaces are classifiable or not (up to homeomorphisms) by the
C*-algebras and their K-theory.

1 Introduction We consider contractible spaces and the corresponding C*-algebras to
show that contractible spaces in some cases are classifiable or not (up to homeomorphism
classes or manifold classes with some operations like jointed sums) by the C*-algebras or

their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C*-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps

would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C*-algebras and their K-theory and in
particular, contractible C*-algebras. Beyond or extending several facts on them, we further

go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C*-algebras

and their K-theory, with the same sprit as in this paper.
Let us begin with some notations as follows.

For a compact Hausdorff sapce X, we denote by C'(X) the C*-algebra of all continu-
ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise

operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by Co(X) the C*-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X U {oo} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X~ is the one-point un-compactification of a compact

Hausdorff space X if X~ U {oo} = X.

We write A = B if two C*-algebras 2 and B are s-isomorphic. We write X ~ Y if
two spaces X and Y are homeomorphic. Use the same symbol 2 for (K-theory) group

isomorphisms as well.

2 Contractible, spaces and C*-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idx : X — X is
homotopic to the constant map id, on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (f;) of X (to X) for ¢ € [0,1] = I the interval
such that fy =idx and f; = id, and the map F(t,xz) = fi(x) is continuous on the product

space I x X. The map F' is called a homotopy for X.

2000 Mathematics Subject Classification. Primary 46105, 461.80, 19K 14.
Key words and phrases. Contractible space, jointed sum, C*-algebra, K-theory.
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Note that a contractible space may or may not be compact. For instance, the Euclidean
space R™ as well as any convex subspace are all contractible by convexity. Note also that a
contractible space is path-connected by definition.

We may say that a topological space X is identically contractible if X is contractible
by a continuous path of homeomorphisms (f;)o<i<1 of X and fi =1id,.

A C*-algebra 2 is said to be contractible (to zero) if the identity map idy : A — 2
is homotopic to the zero map idy = 0: A — 2 by a (norm or uniform) continuous path of
s-homomorphisms (p;) of 2 (to A) for ¢t € [0,1] = I such that ¢y = idg and ¢; = idy and
the map ®(t,a) = ¢¢(a) is continuous on the product space I x 2. We may call the map P
a (norm or uniform) C*-homotopy for 2.

We also say that a C*-algebra 2 is identically contractible (to zero) if 2 is contractible
(to zero) by a continuous path of #-isomorphisms (¢;)o<i<1 of A and ¢1 = idy.

We say that a C*-algebra 2l is contractible to C if the identity map idg : A — 2A is
homotopic to a 1-dimensional representation (or character) y : 2 — C1 in 2 by a continuous
path of *-homomorphisms of 2.

We also say that a C*-algebra 2 is identically contractible to C if 2l is contractible
to C by a continuous path of *-isomorphisms (¢;)o<i<1 of A and ¢1 = x.

Note that a non-trivial C*-algebra contractible to C is not simple.

Furthermore, we say that a C*-algebra 2 (especially when 20 = C(X) or Cy(X)) is
weakly contractible (to zero), weakly identically contractible (to zero), weakly con-
tractible to C, and weakly identically contractible to C, respectively, if 2 is contractible
(to zero), identically contractible (to zero), contractible to C, and identically contractible
to C, by a pointwise continuous C*-homotopy ® for 2 (with respect to X), respectively. In
these cases, we may call such a homotopy ® either a weak homotopy, a weakly continuous
path, or a pointwise continuous path for 2.

A homotopy (f;) for a space X induces directly a homotopy (¢:) for C'(X) (or Co(X))
as the composition as p¢(g) = g o f; € C(X), which we call the induced homotopy.
Indeed, as a summary, with (1) below certainly known ([2]),

Proposition 2.1. (1) A unital C*-algebra is not contractible. Equivalently, if a C*-algebra
s contractible, then it is non-unital.

(2) If a compact Hausdorff space X is contractible (in X) by a homotopy, then C(X) is
contractible to C by the induced homotopy.

(3) Similarly, if a compact Hausdorff space X is identically contractible by a homotopy,
then C'(X) is identically contractible to C by the induced homotopy. The converse in this
case also holds.

(4) Moreover, if a non-compact, locally compact Hausdorff space X is contractible (in
X) by a homotopy, then Co(X) is weakly contractible to C by the induced homotopy.

(5) Simailarly, if a non-compact, locally compact Hausdorff space X is identically con-
tractible by a homotopy, then Co(X) is weakly identically contractible to C by the induced
homotopy. The converse in this case also holds.

Proof. For (1). Note that *-homomorphisms ¢; of a unital C*-algebra 2 (to 2() are always
unital, which can not be homotopic to the zero map on 2. Because the constant map
1=¢(1) € Aon [0,1) converges continuously to 1 € A at 1 € [0, 1].

For (2). Let (f;) be a continuous path between idx and id, for some p € X. Define a
continuous path of *-homomorphisms of C(X) by ¢:(g) = go f; for g € C(X) and t € [0, 1].
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Indeed,

pt(Ag+h)=(Ag+h)ofi=(Ago fi) + (ho fi) = Ape(g) + e (h),
ei(g-h)=(g-h)ofr=1(g0f) (hof)=ilg) ¢i(h),
er(9)" = (go fi)" = gofi=g"ofi= ei(9")
for g,h € C(X) and X € C, where the overline is the complex conjugate. Note that ¢g(g) =

goidx = g and ¢1(g)(z) = (goid,)(z) = g(p) for any x € X, so that ¢1(g) = g(p)1 = x,(9)
the character as the evaluation map at p € X. Note also that the following norm estimate
holds:

[®(t,9) — ®(s,h)|| = llpe(g) — ws(R)]
< llee(g) = 5@ + llps(9) — @s ()
<llgofi—go fsl +Ilg— Al
which can be small enough when (¢,g) and (s,h) are close enough on [0, 1] x 2. Because

X is compact, so that a continuous function g € C(X) is uniformly continuous on X. In
particualr, when s = 1, note that

lgo fe —go fill = sup |g(fi(x)) — g(p)I,
reX

which goes to zero as t — 1.

For (3). The same as above shows that if X is identically contractible, then C(X) is
identically contractible to C.

Conversely, let (¢1)o<i<1 be a continuous path of s-isomorphisms of C(X) between
o = idg(x) and a character o1 = X, for some p € X, by the Gelfand transform (see [4]).
In fact, it is a well known fact that the space C'(X)" of all 1-dimensional represetations
of C(X) is identifed with the space X. Define a continuous path of homeomorphisms
fi + X — X, induced from the following diagram to make it commutaive:

C(X) = @ (C(X)) ——

“ H
C(X) 2o, ¢,

since x, o ¢, for any x is written as x, for some y € X, and set y = fi(x). Note that
Xfi(z) = Xf.(y) 8 (t,x) — (s,y) € I x X in weak *-topology, if and only if for any
g € C(X),

IX7.)(9) = X5.) (@) = |(Xy 0 ps)g — (Xa © ©1)(9)]
= les(9)(y) — pe(9) ()],

which certainly goes to zero as (t,z) — (s,y), by continuity for the homotopy (¢;). Note
also that
(90 f)(2) = X1, 2)(9) = ¢2(9)(2).
For (4) and (5). Even if X is a non-compact, Hausforfl space, the proof for this case is

the similar as given above. Note that the space Cop(X)" of all 1-dimensional representations
of Cy(X) is identified with X. Note also that for any = € X,

[@(2,9) — (s, W)](2)| = llpe(9) — ps()](2)]
[p:(9) = @s(DI(@)] + [lps(9) — @s(M)](2)]
[(g(fi(2)) = g(fs(2))] + llg = All,

<
<
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which can be small enough when (¢, g) and (s, h) are close enough on [0, 1] x2(. In particualr,
when s = 1, note that

llg e fi —go Al(@)| = lg(fe(x)) — 9(p)],

which goes to zero as ¢ — 1. Note that the uniform continuity for ® is not expected from
the assumption because the norm for the difference above can be non-zero constant, but the
difference converges to zero pointwise (see the examples below). It is always assumed from
the assumption in this case that only the pointwise continuity for ® holds, which implies
that the estimate above evaluated at x € X goes to zero, pointwise on X. O]

Remark. More generally, when (p;) is a continuous path of #-homomorphisms of C(X)
between id¢o(x) and x, for some p € X, each image ¢;(C(X)) as a quotient of C'(X) is a
commutative C*-subalgebra of C(X), so that ¢,(C(X)) is isomorphic to C(X;) for some
compact Hausdorff space X;, which can be viewed as a closed subspace of X, from which,
one can define a continuous path of continuous maps f; : X; — X; in X, induced from the
following diagram to make it commutative (only on X;):

e (C(X)) = O(Xy) ——

“ H

C(X) 2 p(C(X)) 212 .

If each f; extends to X, then the extension of (f;) to X gives a continuous path of continuous
maps of X between idx and id,.

Furthermore, since a compact Hausdorff space X is normal, there is a continuous exten-
sion to X of a 1-dimensional closed interval valued, continuous function on a closed subset
such as X; of X, by Tietze-Urysohn extension theorem in general topology.

Example 2.2. e The C*-algebra C(I) on the closed interval I = [0,1] is unital (so that
not contractible) but weakly identically contractible to C, by the C*-homotopy induced by
a homotopy in [0, 1].

If we define ¢:(g9)(z) = g((1 —t)x) € C for g € C(I) and t,x € I. Then (¢;) is a
continuous path of s-isomorphisms of 2 = C(I) between idg and xp, so that 2 is weakly
identically contractible to C. Also, define hy(z) = (1 —t)x € [0,1—1¢] = [0,1] for t,z € I, so
that () =2 A for t € [0,1). Then (h:) is a continuous path of homeomorphisms of [0, 1]
such that fo =idx and idg, so that [0,1] is identically contractible (to 0).

e The (interval) C*-algebra I = C(I,2) over a C*-algebra 2, of all A-valued, con-
tinuous functions on I, viewed as the C*-tensor product C(I) @ 2, is weakly identicallty
contractible to C. In particular, IC = C(I). If 2 is unital, then C(/) ® 2 is unital and not
contractible.

Note that || f ® a|| = || f]|||a]| for f ® a € IC @ A. Hence, the (norm) homotopy (¢:) for
IC to C is extended trivially as ¢:(f ® a) = ¢:(f) @ a.

e The C*-algebra Cy([0,1)) on the half open interval [0,1) (non-compact), viweded as
the cone CC = Cy([0,1),C) = Cy([0,1)) ® C over C, is non-unital and weakly identically
contractible to C by the induced C*-homotopy by a homotopy in [0,1) (and is certainly
contractible, but soon later discussed in the example given below).

Indeed, if we define ¥ (g)(z) = g(7%;) for g € Co([0,1)), ¢t € [0,1), and = € [0,1—¢), and
¥1(g)(x) = g(0). Then (¢;) is a weakly continuous path of #-isomorphisms of 2 = Cy([0, 1))
between idy and xo, so that 2 is weakly identically contractible to C. Also, define hy(z) =
7= €100,1) for t € [0,1) and 2 € [0,1 —t) = [0,1), and hi(x) = 0, so that () = 2 for
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t € [0,1). Then (h¢) is a continuous path of homeomorphisms of [0,1) such that fo = idx
and f; =idy, so that [0, 1) is identically contractible (to 0).

Furthermore, now let g(z) = x for € [0,1] and g(z) = 1 — z for € [4,1) and
g € Cy([0,1)). Then the norm ||« (g)|| = |lg]| = 1, but x0(g) = g(0) = 0.

If a (compact or non-compact) space X is contractible to a point p € X, then we define
Jp to be the closed ideal of all continuous functions of (C'(X) or Cy(X)) on X vanishing at
the point p. Note that J, is isomorphic to Co(X \ {p}).

As a generalization from the case of Cy([0,1)) as a closed ideal of C(][0,1]),

Proposition 2.3. If a compact Hausdorff space X is contractible to a point p € X, then
the closed ideal 3, = Co(X \ {0}) is contractible to zero.
As well, in this case, T, @ A for any C*-algebra A is contractible to zero.

Proof. As shown above, it follows that C'(X) is contractible to C (at p € X). Therefore, J,
is contractible to zero (at p € X).
Since J), is contractible, so is J, ® % by the same reason as in the example above. [

Remark. Even if a non-compact, Hausdorff space X is contractible to a point p € X,
the closed ideal J, is not necessarily contractible. For instance, let X = [0,1). Then X
is contractible to {0}, but Jo = Cy((0,1)) is not contractible. However, Jy in this case
is weakly contractible to C since (0, 1) is contractible and non compact. Note also that
(0,1)" ~ T the one-dimensional torus, which is not contractible.

We now define that a non-compact topological space X is extended contracible (in
the one-point compactification X = X U {oo} of X) if the identity map idy+ : XT — X
is homotopic to the constant map ids, on X', which sends elements of Xt to the point oo.
We write F'* for the corresponding homotopy on I x X+ and call it the extended homotopy
for X+.

Possibly, the most important thing to notice at this moment is that

Proposition 2.4. (1) Let X be a non-compact, locally compact Hausdorff space. Then X
is extended contractible in Xt in our sense if and only if X T is contractible.

(2) If X is extended contractible in X in our sense, in other words, if X is a one-point
un-compactification of a contractible space, then Cy(X) is contractible to zero.

(3) The direct product of finitely many, extended contractible, non-compact locally com-
pact Hausdorff spaces is also extended contractible.

Proof. By definition, the first statement (1) holds.

The second statement (2) follows from that Cp(X) = T in C(XT).

For the third (3), if X1,---, X,, are extended contractible, non-compact locally compact
Hausdorff spaces, then (II7"_; X;)" is contractible because the coordinante homotopy in X j
extends in (II?_, X;)™ as a product of the homotopies O

Example 2.5. o Let 2 = Cy([0,1)). Then 2 is contractible (to zero) as in the references
(2], 4], and [8)).

Indeed, define ¢:(g)(x) = gt + (1 —t)) € C for x € [0,1) and t € [0,1]. Then
wo(g9)(x) = g(x) and p1(g)(x) = ¢g(1) = 0, and ¢, for ¢ € [0,1) are *-isomorphisms of
2A. Also the space [0,1) is contractible (but to 1 ¢ [0,1), however in [0, 1]), because the
maps on [0,1) defined by fi(z) =t 4+ x(1 —t) € [t,1) ~ [0,1) give a continuous path of
homeomorphisms of [0, 1) such that fy =idx and f; = id;.

Therefore, [0,1) is extended contractible in [0,1)T = [0,1] and Cy([0,1)) is identically
contractible.
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Remark. Note that a contractible space in the 1-dimensional closed interval I = [0, 1]
is always identically contractible. Moreover, any 1-dimensional contractible space in I is
homeomorphic to either I = [0,1], I; = [0,1), or Iy1 = (0,1). Furthermore, I = [0,1] is a 1-
dimensional compact manifold with boundary I = {0,1}, and I; = [0, 1) is a 1-dimensional
non-compact manifold with boundary 0I; = {0}, and Ip; = (0,1) is a 1-dimensional non-
compact (or open) manifold without boundary.

On the other hand, an extended contractible space may or may not be connected.

Example 2.6. Let X = [0, %) U (%, 1] be a union of half open intervals. Then X is non-
connected and is viewed as the one-point un-compactification of [0, 1] a contractible space.
Hence Cy(X) is contractible to zero. Note that Co(X) = C([0, 3]) ® Co((3,1]) with both

components contractible to zero.

Just as the 1-dimensional case of connected sums of topological manifolds, one can
define (but) a non-connected sum of two contractible spaces X and Y in [0, 1], denoted
as X#,Y, for a point p viewed in the interiors X° and Y° of X and Y respectively, where
X is viewed in the line of a Euclidean space and the boundary 90X is X \ X°. More
precisely, X#,Y is defined by removing a point in the interiors X° and Y° of X and Y
respectively, each identified with a point p, to make disjoint unions X \ {p} = X, U X2
and Y\ {p} =Y, UY;? and by gluing X and Y, together with p and gluing X2 and Y}
together with p to make two lines X; U{p}U Yp1 and Xg U{p}u sz, where each p in these
unions are assumed to be distinct. By definition, the non-connected sum X#,Y is a disjoint
union of two contractible line segments L; (j = 1,2) in [0,1], so that X#,Y = L; U Lo.
Note that X#,Y is not contractible, and C'(X#,Y) = C(L1) & C(L2), and Co(X#,Y) =
Co(L1) & Co(L2) where Ly or Ly may be compact and that X#,Y is compact if and only
if X and Y are compact.

Example 2.7. We have [0,1]#,[0,1] ~ [0,
(0,1), and (0,1)#,(0,1) ~ LU?(0,1), and |
L12[0,1), and [0,1)#,(0,1) 2 [0, 1)#,(0, 1).

Note that only the case X = [0,1]#,(0,1) ~ LI?[0,1) is extended contractible, with
Xt ~[0,1].

1] [0,1] = U?[0,1], and [0, 1)#,[0,1) ~ [0,1] U
J1]#,[0,1) = [0,1] U [0,1), and [0, 1]#,(0,1) =

Moreover, we can define inductively a successive non-connected sum of n contractible
spaces X1, -, X, in [0,1] as

#Zle = ( o ((Xl#PlXQ)#szS) T #pn_le

where each point py is identified with both a point of the interior of #g;lXi and a point
of the interior of Xy 1. The operation taking a non-connected sum is associative. Namely,
for example, (X1#p, Xo)#p, X3 ~ X1#p, (Xo#,,X3), where for this we may assume that
p2 € Xo. Note that the points p; and p, and the points pi in more general may or may not
be the same. Even if p; = p; in [0, 1] with ¢ # j, the attached points corresponding to p;
and p; are assumed to be distinct. Therefore, we always have

#;:Xl ~LiULyU---UL,=17L,
where each L; is a contractible space in [0, 1].

Proposition 2.8. Let X1, -, X,, be contractible spaces in [0,1]. Then a disconnected sum
#,,Xi is a non-contractible, locally compact Hausforff space, and is compact if and only if
each X; is compact. We have 0(#, X;) = U;0X;.

A non-compact #;, X; is extended contractible if and only if #, X; is homeomorphic to
the disjoint union L"[0,1). Hence, Co(L"[0,1)) = @&"Cy([0,1)) is contractible to zero.
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Proof. The first part is clear.

For the second, note that if a non-compact #;, X; contains a X;, homeomorphic to (0,1),
then the one-point compactification (#;‘i)i'i)Jr contains a circle embedded as a subset, so
that it can not be contractible. O

Recall that the connected sum M#N of two topological manifolds M and N of dimension
d > 2 is obtained by removing the d-dimensional closed unit ball B viewed in M and N
and attaching M \ B and N \ B together with the boundary 0B of B along. Note that
OB is not contractible. Hence M#N is always not contractible even when M and N are
contractible.

On the other hand, one can also define a pointed jointed sum of two spaces X and Y,
denoted as X LI, Y, for a point p viewed in X and Y. More precisely, X#,Y is defined by
joining X and Y at p in the disjoint union X Y. By definition, if X and Y are contractible,
then the pointed jointed sum X L, Y is contractible.

Moreover, we can define inductively a successive pointed jointed sum of n spaces
X1, , X, as

U, X = (- (X1 Up, Xo) Up, X3) -+ Up,, X,

where each point p; is identified with both a point of I_I’;i’lXi and a point of Xj,1. By
definition, if Xi,---, X, are contractible, then a successive pointed jointed sum L X; is
contractible. To have associativity for successive pointed jointed sums, such as

(X1 Up, Xo) Up, X3~ X1 Uy, (XoUp, X3),

we may assume that each p; is in X;. We assume this associativity in what follows.
Note that homeomorphism classes of pointed jointed sums do depend on both the way of
arrangement (or permutation with respect to i) of X; and the choice (distinct or not) of
the points p; in general. For instance,

(10,1 Uy (0,1)) U

) 2 10,1 % ((0,1) U [0,1]) Uy [0, 1].

1
3 2
Proof. Indeed, consider the interval [%, 1] viewed in the middle intervals. The jointed points

L and % emit three intervals closed or open at the other end points respectively (2 closed

3
and 1 open at % and % and 2 open and 1 closed at % and 3 closed at %), whose respective

parts in the jointed sums are not homeomorphic respectively. O]

Proposition 2.9. Let X1,---, X, be contractible spaces. A pointed jointed sum L) X; is
a contractible, locally compact Hausforff space, and is compact if and only if each X; is
compact, and O(Ly X;) = U;0X;.

A non-compact Uy X; is extended contractible if and only if its boundary has only one
point.

Moreover, if each X; is identically contractible, then Uy X; is identically contractible.

Proof. Note that for a non-compact LI} X;, if J(Uj. X;) has more than one point, then the
one-point compactfication (LI}, X;)T contains a circle embedded as a subset and thus the
compactification is not contractible.

Since each X is identically contractible by a homotopy, so is the jointed sum L7 X; by
taking the (simultaneous) homotopy induced by the homotopies of X; O

Let M and N be topological manifolds of dimension d > 1 (or greater than d). We
define a d-dimensional balled jointed sum of M and N to be obtained by identifying the
d-dimensional closed unit balls B viewed in M and N, and to be denoted by M Lig N.
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Note that the 1-dimensional closed unit ball is the closed interval [—1,1]. Also, a pointed
jointed sum may be defined to be a zero-dimensional jointed sum. Moreover, one can
define inductively a successive d-dimensional (or at most) balled jointed sum of topological
manifolds Mj,--- , M,, of dimension d (or greater than d) by

U%lMZE(((Ml Ug, M2)|—|32 M3)~~~)|_|B M,

n—1

where each B; is a d-dimensional (or at most) closed unit ball viewed in M; and M, ;. Note
that the dimension d may not be constant as dim B; = d; for i. By definition, if My, --- , M,
are contractible, then U M; is also contractible, but only a space, not a manifold in general.
To have associativity for successive balled jointed sums, such as

(M1 Upg, Mg) Ug, M3 ~ M, Ug, (M2 Ug, Mg),

we may assume that each B; is in M;. We assume this associativity in what follows.
Note that homeomorphism classes of balled jointed sums do depend on both the way of
arrangement (or permutation with respect to ¢) of M, and the choice (distinct or not) of
the balls B; in general.

As a collection, we obtain

Table 1: Classification for contractible spaces and examples by C*-algebras

C*-algebras \ Spaces Compact Non-compact, contractible
Contractible No Extended contractible:
to zero I =1[0,1), If =111,
(non-unital) (Up=t1) Uy, I,
(l—lrlé’?l‘[d) UB,_. Ifl
Non-contractible Contractible: Non-extended contractible:
to zero I=10,1], 17 Ip1 = (0,1), 1'6{1 ~ R?,
(unital or non-unital) | L2 I, L I Ln X,
u%j‘”” Xd (m+1>2)
(XZ = ]7 Il, I()’l n,m, l copies)

Remark. There are non-contractible spaces whose C*-algebras are contractible to zero, such
as disjoint unions of extended contractible, non-compact locally compact Hausdorff spaces
like L™[0, 1).

It follows from the Table 1 that

Corollary 2.10. The being or not being contractible to zero for C*-algebras (together with
unitalness or non-unitalness for C*-algebras) classifies contractible spaces to be compact or
non-compact and to be extended contractible or not.

Remark. Note that compactness and non-compactness for spaces just correspond to unital-
ness and non-unitalness for C*-algebras, respectively.

Now let X be a topological space. Denote by 0X the boundary of X, which is equal to
X\ (X)°, where X is the closure of X in a suitable topology (or a suitable compactification
of X along X) and (X)° is the interior of X, where note that we mostly deal with topo-
logical spaces X viewed as (homeomorphically bounded) subsets with relative topology in
Euclidean spaces and take their closures X in there. We may say that 0X \ X = X \ X is
the attached boundary of X and X is the flat compactification of X.
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Example 2.11. Let I = [0,1]. Then 01 = {0,1} and 01 \ I = (), and also 9(I9) \ I¢ = 0.

Let Iy =[0,1). Then I; = [0,1], 0I; = {0,1} and 0I; \ [, = I, \ I = {1}.

Let 1071 = (O, 1) Then m = [O, 1], 6m = {0, 1} and 6m\1071 = {0, 1}

We have I2 = [0,1]2, and d(I2) \ I? = ({1} x [0,1]) U ([0,1] x {1}) ~ [0,1], which is
contractible and has covering dimension one.

We have ?’1 = [0,1)%, and 8(%) \ I§, =~ S the 1-dimensional sphere, which is not
contractible and has covering dimension one.

Table 2: Classification for examples of contractible spaces by boundaries

Attached boundaries Contractible spaces
No Compact: I = [0,1], I, Up. 1, I_I%ild
One point Non-compact: I; = [0,1),

(W) Uy, [ (n>2)
Contractible, dimension d — 1 | Non-compact: I{, (U% '17) Ug, , I{

Two points Non-compact: Ip; = (0, 1),
m + 21 points Lpm X u%meXi (m+20>2)
(X; =1,I1,1p,1 n,m,l copies, resp)
Non-contractible, dim d — 1 I¢, ~RT (d >2)
Non-contractible, dim d — 1, LT HXE (m+1>2,d > 2)
m -+ | components (X; =1,I1,1Ip1 n,m,l copies, resp)

It follows from the Tables 1 and 2 that

Corollary 2.12. The being contractible and being unital or not for C*-algebras, together
with attached boundaries for spaces as similar invariants, and with dimension and pointed
or balled jointedness for spaces or manifolds classify (up to homeomorphisms in part) 1-
dimensional, contractible manifolds and d-dimensional, jointed sums of d-dimensional con-
tractible, their product manifolds, as in the collection lists above.

Remark. The homeomorphism classes of the spaces LI X, with X; = I, Iy, or Iy,
n,m, 1 copies respectively do depend on how to take the points p;. For instance, all p; may
be the unique point, like p; = % Namely, the homeomorphism classes depend on that p;
are mutually, the same or different and as well their positions, in general. The similar things
hold for LI X4,

It follows from the Table 3 (at the top of the next page) that

Corollary 2.13. The being either unital and identically contractible to C or being non-
unital and weakly identically contractible to C for C*-algebras classifies contractible spaces
to be compact or not to be.

3 K-theory We now consider K-theory (abelian) groups for C*-algebras.

It is known that if a C*-algebra 2 is contractible to zero, then the K-theory groups
Ky(2) and K; () both are zero, Note that the K-theory groups are homotopy invariant.
In fact, the zero C*-algebra {0} has Ky zero and the unitization {0}* = C has K zero, so
that the zero C*-algebra has K zero.

In particular,

265
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Table 3: Classification for identically contractible spaces and examples by C*-algebras

C*-algebras \ Spaces Compact Non-compact, contractible
Unital, identically Contractible: No
contractible to C 14, Ly, I, iy 14
Non-unital, No Extended: I{,
weakly identically W=ty o, I, (U Y U, I
contractible to C Non-extended: If
LpkmH X, UEE X (m+ 20 > 2)
(Xz = I, Io, I()’l n, m,l copies)

Example 3.1. Since Cy([0,1)) = CC the cone over C is contractible, it follows that
Ko(Cy([0,1))) = 0 and K;(Cp(]0,1))) = 0. The same holds by replacing [0,1) with
(Up=tI) Uy, , I and also by CC with CA = Cy([0,1)) ® A for any C*-algebra 2.

As a contrast, with (1) below certainly known ([8]),
Proposition 3.2. (1) Let X be a contractible, compact space. Then
Ko(C(X)2Z and Ki(C(X))=0.
(2) For a non-comapct space X, we have
Ko(Co(X)) =2 Ko(C(XM))/Z  and Ki(Co(X)) = Ki(C(XT)).
(3) If a non-compact space X is extended contractible, then we have
Ko(Co(X)) =0 and K1(Co(X)) 0.
Proof. The first statement (1) holds because K;(C(X)) = K;(C) for j =0, 1.
For the second (2), there is the short exact sequence of C*-algebras:
0— Co(X)—C(Xt)—=C—0
that splits, where the section from C to C(X ™) is given by sending 1 € C to 1 € C(XT).
The associated six-term exact sequence of K-theory groups implies that
K;(C(XT)) = K;(Co(X)) & K;(C)
for j =0, 1, with Ko(C) = C and K;(C) =0.
The third (3) follows from (1) and (2) above. O

Example 3.3. We have Ky(C([0,1])) = Z and Ky(C([0,1])) = 0. Since a compact, pointed
or balled, jointed sums J = U2 T or J = L% I* contractible, thus Ko(C(J)) = Z and
K (C(J)) 0.
There is the following short exact sequence of C*-algebras:
0— Cp((0,1)) — Cp([0,1)) = C — 0,

which is not splitting, but the six-term exact sequence of K-theory groups, associated,

becomes:
Ko(Co((0,1))) 0 Z

o] |

0 0 K1(Co((0,1)))
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with the maps 0 as the up and down arrows in the left and right, respectively, the index
map and the exponential map (as a dual of the index map), and hence Ky(Cy((0,1))) =0
and K;(Co((0,1))) = Z.

The converses of (1) and (3) in the proposition above do not hold for contractible spaces.

Example 3.4. Let X = R?" be the 2n-dimensional Euclidean space, for n > 1, which is
contractible but non-compact. Then

Ko(Co(R*™)) =2 Ko(C) =2 Z and K;(Co(R?")) = K;(C) =0

by Bott periodicity of K-theory groups. Also, Xt is homeomorphic to $2" the 2n-dimensional
sphere, which is not contractible, because Ko(C(S?")) 22 Z? and K;(C(5*")) = 0, so that
X is not extended contractible.

Let X = R?" x [0,1) the product space. Then

K;(Co(X)) 2= K;(Co(R*™) @ Co([0,1))) = K;(Co([0,1))) =0

for j = 0,1. Also, Xt is homeomophic to S$?" Li; I;, which is not contractible, because
527 Ly I; is homotopic to S27, so that X is not extended contractible.

Proposition 3.5. Let #,, X; be the successive non-connected sum of n contractible spaces
X1, , X, in [0,1], with #,,X; =~ U1 L;. Then

K;(Co(#p, Xi)) = @/ K;(Co(Li))
for j=0,1.

Proposition 3.6. Let X U, Y be the (pointed) jointed sum of two spaces X,Y. If X L, Y
18 compact, then

Ko(C(X Uy Y)) = Ko(Co(X\ {p})) © Ko(Co(Y'\ {p})) D Z,
K (C(X Uy Y)) = Ky (Co(X\ {p}) @ K1 (Co(Y'\ {p})),

and if X U, Y is not compact, then

Ko(Co(X Up Y)) = Ko(Co(X \ {p})) ® Ko(Co(Y \ {p})),
K1(Co(X U, Y)) = [K1(Co(X \ {p})) & K1(Co(Y \ {p}))]/Z.

Proof. There is the following short exact sequence of C*-algebras:
0— Co(X\{p}) & Co(Y \ {p}) = Co(X L, Y) = C—0,

which splits only when X L, Y is compact, where the quotient map is the evaluation map
at p. It follows that if X LI, Y is compact, then

Kj(C(X UpY)) = K;(Co(X \ {p})) © K;(Co(Y \ {p})) © K;(C)

for j =0,1. If X1, Y is not compact, then the induced quotient map from Ky (Co(X U,Y"))
to Ko(C) is zero, so that it follows from exactness of the six-term exact sequences of K-
theory groups that

Ko(Co(X Up Y)) = Ko(Co(X \ {p})) ® Ko(Co(Y \ {p}))

and
K1(Co(X U, Y)) = [K1(Co(X \ {p})) & K1 (Co(Y \ {p}))]/K:1(C).
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Moreover

Proposition 3.7. Let L} X; be the successive (pointed) jointed sum of n path-connected
spaces Xy, -+, Xp. If Up X, is compact, then

Ko(C(Up, Xi)) = @71 Ko(Co(Xi \ {pi-1})) ® Z,

Ky (C(Uy, X)) = @1 K1 (Co(Xi \ {pi-1}))-

If Uy, X is mnot compact, then

Ko(Co(Up, Xi)) = @i Ko(Co(Xi \ {pi-1})),
K1 (Co(Lp, X)) = [0 K1(Co(Xi \ {pi-1}))]/Z.
Proof. There is a homotopy between X = L. X; and the jointed sum Y = L} X; with the

common point p as in the case where p; = p;+1 (identified) for 1 < i < n — 2. Then there
is the following short exact sequence of C*-algebras:

0 — @, Co(X; \ {pi=1}) = Co(Y) - C — 0,

which splits only when Y is compact, where the quotient map is the evaluation map at the
common point p and X; \ {p} ~ X; \ {p;—1}. It follows that if ¥ is compact (if and only if
X is compact), then

K;(C(Y)) = [0, K (Co(Xi \ {pi1}))] © K;(C)

for j = 0,1. If Y is not compact, then the induced quotient map from Ko(Cy(Y")) to Ko(C)
is zero, so that it follows from exactness of the six-term exact sequences of K-theory groups
that

Ko(Co(Y)) = @iy Ko(Co(Xi \ {pi-1}))

and K1(C(Y)) = [ K1(Co(Xi \ {pi-11}))]/ K1 (C). O
As examples,

Example 3.8. Let X = LI} I; be a (pointed) jointed sum of n copies of I; = [0,1) (n > 2).
Then

KQ(Co(uZ’ill)) ~(0 and Kl(C'O(I_Izlll)) = anl'
This also holds for n = 1, with U'T; = I; and Z° = 0.

Proof. There is a homotopy between X and LIjI; the jointed sum of n copies of I; at the
common zero point 0. Because if I; = [0, p;) U [p;, 1) and [0, p;) does not contain other p;,
then it is homotopic to [p;,1) in X. We continue this process inductively and finitely to
obtain the required homotopy.

When n = 2, X is homotopic to (0,1) ~ L21;.

When n = 3, there is the following short exact sequence:

0 — Co((0,1)) — Co(U3I) — Co(LEI) — 0,

where 211 in the quotient is homeomoprhic to (0, 1) and closed in L3I, and its complement
is (0,1) in the ideal. The six-term exact sequence of K-theory groups, associated, becomes:

0 —— Ko(Co(L3L)) — 0

o] |0

7 — Kl(CO(l_lgfl)) — 7.
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It follows that Ko(CO(U%.[l)) =~ () and Kl(CO(l—%Il)) = Zz.
By induction, we assume that Ko(Co(Ugl1)) = 0 and Ki(Co(L511)) = Z"~ 1. Then
there is the following short exact sequence:

0 — Co((0,1)) — Co(UET 1) — Co(UpTy) — 0

since LjjI; is closed in I_IgHIl and its complement is (0,1). The six-term exact sequence of
K-theory groups, associated, becomes:

0 E— K()(Co(ug+lfl)) — 0
o] |0
Zrt e—— K (Co(udt)) «— Z.

It follows that Ko(Co(L5T 1)) =20 and Ky (Co(UgttI)) = 720,
There is also the following short exact sequence:

0— Co(unfo,l) — Co(ugfl) — C — 0,

which is not splitting, with Co(Ufl1) = @"Co((0,1)). The six-term exact sequence of
K-theory groups, associated, becomes:

&0 —— Ko(Co(Z)) —— Z
BT l@
0 —— Ki(Co(2)) —— a"Z
and Ko(Co(Z)) 20 and K1(Co(Z))) = Zn~1.

Example 3.9. Let X = Uy, Io1 be a (pointed) jointed sum of n copies of I = (0,1) =~ R
(n > 2). Then

KO(CO(ugiIO,l)) ~(0 and Kl(CO(U;LiIQ,l)) = Zanl.
This also holds for n = 1, with U'Ip 1 = Iy 1.

Proof. There is a homotopy between X and LZ"I; the jointed sum at the common zero
point 0. By Proposition 3.7 above, we obtain the conclusion. O]

Example 3.10. Let X = U2+t *1X; be a (pointed) jointed sum of X; = I, I1, or Iy 1, with
n copies of I, m copies of I1, and [ copies of Iy ;. Then

Ko(Co(Upt™HX;)) 20 and K (Co(UntmHix,)) = zm+2-1,

Proof. There is a homotopy between X and L16"+2ll 1 the jointed sum at the common zero
point 0, as considered above. By Proposition 3.7 above, we obtain the conclusion. ]

As 2-dimensional analogues as examples,

Example 3.11. Let X = " (I?)~ be a (pointed) jointed sum of n copies of (I?)~ the
one-potint uncompactification of the 2-direct product of I = [0,1]. Then

Ko(Co(X)) =20 and K;(Co(X))=zZ 1.
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Proof. To determine K;(Cy(X)), it is enough to compute K;(Co((I?)~ \ {p;})). Then one
can show that the space (I2)~ \ {p;} is homotopic to (0,1). Because p; is different from
the removed point (say ¢;) of each I? to make (I?)~, and that I is homotopic to a 1-
dimensional closed interval with end points identified with p; and g;, so that (1?)~\ {p;} is
homotopic to the interior of the interval. ]

Quite similarly, as higher-dimensional analogues as examples,

Example 3.12. Let m be a positive integer with m > 2. Let X = LI} (I"™)~ be a (pointed)
jointed sum of n copies of (I™)~ the one-potint uncompactification of the m-direct product
of I =[0,1]. Then

Ko(Co(X)) =0 and K;(Co(X)) =2z .

Moreover,

Example 3.13. Let X = I_I;,LZR2 be a (pointed) jointed sum of n copies of R%. Then
Ko(CO(X)) ~7" and Kl(CO(X)) anil.

Proof. Note that R? is viewed as (5?)~, so that (S?)~ \ {p;} is homeomorphic to S! x R,
where the removed two points from 52 may be assumed to be north and south poles in S2.
Then we have K;(Co(S* x R)) = K;1(C(S')) 2 Z for j =0,1 (mod 2). O

Similarly,

Example 3.14. Let X = I_IITLR2m be a (pointed) jointed sum of n copies of R>™. Then
Ko(Co(X)) =2 Z™ and K;(Co(X)) =zt

Proof. Note that R*™ is viewed as (S?™)~, so that (5*™)~ \ {p;} is homeomorphic to
§2m=1 » R, where we may assume that the removed two points from S?™ are north and
south poles in $?™. Then we have K;(Co(S?*™ 1 xR)) = K;1(C(S*™ 1)) = Z for j =0,1
(mod 2). O

On the other hand,
Example 3.15. Let X = LI R*""! be a (pointed) jointed sum of n copies of R*”*!. Then
Ko(Co(X)) =0 and K, (Co(X)) =z .

Proof. Note that R?™*1 is viewed as (S?™+1)~, so that (S?™*+1)~ \ {p;} is homeomorphic
to 2™ x R, where we may assume that the removed two points from S?™*! are north and
south poles in S?*™*!. Then we have K;(Co(S*™ x R)) = K;11(C(5*™)) for j = 0,1 (mod
2) and Ko(C(S5%™)) =2 7% and K;(C(S*™)) 0. O

Furthermore,

Example 3.16. Let X = LM X be a (pointed) jointed sum of X; of n Euclidean spaces
with dimensions even and m Euclidean spaces with dimensions odd. Then

Ko(Co(X)) =2 Z™ and K,(Co(X)) =z H?m1

Next, we consider the balled case.
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Proposition 3.17. Let MU N be the d-dimensional (balled) jointed sum of two topological
manifolds M, N of dimension d (or greater than d). If M Ug N is compact, then

Ko(C(M Up N)) = Ko(Co(M \ B)) ® Ko(Co(N \ B))) ©Z,
K1(C(M Up N)) = K1(Co(M \ B))) ® K1(Co(N \ B))),

and if M Ug N is not compact, then

Ko(Co(M Up N)) = Ko(Co(M \ B))) @ Ko(Co(N \ B))),
K1(Co(M Up N)) = [K1(Co(M \ B)) ® K1(Co(N \ B))]/Z.

Proof. The proof is exactly the same as that for Proposition 3.6. Note that K;(C(B))
K;(C) for j = 0,1 and the d-dimensional closed ball B is contractible.

0

Moreover,

Proposition 3.18. Let Uy M; be the successive d-dimensional (balled) jointed sum of path-
connected, topological manifolds My, -+, M, of dimension d (or greater than d). If U M;
18 compact, then

If U, M; is not compact, then

Ko(Co(U, M;)) = &7y Ko(Co(M; \ Bi—1)),
K1(Co(Ug, M;)) = [®;21 K1(Co(M; \ Bi—1))]/Z.

Proof. The proof is exactly the same as that for Proposition 3.7. O
Example 3.19. Let M = I_I%ilfl, with I; = [0,1) and n > 2. Then

Ko(Co(M)) =0 and K,(Co(M)) =2z 1.
If M = I, then Ko(Co(M)) =02 K;(Co(M)).

Proof. We compute K;(Co(I{\ B;)). Since each ball B; is contractible, there is the following
short exact sequence of C*-algebras:

0 — Co(I¢\ B;) — Co(I) — C — 0.

Since Co(If) = ®@1Cy(I1) is a contractible C*-algebra, hence K;(Co(I¢)) = 0 for j = 0, 1.
Note also that the space I{ is extended contractible since (I{)* is contractible. It follows
from the six-term exact sequence of K-theory groups that

Ko(Co(If\ B;)) =0 and K;(Co(I{\ By)) = Z.

Example 3.20. Let M = I_I%ilg’l, with Ip; = (0,1). If d is even, then
Ko(Co(M)) = 7" and K;(Co(M))=2"1,

and if d is odd, then Ko(Co(M)) =20 K1(Co(M)) = 7"~ 1L.
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Proof. We compute K;(Co(I§; \ B;)). Since each ball B; is contractible, there is the fol-
lowing short exact sequence of C*-algebras:

0— Co(I§ 1\ B;) — Co(If,) = C— 0.

Since Co(I§,) = @4Cy(R) = S*C, we have Ko(S?C) = Z and Ko(S?C) 2 0 if d is even and
Ko(S9C) = 0 and K(S9C) = Z if d is odd. It follows from the six-term exact sequence of
K-theory groups that if d is even, then

Ko(Co(I§ 1 \ By))

and if d is odd, then Ko(Co(I§, \ B;)) = 0 and K1(Co(I§, \ B;)) = Z2. O

~7 and K(Co(I{,\ B)) = Z,

Furthermore, combining Examples 3.19 and 3.20 with Proposition 3.18 we obtain

Example 3.21. Let M = |_I”+m+le where X; are n,m,l copies of I, I, Iy 1 respectively.
If m+1>1, then M is non- compact and if d is even, then

~ Zm+l—1

Ko(Co(M))=7Z" and K,(Co(M))

Zm+2l71

and if d is odd, then Ky(Co(M)) = 0 and K1 (Co(M)) =

Table 4: Classification for contractible spaces by K-theory of C*-algebras

K-theory of C*-algebras

Contractible spaces

Ko=0,K, =0

Non-compact, extended contractible:
Il? (In)7 ~ I{L (Tl 2 2)7

Ko=17,K, =0

Compact: I™
Noncompact, non-extended:
IZn ~ RQn

Ko=2", Ky =2"""

n 2m B
Uy, R=™ (pointed),
L 157 (balled)

Ko=0,K =7

Noncompact, non-extended:
I2n+1 ~ R2n+1
LI211, uQ(Im) (pomted),
s 2 I (balled)

Ky=0, Ki = zrn—1

KO — 07 Kl — Zm,+2l—17

Ky = 0, K, = 7.2n—1

Up Iy, L3 (I™)~ (pointed),
I_I” Id (balled)

|_|n+m+lX I_ln+m+lX2d+1

)

(X, =1 11710’1 n,m, 1 copies, m,l > 1),
L7 R, U;ZRQMH (pointed),
g 157 (balled)

— Zl, Kl — Zm+2l71

)

|_|n+7n+lX2d
(Xi=1,I,1p n m, | copies, m,l > 1),

Ko = 7", K, =

2m—1
Zn-i— m ,

L+ X, u%me (dim mixed),
with X; = R?™ (1 <i<n),
X; =Rt (n+1<i<n+m)

It follows from the Table 4 that
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Corollary 3.22. The ranks of K-theory groups for C*-algebras (together with compactness
of spaces and dimension of spaces and that of balls in (generic) jointed sums and with
jointedness (jointed or not) and with arrangement (or permutation) in jointed sums) classify
contractible spaces as in the table (up to homeomorphisms) and to be compact, non-compact
and extended, or non-compact and non-extended.

Remark. Similarly, one can obtain almost the same table for identically contractible spaces.

In the statements above and below, to obtain classification results up to homeomor-
phisms we may assume that pointed or balled jointed sums are generic, i.e., points or balls
involved are mutually distinct.

Recall ([5] or [6]) that the Euler characteristic x(21) of a C*-algebra 2 is defined to be
the (formal) difference:

X(2) = ranky Ko(2A) — rankz K1 () € ZU {£oo} U {c0 — o0}

of the Z-ranks of the free abelian direct summands of the K-theory groups of 2. In particu-
lar, it is shown that x(C(X)) = x(X), where x(X) is the Euler characteristic of a compact
space (or a finite cell complex) X in homology (or cohomology) for spaces.

What’s more, it is deduced from the table 4 above that

Table 5: Classification for contractible spaces by the Euler characteristic

Euler numbers of C*-algebras Contractible spaces
Zero: x=0—-0=0 Non-compact, extended contractible:
I, (I")” ~ I{ (n>2)
Positive: x =1—-0=1>0 Compact: 1™
Noncompact, non-extended: (even dim):
IQn ~ R2”
x=n—(n—-1)=1>0 L, RQm (pomted)
u",IgT (balled)
Negative: xy=0—1=-1<0 Noncompact, non-extended:

(odd dim): Ig7H" ~ R2HL
2-fold: 21, U (Im) (pomted),
L% Id (balled)

x=0-(n—-1)=1-n<0 n-fold: Uy, Iy, Ly (I™)~ (pointed),
‘L 1 (balled)
x=0—(m+20—1) u;‘jm“Xl, Lgrmt x 2
=1-m-20<0 (X =1,I1,Ip1 n,m,l copies, m,l > 1),
xX=0—(2n-1) n-fold (odd dim): L R,
1-2n<0 L R+ (pomted)
un I (balled)
x=1l—(m+20-1) u"+m+lX2d
=1-m-1<0 (X-—II1,101nmlcoples m,l>1)
xX=n—(n+2m-—1) Lt X, ST X (dim mixed),
=1-2m<0 WlthX RQ”I(ISiSn),

X; =R+l (n4+1<i<n+m)

It follows from the Table 5 that

273
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Corollary 3.23. The numbers or signs (being positive, zero, or negative) of the FEuler
characteristic for C*-algebras (together with compactness, dimension, jointedness of spaces,
and arrangement (or permutation) in (generic) jointed sums) classify contractible spaces
as in the table (up to homeomorphisms) and to be compact, non-compact and extended, or
non-compact and non-extended.

Remark. Our classification tables obtained as collections in this paper would be useful
for further classification of contractible spaces in more general, with more examples as
representatives to be added.

Once more,

Corollary 3.24. Our classfication tables say that contractible spaces restricted to examples
viewed as representatives of equivalence classes by homeomorphisms are classifiable by their
corresponding C*-algebras and K-theory data, plus, compactness, dimension, pointed or
balled jointedness for spaces, and arrangement (or permutation) in (generic) jointed sums,
as complete invariants.

Remark. The covering dimension for spaces as an invariant can be replaced by the real
rank for C*-algebras ([3]). Being compact for spaces corresponds to being unital for their
corresponding C*-algebras. Also, being jointed for spaces corresponds to being jointed for
their corresponding C*-algebras, and arrangement (or permutation) in jointed sums for
spaces corresponds to that in jointed sums for their corresponding C*-algebras.

Corollary 3.25. Both the ranks of K-theory groups for C*-algebras and the Euler char-
acteristic for C*-algebras can not classify jointedness for spaces, and as well, can not do
pointed or balled jointed sums of contractible spaces, up to arrangement (or permutation),
in general, except that all the components in jointed sums are the same.

However, if restricted to this exceptional case, and further restricted with dimension
fized in spaces and balls in (generic) jointed sums, the ranks and the Euler characteristic
together with compactness and jointedness for spaces can be complete invariants to classify
the contractible spaces as in the lists above, up to homeomorphisms.

Consequently, we obtain

Corollary 3.26. Let M, N be product manifolds of finitely many 1-dimensional contractible
manifolds. Then the d and d'-dimensional (with d,d" > 0), jointed sums U M and Uy, N

are homeomorphic, (which is equivalent to that
C(Up,M) = C(UgN) or Co(Up,M)=Co(Ug N),
where both M and N are compact or not), if and only if
Kj(C(Up,M)) = K;(C(UgN))  or K;(Co(Up, M)) = K;(Co(Up,N))

for j =0,1, and n = m (jointedness), and dim M = dim N and dim B; = d = d’ = dim B}
for every i.
Furthermore, the K-theory group isomorphisms can be replaced by

x(C(Up,M)) = x(C(UEN)) or x(Co(Up,M)) = x(Co(UEN)),
with the same other conditions.

Proof. As a note, suppose that there is a homeomorphism ¢ : X — Y of locally compact
Hausdorff spaces. Then there is a *-isomorphism ¢ : Co(Y) — Co(X) defined by ¥(f) =
fofor f € Cy(Y). The converse also holds by that X is the spectrum of Cy(X) by the
Gelfand transform. O
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4 Noncommutative jointed sums We may say that a jointed sum of two C*-algebras
2 and B with a common quotient ® is defined to be the pull back C*-algebra 2l ©o B as

Ao B = {(a,b) € A®B|p(a) =9(b)} ——
TFJ/ lil)
A 2 .9

where ¢ : A — D and ¢ : B — D are quotient maps and 7 : ADpB — A and p : AP B —
B are natural projections.

The Mayer-Vietoris sequence for K-theory of C*-algebras (see [1]) is the following six-
term diagram:

Ko@@o B) T k@) @ Ko(B) 279 Ko(D)
K@) S k@) e Ki(8) L K (s B)
In particular, it follows that

Proposition 4.1. Let 2 and B be contractible C*-algebras with a common quotient ® that
is contractible to C. Then

Ko(m Do %) =0 and Kl(Q[ Pn %) ~7

Proof. Indeed, the Mayer-Vietoris sequence becomes in this case:

KO(Q[ @@ %) (W*,P*) O@O Y — Z
0 L g0 T K (g B).

O

Now suppose that the jointed sum C*-algebra 2 &5 B and a C*-algebra € have a
common quotient . Then one can define a successive jointed sum of three C'*-algebras

Ao B)DpC

as the successive pull back C*-algebra. Note that the associativity for successive jointed
sums may not hold or not be defined in general. To have the associativity as

Ao B)PpC2ADo (B Dg )
we further need to assume that E is a common quotient of B, €, and A o B.

Proposition 4.2. Let (A®oB)DpC be a successive jointed sum C*-algebra of contractible
C*-algebras A, B, € with quotients ® and E that are contractible to C. Then

Ko(A®oB)Pp€) =20 and Ki(ADo B)Dp €) =72
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Proof. Indeed, the Mayer-Vietoris sequence becomes in this case:

Ko(( @p B) ®p €) 1) ggo L=,

I l

0 RN 7Z®0 ATespe) Ki(A®p B) dp ),
where 7 : (A @p B) B € — ADo B and p: (A Dp B) &g € — € by the same symbols as
for 2 o B, for convenience. O
Inductively, one can define a successive jointed sum of C*-algebras 2,--- .2, with
quotients ®4,--- , 0,1 as

O, Ai = (- (U ©o, A2) Do, A3) -+ ) Do, An.

Note that the associativity for the successive jointed sums may not hold or not be defined
in general. To have the associativity as in the 3-fold case, we further need to assume that
the quotients are more common to have this as in the 3-fold case.

Proposition 4.3. Let &5 2; be a successwe jointed sum C*-algebra of contractible C* -
algebras Ay, - -+ A, with quotients ©1,--- ,D,_1 that are contractible to C. Then

Ko(@% ;) 20 and Ki(®h A;) 272" "
Proof. We use induction by the same way as in the proof above. O]

Corollary 4.4. The jointed sum of two contractible C*-algebras with a common quotient
that is contractible to C is not contractible.

As well, the successive jointed sum of n contractible C*-algebras with successive common
quotients that are contractible to C is not contractible.

Remark. Since a contractible C*-algebra 2l has K-theory groups zero, the Kiinneth formula
in K-theory for C*-algebras implies that any tensor product of 2 with any other C*-algebra
B has K-theory groups zero if 2 or B is in the bootstrap category.

What’s more. As an interest, we obtain

Proposition 4.5. Let 2 be a contractible C*-algebra. Then any C*-tensor product A & B
with any C*-algebra B is contractible.

It follows that K;(2A® B) =0 for j =0,1.
Proof. There is a continuous homotopy (¢;) between the identity map idg : 2 — 2 and the
zero map 0 : A — A, with ¢; = idy and ¢y = 0. For any simple tensor a ® b € A ® B, we
define maps 1, : ARB — ARB by ¥ (a®@b) = ¢;(a)®b, which extends to x-homomorphism
from A ® B to A® V. Then (¢) gives a continuous homotopy between the identity map
idgges : A® B and the zero map 0: AR B — AR B.

Indeed, any element z € A ®*B is approximated by finite sums of simple tensors, so that
z=lim, oo Y py ak @by = lim, oo S,. Then define

Yi(z) = lim ty(sn) = lim (Y ax @br) = lim > i(ar) @ by,
k=1 k=1

which is well defined. Then

[¢he(x) = ¥s ()]
< Ye(@) = Ye(sn)ll + [[Pe(sn) — Vs(sn)ll + [P0s(sn) — ¥s(@)]ls

which is arbitrary small when n is large enough and |t — s| is small enough. O]
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AND THEIR K-THEORY

Remark. As for examples of noncommutative jointed sums, see the commutative cases in
the previous sections. One (principal case) of noncommutaive cases can be also obtained as
taking tensor products of C*-algebras 2l; with commutative C*-algebras Cy(X;) and taking
their jointed sums, with quotients (of 2; or Cy(X;)) involved to be assumed. If the K-theory
groups of 2; are computable, then so are the K-theory groups of the jointed sums. As the
other cases, tensor products may be replaced by other operations such as crossed products
of C*-algebras with suitable actions and free products of C*-algebras.
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ABSTRACT. In this paper, we determine several equivalent conditions pertaining to
closed range multipliers defined on a semisimple Fréchet locally m-convex algebra. More-
over, we give a complete description of the point spectrum and the residual spectrum of
multipliers.

1. INTRODUCTION

The investigation of closed range multipliers, in the context of commutative semisimple
Banach algebras was initiated by Glicksberg [8] in 1971, whereby he raised the following
question: If T' is a multiplier on a commutative semisimple Banach algebra A, whether a
factorization T'= PB, where P is an idempotent and B an invertible multiplier, is necessary
and sufficient to ensure the closedness of T'A? This problem was partially resolved by Host
and Parreau [12] for a particular situation of the group algebra L! (G), where G is a locally
compact abelian group. Various equivalent conditions have been determined in [17] for a

multiplier 7" defined on a semisimple Banach algebra to have closed range.

It is quite natural to ask whether the above characterization of closed range multipliers
holds for a semisimple Fréchet locally m-convex algebra A. In this paper, we consider this
problem and establish several equivalent conditions pertaining to closed range multipliers
on A. Precisely, we prove that if A has a bounded approximate identity, then T'A is a
closed ideal with a bounded approximate identity if and only if 7" admits a factorization
T = PB with P an idempotent and B an invertible multiplier. Moreover, if A is also a
Fréchet locally C*-algebra then T has closed range if and only if 724 = T A. Also, in this

case, T is injective if and only if it is surjective.

Finally, we discuss the spectral properties of multipliers defined on a simisimple com-
mutative Fréchet locally m-convex algebra A. The investigation of spectral properties of
a multiplier 7' defined on L' (@) was initiated by Zafran [22]. Successively this problem
was studied by several other authors in the framework of commutative semisimple Banach
algebras. We study this problem in the more abstract situation of (non-normed) topological
algebras. We show that if the maximal ideal space A(A) is discrete, then the point spectrum
is completely characterized by o, (T) = uT (A (A)). Under the assumption that socle of A

is dense in A, we establish that the residual spectrum of 1" is empty.

2. CLOSED RANGE MULTIPLIERS

Before investigating certain features of a multiplier with closed range, we need to establish
our preliminaries. A Hausdorfl topological algebra A whose topology is generated by a
family {p, : @ € A} of seminorms is called a locally convex algebra. Moreover, if each

seminorm p,, is also submultiplicative, i.e.,

Pa (2Y) < pa () pa (y) , for all z,y € A,

2010 Mathematics Subject Classification. Primary 46H05, 46J05, 46105, 47C05, 47A05; Secondary

47B48, 47A10.

Key words and phrases. Fréchet locally m-convex algebra; Fréchet locally C*-algebra; bounded approx-

imate identity; semisimple algebra; multiplier; socle of an algebra; point spectrum; residual spectrum.
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then A is called a locally m-convex algebra. Usually, a complete metrizable locally convex
(resp. locally m-convex) algebra is called a Fréchet locally convex (resp. Fréchet locally
m-convex) algebra.

Given a semisimple Fréchet locally convex algebra A, then following [13], a mapping
T:A— Aissaid to be a multiplier if x (Ty) = (T'z)y holds for all z,y € A. We denote
the set of all multipliers on A by M (A). Since A is semisimple, any T' € M (A) turns out to
be linear and the identity x (T'y) = T'(zy) holds for any z,y € A. Using the closed graph
theorem, the definition of a multiplier, and the semisimplicity of A, one can show that all
multipliers are necessarily continuous and hence bounded (see for instance, [13], Corollary
2.3). Moreover, M(A) is a closed subalgebra of B(A) with respect to the strong operator
topology, where B(A) denotes the algebra of all continuous (or bounded) linear operators
on A. Also, M(A) is commutative (see for instance, [13], Theorem 2.4) and has an identity
element. An application of the identity = (Ty) = T(xy) for all z, y € A, yields that both
TA and kerT are two sided ideals of A, where T'A and ker T" denote the range and kernel
of T, respectively.

In this work, we want to study closed range multipliers on A. In [12], Host and Parreau
have established that if A = L!(G), where G is a locally compact abelian group, and if T is
a multiplier on L'(G), then T4 is closed if and only if T = PB, where P is an idempotent
and T an invertible multiplier. Thus they partially resolved the interesting problem due
to Glicksberg [8] whether the factorization T = PB is necessary and sufficient to ensure
the closedness of T'A for any multiplier 7" on a semisimple commutative Banach algebra
A. Various equivalent conditions have been determined in [1] , [17] and [21] under which
a multiplier T has closed range. Our aim is to consider this problem for a more general
situation in (non-normed) topological algebras.

We recall that an operator T' € B(A) has a generalized inverse (abbreviated as g-inverse),
if there is an operator S € B(A) such that T = T'ST and S = ST'S. The operator T is also
called relatively regular [10]. We want to make a few observations about these operators.

Remark 1. (i) There is no loss of generalily in requiring only that T = TST. In fact, if
T =TST, then S" = STS will satisfy T = TS'T, as well as 8" = S'TS’.

(i) If T =TST and S = STS, then T'S and ST are idempotents and hence projections
for which TS (A) = T (A) and ker T = ker ST Indeed, (T'S)? =TSTS =TS and (ST)? =
STST = ST. Moreover, from T(A) = TST(A) C TS(A) C T(A) and ker T C ker(ST) C
ker(T'ST) = ker T, we obtain TS(A) = T(A) and ker(ST) = (I — ST)A = ker T, where I
denotes the identity element in B(A).

(iii) Generally speaking, a generalized inverse of T is rarely uniquely determined. For
instance, if T =TST, then S can be anything on ker(T). But there is at most one general-
ized inverse which commutes with the given T € B(A). In fact, if S and S’ are g-inverses
of T, both commuting with T, then T'S" = TSTS' = ST, and hence S" = S'TS' = S'TS =
STS =S5.

The following result has been proved in [21].

Theorem 2.1. Let A be a semisimple Fréchet locally m-convex algebra and T € M(A).
Then the following statements are equivalent.
(1) T has a g-inverse S € B(A) such that ST =TS.
2) T has a g-inverse S € B(A) such that T'S € M(A).
3) T has a g-inverse S € B(A) such that T'S commutes with T
4) T has a g-inverse S € M(A).
5) TA®ker T = A.
6) T°A=TA and ker T? = ker T'.
7) T = PB = BP, where B € M(A) is invertible and P € M(A) is idempotent.
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(8) T is decomposably regular in M(A), i.e., T = TCT, where C is an invertible multi-
plier.

We see from the preceding theorem that if T€ M(A) has a commuting g-inverse then
this must be a multiplier. One fact about multipliers on semisimple algebras that we
shall use below is that they satisfy the relation ker T? = ker T. In fact, if 722 = 0 then
0=T22% = T(2Tz) = (Tx)?, hence Tz = 0. An immediate consequence of this is that
TANkerT = {0}.

Corollary 2.2. Let A be a semisimple Fréchet locally m-convex algebra and T € M(A). If
T?2A =TA, then TA is closed.

Proof. For the proof see [21]. O

We remark that the converse of Corollary 2.2 may not be true even in the case of general
Banach algebras. For instance, consider the disc algebra A = A(D) of all complex valued
continuous functions on the closed unit disc D which are analytic in the interior of D.
Let g € A(D) be such that g(z) = z for each z € D, and let T, be the corresponding
multiplication operator. Clearly, Ty € M(A) and TyA = {f € A: f(0) =0}, T;A={f €
A f(0) = f'(0) = 0}. Obviously T, A is closed, but TyA # T7 A.

Let A be a Fréchet locally m-convex algebra whose topology is generated by a family
{pn : n € N} of submultiplicative seminorms. A net {e, : & € I'} in A is called a bounded
approzimate identity (abbreviated as bai) if p, (e,) < 1 for all n € N and for all a € T,
licrxn €l = 1i£11 xeq = x for all x € A. Following Inoue [15], A is called a Fréchet locally

C*-algebra if it has an involution * satisfying p, (*z) = (p, (z))* for all n € N and z € A.
It is well-known that every Fréchet locally C*-algebra has a bai (see [15, Theorem 2.6] and
[6, Theorem 4.5]).

Theorem 2.3. Let A be a semisimple Fréchet locally m-convex algebra with a bounded
approzimate identity and T € M(A). Then T A is a closed ideal with a bounded approximate
identity if and only if T admits a factorization T = PB, where P is an idempotent multiplier
and B an invertible multiplier.

Proof. Let {e,} be a bounded approximate identity of A. Assume that 7" € M(A) has a
factorization T = PB, where P € M(A) is idempotent and B € M(A) is invertible. Since
TA = PA, it follows immediately that T'A is a closed ideal. Also, the bounded net {Pe,}
is subset of TA. Hence zPe,, = P(xze,) — Px =z, for all x € T A.

Conversely assume that T'A is a closed ideal with a bounded approximate identity. Then
using the generalized version of the Cohen’s factorization theorem ([5], p. 610), for each z: €
TA, there exist y, z in TA such that z = yz, i.e., TA = (T A)? which implies T?A C TA =
(T A)%. On the other hand, for any z, y € A, we have (Tz)(Ty) = T(2Ty) = T?(zy) € T?A,
and so (TA)?2 C T?A. Hence TA = T?A. The desired factorization T'= PB follows from
the preceding theorem. O

Corollary 2.4. Let A be a semisimple Fréchet locally m-convex algebra with a bounded
approzimate identity and T € M(A). Then the conditions (1) to (8) of Theorem 2.1 are
equivalent to the following condition: (9) TA is a closed ideal with a bounded approzimate
identity.

Note that every Fréchet locally C *-algebra is semisimple (cf. [6, Corollary 5.6] and [7,

Lemma 8.14(ii)]). Now we remark that Theorem 3.6 [21] follows immediately as a simple
corollary of the preceding theorem. Precisely, we have:

Corollary 2.5. Let A be a Fréchet locally C*-algebra and T € M(A). Then TA is closed
if and only if T>?A = T A.
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Corollary 2.6. Let A be a semisimple Fréchet locally m-convex algebra and T' € M(A). If
T?A =TA, then T is injective if and only if it is surjective.

Proof. Let T be surjective. Since T'A N ker T'={0}, it follows that ker T" = {0}, that is, T
is injective. Conversely, assume that ker T = {0}. Since, by assumption, T?A = TA, it
follows from Theorem 2.1 that TA®ker T = A. Hence T A = A, that is, T is surjective. [J

Now we see, by virtue of Corollary 2.4, that if T" is a multiplier on a semisimple Fréchet
locally m-convex algebra with a bounded approximate identity such that T'A is a closed
ideal with a bounded approximate identity, then T is injective if and only if it is surjective.
In particular, we obtain a result of [20] which states that a closed range multiplier on a
Fréchet locally C *-algebra is injective if and only if it is surjective.

3. SPECTRAL PROPERTIES OF MULTIPLIERS

In this section we investigate certain spectral properties of multipliers defined on a
semisimple commutative Fréchet locally m-convex algebra A. Denote the set of all non-zero
continuous multiplicative linear functionals on A by A(A). In what follows, we assume that
A(A) is non-empty and point-separating, without mentioning it explicitly. For any z € A,
define the Gelfand transform = of « by Z(f) = f(z) for each f € A(A). The space A(A)
is equipped with the Gelfand topology, i.e., the induced topology inherited from the weak®
topology of A*. We shall use the following result of [13] frequently.

Theorem 3.1. There is a continuous function u? : A(A) — C corresponding to each T €
M(A) defined by p* (f) = f o T (z), where x is chosen such that f(x)=1, satisfying the
relation (Ty)(f) = y(f)u’ (f), for ally € A and all f € A(A).

Now we need to recall the definition of the socle of a semisimple commutative Fréchet
locally m-convex algebra A, an ideal that plays an important role in our subsequent dis-
cussion. A minimal idempotent of A is a non-zero idempotent e such that eAe is a division
algebra. Note that if e is a minimal idempotent element, then eAe = Ce ([3], p. 292). The
set of all minimal idempotents of A is denoted by E4. It is well-known that an ideal J of
A is a minimal ideal if and only if J = eA for some e € E4 (see for instance, [4]). The socle
of A, denoted by soc(A), is defined as the sum of all minimal ideals of A, or (0) if there are
none. In what follows, we assume that the ideal soc(A) does exist, without mentioning it
explicitly. The socle of A can be characterized in a simple way as:

n
soc(A) = {ZekA tep € Eq,n e N} =span(E4).
k=1
An important class of topological algebras consists of those which have a dense socle. For
instance, consider the algebra A = H (D) of all holomorphic functions defined on the open
disc D = {z € C: |z| < 1} with point-wise addition and scalar multiplication. With the
Cauchy-Hadamard product and the compact-open topology, it is a semisimple commutative
Fréchet locally m-convex algebra possessing an orthogonal basis {e,, : n > 0}, where e,, (2) =

2" for z € D. The element e (z) = > 2™ is the identity element of H(D). Note that e, A is

a minimal ideal of A, for all n € NTI 1\9Ioreover, A is the direct sum of these minimal ideals,
i.e., soc(A) is dense in A (see [14], Chapter III, p. 97).

Similarly, the algebra A = s of all complex sequences with coordinate-wise operations
is a semisimple commutative Fréchet locally m-convex algebra with identity and possessing
an orthogonal basis {e, : n > 1}(see [14], Example 3.4, Chapter II). In this case, soc(A) is
also dense in A. In fact, the socle is dense in every Hausdorff topological algebra possessing
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an orthogonal basis. Moreover, A(A) is homeomorphic with the discrete space of natural
numbers N (see [14], Theorem 3.12, Chapter IIT). We now prove the following:

Theorem 3.2. Let A be a semisimple commutative Fréchet locally m-convex algebra. If

soc(A) = A, then A(A) is discrete.

Proof. First we observe that A= {@ : a € A} separates the points of A (A4). In fact, if
fyg € A(A) such that f # g, then there exists ©g € A with f(zo) # g(x¢). Therefore,
it implies that Zo(f) # Zo(g). Hence there is no h € A(A) at which Z vanishes for
all z € soc(A). Thus if f € A(A), then there exists an element z € soc(A) for which
Z(fo) = 1. Therefore, {h € A(A) : [Z(h) —Z(fo)| < 1} = {fo} is a weak*-neighborhood
of f. This implies that A (A) is discrete. O

We denote by C.(A(A)) the algebra of all C-valued continuous functions on A(A) en-
dowed with the topology of compact convergence. Now by combining Theorem 3.2 with [9,
Theorem 4.2 |, we get:

Corollary 3.3. Let A be a unital semisimple commutative Fréchet locally m-convez algebra.
If soc(A) = A, then A = C.(A(A)), with respect to a topological algebraic isomorphism.

A locally m-convex (resp. Fréchet locally m-convex) algebra A whose topology is gen-
erated by a family {p, : @ € A} of submultiplicative seminorms is called a uniform locally
m-convex (resp. uniform Fréchet locally m-convez) algebra if p, (x2) = (Pa (x))z, for all
x € A, a € A. Every uniform locally m-convex algebra is commutative and semisimple (see
[18, p. 275, Lemma 5.1]). Moreover, from [9, Corollary 5.4(ii)] and Theorem 3.2, we get:

Corollary 3.4. A unital uniform Fréchet locally m-convex algebra with dense socle is a
Banach algebra.

We showed in Section 2 that the converse of Corollary 2.2 may not be true even in the
case of Banach algebras, but it is true for Fréchet locally C*-algebras (see Corollary 2.5).
A similar result proved in [2] states that if A is a semisimple commutative Fréchet locally
m-convex algebra and T' € M (A), then T?A is closed if and only if TA @ ker T is closed.
Note that a Fréchet locally m-convex algebra is simply called a Fréchet algebra in [2]. Now
we remark that Theorem 5 [2] follows directly from Theorem 2.1. More precisely, we have:

Corollary 3.5. Let A be a semisimple commutative Fréchet locally m-convex algebra with
T € M(A) and soc(A) = A. Then T is a product of an idempotent multiplier and an
inwvertible multiplier if and only TA @ kerT = A.

Observe that two conditions on A, it being a commutative algebra and having the dense
socle, in Theorem 5 [2] can be relaxed by virtue of Theorem 2.1.

In the sequel, we denote by o, (T) and o, (T') the point spectrum and the residual
spectrum of T, respectively. Recall that A is said to be regular if for each closed subset F
of A(A) in the Gelfand topology and fo € A (A)\E, there exists an element x in A such
that Z(fp) = 1 and Z(f) = 0 for all f € E (see for instance, [18], p. 332). We remark
that if A (A) is discrete, then clearly A is regular. We recall that the ascent p(T) of an
operator T is defined as the smallest non-negative integer p, whenever it exists, such that
ker TP = ker TPT1,

Theorem 3.6. Let A be a semisimple commutative Fréchet locally m-convex algebra and
Te M(A). Then

(1) 0, (T) € 7 (A (A)) C 0, (T) U, (T).

(2) For any X\ € o (T) we have p(M —T) < 1.
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Proof. (1) Let A € 0,(T). Then there exists a none-zero element = of A such that
(M —=T)(z) = 0. Therefore, (M —=T)(z)) = A—p")z = 0. Since A is semisimple
and T # 0 there exists fo € A (A) such that Z (fo) # 0. Thus it follows, from above that
(A= ") fo =0, and so u?(fo) = A. That is, A € u” (A (A)).

To prove the second inclusion, let T denote the topological dual of 7. Then for each
f € A(A), we have (T* )z — f(Tax) = (Ta)(f) = w7 (N7 (F) = w7 () f (&), (using
Theorem 3.1), for all x€ A . Therefore, T* f = u” (f) f, and hence u” (f) is an eigenvalue
of T*. Since the inclusion o, (T*) C o, (T') U0, (T) holds by virtue of Theorem 2.16.5 [11],
the desired inclusion follows immediately.

(2) Let # € ker (Al —T)?, where z # 0. Since (Al —T)> € M(A) and p*M-1)° =
(A= uT)?, it follows that 0 = (M — T)2(z)) (f) = (A= uT)° (f) - Z(f), for all f € A(A)
(using Theorem 3.1). Hence (A —pu”) (f) - Z(f) = 0 for each f € A(A). Therefore,

-

(M —T)(z) = 0. Since A is semisimple, (A\I —T)(z) = 0, and so 2 € ker (\I —T).
Thus ker (\] — T')* C ker (AI — T'). Since the reverse inclusion is trivial, we conclude that
p(AM—T)<1. O

Remark 2. To every T € M(A) the corresponding function p® may not be bounded,
in general. However, if M(A) is a Q-algebra, then the function uT is bounded since
pT (A (A)) C o, (T)Uo,. (T) Co(T) and every element in a Q-algebra has compact spec-
trum [19]. Note that it would be interesting to investigating whether property @ on A could
pass onto M(A) and vice versa?

Now we give a complete description of the point spectrum of 7' € M (A).

Theorem 3.7. Let A be a semisimple commutative Fréchet locally m-convex algebra and
T € M(A). If A(A) is discrete, then we have o, (T) = ¥ (A (A)).

Proof. By virtue of Theorem 3.6, it remains only to show that u” (A (A4)) C o, (T). Let fo
be fixed in A (A). Since, by assumption A (A) is discrete and hence A is regular, there exists
an element x in A such that Z (f;) = 1 and T vanishes identically on the set A (A)\{fo}.
Therefore, ([MT(m Tz)(f) = (1 (fo) — ¥ (f)) - (f) = 0 for each f € A(A) and so
(1T (fo) I — T)x = 0, because A is semisimple. Since z # 0, we obtain u” (fo) € o, (T).
Hence o, (T) = u” (A (A)). O

Under the assumption that soc(A) = A, we now give a complete description of the
residual spectrum of T' € M (A).

Theorem 3.8. Let A be a semisimple commutative Fréchet locally m-convex algebra with
dense socle. Then o, (T') = ().

Proof. Assume on the contrary that o, (') # 0. Let A € 0, (T'). Then by Theorem 3.7, A ¢
o, (T) implies that A # u” (f) for each f € A (A). For any x € E4 there exists fo € A (A)
such that Z(fy) = 1 and Z vanishes identically on A (4)\{fo}. Set y = (A — /LT(fo))il x,
then we have [(Aﬁ)y] (f) = z(f) for all fin A(A) and so (A] — T)y = z, that is,
Ea C (M —T)(A) C A. Since, by hypothesis, we have A = span{FE} which implies
A=A —-T)(A) and so A ¢ o, (T), a contradiction. Hence o, (T) = 0. O

Finally we give an application of our previous results: Let A denote a Hausdorff topo-
logical algebra with an orthogonal basis {z;}. Then A is commutative ([14], Corollary 1.4,
Chapter III), proper ([14], Proposition 1.6, Chapter III), semisimple ([14], Corollary 2.5,
Chapter III), and has dense socle ([14], Theorem 4.3, Chapter III). Also, each coordinate
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e}
functional \; determined by the basis {x;} via @ = > \i(z)z;, is continuous, i.e., {z;}
=1

is a Schauder basis ([14] Theorem 1.12, Chapter III). Further, each )\; is a multiplicative
linear functional ([14], p. 79). Moreover, A(A) is homeomorphic with the discrete space of
natural numbers N ([14] Theorem 3.12, Chapter III). To each T' € M(A), there corresponds
a sequence {u! } of complex numbers defined by ! = u®'();) for all i > 1, and moreover it

&)
is completely described by: Tz = >" \;(z)ul x;, for all x € A ([14], p. 225).
i=1

Corollary 3.9. Let A be a locally m-convex algebra with an orthogonal basis {x;} and
T € M(A). Then we have o,(T) = {ul :i > 1} and o,.(T) = 0.
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(b) Dept. of Information Sciences , Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka-shi, Kanagawa
259-1293, Japan

(b’) yoshiki@kanagawa-u.ac.jp

(c) Software Science, Programming language semantics

(a) Shunsuke Sato

(b)2-6-20 Hanayashiki-Soen, Takarazuka,Hyogo 665-0808, Japan
(b”)ss_22362@nifty.com

(c) Mathematical biology in general, Neural networks, application of stochastic process

(a)Tadashi Takahashi

(b)Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto,
Higashinada, Kobe, Hyogo 658-8501, Japan

(b’) takahasi@konan-u.ac.jp

(c)Mathematics Education

(a) Benoit Collins

(b) Department of Mathematics, Faculty of Science, Kyoto University

(b") collins@math.kyoto-u.ac.jp

(c) Random Matrix Theory, Free Probability, Quantum Information Theory
Quantum Groups (operator algebra side), Operator Algebra
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Managing Editor

Koyu Uematsu (Professor of Osaka International University)
International Society for Mathematical Sciences
1-5-12-202 Kaorigaoka-cho, Sakai-ku, Sakai-city, 590-0011,Japan
uematsu@jams.jp
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Submaission to the SCMdJ

In September 2012, the way of submission to Scientiae Mathematicae Japonicae
(SCMJ) was changed. Submissions should be sent electronically (in PDF file) to the

editorial office of International Society for Mathematical Sciences (ISMS).

(1) Preparation of files and Submission
a. Authors who would like to submit their papers to the SCMdJ should make
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty)
Submissions should be in PDF file compiled from the source files. Send the
PDF file to slbmt@jams.jp .
b. Prepare a Submission Form and send it to the ISMS. The required items to
be contained in the form are:
1. Editor’s name whom the author chooses from the Editorial Board

(http://www.jams.or.jp/hp/submission f.html )and would like to take in

charge of the paper for refereeing.
2. Title of the paper.
3. Authors’ names.
4. Corresponding author’s name, e-mail address and postal address (affiliation).

5. Membership number in case the author is an ISMS member.

Japanese authors should write 3 and 4 both in English and in Japanese.

At http!//www.jams.or.jp/hp/submission f.html, the author can find the

Submission Form. Fulfill the Form and sent it to the editorial office by pushing
the button “transmission”. Or, without using the Form, the author may send

an e-mail containing the items 1-5 to slbmt@jams.jp

(2) Registration of Papers
When the editorial office receives both a PDF file of a submitted paper and a
Submission Form, we register the paper. We inform the author of the
registration number and the received date. At the same time, we send the PDF
file to the editor whom the author chooses in the Submission Form and request
him/her to begin the process of refereeing. (Authors need not send their papers to
the editor they choose.)
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(3) Reviewing Process

a. The editor who receives, from the editorial office, the PDF file and the request
of starting the reviewing process, he/she will find an appropriate referee for
the paper.

b. The referee sends a report to the editor. When revision of the paper is
necessary, the editor informs the author of the referee’s opinion.

c. Based on the referee report, the editor sends his/her decision (acceptance of
rejection) to the editorial office.

(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the
editor’s decision, and informs it to the author.
b. When the paper is accepted, we ask the author to send us a source file and
a PDF file of the final manuscript.
c¢. The publication charges for the ISMS members are free if the membership dues
have been paid without delay. If the authors of the accepted papers are not the
ISMS members, they should become ISMS members and pay ¥6,000 (US$75,
Euro55) as the membership dues for a year, or should just pay the same

amount without becoming the members.

Items required in Submission Form

Editor’s name who the authors wish will take in charge of the paper
Title of the paper

Authors’ names

3. in Japanese for Japanese authors

- W=

Corresponding author’s name and postal address (affiliation)
4. 4.1n Japanese for Japanese authors

ISMS membership number

> o

E-mail address
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Call for ISMS Members

Call for Academic and Institutional Members

Discounted subscription price: When organizations become the Academic and Institutional
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the
yearly price of US$225. At this price, they can add the subscription of the online version upon
their request.

Invitation of two associate members: We would like to invite two persons from the
organizations to the associate members with no membership fees. The two persons will enjoy
almost the same privileges as the individual members. Although the associate members
cannot have their own ID Name and Password to read the online version of SCMJ, they can
read the online version of SCMJ at their organization.

To apply for the Academic and Institutional Member of the ISMS, please use the following
application form.

Application for Academic and Institutional Member of ISMS

Subscription of SCMJ
Check one of the two.

[OPrint [OPrint + Online
(US$225) (US$225)

University (Institution)

Department

Postal Address
where SCMdJ should be

sent

E-mail address

Name:

Person in charge Signature:

Payment
[JBank transfer [JCredit Card (Visa, Master)
Check one of the two.

Name of Associate Membership
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Call for Individual Members

We call for individual members. The privileges to them and the membership dues are shown
in “Join ISMS !” on the inside of the back cover.

Items required in Membership Application Form

Name

Birth date

Academic background

Affiliation

4’s address

Doctorate

Contact address

E-mail address

Special fields

0. Membership category (See Table 1 in “Join ISMS !”)

R e

Individual Membership Application Form

1. Name

2. Birth date

3.
Academic background

4. Affiliation

5. 4’s address

6. Doctorate

7. Contact address

8. E-mail address

9. Special fields

10.
Membership
category
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Contributions (Gift to the ISMS)

We deeply appreciate your generous contributions to support the activities of our
society.
The donation are used (1) to make medals for the new prizes (Kitagawa Prize,
Kunugi Prize, and ISMS Prize), (2) to support the IVMS at Osaka University
Nakanoshima Center, and (3) for a special fund designated by the contributors.

Your remittance to the following accounts of ours will be very much appreciated.

(1) Through a post office, remit to our giro account (in Yen only ):

No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS )
or send International Postal Money Order (in US Dollar or in Yen) to our
address:

International Society for Mathematical Sciences

2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan

(2)  A/C 94103518, ISMS
CITIBANK, Japan Ltd., Shinsaibashi Branch
Midosuji Diamond Building
2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan

B o o e e o o b o o o o o o o o R o o b o o o o S b ek e o e S

Payment Instructions:
Payment can be made through a post office or a bank, or by credit card. Members may
choose the most convenient way of remittance. Please note that we do not accept payment by
bank drafts (checks). For more information, please refer to an invoice.

Methods of Overseas Payment:

Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4)
UNESCO Coupons.

Authors or members may choose the most convenient way of remittance as are shown below.
Please note that we do not accept payment by bank drafts (checks).
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send
International Postal Money Order to our postal address (2) Remittance through a
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO
Coupons.

Methods of Domestic Payment:

Make remittance to:
(1) Post Office Transfer Account - 00930-3-73982 or
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING
CORPORATION, Sakai, Osaka, Japan.
All of the correspondences concerning subscriptions, back numbers, individual and
institutional memberships, should be addressed to the Publications Department,
International Society for Mathematical Sciences.
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Join ISMS'!

ISMS Publications: We published Mathematica Japonica (M.J.) in print,
which was first published in 1948 and has gained an international reputation in
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online
and in print. In January 2001, the two publications were unified and changed to
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and
published both online and in print. Ahead of this, the online version of SCMdJ
was first published in September 2000. The whole number of SCMdJ exceeds 270,
which is the largest amount in the publications of mathematical sciences in
Japan. The features of SCMJ are:

1) About 80 eminent professors and researchers of not only Japan but also 20
foreign countries join the Editorial Board. The accepted papers are
published both online and in print. SCMdJ is reviewed by Mathematical
Review and Zentralblatt from cover to cover.

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ
are introduced to the relevant research groups for the positive exchanges
between researchers.

3) ISMS Annual Meeting: Many researchers of ISMS members and
non-members gather and take time to make presentations and discussions
in their research groups every year.

The privileges to the individual ISMS Members:
(1) No publication charges
(2) Free access (including printing out) to the online version of SCMJ
(3) Free copy of each printed issue

The privileges to the Institutional Members:
Two associate members can be registered, free of charge, from an institution.

Table 1: Membership Dues for 2015
Categories Domestic Overseas Develop.mg
countries

L-year Regular ¥8,000 US$80 , Euro75 USS$50, Eurod7

member

L-year Students ¥4,000 US$50 , Eurod7 US$30 , Euro28

member

Life member* Calculated USS750 , Euro710 | US$440, Eurodl6
as below

Honorary member Free Free Free

(Regarding submitted papers,we apply above presented new fee after April 15 in
2015 on registoration date.) * Regular member between 63 - 73 years old can apply

the category.
(73—age ) x ¥3,000

Regular member over 73 years old can maintain the qualification and the privileges
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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