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Using this system, speakers of the session can write on a white board or an OHP sheet
or use PowerPoint. On the other hand participants can ask questions or make comments
from any connected site in the world. All these are performed similarly to the traditional
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To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).
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Abstract. This paper introduces an algorithmic approach to investigate into the
SIG-dimension of graphs, under the sup-norm. We provide an upper bound for the
SIG-dimension of graphs, without isolated vertices, which do not contain an induced
subgraph isomorphic to K2,2.

1 Introduction The sphere-of-influence graph (SIG) on a set of points, each with an
open ball centered about it of radius equal to the distance between that point and its
nearest neighbor, is defined to be the intersection graph of these balls.

The notion of the sphere of influence graphs was introduced by Toussaint to model
situations in pattern recognition and computer vision. These are used to help separate
objects or otherwise capture perceptual relevance, see [6, 7, 8].

Toussaint has used the SIGs under L2-norm to capture low-level perceptual information
in certain dot patterns. The SIGs in general metric spaces are considered in [3]. It is known
that the SIGs under the L∞-norm perform better for this purpose, see [4]. Below we provide
the construction of SIGs in this case.

Let d be a natural number and Rd denotes the d-dimensional Euclidean space. For any
z ∈ Rd, let z[j] denotes the jth component of z. The distance between any x, y ∈ Rd under
the L∞-metric, denoted by ρ(x, y), is defined as,

ρ(x, y) := max{|x[j]− y[j]| : j = 1, 2, . . . , d}.

Let P ⊂ Rd be a finite set having atleast two points. For a point v ∈ P, let rv denotes
the distance of v to its nearest neighbor, that is

rv = min{ρ(u, v) : u ∈ P \ {v}}.

The open ball Bv := {u ∈ Rd : ρ(u, v) < rv} is known as the sphere of influence at v. The
sphere of influence graph of P, denoted by SIGd

∞(P ), is the graph with vertex set P and
edges corresponding to the pairs of intersecting spheres of influence. That is, the edge set
of SIGd

∞(P ) is
{uv : Bu ∩Bv �= ∅;u, v ∈ P}.

Throughout this paper, E(G) and V (G) will denote the vertex set and the edge set of a
graph G. Note that for G = SIGd

∞(P ) and u, v ∈ P,

uv ∈ E(G) ⇐⇒ ρ(u, v) < ru + rv.

A graph G is said to be realizable in Rd if there exists a finite set P ⊂ Rd such that G
is isomorphic to SIGd

∞(P ). Note that if G is realized in Rd, then it is realizable in Rd+e

for every e ∈ N. This can be observed by appending e zero coordinates to each point in
the vertex set. The smallest such d is called the SIG-dimension of a graph G, denoted by
SIG(G). That is,

SIG(G) = min{d : G is realizable in Rd}.
2000 Mathematics Subject Classification. 05C62, 05C75, 68R10.
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It is trivial to see that if a graph with at least two vertices is realizable in some Rd,
then it can not have isolated vertices. Also, each graph G with atleast two vertices and
no isolated vertices can be realized in Rd, for some d ∈ N. This can be seen as the rows of
the matrix 2I + A realize G, where A is the adjacency matrix for G and I is the identity
matrix, for more details see [4, Theorem 1].

Recently in [9], Taussaint has surveyed the theory and applications of sphere of influence
graphs. In [4], several open problems on SIG-dimension have been discussed, the one
regarding SIG-dimension of trees has already been solved, for details see [2]. In [5], we have
proved the SIG-dimension conjecture for graphs having a perfect matching. A few partial
results regarding the SIG-dimension for some particular graphs are proved in [1, 4].

It is easy to see that if G is path of size n, then SIG(G) = 1. Also it is known that if G
is a graph of size n with no isolated vertex, then SIG(G) ≤ n− 1, for details see [4].

In this paper, we consider the graphs which do not contain an induced subgraph iso-
morphic to K2,2. We call them K2,2-free graphs. We prove that if G is a K2,2-free graph of
order n which has no isolated vertex, then

SIG(G) ≤
⌊
3n

4

⌋
+ �log2 n�+ 1.

2 Definitions and Notations To establish our main result for K2,2-free graphs, we
will map our graph to a suitably required finite dimensional Euclidean space. But before
that, we simply categorize the vertices in terms of triplets and pairs as per the following
algorithm.

We start with a K2,2-free graph, of size n, without an isolated vertex. The fact that G
is K2,2-free will be used later in our constructions, not for the following algorithm.

Algorithm 1.Step I. Let G be a K2,2-free graph, of size n, without an isolated vertex.

Step II. Take an edge pq ∈ E(G). There are two possible cases:

Case 1. There is a vertex s ∈ V (G) such that exactly one of ps or qs is an edge. That is,

(1) either ′ps ∈ E(G) & qs /∈ E(G)′ or ′ps /∈ E(G) & qs ∈ E(G)′.

Define n(p) = n(q) = n(s) = 0. The set {p, q, s} will be called a root of G.

Case 2. There is no vertex s ∈ V (G) satisfying (1). That is, for all s ∈ V (G),

ps ∈ E(G) ⇐⇒ qs ∈ E(G).

Define n′(p) = n′(q) = 0. The set {p, q} will be called a root of G.

Step III. Let G1 = G \R, where R �= ∅ is a root of G and r ∈ R. Let

k =

{
n′(r) + 1, if |R| = 2
n(r) + 1, if |R| = 3

Case 1. E(G1) �= ∅. As above, let R1 be a root of G1.

If |R1| = 2, define n′(u) = k and if |R1| = 3, define n(u) = k, for all u ∈ R1.

Set G = G1 and repeat Step 2.

Case 2. E(G1) = ∅. For all v ∈ V (G1), define n′′(v) = k.
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Note that, the vertices v for which n′′(v) is defined, form an independent set. Therefore,
the vertices of our graph are divided into triplets, pairs and the remaining independent set.

In order to facilitate our argument, we now fix up few notations. Note that for any
v ∈ V (G), exactly one of n(v), n′(v) and n′′(v) is defined.

Notations 2. 1. For any v ∈ V (G), the index of v, denoted by m(v), is defined as
follows:

m(v) :=





n(v) if n(v) is defined
n′(v) if n′(v) is defined
n′′(v) if n′′(v) is defined.

2. Let α denotes the maximum value of m(v); v ∈ V (G).

3. If v is a vertex such that n′′(v) is defined, choose a vertex u such that uv ∈ E(G) and
call it N(v). That is, N(v) = u.

Comment: There can be more than one such vertices u, which have an edge with v.
In that case we fix up any one of these and call it N(v).

4. Let r > 0 be any real and δ := r
n+2 .

5. For 0 ≤ k ≤ α and for v ∈ V (G), let r(v) := r + δm(v).

As a common practice in most analytic proofs, the purpose of the above particular choice
of δ > 0 will be cleared later, in our proofs.

Remark 3. For any triplet {p, q, s}, r(p) = r(q) = r(s) = r+ δm(p). Similarly, it is same on
every pair and on the residual independent set.

3 Mapping the graph to a Euclidean space In this section, we map the vertices
of our given graph to a Euclidean space. This mapping will be done in a way that the
corresponding SIG becomes isomorphic to the given graph. The bijection will be proved in
the next section.

Each triplet, as per the previus section, will determine two dimensions of the Euclidean
space, while the pairs will determine a single dimension. The final independent set will be
considered in a separate manner later, while assigning new dimensions to the vertices.

Below we present the detailed algorithm to ensure the same.

Algorithm 4.Step 1. Let G be a K2,2-free graph, of size n(≥ 2), without an isolated vertex.

Step 2. Apply Algorithm 1 on G to categorize its vertices into triplets, pairs and an indepen-
dent set.

Step 3. Repeat this Step, for each k = 0, 1, . . . α. Find v ∈ V (G) with m(v) = k.

Case 1. There is a triplet {p, q, s} such that m(p) = m(q) = m(s) = k and n(p) is defined.
Without loss of generality, we assume that qs /∈ E(G). We define c1(k) and c2(k)
on vertices of G as follows. Let v ∈ V (G).

Case 1.1. If m(v) < k, then we define

c1(k)(v) := c2(k)(v) :=
3

2
r(p).
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Case 1.2. If m(v) = k, then v ∈ {p, q, s}. Define

c1(k)(v) :=





0 if v = q
r(p) if v = p
2r(p) if v = s

and c2(k)(v) :=





0 if v = s
r(p) if v = p
2r(p) if v = q.

Case 1.3. If k < m(v) < α, then we define

c1(k)(v) :=




2r(p) + r(v) if vp /∈ E(G), vq /∈ E(G) and vs /∈ E(G)
2r(p) + r(v) if vp /∈ E(G), vq /∈ E(G) and vs ∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq /∈ E(G) and vs /∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq /∈ E(G) and vs ∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G), vq ∈ E(G) and vs ∈ E(G)
r(p) + r(v)− δ if vp /∈ E(G), vq ∈ E(G) and vs /∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G), vq ∈ E(G) and vs /∈ E(G)

and

c2(k)(v) :=




2r(p) + r(v) if vp /∈ E(G), vq /∈ E(G) and vs /∈ E(G)
r(p) + r(v)− δ if vp /∈ E(G), vq /∈ E(G) and vs ∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq /∈ E(G) and vs /∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G), vq /∈ E(G) and vs ∈ E(G).
r(p) + r(v)− δ if vp ∈ E(G), vq ∈ E(G) and vs ∈ E(G)
2r(p) + r(v) if vp /∈ E(G), vq ∈ E(G) and vs /∈ E(G)
r(p) + r(v) if vp ∈ E(G), vq ∈ E(G) and vs /∈ E(G)

Note that if vp /∈ E(G), vq ∈ E(G) and vs ∈ E(G), then the induced subgraph
of G on the vertices p, q, s and v is isomorphic to K{2,2}, which is not possible.

Case 1.4. If m(v) = α, define

c1(k)(v) := c2(k)(v) :=

{
r(p) if N(v) ∈ {p, q, s}
2r(p) if N(v) /∈ {p, q, s}.

Case 2. There is a pair {p, q} such that n′(p) is defined and m(p) = m(q) = k. We define
c1(k) on vertices v ∈ V (G) as follows:

Case 2.1. If m(v) < k, define c1(k)(v) :=
3
2r(p).

Case 2.2. If m(v) = k, then v ∈ {p, q}. Define

c1(k)(v) :=

{
0 if v = p
r(p) if v = q.

Case 2.3. If k < m(v) < α, then we define

c1(k)(v) :=

{
2r(p) + r(v) if vp /∈ E(G) and vq /∈ E(G)
r(p) + r(v)− δ if vp ∈ E(G) and vq ∈ E(G).

Case 2.4. If m(v) = α, we define

c1(k)(v) :=

{
r(p) if N(v) ∈ {p, q}
2r(p) if N(v) /∈ {p, q}.

Case 3. k = α. Assume that there are exactly n0 vertices v1, . . . , vn0 such that m(v1) =
· · · = m(vn0) = α. For each l = 1, . . . , n0, we define

cvl(k)(v) :=




0 if v = vl
r(vl) if vvl ∈ E(G)
r(vl) + r(v) if vvl /∈ E(G)
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the distance of v to its nearest neighbor, that is

rv = min{ρ(u, v) : u ∈ P \ {v}}.

The open ball Bv := {u ∈ Rd : ρ(u, v) < rv} is known as the sphere of influence at v. The
sphere of influence graph of P, denoted by SIGd

∞(P ), is the graph with vertex set P and
edges corresponding to the pairs of intersecting spheres of influence. That is, the edge set
of SIGd

∞(P ) is
{uv : Bu ∩Bv �= ∅;u, v ∈ P}.

Throughout this paper, E(G) and V (G) will denote the vertex set and the edge set of a
graph G. Note that for G = SIGd

∞(P ) and u, v ∈ P,

uv ∈ E(G) ⇐⇒ ρ(u, v) < ru + rv.

A graph G is said to be realizable in Rd if there exists a finite set P ⊂ Rd such that G
is isomorphic to SIGd

∞(P ). Note that if G is realized in Rd, then it is realizable in Rd+e

for every e ∈ N. This can be observed by appending e zero coordinates to each point in
the vertex set. The smallest such d is called the SIG-dimension of a graph G, denoted by
SIG(G). That is,

SIG(G) = min{d : G is realizable in Rd}.
2000 Mathematics Subject Classification. 05C62, 05C75, 68R10.
Key words and phrases. Sphere-of-influence, SIG-dimension, Sup-norm.

Received June 26, 2016

SIG-DIMENSION OF K2,2−FREE GRAPHS

4



Step 4. Define c1′ and c2′ on vertices u ∈ V (G) as follows:
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Case 2. n′(u) is defined. Then there exists only one other vertex v such that m(v) = m(u).
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point in Rd0 , corresponding to every triplet and pair.
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(r − δ)p′k. Also let
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In the sequel, for u, v ∈ G we will use the notation |ck(u)−ck(v)|, even when ck represents
a pair of Euclidean dimensions. In that case, as an abuse of notation, it will represent the
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(2) |u[j]− v1[j]| ≤ r(u), for each j = 1, 2, . . .

We verify (2), for each co-ordinate separately. First let k = {0, 1, . . . , α}.
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Case 1.1.1. k = m(u). Then the only possibilities for c1(k) and c2(k) are

c1(k)(u) = r(u) = c2(k)(u), c1(k)(v1) ∈ {0, 2r(u)} and c2(k)(v1) ∈ {0, 2r(u)}.

Thus (2) is verified for c1(k) and c2(k), as we have

|c1(k)(u)− c1(k)(v1)| = r(u) = |c2(k)(u)− c2(k)(v1)|.

Case 1.1.2. k < m(u). Let v3 ∈ V (G) be such that m(v3) = k.

Case 1.1.2.1. n(v3) is defined. In this case, we have
’c1(k)(u) = 2r(v3) + r(u) or r(v3) + r(u) or r(v3) + r(u)− δ’
’c1(k)(v1) = 2r(v3) + r(v1) or r(v3) + r(v1) or r(v3) + r(v1)− δ’
Hence we see that

|c1(k)(u)− c1(k)(v1)| ≤ r(v3) + δ = r + δk + δ ≤ r + δm(u) = r(u).

The second inequality above holds, as we have m(u) ≥ k + 1. Similarly,
we obtain ,

|c2(k)(u)− c2(k)(v1)| ≤ r(u).

Case 1.1.2.2. n′(v3) is defined. In this case, we have
’c1(k)(u) = 2r(v3) + r(u) or r(v3) + r(u)− δ’
’c1(k)(v1) = 2r(v3) + r(v1) or r(v3) + r(v1)− δ’
Hence. as earlier, we see that

|c1(k)(u)− c1(k)(v1)| ≤ r(v3) + δ ≤ r(u).

Case 1.1.3. k > m(u). Let v3 ∈ V (G) be such that m(v3) = k.

Case 1.1.3.1. n(v3) is defined. Then
c1(k)(u) =

3
2r(v3) and c1(k)(v1) =

3
2r(v3).

Therefore |c1(k)(u)− c1(k)(v1)| = 0.
Similarly, |c2(k)(u)− c2(k)(v1)| = 0. Similarly we deal with the case when
n′(v3) is defined.

Case 1.1.3.2. n′′(v3) is defined. For each l = 1, 2, . . . , i, we have
cvl(k)(u) = r(v3) or r(v3) + r(u)
and cvl(k)(v1) = r(v3) or r(v3) + r(v1)
Therefore |cvl(k)(u)− cvl(k)(v1)| ≤ r(u).

Also note that max{|c1′(u)− c1′(v1)|, |c2′(u)− c2′(v1)|} = r(u) and
max{|pm(u)[j]− pm(v1)[j]| : j = 1, 2, . . . } = 0.

This verifies (2) and hence, in this case ru ≤ r(u).

Case 1.2. Either uv1 /∈ E(G) or uv2 /∈ E(G). Let uv1 /∈ E(G). Then we have uv2 ∈ E(G)
and v1v2 ∈ E(G). This case is similar to Case 1.1.

Case 2. n′(u) is defined. This case is analogous to Case 1.

Case 3. n′′(u) is defined. Then there is v such that N(u) = v. Therefore uv ∈ E(G). Let
k ∈ {0, 1, . . . , α}.

Case 3.1. k = m(u). For l = 1, 2, . . . , n0, cvl(k)(u) = 0 or 2r(u).

If cvl(k)(u) = 0, we have cvl(k)(v) = r(u).

If cvl(k)(u) = 2r(u), we have cvl(k)(v) = r(u) or r(u) + r(v).

In both cases, we have |cvl(k)(u)− cvl(k)(v)| ≤ r(u).

Ramanjit Kumar and Surinder Pal Singh

 

 

Abstract. This paper introduces an algorithmic approach to investigate into the
SIG-dimension of graphs, under the sup-norm. We provide an upper bound for the
SIG-dimension of graphs, without isolated vertices, which do not contain an induced
subgraph isomorphic to K2,2.

1 Introduction The sphere-of-influence graph (SIG) on a set of points, each with an
open ball centered about it of radius equal to the distance between that point and its
nearest neighbor, is defined to be the intersection graph of these balls.

The notion of the sphere of influence graphs was introduced by Toussaint to model
situations in pattern recognition and computer vision. These are used to help separate
objects or otherwise capture perceptual relevance, see [6, 7, 8].

Toussaint has used the SIGs under L2-norm to capture low-level perceptual information
in certain dot patterns. The SIGs in general metric spaces are considered in [3]. It is known
that the SIGs under the L∞-norm perform better for this purpose, see [4]. Below we provide
the construction of SIGs in this case.

Let d be a natural number and Rd denotes the d-dimensional Euclidean space. For any
z ∈ Rd, let z[j] denotes the jth component of z. The distance between any x, y ∈ Rd under
the L∞-metric, denoted by ρ(x, y), is defined as,

ρ(x, y) := max{|x[j]− y[j]| : j = 1, 2, . . . , d}.

Let P ⊂ Rd be a finite set having atleast two points. For a point v ∈ P, let rv denotes
the distance of v to its nearest neighbor, that is

rv = min{ρ(u, v) : u ∈ P \ {v}}.

The open ball Bv := {u ∈ Rd : ρ(u, v) < rv} is known as the sphere of influence at v. The
sphere of influence graph of P, denoted by SIGd

∞(P ), is the graph with vertex set P and
edges corresponding to the pairs of intersecting spheres of influence. That is, the edge set
of SIGd

∞(P ) is
{uv : Bu ∩Bv �= ∅;u, v ∈ P}.

Throughout this paper, E(G) and V (G) will denote the vertex set and the edge set of a
graph G. Note that for G = SIGd

∞(P ) and u, v ∈ P,

uv ∈ E(G) ⇐⇒ ρ(u, v) < ru + rv.

A graph G is said to be realizable in Rd if there exists a finite set P ⊂ Rd such that G
is isomorphic to SIGd

∞(P ). Note that if G is realized in Rd, then it is realizable in Rd+e

for every e ∈ N. This can be observed by appending e zero coordinates to each point in
the vertex set. The smallest such d is called the SIG-dimension of a graph G, denoted by
SIG(G). That is,

SIG(G) = min{d : G is realizable in Rd}.
2000 Mathematics Subject Classification. 05C62, 05C75, 68R10.
Key words and phrases. Sphere-of-influence, SIG-dimension, Sup-norm.

Received June 26, 2016

SIG-DIMENSION OF K2,2−FREE GRAPHS

6



Case 3.2. k < m(u). Let w ∈ V (G) be such that m(w) = k.

Case 3.2.1. n(w) is defined.

Case 3.2.1.1. m(v) = k. Then we have
c1(k)(u) = r(v) and c1(k)(v) = 0, r(v) or 2r(v). Then

|c1(k)(u)− c1(k)(v)| ≤ r(v) = r + δk < r + δm(u) = r(u).

Similarly, we have |c2(k)(u)− c2(k)(v)| < r(u).

Case 3.2.1.2. m(v) �= k. Then we have c1(k)(u) = 2r(v) and

c1(k)(v) = 2r(w) + r(v), r(w) + r(v), r(w) + r(v)− δ or 3
2r(w). Again, we

have
|c1(k)(u)− c1(k)(v)| ≤ r(v) < r(u).

Case 3.2.2. n′(w) is defined.

Case 3.2.2.1. m(v) = k. Then we have
c1(k)(u) = r(v) and c1(k)(v) = 0 or r(v). Then we see that

|c1(k)(u)− c1(k)(v)| ≤ r(v) < r(u).

Case 3.2.2.2. m(v) �= k. Then we have c1(k)(u) = 2r(v) and c1(k)(v) = 2r(w) +

r(v), r(w) + r(v)− δ or 3
2r(w). Hence

|c1(k)(u)− c1(k)(v)| ≤ r(v) < r(u).

Also, as earlier, we have

max{|c1′(u)−c1′(v)|, |c2′(u)−c2′(v)|} = r(v) < r(u) and max{|pm(u)[j]−pm(v)[j]| : j = 1, 2, . . . } = 0.

This implies that ρ(u, v) = r(u). Therefore ru ≤ r(u).

Hence the result.

Lemma 8. For all v ∈ V (G), we have rv ≥ r(v).

Proof. Let v1, v2 ∈ V (G).

Case 1. There is some k < α such that v1, v2 ∈ Sk.

Case 1.1. Either m(v1) < α or m(v2) < α. Then we have

max{|ci′(v1)− ci′(v2)| : i = 1, 2} = r(v1).

Case 1.2. m(v1) = m(v2) = α. Then v1v2 /∈ E(G) and we have

cv1(n′′(v1))(v1) = 0 and cv1(n′′(v1))(v2) = r(v1) + r(v2). Therefore

|cv1(n′′(v1))(v1)− cv1(n′′(v1))(v2)| = r(v1) + r(v2) > r(v1).

Case 2. v1 ∈ Sk1
and v2 ∈ Sk2

, where k1 �= k2. Then, by our construction

max{|pm(v1)[i]− pm(v2)[i]| : i = 1, 2, . . . }

= 2(r − δ) = 2
(
r − r

n+2

)
= 2r

(
n+1
n+2

)
= r

(
2n+2
n+2

)
≥ r

(
n+k1+2

n+2

)
= r

(
1 + k1

n+2

)
= r + k1

(
r

n+2

)
= r + k1δ

= r(v1).
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This implies ρ(v1, v2) ≥ r(v1) ⇒ rv1 ≥ r(v1), which establishes our lemma.

The following is immediate from Lemma 7 and Lemma 8.

Proposition 9. For all v ∈ V (G), we have rv = r(v).

Lemma 10. If v1, v2 ∈ V (G) are such that v1v2 /∈ E(G), then ρ(v1, v2) ≥ rv1 + rv2 .

Proof.Case 1. Either n′′(v1) or n′′(v2) or both n′′(v1) and n′′(v2) are defined. Without loss
of generality, let n′′(v1) is defined. Then cv1(n′′(v1))(v1) = 0 and cv1(n′′(v1))(v2) =
r(v1) + r(v2). Hence

ρ(v1, v2) = max{|v1[j]− v2[j]| : j = 1, 2, . . . }
≥ |cv1(n′′(v1))(v1)− cv1(n′′(v1))(v2)|
= r(v1) + r(v2) = rv1 + rv2 .

Case 2. Both n′′(v1) are n′′(v2) not defined.

Case 2.1. m(v1) = m(v2). Clearly by our construction, the case that both n′(v1) and n′(v2)
are defined fails, as in that case v1v2 ∈ E(G). Therefore both n(v1) and n(v2)
must be defined and n(v1) = n(v2). Then, we have c1(n(v1))(v1) = 0 or 2r(v1).

Also c1(n(v1))(v1) = 0 implies c1(n(v1))(v2) = 2r(v1)

and c1(n(v1))(v1) = 2r(v1) implies c1(n(v1))(v2) = 0.

Therefore, |c1(n(v1))(v1)− c1(n(v1))(v2)| = 2r(v1) = rv1 + rv2 and hence

ρ(v1, v2) = max{|v1[j]− v2[j]| : j = 1, 2, . . . }
≥ |cv1(n(v1))(v1)− cv1(n(v1))(v2)|
= r(v1) + r(v2) = rv1

+ rv2 .

Case 2.2. m(v1) �= m(v2). Let m(v1) = k1 and m(v2) = k2. Without loss of generality,
assume that k1 < k2.

Case 2.2.1. n(v1) is defined. Then c1(m(v1))(v1) = 0 or r(v1) or 2r(v1). In each of the
following arguments, we look at the possibilities from our construction.
If c1(m(v1))(v1) = 0 then

c1(m(v1))(v2) = 2r(v1) + r(v2) or r(v1) + r(v2).

If c1(m(v1))(v1) = r(v1) then

c1(m(v1))(v2) = 2r(v1) + r(v2) or r(v1) + r(v2)− δ.

Incase c1(m(v1))(v2) = r(v1) + r(v2)− δ, we have

c2(m(v1))(v2) = 2r(v1) + r(v2). Already c2(m(v1))(v1) = r(v1).

If c1(m(v1))(v1) = 2r(v1) then c2(m(v1))(v1) = 0 and

c1(m(v1))(v2) = r(v1) + r(v2), 2r(v1) + r(v2) or r(v1) + r(v2)− δ.

Therefore
c2(m(v1))(v2) = 2r(v1) + r(v2) or r(v1) + r(v2).

Hence we observe that

ρ(v1, v2) = max{|v1[j]− v2[j]| : j = 1, 2, . . . }
≥ max{|ci(m(v1))(v1)− ci(m(v1))(v2)| : i = 1, 2}
≥ r(v1) + r(v2) = rv1 + rv2 .
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Case 2.2.2. n′(v1) is defined. Then we have c1(m(v1))(v1) = 0 or r(v1) and
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≥ |c1(m(v1))(v1)− c1(m(v1))(v2)|
≥ r(v1) + r(v2) = rv1 + rv2 .

This proves our lemma.

Lemma 11. If v1, v2 ∈ V (G) are such that v1v2 ∈ E(G), then ρ(v1, v2) < rv1 + rv2 .

Proof. Pick v1, v2 ∈ V (G) with v1v2 ∈ E(G) and let k1 = m(v1) and k2 = m(v2).
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α.

Case 1.2.1. k = k1. Then c1(k)(v1) = 0 or r(v1).
If c1(k)(v1) = 0 then c1(k)(v2) = r(v1) and if c1(k)(v1) = r(v1) then c1(k)(v2) =
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Case 1.2.2. k > k1.
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Case 1.2.2.2. Otherwise, c1(k)(v1) =
3
2r(v0), with v0 ∈ V (G) is such that m(v0) = k.
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3
2r(v0) and therefore
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3
2r(v0) and c2(k)(v2) =

3
2r(v0). Therefore

|c2(k)(v1)− c2(k)(v2)| = 0.
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Also c1(k)(v2) = 2r(v3) + r(v1) or r(v3) + r(v1)− δ. Hence

|c1(k)(v1)− c1(k)(v2)| ≤ r(v3) + δ ≤ r(v1) = rv1
.
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the distance of v to its nearest neighbor, that is

rv = min{ρ(u, v) : u ∈ P \ {v}}.
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sphere of influence graph of P, denoted by SIGd
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edges corresponding to the pairs of intersecting spheres of influence. That is, the edge set
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A graph G is said to be realizable in Rd if there exists a finite set P ⊂ Rd such that G
is isomorphic to SIGd

∞(P ). Note that if G is realized in Rd, then it is realizable in Rd+e

for every e ∈ N. This can be observed by appending e zero coordinates to each point in
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SIG(G). That is,
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Case 1.2.3.2. There exists a vertex v3 ∈ V (G) such that n(v3) is defined with k =
n(v3). Then both c1(k)(v1) and c1(k)(v2) are either

2r(v3) + r(v1), r(v3) + r(v1) or r(v3) + r(v1)− δ.

Therefore, we have

|c1(k)(v1)− c1(k)(v2)| ≤ r(v3) + δ ≤ r(v1) = rv1 .

Similarly, |c2(k)(v1)− c2(k)(v2)| ≤ rv1 .

Case 1.2.4. (c1′(v1), c2′(v1)) = (0, r(v1)) or (r(v1), 0).
If (c1′(v1), c2′(v1)) = (0, r(v1)), then (c1′(v2), c2′(v2)) = (r(v1), 0).
If (c1′(v1), c2′(v1)) = (r(v1), 0), then (c1′(v2), c2′(v2)) = (0, r(v1)). Hence
max{|ci′(v1)− ci′(v2)| : i = 1, 2} = r(v1) = rv1 .

Case 1.2.5. max{|pm(v1)[i]− pm(v2)[i]| : i = 1, 2, . . . } = 0.

Therefore, if n′(v1) and n′(v2) are defined and n′(v1) = n′(v2), then

ρ(v1, v2) ≤ rv1 < rv1 + rv2 .

Case 1.3. n(v1) is defined. Then n(v2) is also defined.

Case 1.3.1. k = k1. Then c1(k)(v1) = 0, r(v1) or 2r(v1).
If c1(k)(v1) = 0 then c1(k)(v2) = r(v1).
If c1(k)(v1) = r(v1) then c1(k)(v2) = 0 or 2r(v1).
If c1(k)(v1) = 2r(v1) then c1(k)(v2) = r(v1).
Hence

|c1(k)(v1)− c1(k)(v2)| = r(v1) = rv1 .

Case 1.3.2. k > k1. This case is same as Case 1.2.2.

Case 1.3.3. k < k1. This case is same as Case 1.2.3.

Case 1.3.4. (c1′(v1), c2′(v1)) = (0, r(v1)), (r(v1), 0) or (r(v1), r(v1)).
(c1′(v2), c2′(v2)) = (0, r(v1)), (r(v1), 0) or (r(v1), r(v1)). Hence

max{|ci′(v1)− ci′(v2)| : i = 1, 2} ≤ r(v1) = rv1 .

Case 1.3.5. max{|pm(v1)[i]− pm(v2)[i]| : i = 1, 2, . . . } = 0.

Therefore, if n(v1) and n(v2) are defined such that n(v1) = n(v2) and v1v2 ∈
E(G), then we have

ρ(v1, v2) ≤ rv1 < rv1 + rv2 .

This proves the result for the case m(v1) = m(v2).

Case 2. k1 �= k2. Without loss of generality, assume that k1 < k2. Repeat the following for
k = 0 to α.

Case 2.1. k < k1.

Case 2.1.1. There exists some v3 ∈ V (G) such that n(v3) = k. Therefore

c1(k)(v1) = 2r(v3) + r(v1), r(v3) + r(v1) or r(v3) + r(v1)− δ,

c1(k)(v2) = 2r(v3) + r(v2), r(v3) + r(v2), r(v3) + r(v2)− δ, 2r(v3) or r(v3).

Hence we obtain

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Similarly, |c2(k)(v1)− c2(k)(v2)| ≤ rv1 + rv2 .
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Case 2.1.2. There exists v3 ∈ V (G) be such that n′(v3) is defined and n′(v3) = k. Then
we see that

c1(k)(v1) = 2r(v3) + r(v1) or r(v3) + r(v1)− δ.

c1(k)(v2) = 2r(v3) + r(v2), r(v3) + r(v2)− δ, 2r(v3) or r(v3).

Hence |c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.2. k = k1.

Case 2.2.1. n(v1) is defined. Then we have c1(k)(v1) = 0, r(v1) or 2r(v1).
If c1(k)(v1) = 0 then c1(k)(v2) = r(v1), 2r(v1) or r(v1) + r(v2)− δ. Hence we
have

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

If c1(k)(v1) = r(v1) then we have

c1(k)(v2) = r(v1), 2r(v1), r(v1) + r(v2) or r(v1) + r(v2)− δ.

Hence, as earlier

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

If c1(k)(v1) = 2r(v1) then

c1(k)(v2) = r(v1), 2r(v1), 2r(v1) + r(v2), r(v1) + r(v2) or r(v1) + r(v2)− δ.

Therefore |c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .
Similarly, we obtain

|c2(k)(v1)− c2(k)(v2)| < rv1 + rv2 .

Case 2.2.2. n′(v1) is defined. Then we have
c1(k)(v1) = 0 or r(v1) and c1(k)(v2) = r(v1), 2r(v1) or r(v1)+r(v2)−δ. Hence
|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.3. k1 < k < k2. Then there exists v3 ∈ V (G) such that m(v3) = k.

Case 2.3.1. n(v3) is defined. Then we have c1(k)(v1) =
3
2r(v3) and

c1(k)(v2) = r(v3), 2r(v3), 2r(v3) + r(v2), r(v3) + r(v2) or r(v3) + r(v2)− δ.

Case 2.3.2. n′(v3) is defined. Then we have c1(k)(v1) =
3
2r(v3) and

c1(k)(v2) = r(v3), 2r(v3), 2r(v3) + r(v2) or r(v3) + r(v2)− δ.
Therefore, in both of the above cases, we observe that

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.4. k = k2.

Case 2.4.1. n(v2) is defined. Then c1(k)(v1) =
3
2r(v2) and c1(k)(v2) = 0, r(v2) or 2r(v2).

Therefore, we have

|c1(k)(v1)− c1(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Similarly, we obtain

|c2(k)(v1)− c2(k)(v2)| < rv1 + rv2 .
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Case 2.4.2. n′(v2) is defined. Then c1(k)(v1) =
3
2r(v2) and c1(k)(v2) = 0 or r(v2).

Case 2.4.3. n′′(v2) is defined. Then cv2(k)(v2) = 0 and cv2(k)(v1) = r(v2).
Also, for vl �= v2 such that n′′(vl) is defined, we have cvl(k)(v2) = r(vl) +
r(v2) = 2r(v2) and cvl(k)(v1) = r(v2) or r(v1) + r(v2). Hence

|cvl(k)(v1)− cvl(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.5. k > k2. Then there exists v3 ∈ V (G) such that m(v3) = k.

Case 2.5.1. n(v3) is defined. Then c1(k)(v1) = 3
2r(v3) and c1(k)(v2) = 3

2r(v3). Hence
|c1(k)(v1)− c1(k)(v2)| = 0 < r(v1) + r(v2) = rv1 + rv2 .

Case 2.5.2. n′(v3) is defined. Then c1(k)(v1) =
3
2r(v3), c1(k)(v2) =

3
2r(v3).Hence |c1(k)(v1)−

c1(k)(v2)| = 0 < r(v1) + r(v2) = rv1 + rv2 .

Case 2.5.3. n′′(v3) is defined. Then we have cvl(k)(v1) = r(vl) or r(vl) + r(v1) and
cvl(k)(v2) = r(vl) or r(vl) + r(v2). Hence

|cvl(k)(v1)− cvl(k)(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Case 2.6. (c1′(v1), c2′(v1)) = (0, r(v1)), (r(v1), 0) or (r(v1), r(v1)).

(c1′(v2), c2′(v2)) = (0, r(v2)), (r(v2), 0), (r(v2), r(v2)) or (0, 0).

Therefore |c1′(v1)− c1′(v2)| < r(v1) + r(v2) = rv1 + rv2 .

Also |c2′(v1)− c2′(v2)| < r(v1) + r(v2) = rv1 + rv2 . Hence

max{|ci′(v1)− ci′(v2)| : i = 1, 2} < rv1 + rv2 .

Case 2.7. Let pk1′ be associated with v1 and pk2′ be associated with v2.

Then, either |pk1′ − pk1′ | = 0 or

|pk1′ − pk1′ | = 2(r − δ) < r(v1) + r(v2) = rv1 + rv2 .

This proves the result for the case m(v1) �= m(v2). Hence the result.

The previous two lemmas essentially prove the following theorem.

Theorem 12. For v1, v2 ∈ V (G), we have

v1v2 ∈ E(G) if and only if ρ(v1, v2) < rv1 + rv2 .

Therefore the SIG of our mapping of V (G) on the Euclidean space is isomorphic to G.
In other words, G is realizable in a Euclidean space, whose dimension is fixed according to
our algorithm. Next we will count the dimension of this Euclidean space.

5 The Main Result We need the following result from [1, Corollary 9].

Lemma 13. If G is a graph of order n with no isolated vertex. If G has an independent set
of size t > 1, then

SIG(G) ≤ n− 1− t+ �log2 t�.

Remark 14. In Step 3 of our construction, we attach �log2 α� co-ordinates to each vertex.
As α ≤ n/2, we attach maximum �log2�n

2 �� co-ordinates. Since

⌈
log2

⌊
n

2

⌋⌉
≤

⌈
log2

n

2

⌉
= �log2 n− log2 2� = �log2 n� − 1,

we attach maximum �log2 n� − 1 co-ordinates.
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Now we prove the main result of this paper.

Theorem 15. Let G be a K2,2-free graph with n(≥ 2) vertices. If G has no isolated vertex,
then

SIG(G) ≤
⌊
3n

4

⌋
+ �log2 n�+ 1.

Proof. Let S := {v : v ∈ V (G) and n′′(v) is defined}. Let |S| = β. Using our construction
in Section 3 along with Remark 14, we obtain

SIG(G) ≤ 2

3
(n− β) + β + (�log2 n� − 1) + 2 =

2

3
n+

1

3
β + �log2 n�+ 1.

If β = n
4 , then

SIG(G) ≤ 2n

3
+

n

12
+ �log2 n�+ 1 =

3n

4
+ �log2 n�+ 1.

If β < n
4 , then β = n

4 − k, for some k > 0 and we have

SIG(G) ≤ 2n

3
+

n

12
− k

3
+ �log2 n�+ 1 <

3n

4
+ �log2 n�+ 1.

If β > n
4 , then β = n

4 + k, for some k > 0 and then the maximum independent set
has cardinality greater than or equal to n

4 + k. Let t be the cardinality of the maximum
independent set of G. Then t ≥ n

4 + k. Also, as in Lemma 13, we have

SIG(G) ≤ n− 1− t+ �log2 t�.

Therefore,

SIG(G) ≤ 3n

4
− k − 1 + �log2 t� <

3n

4
+ �log2 n�.

Hence, we have proved that SIG(G) ≤ 3n
4 + �log2 n�+ 2. Hence

SIG(G) ≤
⌊
3n

4

⌋
+ �log2 n�+ 1.
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Abstract. This paper introduces an algorithmic approach to investigate into the
SIG-dimension of graphs, under the sup-norm. We provide an upper bound for the
SIG-dimension of graphs, without isolated vertices, which do not contain an induced
subgraph isomorphic to K2,2.

1 Introduction The sphere-of-influence graph (SIG) on a set of points, each with an
open ball centered about it of radius equal to the distance between that point and its
nearest neighbor, is defined to be the intersection graph of these balls.

The notion of the sphere of influence graphs was introduced by Toussaint to model
situations in pattern recognition and computer vision. These are used to help separate
objects or otherwise capture perceptual relevance, see [6, 7, 8].

Toussaint has used the SIGs under L2-norm to capture low-level perceptual information
in certain dot patterns. The SIGs in general metric spaces are considered in [3]. It is known
that the SIGs under the L∞-norm perform better for this purpose, see [4]. Below we provide
the construction of SIGs in this case.

Let d be a natural number and Rd denotes the d-dimensional Euclidean space. For any
z ∈ Rd, let z[j] denotes the jth component of z. The distance between any x, y ∈ Rd under
the L∞-metric, denoted by ρ(x, y), is defined as,

ρ(x, y) := max{|x[j]− y[j]| : j = 1, 2, . . . , d}.

Let P ⊂ Rd be a finite set having atleast two points. For a point v ∈ P, let rv denotes
the distance of v to its nearest neighbor, that is

rv = min{ρ(u, v) : u ∈ P \ {v}}.

The open ball Bv := {u ∈ Rd : ρ(u, v) < rv} is known as the sphere of influence at v. The
sphere of influence graph of P, denoted by SIGd

∞(P ), is the graph with vertex set P and
edges corresponding to the pairs of intersecting spheres of influence. That is, the edge set
of SIGd

∞(P ) is
{uv : Bu ∩Bv �= ∅;u, v ∈ P}.

Throughout this paper, E(G) and V (G) will denote the vertex set and the edge set of a
graph G. Note that for G = SIGd

∞(P ) and u, v ∈ P,

uv ∈ E(G) ⇐⇒ ρ(u, v) < ru + rv.

A graph G is said to be realizable in Rd if there exists a finite set P ⊂ Rd such that G
is isomorphic to SIGd

∞(P ). Note that if G is realized in Rd, then it is realizable in Rd+e

for every e ∈ N. This can be observed by appending e zero coordinates to each point in
the vertex set. The smallest such d is called the SIG-dimension of a graph G, denoted by
SIG(G). That is,

SIG(G) = min{d : G is realizable in Rd}.
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Abstract. In the present paper, we introduce and study the concept of generalized
digital lines, say (Z, κ(q, n)), where q and n are positive integers with 2 ≤ q < n and
n �≡ 0 (mod q); especially, for q = 2 and n = 3, (Z, κ(2, 3)) is identical with the digital
line (Z, κ) (=the Khalimsky line due to E.D. Khalimsky).

1 Introduction and preliminaries The Khalimsky line or so called the digital line is
the set Z of integers equipped with the topology κ having Gκ := {{2m−1, 2m, 2m+1} | m ∈
Z} as a subbase ([25]: e.g. [26], [27, p.905, p.906], [28, Definition 2, p.175], [10, Example
4.6, p.23], [8, p.50], [13, p.164], [14, p.31], [44, p.601], [43, p.46], [18, p.926], [37, Example
2.4], [19, p.1034, p.1035], [36, Section 3(I)]). In 1970, the concept of the digital line was
published by Khalimsky [25] above from Russia. In 1990, Khalimsky, Kopperman and
Meyer [26] investigated the concepts of connected ordered topological spaces, digital planes
and a proof of digital Jordan closed curve theorem using purely digital topological methods
(cf. the references of [26], [27]). The digital line is denoted by (Z, κ). Roughly speaking,
(Z, κ) has a covering Gκ by infinitely many open subsets which are three points subset
{2m − 1, 2m, 2m + 1}, where m ∈ Z, and two adjacent open sets {2m − 1, 2m, 2m + 1} and
{2m + 1, 2m + 2, 2m + 3} are connected with a singleton {2m + 1} as their intersection of
two such open subsets. For any integer m, the singleton {2m + 1} is open in (Z, κ) and
{2m} is closed in (Z, κ). From a point of view in general topology approaches, the digital
line (Z, κ) is a typical and geometrical example of a topological space which satisfies a T1/2

separation axiom. In 1970, Levine [31] published, from Italy, the concept of T1/2-spaces
by introducing the concept of generalized closed subsets [31, Definition 2.1] of a topological
space; a topological space is called T1/2 [31, Definition 5.1] if every generalized closed set is
closed. The class of T1/2-spaces is properly placed between the classes of T0- and T1-spaces
[31, Corollary 5.6]. In 1977, Dunham [11, Theorem 2.5] proved that a topological space
(X, τ) is T1/2 if and only if each singleton {x} is open or closed in (X, τ), where x ∈ X.
Therefore, we know that (Z, κ) is T1/2 (cf. [26, p.7], [10, Example 4.6]). In 1996, Dontchev
and Ganster [10] investigated the class of T3/4-spaces which is properly placed between the
classes of T1- and T1/2-spaces; and the authors proved that (Z, κ) is T3/4 [10, Example 4.6].

The purpose of the present paper is to construct generalized digital lines, say (Z, κ(q, n))
(cf. Definition 2.2 below) and investigate its fundamental properties (cf. Theorem A below
and related properties).

Throughout the present paper, (X, τ) represents a nonempty topological space on which
no separation axioms are assumed unless otherwise mentioned and P (X) denotes the power
set of X.

Theorem A Let (Z, κ(q, n)) be a generalized digital line in the sense of Definition 2.2,where
the integers q and n satisfy the following conditions: 2 ≤ q < n and n �≡ 0 (mod q), say
n ≡ r (mod q) (1 ≤ r ≤ q − 1). Then, we have the following fundamental properties.

(i) κ(q, n) �= P (Z) holds;
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2 F. Nakaoka, F.Tamari, H.Maki

(ii) (ii-1) if 2 ≤ r, then (Z, κ(q, n)) is pre-T2; (ii-2) if r = 1, then (Z, κ(q, n)) is semi-T2;
especially if q = 2, then (Z, κ(q, n)) is T3/4;

(iii) (Z, κ(q, n)) is connected.

The proof of Theorem A(i) (resp. (ii), (iii)) is shown in Section 5 (resp. Section 6,
Section 7). When q = 2 and n = 3, then we see (Z, κ(2, 3)) = (Z, κ) (cf. Remark 2.3).

In the present paper, sometimes, we use the following notation:
Notation. For integers a, b ∈ Z with a ≤ b, [a, b]Z = {x ∈ Z | a ≤ x ≤ b} (by [6], this

set is called a digital interval if a � b). For a set A, we denote by |A| the cardinality of A
(e.g. Lemma 2.8, Proof of Theorem 5.1(ii)).

2 Open sets and classifications of generalized digital lines

Definition 2.1 Let n and q be given two positive integers. Let G(q, n) := {Bk(q, n) | k ∈ Z}
be the family of subsets Bk(q, n) of Z, where k ∈ Z and Bk(q, n) := {kq+ i ∈ Z | 1 ≤ i ≤ n}.

Definition 2.2 (the generalized digital line) Suppose that the following conditions: 2 ≤ q <
n and n ≡ r (mod q) (1 ≤ r ≤ q − 1) hold for the integers q and n in Definition 2.1 above.
Then, a generalized digital line is the set of the integers, Z, equipped with the topology
κ(q, n) having G(q, n) as a subbase. It is denoted by (Z, κ(q, n)).

Remark 2.3 In Definition 2.2 above, let q = 2 and n = 3. Then, for each k ∈ Z, Bk(2, 3) =
{2(k + 1)− 1, 2(k + 1), 2(k + 1) + 1} and the space (Z, κ(2, 3)) coincides with the digital line
(Z, κ) (cf. [26], e.g. [10], Section 1 above).

We investigate the smallest open set (resp. closed set) containing a point of (Z, κ(q, n)).

Definition 2.4 For a subset A of a topological space (X, τ),
(i) Ker(A) :=

⋂{U | A ⊂ U,U ∈ τ}, (e.g. in [35, Definition 2.1], Ker(A) is denoted by
AΛ);

(ii) Cl(A) :=
⋂{F | A ⊂ F, F is closed in (X, τ)}.

Definition 2.5 Let (X, τ) be a topological space, A and B subsets of (X, τ) and x ∈ X.
(i) A is called the smallest open set containing x if x ∈ A,A ∈ τ and G = A holds for

any open set G such that x ∈ G and G ⊂ A. The uniqueness of the smallest open sets is
assured by Remark 2.6(i) below.

(ii) B is called the smallest closed set containing x, if x ∈ B,X \B ∈ τ and F = B holds
for any closed set F such that x ∈ F and F ⊂ B.

Remark 2.6 (i) If subsets A and B are the smallest open subsets containing x ∈ X, then
A = B.

(ii) For an open subset A of X and a point x ∈ A, the following properties are equivalent:
(1) A is the smallest open set containing x;
(2) for any open set U containing x,A ⊂ U holds.

Lemma 2.7 Let (X, τ) be a topological space and A ⊂ X, x ∈ X.
(i) If A is the smallest open set containing x, then Ker({x}) = A holds.
(ii) If Ker({x}) = A and A ∈ τ , then A is the smallest open set containing x.
(iii) A is the smallest closed set containing x if and only if Cl({x}) = A holds. �

Lemma 2.8 Let X be a set and G = {Vi| i ∈ A} be a collection of subsets of X. Let
(X, τ) be a topological space, where τ is the topology having G as subbase. Suppose that,
for each point w ∈ X, the collection {V | V ∈ G, w ∈ V }:=Gw is a finite subcollection of
G,i.e., |Gw| < ∞. Then, for a point x ∈ X and a subset A ⊂ X, the following properties on
Ker({x}), Cl({x}) and Cl(A) hold.
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(i) Ker({x}) =
⋂{V | V ∈ G, x ∈ V }(= ⋂{V | V ∈ Gx}) and it is the smallest open set

containing x.
(ii) Moreover, suppose that Ker({x})∩Ker({y}) = ∅ or Ker({x}) = Ker({y}) hold for

any distinct points x, y of X.
Then, Cl({x}) = Ker({x}).
(iii) Cl(A) = X \ UA, where UA = {y ∈ X | Ker({y}) ∩ A = ∅}.

Proof. (i) We claim that Ker({x}) ⊃ ⋂{V | V ∈ Gx} holds. For each open set G containing
x, we are able to set G =

⋃{Bi | i ∈ I}, where the subset Bi is a finite intersection of
some elements of G and I is an index set. For each open set G, there exists an element
i0 ∈ I such that x ∈ Bi0 and Bi0 =

⋂{Vj | Vj ∈ Gx, j ∈ J} for some finite set J ⊂ A.
Then, we have G ⊃ Bi0 ⊃ ⋂{V | V ∈ Gx} � x and so Ker({x}) ⊃ ⋂{V | V ∈ Gx}.
Conversely, the implication Ker({x}) ⊂ ⋂{V | V ∈ Gx} is easily proved. Thus we have that
Ker({x}) =

⋂{V | V ∈ Gx} holds and it is open. By Lemma 2.7 (ii), the set Ker({x}) is
the smallest open set containing x.

(ii) For a given point x ∈ X, let F := X \U , where U :=
⋃{Ker({y}) | y �∈ Ker({x})}.

Then, by the assumption in (ii), F = Ker({x}) holds. Indeed, first we show that U ⊂
X \ Ker({x}). Let z ∈ U . Then, there exists a point y ∈ X such that y �∈ Ker({x}) and
z ∈ Ker({y}). It is shown that Ker({y})∩Ker({x}) = ∅ holds; and so z �∈ Ker({x}). Thus,
we have the property that U ⊂ X \ Ker({x}). Finally, we show that U ⊃ X \ Ker({x}),
because U :=

⋃{Ker({y}) | y �∈ Ker({x})} ⊃ ⋃{{y}| y �∈ Ker({x})} = X \ Ker({x}).
Therefore, U = X \ Ker({x}) holds, i.e., F = Ker({x}) holds. Since Ker({y}) is open by
(i), F := X \U is a closed subset containing x and so Cl({x}) ⊂ F = Ker({x}). Conversely,
we claim that Ker({x}) ⊂ Cl({x}). Let y be a point such that y �∈ Cl({x}). Then, there
exists an open subset Vy containing y such that Vy ∩ {x} = ∅. Since Ker({y}) ⊂ Vy,
we have Ker({y}) ∩ {x} = ∅ and so Ker({x}) �= Ker({y}). Using assumption we have
Ker({x}) ∩ Ker({y}) = ∅ and hence y �∈ Ker({x}) for any y �∈ Cl({x}). Thus we conclude
that Cl(x) = Ker({x}) holds.

(iii) It is shown that Cl(A) ⊂ X \UA. Indeed, let a �∈ X \UA. Then, Ker({a})∩A = ∅
and so a �∈ Cl(A) (cf. (i) above). Conversely, let b �∈ Cl(A). Then, there exists an open set
V containing the point b such that V ∩ A = ∅. Thus, we have that Ker({b}) ∩ A = ∅ and
so b �∈ X \ UA. This shows that X \ UA ⊂ Cl(A) holds. �

Remark 2.9 (i) The following example shows that even if A is the smallest open set con-
taining a point x there exists a proper open subset G such that G ⊂ A. Let (Z, κ) be
the digital line, x := 0 and A =: {−1, 0, 1} be the smallest open set containing x. Then,
Ker({x}) = A; however, subsets G := {1}, G′ := {−1} are open proper subsets of A. Note
that x �∈ G and x �∈ G′.

(ii) The following example shows that the converse of Lemma 2.7 (i) is not true in general.
Let (R, τ) be the Euclidian line. A subset A := {0} is not open; Ker({0}) = {0} holds.

Lemma 2.10 Assume that 2 ≤ q < n and n = sq + r, where r, s ∈ N with 1 ≤ r ≤ q − 1.
Then, a subset {y ∈ Z | kq + 1 ≤ y ≤ (k + t)q + r} is open in (Z, κ(q, n)), where k ∈ Z and
t ∈ Z with 1 ≤ t ≤ s.

Proof. Using notation above (cf. the end of Section 1), we show that [kq +1, kq +n]Z ∩ [(k−
(s− t))q + 1, (k − (s− t))q + n]Z = [kq + 1, (k + t)q + r]Z holds, because kq − (s− t)q + 1 ≤
kq+1 ≤ (k−(s−t))q+n ≤ kq+n. Since [kq+1, kq+n] ∈ G(q, n) and [(k−(s−t))q+1, (k−
(s − t))q + n]Z ∈ G(q, n) (cf. Definition 2.1), we show that [kq + 1, (k + t)q + r]Z ∈ κ(q, n)
(cf. Defintion 2.2). �

Lemma 2.11 Suppose that 2 ≤ q < n for the integers q and n of the sets Bk(q, n) ⊂
Z(k ∈ Z) and the family G(q, n) ⊂ P (Z) in Definition 2.1. Let n = sq + r(s, r ∈ Z with
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0 ≤ r ≤ q − 1). For a point x ∈ Z and Bk′(q, n) ∈ G(q, n), where k′ ∈ Z (cf. Definition 2.1),
the following properties hold.

(i) Assume that n ≡ 0 (mod q). For a point x = kq + i, where k, i ∈ Z with 1 ≤ i ≤
q, x ∈ Bk′(q, n) if and only if k′ ∈ {y ∈ Z | k − (s − 1) ≤ y ≤ k}.

(ii) Assume that n ≡ r (mod q), where 0 < r ≤ q − 1.
(b1) For a point x = kq + i, where k, i ∈ Z with 1 ≤ i ≤ r, x ∈ Bk′(q, n) if and only if

k′ ∈ {y ∈ Z | k − s ≤ y ≤ k}.
(b2) For a point x = kq + j, where k, j ∈ Z with r + 1 ≤ j ≤ q, x ∈ Bk′(q, n) if and only

if k′ ∈ {y ∈ Z | k − s + 1 ≤ y ≤ k}.

Proof. First we recall that Bk′(q, n) = [k′q + 1, k′q + n]Z for k′ ∈ Z (cf. Definition 2.1).
(i) Suppose that x = kq + i ∈ Bk′(q, n) (1 ≤ i ≤ q) and n = sq, where s ∈ Z. Then,

k′q+1 ≤ kq+i ≤ k′q+sq and so kq−sq < kq−sq+i ≤ k′q ≤ kq+i−1 ≤ kq+q−1 < kq+q.
Thus we have k−s < k′ < k+1,i.e., k′ ∈ [k−s+1, k]Z. Conversely, if k′ ∈ [k−s+1, k]Z, then
kq−sq+ i ≤ kq−sq+q ≤ k′q ≤ kq ≤ kq+ i−1 and so kq+ i ≤ k′q+sq and k′q+1 ≤ kq+ i.
Thus, we have x = kq + i ∈ [k′q + 1, k′q + sq]Z = [k′q + 1, k′q + n]Z = Bk′(q, n).

(ii)(b1) Suppose that n = sq + r (0 < r ≤ q− 1) and x = kq + i ∈ Bk′(q, n) (1 ≤ i ≤ r).
Then, k′q + 1 ≤ kq + i ≤ k′q + sq + r and so kq − sq + i − r ≤ k′q ≤ kq + i − 1. Then,
we have kq − sq + i − (q − 1) ≤ kq − sq + i − r ≤ k′q ≤ kq + i − 1 and so kq − sq − q <
kq − sq + 1 − (q − 1) ≤ kq − sq + i − (q − 1) ≤ k′q ≤ kq + r − 1 ≤ kq + (q − 2) < kq + q.
Thus, we have k′ ∈ [k− s, k]Z. Conversely, if k′ ∈ [k− s, k]Z, then kq− sq ≤ k′q ≤ kq and so
kq−sq+ i−r ≤ k′q ≤ kq+ i−1. Thus, we show that k′q+1 ≤ kq+ i ≤ k′q+sq+r = k′q+n
and so x ∈ [k′q + 1, k′q + n]Z = Bk′(q, n).

(b2) Suppose that n = sq + r (0 < r ≤ q−1) and x = kq + j ∈ Bk′(q, n) (r +1 ≤ j ≤ q).
Then, k′q + 1 ≤ kq + j ≤ k′q + sq + r and so kq − sq + j − r ≤ k′q ≤ kq + j − 1. Thus we
have kq − sq < kq − sq + j − r ≤ k′q ≤ kq + j − 1 and so kq − sq < k′q < kq + q. Namely,
we have k′ ∈ [k − s + 1, k]Z. Conversely, if k′ ∈ [k − s + 1, k]Z, then kq − sq + q ≤ k′q ≤ kq
and so kq − sq − r + j < kq − sq + j ≤ kq − sq + q ≤ k′q < kq + j − 1. Thus, we show that
k′q+1 < kq+j < k′q+sq+r = k′q+n and so x ∈ [k′q+2, k′q+n−1]Z ⊂ [k′q+1, k′q+n]Z =
Bk′(q, n). �

Remark 2.12 For the generalized digital line (Z, κ(q, n)) (cf. Definition 2.2), its topology
κ(q, n) satisfies the assumptions in Lemma 2.8. Indeed, for each point x ∈ Z, by Lemma 2.11,
it is shown that Gx = {Bk′(q, n)| x ∈ Bk′(q, n)} is a finite subcollection of G(q, n). Namely,
{k′| x ∈ Bk′(q, n)} is a finite set for each point x ∈ Z. Thus, for each point x ∈ Z, we can
get Ker({x}) =

⋂{Bk′(q, n)| x ∈ Bk′(q, n)}. We note that Ker({x}) is the smallest open
set containng x in (Z, κ(q, n)).

We are able to determine the structure of Ker({x}) for a point x in (Z, κ(q, n)), where
q < n, using Lemma 2.8 (i) and Remark 2.12 and also Cl({x}) using Lemma 2.8 (iii), cf.
Theorem 2.13 below.

Theorem 2.13 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume
that n ≡ r (mod q), where 1 ≤ r ≤ q − 1. The following properties hold:

(b1) For a point x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, Ker({x}) = {y ∈
Z | kq + 1 ≤ y ≤ kq + r} and it is the smallest open set containing x.

(b2) For a point x = kq + j, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, Ker({x}) =
{y ∈ Z | kq + 1 ≤ y ≤ (k + 1)q + r} and it is the smallest open set containing x.

(b1)′ For a point x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, Cl({x}) = {y ∈
Z | (k − 1)q + r + 1 ≤ y ≤ kq + q} holds;

(b2)′ For a point x = kq + j, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, Cl({x}) = {y ∈
Z | kq + r + 1 ≤ y ≤ kq + q} holds.
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Proof. We recall that 2 ≤ q < n, n = sq + r (s, r ∈ Z with 1 ≤ r ≤ q − 1) and the family
G(q, n) := {Bk′(q, n)| k′ ∈ Z} generates the topology κ(q, n) on Z and Bk′(q, n) = {y ∈
Z | k′q + 1 ≤ y ≤ k′q + n} is open in (Z, κ(q, n)), where k′ ∈ Z.

(b1) Let x = kq + i ∈ Z be a point with 1 ≤ i ≤ r. We have the following property (cf.
Lemma 2.11 (ii) (b1)):
(∗2) x = kq + i ∈ [k′q + 1, k′q + sq + r]Z (1 ≤ i ≤ r) if and only if k′ ∈ [k − s, k]Z.
Using (∗2) and Lemma 2.8 (i) (cf. Remark 2.12), we show that Ker({x}) =

⋂{Bk′(n, q) | k′ ∈
[k−s, k]Z} =

⋂{[(k−a)q+1, (k−a)q+sq+r]Z | a ∈ [0, s]Z} = [kq+1, kq+r]Z and Ker({x})
is the smallest open set containing x.

(b2) Let x = kq + j ∈ Z be a point with r + 1 ≤ j ≤ q. We have the followng property
(cf. Lemma 2.11 (ii)(b2)):

(∗3) x = kq + j ∈ [k′q +1, k′q + sq + r]Z (r +1 ≤ j ≤ q) if and only if k′ ∈ [k− s+1, k]Z.
Using (∗3) and Lemma 2.8 (i) (cf. Remark 2.12), we show that Ker({x})=⋂{Bk′(q, n) |

k′ ∈ [k−s+1, k]Z} =
⋂{[(k−a)q+1, (k−a)q+sq+r]Z | a ∈ [0, s−1]Z} =[kq+1, (k+1)q+r]Z

and Ker({x}) is the smallest open set containing x.
(b1)′ We prove (b1)′ using Lemma 2.8 (iii). Let U{x} := {y ∈ Z | Ker({y}) ∩ {x} = ∅}

for given point x. For x = kq + i with 1 ≤ i ≤ r, we claim that
(∗) U{x} = [(k +1)q +1,+∞)Z ∪ (−∞, (k− 1)q + r]Z, where [d, +∞)Z = {z ∈ Z | d ≤ z}

and (−∞, e]Z = {z ∈ Z | z ≤ e} for some integers d, e ∈ Z.
First we show that
(∗)1 [(k + 1)q + 1,+∞)Z ∪ (−∞, (k − 1)q + r]Z ⊂ U{x} holds.
Let y ∈ [(k + 1)q + 1,+∞)Z ∪ (−∞, (k − 1)q + r]Z.
Case 1. y ∈ [(k + 1)q + 1,+∞)Z: if y = tq + i (1 ≤ i ≤ r and t ∈ Z with k + 1 ≤ t),

then Ker({y}) = [tq + 1, tq + r]Z; it is shown by replacing the point y for the point x in
the result of (b1) above. If y = tq + j (r + 1 ≤ j ≤ q and t ∈ Z with k + 1 ≤ t), then
Ker({y}) = [tq + 1, (t + 1)q + r]Z; it is obtained by replacing the point y for x in the result
of (b2) above. Thus, we show that x = kq + i �∈ Ker({y}) (1 ≤ i ≤ r) for this case and so
y ∈ U{x}.

Case 2. y ∈ (−∞, (k − 1)q + r]Z: if y = tq + i (1 ≤ i ≤ r and t ∈ Z with t ≤ k − 1), then
Ker({y}) = [tq + 1, tq + r]Z (cf. the result of (b1) above). If y = tq + j (r + 1 ≤ j ≤ q and
t ∈ Z with t ≤ k − 2), then Ker({y}) = [tq + 1, (t + 1)q + r]Z (cf. the result of (b2) above).
For this case, we have x = kq + i �∈ Ker({y}) (1 ≤ i ≤ r) and so y ∈ U{x}.

Finally, we show the converse implication:
(∗)2 U{x} ⊂ [(k + 1)q + 1,+∞)Z ∪ (−∞, (k − 1)q + r]Z.
Let y ∈ [(k− 1)q + r +1, (k +1)q]Z be any point. By the result of (b2) above, it is shown

that Ker({y}) = [(k − 1)q + 1, kq + r]Z if y ∈ [(k − 1)q + r + 1, kq]Z. By the result of (b1)
above, it is shown that Ker({y}) = [kq + 1, kq + r]Z if y ∈ [kq + 1, kq + r]Z. Moreover, if
y ∈ [kq + r +1, kq + q]Z, we have that Ker({y}) = [kq +1, (k +1)q + r]Z holds (cf. the result
of (b2) above). Thus, we show that, for these points y above, x = kq + i ∈ Ker({y}) and so
y �∈ U{x}, where 1 ≤ i ≤ r. This concludes that (∗)2 above holds.

Using (∗)1 and (∗)2 above, we have done the proof of the claim (∗) above. Therefore, by
Lemma 2.8 (iii) (cf. Remark 2.12), it is obtained that Cl({x}) = X \U{x} = [(k − 1)q + r +
1, (k + 1)q]Z.

(b2)′ We claim that, for a given point x = kq + j (r + 1 ≤ j ≤ q),
(∗∗) U{x} = [(k + 1)q + 1,+∞)Z ∪ (−∞, kq + r]Z holds, where U{x} is defined in the

top of the proof of (b1)′ above. The property (∗∗) is proved by argument similar to that in
the proof of (∗) in (b1)′ above. By Lemma 2.8 (iii) (cf. Remark 2.12), it is obtained that
Cl({x}) = X \ U{x} = [kq + r + 1, (k + 1)q]Z. �

In the end of the present section, the following Corollary 2.14 shows the classification
of families of topologies: • {κ(q, n)|n ∈ Z with 2 ≤ q < n and n �≡ 0 (mod q)}, for a given
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positive integer q ∈ Z with 2 ≤ q. Throughout the proof of Corollary 2.14, the kernel of a
singleton {x} in a topological space (X, τ) also denoted by τ -Ker({x}).
Corollary 2.14 Let n, n′ and q be positive integers such that 2 ≤ q < n, 2 ≤ q < n′, n �≡ 0
(mod q) and n′ �≡ 0 (mod q). Then, κ(q, n) = κ(q, n′) if and only if n ≡ n′ (mod q).

Proof. We denote shortly the kernel of a singleton {x} in (Z, κ(q, n)) (resp. (Z, κ(q, n′))) by
κ-Ker({x}) (resp. κ′-Ker({x})).

(Necessity) It follows from assumption that κ-Ker({x}) = κ′-Ker({x}) holds for each
point x ∈ Z. Let n ≡ r (mod q) and n′ ≡ r′ (mod q) for some integer r and r′ with
1 ≤ r ≤ q−1 and 1 ≤ r′ ≤ q−1. We shall show r = r′. First we suppose r ≤ r′. Take a point
x := kq+i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r; then we have κ-Ker({x}) = [kq+1, kq+r]Z
(cf. Theorem 2.13 (b1)). Since x = kq+i (1 ≤ i ≤ r′), by Theorem 2.13 (b1) for the singleton
{x} in (Z, κ(q, n′)) it is shown κ′-Ker({x}) = [kq +1, kq + r′]Z. Thus we have r = r′ for this
first case, because κ-Ker({x}) = κ′-Ker({x}). Finally, we suppose r′ ≤ r. By the similar
fashion to above first case, it is obtained that r′ = r for this case. Therefore, we show r = r′;
and so we conclude that n ≡ n′ (mod q).

(Sufficiency) In oder to prove the sufficiency, we claim the following properties (1) and
(2) of topological spaces; (2) is proved by (1).
Claim: Let (X, τ) and (X, τ ′) be two topological spaces.

(1) If U is an open set in (X, τ), then U =
⋃{τ -Ker({x})| x ∈ U} holds.

(2) If τ -Ker({x}) ∈ τ , τ ′-Ker({x}) ∈ τ ′ and τ -Ker({x}) = τ ′-Ker({x}) hold for each
point x ∈ X, then τ = τ ′ and so (X, τ) = (X, τ ′).

We prove the sufficiency of the present Corollary 2.14. Let (Z, κ(q, n)) and (Z, κ(q, n′))
be two generalized digital lines. We suppose n ≡ r (mod q) and n′ ≡ r (mod q) for an
integer r with 1 ≤ r ≤ q − 1. Let x ∈ Z and x = kq + i for some k ∈ Z and i ∈ Z with
1 ≤ i ≤ q − 1. We consider the following Case 1 and Case 2 on the point x.
Case 1. x = kq + i, where 1 ≤ i ≤ r: by Theorem 2.13 (b1) for the point x = kq + i in
(Z, κ(q, n)), it is obtained that κ-Ker({x}) = [kq + 1, kq + r]Z; and by Theorem 2.13(b1)
for the point x = kq + i in (Z, κ(q, n′)), it is obtained that κ′-Ker({x}) = [kq + 1, kq + r]Z.
Thus, for the point x = kq + i (1 ≤ i ≤ r), κ-Ker({x}) = κ′-Ker({x}) holds.
Case 2. x = kq + j, where r + 1 ≤ j ≤ r: by Theorem 2.13 (b2) for the point x = kq + j in
(Z, κ(q, n)), it is obtained that κ-Ker({x}) = [kq+1, kq+q+r]Z; and, by Theorem 2.13 (b2)
for the point x = kq+i in (Z, κ(q, n′)), it is obtained that κ′-Ker({x}) = [kq+1, kq+q+r]Z.
Thus, for the point x = kq + j (r + 1 ≤ j ≤ q), κ-Ker({x}) = κ′-Ker({x}) holds.

Therefore, for both cases above we see κ-Ker({x}) = κ′-Ker({x}) for any point x. By
using Theorem 2.13 (b1), (b2) and the claim (2) above, we have κ(q, n) = κ(q, n′). �

Remark 2.15 Kojima [29] investigated the classification of a family {τ(3,m)|m ∈ Z} of
the natural fuzzy topologies on Z.

3 Semi-open sets in generalized digital lines In the first of the present section,
we recall some notation with definitions and some properties (3.1) - (3.11) on familes of
generalized open sets of a topological space (X, τ) (i.e., semi-open sets, preopen sets, α-
open sets, β-open sets, semi-preopen sets, b-open sets):

(3.1) SO(X, τ) := {A | A is semi-open in (X, τ)} = {A|A ⊂ Cl(Int(A))} = {A | there
exists a subset U ∈ τ such that U ⊂ A ⊂ Cl(U)} [30],

(3.2) PO(X, τ) := {A | A is preopen in (X, τ)} = {A | A ⊂ Int(Cl((A))} = {A| there
exists a subset V ∈ τ such that A ⊂ V ⊂ Cl(A)} [34],

(3.3) τα := {A | A is α-open in (X, τ)} = {A | A ⊂ Int(Cl(Int(A)))} [38].
(3.4) For every topological space (X, τ), PO(X, τ)∩ SO(X, τ) = τα holds [42] and τα is

a topology on X [38] (e.g., [40]);
(3.5) βO(X, τ) := {A | A is β-open in (X, τ)} = {A | A ⊂ Cl(Int(Cl(A)))} [1],
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(3.6) SPO(X, τ) := {A | A is semi-preopen in (X, τ)} = {A | there exists a preopen set
U such that U ⊂ A ⊂ Cl(U)} [4].

(3.7) For every topological space (X, τ),SPO(X, τ) = βO(X, τ) holds [4, Theorem 2.4].
(3.8) BO(X, τ) := {A | A is b-open in (X, τ)} = {A | A ⊂ Int(Cl(A))∪Cl(Int(A))} [5].
(3.9) For every topological space (X, τ),
τ ⊂ PO(X, τ)∩SO(X, τ) ⊂ PO(X, τ)∪SO(X, τ) ⊂ BO(X, τ) ⊂ βO(X, τ) = SPO(X, τ)

hold [4, Theorem 2.2], [5, p.60] (e.g., [17, Proposition 1.1]).
(3.10) The following properties are well known and important ones:
if Vi ∈ SO(X, τ) (resp. PO(X, τ), SPO(X, τ), BO(X, τ)), i ∈ Γ, then

⋃{Vi| i ∈ Γ} ∈
SO(X, τ) (resp. PO(X, τ), SPO(X, τ), BO(X, τ)), where the index set Γ is not necessarily
finite.

(3.11) The complement of a semi-open set (resp. preopen set, α-open set, β-open set,
pre-semi-open set, b-open set) is called a semi-close set (resp. preclosed set, α-closed set,
β-closed set, pre-semi-closed set, b-closed set).

In the present section, we investigate mainly the semi-closure and the semi-kernel of a
singleton of (Z, κ(q, n)) (cf. Theorem 3.2). We note that [39, Lemma 2] if A is a nonempty
semi-open set of (X, τ), then Int(A) �= ∅.
Lemma 3.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2) and
A ∈ SO(Z, κ(n, q)) with a point x ∈ A. Assume that n ≡ r (mod q), where r ∈ Z with
1 ≤ r ≤ q − 1.

(b1) If x = kq + i ∈ A, where k ∈ Z, and i ∈ Z with 1 ≤ i ≤ r, then there exists a subset
U1(x) ∈ κ(q, n) such that x ∈ U1(x) ⊂ A and U1(x) is the smallest open set containing x,
where U1(x) := {y ∈ Z | kq + 1 ≤ y ≤ kq + r}.

(b2) If x = kq + j ∈ A, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, then there exist a
point kq + h (1 ≤ h ≤ q + r) such that kq + h ∈ Int(A) and an open set V such that V ⊂ A,
where V is defined as follows:

V := {y ∈ Z | kq+1 ≤ y ≤ kq+r} if 1 ≤ h ≤ r; V := {y ∈ Z | kq+1 ≤ y ≤ (k+1)q+r}
if r + 1 ≤ h ≤ q; V := {y ∈ Z | (k + 1)q + 1 ≤ y ≤ (k + 1)q + r} if q + 1 ≤ h ≤ q + r.

Proof. (b1) Suppose that x = kq + i (1 ≤ i ≤ r), x ∈ A and A ∈ SO(Z, κ(q, n)). Since
x ∈ Cl(Int(A)) holds, by using Theorem 2.13 (b1) for the point x, there exists the smallest
open set Ker({x}) = [kq+1, kq+r]Z containing x, say U1(x), such that U1(x)∩Int(A) �= ∅.
Take a point yx ∈ Z such that yx ∈ U1(x)∩Int(A), say yx = kq+h (1 ≤ h ≤ r). Then, using
Theorem 2.13 (b1) for the point yx = kq+h (1 ≤ h ≤ r), the set Ker({yx}) = [kq+1, kq+r]Z
is the smallest open set containing yx and so yx ∈ [kq + 1, kq + r]Z ⊂ Int(A) ⊂ A. Thus,
it is obtained that U1(x) = [kq + 1, kq + r]Z is the smallest open set containing x such that
U1(x) ⊂ A.

(b2) By using Theorem 2.13 (b2) for the point x, there exists the smallest open set
Ker({x}) = [kq + 1, (k + 1)q + r]Z containing x. Since x ∈ A and A ⊂ Cl(Int(A)) hold, we
have [kq + 1, (k + 1)q + r]Z ∩ Int(A) �= ∅ and so there exists a point kq + h ∈ Int(A) with
1 ≤ h ≤ q + r. Thus we investigate the following Case 1, Case 2 and Case 3.

Case 1. kq+h ∈ Int(A), where 1 ≤ h ≤ r; Case 2. kq+h ∈ Int(A), where r+1 ≤ h ≤ q;
Case 3. kq + h ∈ Int(A), where q + 1 ≤ h ≤ q + r.

For Case 1, by using Theorem 2.13 (b1) for the point kq + h and the definition of V , it
is shown that Ker({kq + h}) = [kq +1, kq + r]Z ⊂ Int(A) ⊂ A hold and so V ⊂ A. We note
x �∈ V for this case. For Case 2, by using Theorem 2.13 (b2) for the point kq + h and the
definition of V , it is shown that Ker({kq + h}) = [kq + 1, (k + 1)q + r]Z ⊂ Int(A) ⊂ A hold
and so V ⊂ A. We note x ∈ V for this case. For Case 3, by using Theorem 2.13 (b1) for
the point kq + h = (h + 1)q + h′, where h′ ∈ Z with 1 ≤ h′ ≤ r, and the definition of V , it is
shown that Ker({kq + h}) = [(k + 1)q + 1, (k + 1)q + r]Z ⊂ Int(A) ⊂ A hold and so V ⊂ A.
We note x �∈ V for this case. �

∗

Fumie Nakaoka, Fumikazu Tamari and Haruo Maki

Abstract. In the present paper, we introduce and study the concept of generalized
digital lines, say (Z, κ(q, n)), where q and n are positive integers with 2 ≤ q < n and
n �≡ 0 (mod q); especially, for q = 2 and n = 3, (Z, κ(2, 3)) is identical with the digital
line (Z, κ) (=the Khalimsky line due to E.D. Khalimsky).

Key words and phrases. Digital lines; Preopen sets; Semi-open sets; Lower separation axioms; Semi-T2-
spaces; Semi-kernels;Connected Spaces, Semi-connected spaces; Preconnected spaces.

Received June 21, 2014 ; revised July 17, 2016,January 16,2017,January 18,2017

ON GENERALIZED DIGITAL LINES 21



8 F. Nakaoka, F.Tamari, H.Maki

For the digital line (Z, κ), κ(2, 3) = κ, i.e., q = 2, n = 3 and so r = 1, it is known that
SO(Z, κ(2, 3)) �= κ(2, 3) and κ(2, 3) � SO(Z, κ(2, 3)). For example, a subset {q + r, q + q} =
{3, 4} is a semi-open set, where q = 2 and r = 1; it is not open in (Z, κ(2, 3)).

We recall the following definitions: for a subset B of a topological space (X, τ),
sKer(B) =

⋂{U | U ∈ SO(X, τ), B ⊂ U}; sCl(B) =
⋂{F | X \F ∈ SO(X, τ), B ⊂ F}.

It is well nown that [4, Theorem 2.1 (a)] sCl(A) = A ∪ Int(Cl(A)) holds for any subset A
of (X, τ).

Theorem 3.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2) and a point
x ∈ Z. Assume that n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q−1. The following properties
hold:
(b1) Let x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r. Then,

(b1-1) there exists a subset U1(x) ∈ SO(Z, κ(q, n)) such that x ∈ U1(x), where U1(x) :=
{y ∈ Z | kq + 1 ≤ y ≤ kq + r};

(b1-2) if there exists a semi-open set A1 containing the point x such that A1 ⊂ U1(x),
then A1 = U1(x) and x ∈ U1(x) hold, where U1(x) is defined in (b1-1) above;

(b1-3) sKer({x}) = {y ∈ Z | kq + 1 ≤ y ≤ kq + r} ∈ SO(Z, κ(q, n)) and sKer({x}) is
semi-open in (Z, κ(q, n)).
(b2) Let x = kq + j ∈ Z, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q. Then,

(b2-1) there exist two subsets Vi(x) ∈ SO(Z, κ(q, n)), i ∈ {1, 2}, such that {x} = V1(x) ∩
V2(x), where V1(x) := {x} ∪ {y ∈ Z | kq + 1 ≤ y ≤ kq + r} and V2(x) := {x} ∪ {y ∈
Z | (k + 1)q + 1 ≤ y ≤ (k + 1)q + r};

(b2-2) sKer({x}) = {x} and {x} is not semi-open in (Z, κ(q, n));
(b2-3) if there exists a semi-open set G1 (resp. a semi-open set G2) such that x ∈ G1 ⊂

V1(x) (resp. x ∈ G2 ⊂ V2(x)), then G1 = V1(x) (resp. G2 = V2(x)), where V1(x) and V2(x)
are defined in (b2-1) above.
(b1)′ For a point x = kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r,

sCl({x}) = {y ∈ Z | kq + 1 ≤ y ≤ kq + r} = sKer({x}) hold.
(b2)′ For a point x = kq + j, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q,

sCl({x}) = {x} = sKer({x}) hold.

Proof. (b1) (b1-1) Let x = kq + i (1 ≤ i ≤ r). By using Lemma 3.1 (b1) for the semi-open
set Z of (Z, κ(q, n)) and the point x ∈ Z and a fact that κ(q, n) ⊂ SO(Z, κ(q, n)), there
exists a subset U1(x) ∈ SO(Z, κ(q, n)) such that x ∈ U1(x), where U1(x) = [kq + 1, kq + r]Z.
(b1-2) Suppose that there exists a semi-open set A1 such that x ∈ A1 ⊂ U1(x). Then, by
Lemma 3.1 for A1 and x, it is shown that x ∈ U1(x) ⊂ A1 and so A1 = U1(x).
(b1-3) By (b1-2) above, it is obtained that sKer({x}) = U1(x) holds and sKer({x}) is
semi-open in (Z, κ(q, n)).

(b2) Throughout (b2) we recall that x = kq + j (r + 1 ≤ j ≤ q).
(b2-1) First we claim that V1(x) := {x} ∪ [kq + 1, kq + r]Z is a semi-open set containing x.
Put V1 := [kq+1, kq+r]Z. Using Theorem 2.13 (b1) for a point y ∈ V1, Ker({y}) = V1 is the
smallest open set containing y. It is shown that V1(x) ⊂ Cl(V1). Indeed, by Theorem 2.13
(b1)′, Cl(V1) =

⋃{Cl({kq + h}) | h ∈ [1, r]Z} = [(k − 1)q + r + 1, (k + 1)q]Z and so V1(x) ⊂
Cl(V1). Thus, there exists an open set V1 such that V1 ⊂ V1(x) ⊂ Cl(V1). Namely, V1(x) is a
semi-open set containing x. Finally, we can prove that V2(x) := {x}∪[(k+1)q+1, (k+1)q+r]Z
is a semi-open set containing x. Put V2 := [(k+1)q+1, (k+1)q+r]Z. Using Theorem 2.13 (b2)
for a point z ∈ V2, Ker({z}) = V2 is the smallest open set containing z. By Theorem 2.13
(b1)′, Cl(V2) =

⋃{Cl({(k+1)q+h}) | h ∈ [1, r]Z} = [kq+r+1, (k+1)q+q]Z and x ∈ Cl(V2).
Thus, there exists an open set V2 such that V2 ⊂ V2(x) ⊂ Cl(V2). Namely, V2(x) is a semi-
open set containing x. Obviously, we have {x} = V1(x) ∩ V2(x).
(b2-2) It follows from (b2-1) above that {x} ⊂ sKer({x}) ⊂ V1(x) ∩ V2(x) = {x} and
so sKer({x}) = {x}. By Theorem 2.13 (b2), it is obtained that Int({x}) = ∅ and so
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{x} �⊂ Cl(Int(({x})) = ∅, i.e., {x} is not semi-open in (Z, κ(q, n)).
(b2-3) Let ξ := {[kq+1, kq+r]Z, [kq+1, (k+1)q+r]Z, [(k+1)q+1, (k+1)q+r]Z} throughout
the present proof. First, we claim that V1(x) = G1. Indeed, using Lemma 3.1 (b2) for G1

and the point x, there exists an open set V such that V ⊂ G1; by Lemma 3.1 (b2), it is
shown explicitly that V ∈ ξ. Because of V ⊂ G1 ⊂ V1(x) = {kq+j}∪ [kq+1, kq+r]Z, where
r+1 ≤ j ≤ q, we have V = [kq+1, kq+r]Z. Thus, V1(x) = {x}∪V ⊂ {x}∪G1 = G1 ⊂ V1(x)
and hence V1(x) = G1. Finally, we prove that V2(x) = G2. Using Lemma 3.1 (b2) for the
semi-open set G2 and the point x, there exists an open set V such that V ⊂ G2; explicitly
that V ∈ ξ. Because of V ⊂ G2 ⊂ V2(x) = {kq + j} ∪ [(k + 1)q + 1, (k + 1)q + r]Z, where
r + 1 ≤ j ≤ q, we conclude that V = [(k + 1)q + 1, (k + 1)q + r]Z. Thus, we obtain
V2(x) = {x} ∪ V ⊂ {x} ∪ G2 = G2 ⊂ V2(x) and hence V2(x) = G2.

(b1)′ By Theorem 2.13 (b1)′, (b1) and (b2), for a point x = kq + i (1 ≤ i ≤ r), it
is shown that Int(Cl({x})) = Int([(k − 1)q + r + 1, kq + q]Z) = [kq + 1, kq + r]Z. Then,
sCl({x}) = {x} ∪ Int(Cl({x})) = [kq + 1, kq + r]Z hold. We have sCl({x}) = sKer({x})
(cf. (b1) above).

(b2)′ Let x = kq+j (r+1 ≤ j ≤ q). By Theorem 2.13 (b2′), Cl({x}) = [kq+r+1, kq+q]Z.
By Theorem 2.13 (b2), it is obtained that Int(Cl({x})) = Int([kq + r +1, kq + q]Z) = ∅ and
so sCl({x}) = {x}. It is noted that sCl({x}) = sKer({x}) (cf. (b2-2) above). �

Remark 3.3 It is shown that sKer({x}) is not necessarily semi-open (cf. Theorem 3.2
(b2-2)).

4 Preopen sets of generalized digital lines In the present section, we investigate
prekernels and preclosures of singletons in (Z, κ(q, n)). We recall the following definitions:
for a subset A of a topological space (X, τ), pKer(A) :=

⋂{U | A ⊂ U,U ∈ PO(X, τ)}
[21]; pCl(A) :=

⋂{F | A ⊂ F, X \ F ∈ PO(X, τ)} [12]. It is well known that [4, Theorem
1.5 (e)] pCl(A) = A ∪ Cl(Int(A)) holds for any subset A of (X, τ).

Lemma 4.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q − 1. Let x = kq + j ∈ Z, where k ∈ Z and j ∈ Z
with r + 1 ≤ j ≤ q. If A ∈ PO(Z, κ(q, n)) and x ∈ A, then there exist two points kq + a and
kq + q + b such that {kq + a, kq + q + b} ⊂ A for some integers a and b with 1 ≤ a ≤ r and
1 ≤ b ≤ r.

Proof. There exists a subset W ∈ κ(q, n) such that x ∈ W ⊂ Cl(A), because x ∈ A ⊂
Int(Cl(A)). Since Ker({x}) ⊂ W , by Theorem 2.13 (b2), [kq+1, kq+q+r]Z ⊂ Cl(A) holds.
Thus, we have kq + 1 ∈ Cl(A) and kq + q + r ∈ Cl(A). By using Theorem 2.13 (b1) for the
above two points, it is obtained that [kq+1, kq+r]Z∩A �= ∅ and [kq+q+1, kq+q+r]Z∩A �= ∅,
respectively. Then there exist two points kq + a ∈ A and kq + q + b ∈ A for some integers
a, b with 1 ≤ a ≤ r and 1 ≤ b ≤ r. �

Theorem 4.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q − 1.
(b1) For a point x = kq + i ∈ Z, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, the following
properties hold.

(b1-1) pKer({x}) = {x} and {x} is preopen.
(b1-1)′ If r ≥ 2, then pCl({x}) = {x}, i.e., {x} is preclosed.
If r = 1, then x = kq + 1 and pCl({x}) = {y ∈ Z | (k − 1)q + 2 ≤ y ≤ kq + q}.

(b2) For a point x = kq + j ∈ Z, where k ∈ Z and j ∈ Z with r + 1 ≤ j ≤ q, the following
properties (b2-1) - (b2-4) and (b2-3)′ hold. Let Vh,h′(x) := {kq + h, x, kq + q + h′}, where
h, h′ ∈ Z with 1 ≤ h ≤ r and 1 ≤ h′ ≤ r.

(b2-1) Vh,h′(x) ∈ PO(Z, κ(q, n)) and pKer({x}) ⊂ Vh,h′(x) for each integers h and h′

with 1 ≤ h ≤ r, 1 ≤ h′ ≤ r.
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(b2-2) Suppose that r = 1. If there exists a preopen set G containing the point x, then
x ∈ V1,1(x) ⊂ G.

(b2-3) pKer({x}) = V1,1(x) if r = 1; pKer({x}) = {x} if r ≥ 2; for the singleton
{x}, {x} �∈ PO(Z, κ(q, n)).

(b2-4) If there exists a subset G ∈ PO(Z, κ(q, n)) such that x ∈ G ⊂ Vh,h′(x), then
G = Vh,h′(x).

(b2-3)′ pCl({x}) = {x}, i.e., {x} is preclosed.

Proof. (b1) (b1-1) For the point x = kq + i (1 ≤ i ≤ r), by using Theorem 2.13 (b1)′, (b1)
and (b2), it is shown that Int(Cl({x})) = Int([(k−1)q+r+1, kq+q]Z) = [kq+1, kq+r]Z ⊃
{x} and so {x} ∈ PO(Z, κ(q, n)). This implies pKer({x}) = {x}.
(b1-1)′ By Theorem 2.13 (b1), it is shown that, for the case where r ≥ 2, Int({x}) = ∅ and
so pCl({x}) = {x}∪Cl(Int({x})) = {x}. For the case where r = 1, x = kq+1 holds. And, by
Theorem 2.13 (b1) and (b1)′, it is shown that Cl(Int({x})) = Cl({x}) = [(k−1)q+2, kq+q]Z
and so pCl({kq + 1}) = [(k − 1)q + 2, kq + q]Z.

(b2) (b2-1) Put Vh,h′(x) := {x, kq+h, kq+q+h′} for a point x = kq+j (r+1 ≤ j ≤ q)
and each integers h and h′ with 1 ≤ h ≤ r and 1 ≤ h′ ≤ r. Then, by Theorem 2.13, it is
shown that Int(Cl(Vh,h′(x)))=Int([kq + r +1, kq + q]Z ∪ [(k−1)q + r +1, kq + q]Z ∪ [kq + r +
1, (k +1)q + q]Z)=Int([(k− 1)q + r +1, (k +1)q + q]Z)=[kq +1, (k +1)q + r]Z ⊃ Vh,h′(x) and
so Vh,h′(x) ∈ PO(Z, κ(q, n)). Thus, we show that pKer({x}) ⊂ Vh,h′(x) for each integers h
and h′ with 1 ≤ h ≤ r and 1 ≤ h′ ≤ r.
(b2-2) If r = 1, then V1,1(x) = {kq +1, x, kq + q +1} ⊂ G for any preopen set G containing
x (cf. Lemma 4.1).
(b2-3) Using (b2-1) and (b2-2) above, we have that pKer({x}) = V1,1(x) if r = 1. If r ≥ 2,
then there exist two preopen sets V1,1(x) and V2,2(x) such that V1,1(x) ∩ V2,2(x) = {x}.
Thus we have that pKer({x}) = {x} if r ≥ 2. By Theorem 2.13 (b2)′ and (b2), it is shown
that {x} �⊂ Int(Cl({x})) = ∅ and so {x} �∈ PO(Z, κ(q, n)).
(b2-4) Let G ∈ PO(Z, κ(q, n)) such that G ⊂ Vh,h′(x) and x ∈ G. We claim that G =
Vh,h′(x) holds. Indeed, by Lemma 4.1, {kq +a, kq + q + b} ⊂ G ⊂ Vh,h′(x), for some a, b ∈ Z
with 1 ≤ a ≤ r and 1 ≤ b ≤ r. Thus, we have a = h, b = h′ and so G = Vh,h′(x), because
x ∈ G.
(b2-3)′ By Theorem 2.13 (b2), pCl({x}) = {x} ∪Cl(Int({x})) = {x} ∪Cl(∅) = {x}. Thus
{x} is preclosed. �

5 Proof of Theorem A(i) and related properties In the present section, the proof
of Theorem A(i) (cf. Section 1) shall be given (cf. Theorem 5.1 (i) or (ii) below); moreover
we investigate some related properties on structures of SO(Z, κ(q, n)) and PO(Z, κ(q, n))
(cf. Theorems 5.1 and 5.2 below).

For a topological space (X, τ), we recall that (X, τ) is said to be extremally disconnected
if the closure of every open set is open; by [23, Proposition 4.1], [22], it is well known that
a topological space (X, τ) is extremally disconnected if and only if SO(X, τ) ⊂ PO(X, τ)
holds. A topological space (X, τ) is said to be a PS-space [2] if PO(X, τ) ⊂ SO(X, τ)
holds. It is well known that the following properties are equivalent to each others: (X, τ)
is a PS-space; SO(X, τ) = SPO(X, τ); τα = PO(X, τ); (X, τα) is submaximal; (X, τ) is
quasi-submaximal (cf. [15, Theorem 4], [16, Proposition 8]; [2, Theorem 2.1]; [3, Theorem
3.4], e.g. [43, Theorem 3.4]).

Theorem 5.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q − 1. Then, the following properties hold.

(i) A singleton {kq + j} is not preopen in (Z, κ(q, n)), where k ∈ Z and j ∈ Z with
r + 1 ≤ j ≤ q. Namely, PO(Z, κ(q, n)) �= P (Z) holds.
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(ii) A singleton {kq + j} is not semi-open in (Z, κ(q, n)), where k ∈ Z and j ∈ Z with
r + 1 ≤ j ≤ q. Namely, SO(Z, κ(q, n)) �= P (Z) holds.

(iii) Especially, assume that 2 ≤ r. For a singleton {kq + i}, where k ∈ Z and i ∈ Z with
1 ≤ i ≤ r, we have {kq + i} ∈ PO(Z, κ(q, n)) and {kq + i} �∈ SO(Z, κ(q, n)).

(iv) There exists a subset V such that V �∈ PO(Z, κ(q, n)) and V ∈ SO(Z, κ(q, n)).
(v) (e.g., [13, Theorem 2.1 (i)(b)]) Especially, if q = 2, n = 3 and r = 1, then

PO(Z, κ(2, 3)) ⊂ SO(Z, κ(2, 3)) and κ(2, 3)α = κ(2, 3) hold.

Proof. (i) By using Theorem 4.2 (b2)(b2-3) for the point x := kq + j (r + 1 ≤ j ≤ q), it is
obtained that {kq + j} �∈ PO(Z, κ(q, n)) and so PO(Z, κ(q, n)) � P (Z).

(ii) We claim that the singleton {kq+j} is not semi-open in (Z, κ(q, n)), where k ∈ Z and
j ∈ Z with r+1 ≤ j ≤ q. Suppose that {kq+j} is semi-open in (Z, κ(q, n)). By Theorem 3.2
(b2)(b2-1), there exists a semi-open set V1(kq+j) = {kq+j}∪[kq+1, kq+r]Z. Then, by using
Theorem 3.2 (b2)(b2-3) for the point x := kq + j and the semi-open set G1 := {kq + j}, it is
shown that {kq + j} = V1(kq + j) holds. Thus, we have |{kq + j}| = 1 = |V1(kq + j)| = r +1
and so r = 0; thus this contradicts to the assumption. Thus, {kq + j} �∈ SO(Z, κ(q, n)) and
so SO(Z, κ(q, n)) � P (Z).

(iii) By using Theorem 4.2 (b1)(b1-1) for the point x := kq + i (1 ≤ i ≤ r), the singleton
{kq + i} is preopen in (Z, κ(q, n)). Since 2 ≤ r, the singleton {kq + i} is not semi-open in
(Z, κ(q, n)), because sKer({kq + i})=[kq + 1, kq + r]Z � {kq + i} and sKer({kq + i}) is the
intersection of all semi-open sets containing the point kq + i (cf. Theorem 3.2 (b1)(b1-3)).

(iv) By using Theorem 3.2 (b2)(b2-1) for the point x := kq + j (r + 1 ≤ j ≤ q), there
exists a semi-open set V1(kq + j) := {kq + j} ∪ [kq + 1, kq + r]Z. We put V := V1(kq + j)
and so V ∈ SO(Z, κ(q, n)). We claim that V �⊂ Int(Cl(V )). Indeed, by using Theorem 2.13
(b2)′ and (b1′) for the point kq + j and points kq + i (1 ≤ i ≤ r), respectively, it is
shown that Cl(V ) = Cl({kq + j}) ∪ (

⋃r
i=1 Cl({kq + i})) = [(k − 1)q + r + 1, kq + q]Z.

Using Theorem 2.13 (b1) and (b2), we have Int(Cl(V )) = [kq + 1, kq + r]Z and hence
V := V1(kq + j) = {kq + j} ∪ [kq + 1, kq + r]Z �⊂ [kq + 1, kq + r]Z = Int(Cl(V )). Therefore,
we have V �∈ PO(Z, κ(q, n)) and V ∈ SO(Z, κ(q, n)). �

Proof of Theorem A(i) The proof is shown by using Theorem 5.1 (i) or (ii) above, because
κ(q, n) ⊂ PO(Z, κ(q, n)) or κ(q, n) ⊂ SO(Z, κ(q, n)) hold in general. �

Theorem 5.1 (iii) and (v) (resp. (iv)) suggest the property of Theorem 5.2 (i) (resp. (ii))
below.

Theorem 5.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q), where r ∈ Z with 1 ≤ r ≤ q − 1.

(i) PO(Z, κ(q, n)) ⊂ SO(Z, κ(q, n)) holds if and only if n ≡ 1 (mod q).
(ii) A non-implicaton SO(Z, κ(q, n)) �⊂ PO(Z, κ(q, n)) holds.
(iii) The topology κ(q, n) is a proper subfamily of SO(Z, κ(q, n)). And, if q + r > 3 then

κ(q, n) is a proper subfamily of PO(Z, κ(q, n)).

Proof. (i) (Necessity) By Theorem 4.2 (b1)(b1-1) for a point x := kq + i (1 ≤ i ≤ r),
it is shown that {kq + i} = pKer({kq + i}) ∈ PO(Z, κ(q, n)). It follows our assumption
that {kq + i} ∈ SO(Z, κ(q, n)); by definition, sKer({kq + i}) = {kq + i} holds. Using
Theorem 3.2 (b1)(b1-3) for the point kq + i, we have sKer({kq + i}) = [kq + 1, kq + r]Z and
so |[kq + 1, kq + r]Z| = 1; therefore r = 1.

(Sufficiency) Suppose that r = 1. Let V ∈ PO(Z, κ(q, n)). The set V has a decomposi-
tion V = AV ∪BV , where AV :=

⋃{V ∩{kq+1}| k ∈ Z} and BV :=
⋃{V ∩[kq+2, kq+q]Z| k ∈

Z}.
First, we show that: (∗1) AV ∈ SO(Z, κ(q, n)). Indeed, we have that V ∩{kq+1} = {kq+

1} or ∅ and sKer({kq +1}) = [kq +1, kq + r]Z = {q +1} hold and {kq +1} ∈ SO(Z, κ(q, n))
by Theorem 3.2 (b1)(b1-3); thus AV ∈ SO(Z, κ(q, n)).
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Secondly, we show that: (∗2) for a point x ∈ BV , there exist a preopen set V1,1(x) :=
{kq+1, x, kq+q+1} such that x ∈ V1,1(x) and V1,1(x) ⊂ V . Indeed, the point x ∈ BV , there
exist integers k and j with r+1 = 2 ≤ j ≤ q such that x = kq+j. Since x ∈ [kq+2, kq+q]Z
, x ∈ V and V ∈ PO(Z, κ(q, n)), we use Theorem 4.2 (b2)(b2-1) and (b2-2) for the point
x = kq+j, the preopen set V , r = 1 and h = h′ = 1. Then, there exist a preopen set V1,1(x)
such that x ∈ V1,1(x) and V1,1(x) ⊂ V , where V1,1(x) := {kq + 1, x, kq + q + 1} ⊂ V .

Thus, by using (∗2), it is obtained that: (∗2′) BV ⊂ ⋃{V1,1(x)| x ∈ BV } ⊂ V hold.
Thirdly, we show that: (∗3) V1,1(x) ∈ SO(Z, κ(q, n)) for the point x = kq + j ∈ BV .

Indeed, using Theorem 3.2 (b2)(b2-1) for the point x = kq + j and r = 1, fortunately,
we have two semi-open sets V1(x) = {x} ∪ [kq + 1, kq + r]Z = {x, kq + 1} and V2(x) =
{x}∪ [(k+1)q+1, (k+1)q+r]Z = {x, kq+q+1}. Since V1(x)∪V2(x) = {kq+1, x, kq+q+1}
and Vi(x) ∈ SO(Z, κ(q, n)) for each i ∈ {1, 2}, we have V1(x)∪V2(x) = V1,1(x) and V1,1(x) ∈
SO(Z, κ(q, n)) for the point x = kq + j ∈ BV .

Finally, by the properties (∗1), (∗2′) and (∗3) above, it is shown that V = AV ∪ BV ⊂
AV ∪ (

⋃{V1,1(x)| x ∈ BV }) ⊂ V and so V = AV ∪ (
⋃{V1,1(x)| x ∈ BV }) and hence

V ∈ SO(Z, κ(q, n)) (cf. (3.10) in Section 3). Therefore, PO(Z, κ(q, n)) ⊂ SO(Z, κ(q, n))
holds if q < n and n ≡ 1 (mod q).

(ii) By Theorem 5.1 (iv), there exists a semi-open set, say V , such that V �∈ PO(Z, κ(q, n));
this shows SO(Z, κ(q, n)) �⊂ PO(Z, κ(q, n)).

(iii) First, let V1(x) := {x} ∪ [kq + 1, kq + r]Z be the semi-open set in Theorem 3.2 (b2)
(b2-1), where x := kq+j (r+1 ≤ j ≤ q, k ∈ Z). The semi-open set V1(x) is not open because
V1(x) � Ker({x}) and Ker({x}) is the smallest open set containing x (cf. Theorem 2.13
(b2), Ker({x}) = [kq + 1, kq + q + r]Z). Thus, we have that V1(x) ∈ SO(Z, κ(q, n)) and
V1(x) �∈ κ(q, n) (i.e., κ(q, n) is a proper subfamily of SO(Z, κ(q, n)), because κ(q, n) ⊂
SO(Z, κ(q, n)) holds in general). Finally, let Vh,h′(x) := {kq + h, x, kq + q + h′} be the
preopen set containing x in Theorem 4.2 (b2), where x := kq + j(r + 1 ≤ j ≤ q, k ∈ Z) and
h, h′ ∈ [1, r]Z (cf. (b2-1)). However, the preopen set Vh,h′(x) is not open in (Z, κ(q, n)) if
q + r > 3. Indeed, Ker({x}) = [kq + 1, (k + 1)q + r]Z is the smallest open set containing the
point x := kq+j (cf. Theorem 2.13 (b2)), |Ker({x})| = q+r and |Vh,h′(x)| = 3 hold; and so
the point x is not an interior point of Vh,h′(x). Thus, we have that Vh,h′(x) ∈ PO(Z, κ(q, n))
and if q + r > 3 then Vh,h′(x) �∈ κ(q, n) (i.e., κ(q, n) is a proper subfamily of PO(Z, κ(q, n)),
because κ(q, n) ⊂ PO(Z, κ(q, n)) holds in general). �

6 Some separation axioms of generalized digital lines and proof of Theorem
A(ii) The purpose of the present section is to investigate some separation axioms of
generalized digital lines (cf. Theorem A(ii) in Section 1; and Theorem 6.2, Tables 1 and 2
below). The proof of Theorem A(ii) shall be given by quoting some results in Theorem 6.2
below.

We first recall the following properties (6.1) - (6.6) for a topological space (X, τ).
(6.1) (X, τ) is T1/2 if and only if every singleton {x}, x ∈ X, is open or closed in (X, τ)

([11, Theorem 2.5]).
(6.2) (X, τ) is T3/4 if and only if every singleton {x} of (X, τ) is δ-open or closed (equiv-

alently, regular open or closed) in (X, τ) ([10, Theorem 4.3, Example 4.6]).
(6.3) (X, τ) is semi-pre-T1/2 if and only if every singleton {x} of (X, τ) is semi-preopen

or closed (=preopen or closed) in (X, τ) ([9, Theorem 4.1]).
(6.4) For each integer i ∈ {2, 1, 0}, the semi-Ti axiom [32] (resp. pre-Ti axiom [24], β-

Ti axiom [33]) is defined by using as ordinary Ti axiom except each open set replaced by
semi-open set (resp. preopen sets, β-open set(=semi-preopen sets)).

(6.5) (X, τ) is semi-T1 (resp. pre-T1, β-T1) if and only if every singleton {x}, x ∈ X, is
semi-closed (resp. preclosed, β-closed) in (X, τ).

(6.6) The following implications of separation axioms above are well known:
· T2 ⇒ T1 ⇒ T3/4 ⇒ T1/2 ⇒ T0,
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· T2 ⇒ semi-T2 ⇒ semi-T1 ⇒ semi-T1/2 ⇒ semi-T0,
· T2 ⇒ pre-T2 ⇒ pre-T1 ⇒ pre-T1/2 ⇒ pre-T0,
· T2 ⇒ β-T2 ⇒ β-T1 ⇒ β-T1/2 ⇒ β-T0,
· for each i ∈ {2, 1, 1/2, 0}, Ti ⇒ semi-Ti ⇒ β-Ti,
· for each i ∈ {2, 1, 1/2, 0}, Ti ⇒ pre-Ti ⇒ β-Ti.

In order to investigate some separation axioms of the generalized digital line, we need
the following theorem on topological properties of singletons {x} of (Z, κ(q, n)) (cf. Defin-
tion 2.2).

Theorem 6.1 For a generalized digital line (Z, κ(q, n)) (cf. Definition 2.2) and a point
x ∈ Z, the following properties hold. Assume that n ≡ r (mod q), where r ∈ Z with
1 ≤ r ≤ q − 1.

(b1) For a point x := kq + i, where k ∈ Z and i ∈ Z with 1 ≤ i ≤ r, {x} is semi-preopen
(=β-open). Especially, if 2 ≤ r, then {x} is semi-preclosed (=β-closed).

(b2) For a point x := kq+j, where k ∈ Z and j ∈ Z with r+1 ≤ j ≤ q, {x} is semi-closed
and so semi-preclosed (=β-closed).

Proof. (b1) By using Theorem 2.13 for the point x = kq+i (k ∈ Z, 1 ≤ i ≤ r), it is obtained
that Cl(Int(Cl({kq + i}))) = Cl(Int([(k − 1)q + r + 1, kq + q]Z)) = Cl([kq + 1, kq + r]Z) =
[(k − 1)q + r + 1, kq + q]Z ⊃ {kq + i}; so {x} is semi-preopen (cf. (3.7), (3.5) in Section 3).
We shall show that if 2 ≤ r then the singleton {kq + i} is semi-preclosed, where 1 ≤ i ≤ r.
Since Ker({kq + i}) = [kq + 1, kq + r]Z (cf. Theorem 2.13 (b1)), we have that if 2 ≤ r
then Int({kq + i}) = ∅ and so Int(Cl(Int({kq + i}))) = ∅ ⊂ {kq + i}; therefore, {x} is
semi-preclosed (cf. (3.11) in Section 3).

(b2) Using Theorem 2.13 (b2)′ for the point x = kq + j (k ∈ Z, r + 1 ≤ j ≤ q), we have
Cl({kq + j}) = [kq + r +1, kq + q]Z. Moreover, by using Theorem 2.13 (b2), it is shown that
Int([kq + r +1, kq + q]Z) = ∅ and hence Int(Cl({x})) = ∅ ⊂ {x}. Namely, the singleton {x}
is semi-closed; it is semi-peclosed (cf. (3.7), (3.5) and (3.11) in Section 3). �

Theorem 6.2 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Assume that
n ≡ r (mod q) and 1 ≤ r ≤ q − 1.
(1) (Ti-axioms, where i ∈ {2, 1, 3/4, 1/2, 0}; cf. (6.1),(6.2)).

(1-1) If 2 ≤ r ≤ q − 1, then (Z, κ(q, n)) is not a T0-space.
(1-2) If r = 1 and q = 2, then (Z, κ(q, n)) is a T3/4-space and so it is a T1/2-space; it is

not a T1-space (cf. [10, Definition 4, Example 4.6]).
(1-3) If r = 1 and 3 ≤ q, then (Z, κ(q, n)) is not a T0-space.

(2) (Semi-Ti-separation axioms, where i ∈ {2, 1, 1/2, 0}; cf. (6.4), (6.5).
(2-1) If r = 1 and 2 ≤ q, then (Z, κ(q, n)) is a semi-T2-space.
(2-2) If 2 ≤ r ≤ q − 1, then (Z, κ(q, n)) is not a semi-T0-space.

(3) (Pre-Ti-separation axioms, where i ∈ {2, 1}; cf. (6.4), (6.5)).
(3-1) If r = 1 and 2 ≤ q, then (Z, κ(q, n)) is not a pre-T1-space.
(3-2) If 2 ≤ r ≤ q − 1, then (Z, κ(q, n)) is a pre-T2-space.

(4) (β-Ti-separation axioms, where i ∈ {2, 1, 1/2}; cf. (6.4), (6.5)).
(Z, κ(q, n)) is a β-T2-space.

(5) (Semi-pre-T1/2-space; cf. (6.3))
(5-1) If 1 ≤ r ≤ q − 2, then (Z, κ(q, n)) is not semi-pre-T1/2.
(5-2) If 1 ≤ r = q − 1, then (Z, κ(q, n)) is semi-pre-T1/2.

Proof. (1) (1-1) Assume that n ≡ r (mod q), where 2 ≤ r and r ≤ q−1. Let x := kq+1 ∈ Z
and y := kq + r ∈ Z for some integer k. We have x �= y because of r �= 1. By Theorem 2.13
(b1) for the point x (resp. y), Ker({x}) (resp. Ker({y})) is the smallest open set containing
x (resp. y). And, since Ker({x}) = [kq + 1, kq + r]Z = Ker({y}) hold, y ∈ Ker({x})
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and x ∈ Ker({y}); and hence (Z, κ(q, n)) is not a T0 space, where n ≡ r (mod q) and
2 ≤ r ≤ q − 1.

(1-2) We assume that q = 2; and we claim that (Z, κ(2, n)) is a T3/4-space and it is not
T1, where q = 2 < n and n ≡ 1 (mod 2). First, by using Corollary 2.14 for q = 2, 2 < n
and n′ = 3, it is shown that κ(2, n) = κ(2, 3) holds, since n ≡ 3 (mod 2), q = 2 < 3
and q = 2 < n. Thus, (Z, κ(2, n)) is T3/4 and it is not T1, since it is well known that the
digital line (Z, κ) = (Z, κ(2, 3)) is T3/4 (cf. [10, Example 4.6]) and it is not T1. Finally,
we note that an alternative proof is given by using Theorem 2.13; we can claim that every
singleton {x} is closed or regular open (cf. (6.2) above, [10, Theorem 4.3]) and some singleton
is not closed. Indeed, by Theorem 2.13 (b2)′ for j = 2 = r + 1 and assumptions that
q = 2 = r + 1, it is shown that a singleton {k2 + 2} is closed, where k ∈ Z. For a singleton
{k2 + 1}, it is regular open, where k ∈ Z; its proof is as follows. By using Theorem 2.13
(b1) (b2) (resp. (b1)′) and assumption that q = 2 = r + 1, it is shown that Ker({k2}) =
[(k − 1)2 + 1, k2 + 1]Z,Ker({k2 + 1}) = {k2 + 1} and Ker({k2 + 2}) = [k2 + 1, k2 + 3]Z
(resp. Cl({k2 + 1}) = [k2, k2 + 2]Z) hold; and so Int([k2, k2 + 2]Z) = {k2 + 1}. Thus, we
have that Int(Cl({k2 + 1})) = {k2 + 1}; and hence the singleton {k2 + 1} is regular open.
And, the above singleton {k2 + 1} is not closed.

(1-3) We assume that 3 ≤ q and r = 1. Let x := kq + j ∈ Z, where 2 ≤ j ≤ q and y :=
kq+j′ ∈ Z, where 2 ≤ j′ ≤ q and j �= j′ for some integer k. We have x �= y, because of 3 ≤ q
and j �= j′. By Theorem 2.13 (b2) for r = 1,Ker({x}) = Ker({y}) = [kq + 1, (k + 1)q + r]Z
is the smallest open set containing x and also it is the smallest open set containing y. Thus,
(Z, κ(q, n)) is not a T0-space, where n ≡ 1 (mod q), q < n and 3 ≤ q.

(2) (2-1) We first use Theorem 3.2 (b1) and (b2) for r = 1. For each ordered pair (x, y)
of distinct points x and y, we take disjoint semi-open sets Ux and Uy containing x and y,
respectively, as follows: let k, k′, j and j′ be integers such that 2 ≤ j ≤ q and 2 ≤ j′ ≤ q.

Case 1. x = kq + 1, y = kq + j, where 2 ≤ j ≤ q : Ux := {x}, Uy := V2(y) =
{y} ∪ {(k + 1)q + 1} (cf. Theorem 3.2 (b1), (b2)(b2-1)).

Case 2. x = kq + 1, y = k′q + 1, where k �= k′ : Ux := {x}, Uy := {y} (cf. Theorem 3.2
(b1)).

Case 3. x = kq + 1, y = k′q + j, where 2 ≤ j ≤ q, k �= k′ : Ux := {x}, Uy := V1(y) =
{y} ∪ {k′q + 1} (cf. Theorem 3.2 (b1), (b2)(b2-1)).

Case 4. x = kq + j, y = kq + j′, where 2 ≤ j ≤ q, 2 ≤ j′ ≤ q and j �= j′ : Ux := V1(x) =
{x}∪ {kq + 1}, Uy := V2(y) = {y}∪ {(k + 1)q + 1} (cf. Theorem 3.2 (b2)(b2-1)). Notice: for
q = 2, x = y; Case 4 above is removed from the proof for q = 2.

Case 5. x = kq + j, y = k′q + j′, where 2 ≤ j ≤ q, 2 ≤ j′ ≤ q and k �= k′ : Ux := V1(x) =
{x} ∪ {kq + 1}, Uy := V1(y) = {y} ∪ {k′q + 1} (cf. Theorem 3.2 (b2)(b2-1)).

These properties above conclude that (Z, κ(q, n)) is a semi-T2-space, where q < n, n ≡ 1
(mod q) and q ≥ 2.

(2-2) Under assumption that 2 ≤ r ≤ q − 1, we can take two singletons {x} := {kq + 1}
and {y} := {kq + r}, where k ∈ Z, such that x, y ∈ sKer({kq + i}) = [kq + 1, kq + r]Z ∈
SO(Z, κ(q, n)), where i ∈ Z with 1 ≤ i ≤ r (cf. Theorem 3.2 (b1)). Then, for every semi-
open sets Ux and Uy containing x and y respectively, we have that x ∈ [kq + 1, kq + r]Z =
sKer({y}) ⊂ Uy and y ∈ Ux hold. Thus, (Z, κ(q, n)) is not semi-T0.

(3) (3-1) We show that (Z, κ(q, n)) is not a pre-T1-space if r = 1 and 2 ≤ q. We use
Theorem 4.2 (b1-1)′ for r = 1; pCl({kq + 1}) = [(k − 1)q + 2, kq + q]Z holds and so there
exists a point kq + 1 such that {kq + 1} is not preclosed. Namely, (Z, κ(q, n)) is not pre-T1,
where q < n and n ≡ 1 (mod q) (cf. (6.5)).

(3-2) We shall prove that (Z, κ(q, n)) is pre-T2 if 2 ≤ r ≤ q − 1. We recall that for a
point kq + j ∈ Z, Vh,h′(kq + j) := {kq + j}∪{kq +h, kq + q +h′} is a preopen set containing
the point kq + j, where k ∈ Z, r + 1 ≤ j ≤ q, 1 ≤ h ≤ r and 1 ≤ h′ ≤ r′ (cf. Theorem 4.2
(b2)(b2-1)); moreover, for a point kq + i ∈ Z, {kq + i} is a preopen set, where 1 ≤ i ≤ r
(cf. Theorem 4.2 (b1)(b1-1)). Under the assumption that 2 ≤ r ≤ q − 1, we have that
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kq + 1 �= kq + r and
(∗) V1,1(kq + j) ∩ Vr,r(k′q + j′) = ∅ for two distinct points kq + j and k′q + j′ with

r + 1 ≤ j ≤ q and r + 1 ≤ j′ ≤ q (we assume j �= j′ if k = k′).
We claim that any two distinct points, say x and y, are separated by preopen sets containing
the points respectively.

Case 1. x = kq + j and y = k′q + j′, where j, j′ ∈ [r + 1, q]Z and j �= j′ if k = k′:
for these points x and y, we put Ux := V1,1(kq + j) and Uy := Vr,r(k′q + j′). Then, by (∗)
above, it is shown that Ux ∩ Uy = ∅.

Case 2. x = kq + i and y = k′q + j′, where i ∈ [1, r]Z and j′ ∈ [r + 1, q]Z: for these
points x and y, we put Ux := {kq + i} ∈ PO(Z, κ(q, n)) (cf. Theorem 4.2 (b1)(b1-1)) and
Uy := Vr,r(k′q + j′) if i = 1 and Uy := V1,1(k′q + j′) if i �= 1. Then, it is directly shown that
kq + i �∈ Uy and so Ux ∩ Uy = ∅.

Case 3. x = kq + i and y = k′q + i′, where i, i′ ∈ [1, r]Z and i �= i′ if k = k′: for these
points x and y, we put Ux := {kq+i} ∈ PO(Z, κ(q, n)) and Uy := {k′q+i′} ∈ PO(Z, κ(q, n))
(cf. Theorem 4.2 (b1)(b1-1)). Then, it is obvious that Ux ∩ Uy = ∅.

Therefore, for each case it is shown that x ∈ Ux, y ∈ Uy, Ux ∩Uy = ∅ and Ux and Uy are
preopen in (Z, κ(q, n)) and so (Z, κ(q, n)) is pre-T2.

(4) By (2)(2-1) above, (Z, κ(q, n)) is semi-T2 if r = 1 and 2 ≤ q; and so it is β-T2 (cf.
(6.6)). By (3)(3-2) above, (Z, κ(q, n)) is pre-T2 if 2 ≤ r ≤ q − 1; and so it is β-T2 (cf. (6.6)).

(5)(5-1) Under assumption that 1 ≤ r ≤ q− 2, a singleton {kq + j} is not closed, where
r +1 ≤ j ≤ q. Indeed, Cl({kq + j}) = [kq + r +1, kq + q]Z �= {kq + j}, because r +1 < q (cf.
Theorem 2.13 (b2)′). And, the singleton {kq + j} is not preopen, where r + 1 ≤ j ≤ q (cf.
Theorem 5.1 (i)). Thus, there exists a singleton which is neither closed nor preopen and so
this generalized digital line (Z, κ(q, n)) is not semi-pre-T1/2 (cf. (6.3), i.e. [9, Theorem 4.1]).

(5-2) Let x be a point of Z. If x = kq+j, where r+1 = j = q, then Cl({kq+j}) = {kq+j}
(cf. Theorem 2.13 (b2)′); if x = kq + i, where 1 ≤ i ≤ r = q − 1, then {x} is preopen (cf.
Theorem 4.2 (b1)(b1-1)). Thus, this generalized digital line (Z, κ(q, n)) is semi-pre-T1/2 (cf.
(6.3), i.e., [9, Theorem 4.1]). �

Proof of Theorem A(ii) The result (ii-1) is obtained by Theorem 6.2 (3)(3-2) above; the
result (ii-2) is obtained by Theorem 6.2 (2)(2-1) and (1)(1-2) above. �

Let us present the tables of separation axioms of (Z, κ(q, n))(cf. Definition 2.2).

Table 1. Separation axioms of (Z, κ(q, n)) for the case

where q < n and n ≡ r (mod q) (1 ≤ r ≤ q − 1)

r, q Ti-axioms semi-Ti-axioms/pre-Ti-axioms β-Ti-axioms

r = 1, q = 2 T3/4, Non T1 semi-T2 / Non pre-T1 β-T2

r = 1, q ≥ 3 Non T0 semi-T2 / Non pre-T1 β-T2

2 ≤ r ≤ q − 1 Non T0 Non semi-T0 / pre-T2 β-T2

Table 2. Semi-pre-T1/2 separation axioms of (Z, κ(q, n))
for the case where q < n and n ≡ r (mod q) (1 ≤ r ≤ q − 1)

r, q semi-pre-T1/2-axiom

r = 1, q = 2 semi-pre-T1/2

r = 1, q ≥ 3 Non semi-pre-T1/2

2 ≤ r ≤ q − 2 Non semi-pre-T1/2

2 ≤ r = q − 1 semi-pre-T1/2

7 The connectedness of generalized digital lines and Proof of Theorem A(iii)
We recall the following: a topological space (X, τ) is said to be semi-connected ([7]) (resp.
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preconnected ([41])), if it cannot be represented as the disjoint union of two nonempty semi-
open (resp. preopen) subsets. The class of semi-connected (resp. preconnected) topological
spaces was introduced by Phullenda Das [7] (resp. Popa [41]) in 1974 (resp. 1987).

Theorem 7.1 Let (Z, κ(q, n)) be a generalized digital line (cf. Definition 2.2). Suppose that
n ≡ r (mod q), where 1 ≤ r ≤ q − 1. Then,

(i) (Z, κ(q, n)) is connected;
(ii) (Z, κ(q, n)) is not semi-connected;
(iii) if 2 ≤ r, then (Z, κ(q, n)) is not preconnected;
(iv) if r = 1, then (Z, κ(q, n)) is preconnected.

Proof. (i) Suppose that (Z, κ(q, n)) is not connected; i.e., there exists a nonempty open and
closed subset U such that U �= Z. We shall show a contradiction (cf. (∗5), (∗6) below). Since
U �= ∅, we pick a point x of Z such that
·(∗1) x ∈ U ; let x := kq + s, where k ∈ Z and s ∈ Z with 1 ≤ s ≤ q.

First, using above integer ”k” of x := kq + s (1 ≤ s ≤ q), we construct the following
sequences of points, {xa}a∈N and {x−

a }a∈N defined by:
·(∗2) xa := (k + a)q and x−

a := (k − a + 1)q for each a ∈ N. Then, it is easily shown that:
for each a ∈ N,
·(∗3) xa < xa+1, x−

a+1 < x−
a and x < xa (if a ≥ 2), x ≤ x1, x−

a < x.
Secondly, we claim that: for each a ∈ N,

·(∗4)a [x, xa]Z ⊂ U and ·(∗ ∗ 4)a [x−
a , x]Z ⊂ U .

Proof of (∗4)a. The proof is done by induction on a ∈ N. For a = 1, we show (∗4)1.
Indeed, by Theorem 2.13 (b1)′ (resp. (b2)′), it is shown that if the point x has a form
x = kq + i (1 ≤ i ≤ r) (resp. x = kq + j (r + 1 ≤ j ≤ q)) then [x, x1]Z ⊂ [(k − 1)q + r +
1, kq + q]Z = Cl({kq + i}) ⊂ U (resp. [x, x1]Z ⊂ [kq + r + 1, kq + q]Z = Cl({kq + j}) ⊂ U)
hold, because x ∈ U and U is closed.

We suppose that (∗4)t is true for an integer t ∈ N with t ≥ 2, i.e., [x, xt]Z ⊂ U ,
where xt = (k + t)q (cf. (∗2) above) and t ≥ 2. We use Theorem 2.13 (b2) for the point
xt = (k + t − 1)q + j, where j = q, and the assumption of induction, we have Ker({xt}) =
[(k + t − 1)q + 1, (k + t)q + r]Z ⊂ U because xt ∈ U and U is open; and so (k + t)q + r ∈
U . By using Theorem 2.13 (b1)′ for the above point (k + t)q + r ∈ U , it is shown that
Cl({(k + t)q + r}) = [(k + t − 1)q + r + 1, (k + t)q + q]Z ⊂ U , because U is a closed
subset such that (k + t)q + r ∈ U . Thus, we prove that (k + t + 1)q ∈ U (i.e., xt+1 ∈ U)
and [xt, xt+1]Z ⊂ [(k + t − 1)q + r + 1, (k + t + 1)q]Z = Cl({(k + t)q + r}) ⊂ U . Since
[x, xt+1]Z = [x, xt]Z ∪ [xt, xt+1]Z, we have that [x, xt+1]Z ⊂ U holds. Namely, we have the
required property (∗4)a for a = t + 1. Thus, for any integer a ∈ N, we have (∗4)a. �

Proof of (∗ ∗ 4)a. The proof is also done by induction on a ∈ N as follows. For a = 1, the
property (∗ ∗ 4)1 is true. Indeed, if x = kq + i (1 ≤ i ≤ r), then [x−

1 , x]Z ⊂ [(k − 1)q + r +
1, kq+q]Z = Cl({kq+i}) = Cl({x}) ⊂ U hold (cf. Theorem 2.13 (b1)′); and so [x−

1 , x]Z ⊂ U .
If x = kq + j (r +1 ≤ j ≤ q), then Ker({x}) = [kq +1, (k +1)q + r]Z ⊂ U (cf. Theorem 2.13
(b2)); and so kq + 1 ∈ U . By using Theorem 2.13 (b1)′ for the point kq + 1 above, it is
shown that x−

1 = kq ∈ [x−
1 , x]Z ⊂ [(k − 1)q + r + 1, kq + q]Z = Cl({kq + 1}) ⊂ U ; and so

[x−
1 , x]Z ⊂ U hold.
We suppose that (∗ ∗ 4)t is true for an integer t ∈ N with t ≥ 2, i.e., [x−

t , x]Z ⊂ U ,
where x−

t = (k − t + 1)q (cf. (∗2) above) and t ≥ 2. We see (k − t)q + 1 ∈ U . Indeed, using
Theorem 2.13(b2) for the point x−

t = (k−t)q+j′ with j′ = q and the assumption of induction,
we have (k− t)q +1 ∈ [(k− t)q +1, (k− t+1)q +r]Z = Ker({(k− t)q + q) = Ker({x−

t }) ⊂ U
and so (k − t)q + 1 ∈ U . Now, by using Theorem 2.13 (b1)′ for the above point (k − t)q + 1,
it is shown that Cl({(k − t)q + 1}) = [(k − t− 1)q + r + 1, (k − t)q + q]Z ⊂ U . Thus, for the
point x−

t+1 := (k − t)q, we prove that [x−
t+1, x

−
t ]Z ⊂ [(k − t − 1)q + r + 1, (k − t + 1)q]Z ⊂ U

hold. Since [x−
t+1, x]Z = [x−

t+1, x
−
t ]Z ∪ [x−

t , x]Z, we have that [x−
t+1, x]Z ⊂ U holds. Namely,
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we have the required property (∗ ∗ 4)a for a = t + 1. Thus, for any integer a ∈ N, we have
that (∗ ∗ 4)a is true. �

Finally, we proceed the proof as follows: take a point y ∈ Z such that
·(∗5) y �∈ U , because U �= Z; and let y = s0q + i0, where s0 ∈ Z and i0 ∈ Z with 1 ≤ io ≤ q.
Then, we consider the following two cases.

Case 1. x < y: for this case, using the sequence of points {xa}a∈N investigated by
(∗2), (∗3) and (∗4), we can pick a point xt(0) with t(0) ∈ N such that y ≤ xt(0). Indeed, we
take the integer t(0) as t(0) := s0 − k + 1 (cf. the integer k is given in (∗1) above); then
t(0) ≥ 1 and y = s0q + i0 ≤ (s0 + 1)q = (t(0) + k − 1 + 1)q = (k + t(0))q = xt(0) (cf. (∗2)
above); and so x < y < xt(0). By (∗4)a above, it is shown that y ∈ [x, xt(0)]Z ⊂ U ; and so
y ∈ U .

Case 2. y < x: for this case, using the sequence of points {x−
a }a∈N investigated by

(∗2), (∗3) and (∗4), we can pick a point x−
t(1) with t(1) ∈ N, such that x−

t(1) ≤ y. Indeed,
we take the integer t(1) as t(1) := k − s0 + 1; then t(1) ≥ 1 and y = s0q + i0 > s0q =
(k − t(1) + 1)q = x−

t(1) (cf. (∗2) above); and so x−
t(1) < y < x . By (∗ ∗ 4)a above, it is shown

that y ∈ [x−
t(1), x]Z ⊂ U ; and so y ∈ U .

By both cases above, it is obtained that:
·(∗6) y ∈ U holds for the point y �∈ U (cf. (∗5) above).
This shows a contradiction; therefore, (Z, κ(q, n)) is a connected topological space, where
n ≡ r (mod q) with 1 ≤ r ≤ q − 1.

(ii) For (Z, κ(q, n)) (cf. Definition 2.2) and a point x := kq + i, where k ∈ Z and i ∈ Z
with 1 ≤ i ≤ r, it is known that sKer({x}) = sCl({x}) = [kq+1, kq+r]Z and sKer({x}) is a
nonempty semi-open proper subset of (Z, κ(q, n)) and sCl({x}) is semi-closed in (Z, κ(q, n))
(cf. Theorem 3.2 (b1) and (b1)′). Therefore, (Z, κ(q, n)) is not semi-connected.

(iii) For (Z, κ(q, n)) (cf. Definition 2.2) and a point x := kq + i (k ∈ Z and i ∈ Z with
1 ≤ i ≤ r), pKer({x}) = {x} holds and it is preopen (cf. Theorem 4.2 (b1)(b1-1)); if 2 ≤ r,
then {x} is preclosed (cf. Theorem 4.2 (b1)(b1-1)′). Thus, the singleton {x} is a preopen
and preclosed in (Z, κ(q, n)) if 2 ≤ r; and so (Z, κ(q, n)) is not preconnected if 2 ≤ r.

(iv) We assume that n ≡ r (mod q) and r = 1. In order to prove that (Z, κ(q, n))
is preconnected, we suppose that there exists a preopen and preclosed subset V such that
V �= ∅ and V �= Z. Since V �= ∅, we pick a point x ∈ Z such that
·(∗7) x ∈ V ; let x := kq + s, where k ∈ Z and s ∈ Z with 1 ≤ s ≤ q.
Using the above integer ”k” of x := kq + s (1 ≤ s ≤ q), let {xa}a∈N and {x−

a }a∈N be the
similar sequences of points (cf. (∗2) in the proof of (i) above) defined by:
·(∗8) xa := (k + a)q and x−

a := (k − a + 1)q for each a ∈ N. And, they have the following
same properties:
·(∗9) xa < xa+1, x−

a+1 < x−
a and x < xa (if a ≥ 2), x ≤ x1, x−

a < x hold.
We first claim that: under the assumption that x := kq+s ∈ V for some s with 1 ≤ s ≤ q,

·(∗10) kq + 1 ∈ V holds; and
·(∗11) [x, x1]Z ⊂ V and [x−

1 , x]Z ⊂ V hold.
Proof of (∗10). If x = kq+s, where s = 1, then kq+1 ∈ V (cf. (∗7) above). If x = kq+s ∈

V , where 2 ≤ s ≤ q, we use Theorem 4.2 (b2)(b2-3) for the point kq + j, where j = s and
2 ≤ j ≤ q; and so we have pKer({kq+s}) = V1,1(kq+s) = {kq+1, kq+s, (k+1)q+1} ⊂ V ,
because V is preopen and x := kq + s ∈ V ; thus kq + 1 ∈ V . �

Proof of (∗11). Using Theorem 4.2 (b1)(b1-1)′ for the point kq + 1, we have [x, x1]Z ⊂
[(k − 1)q + 2, (k + 1)q]Z = pCl({kq + 1}) ⊂ V , because V is preclosed and kq + 1 ∈ V
(cf. (∗10) above). For the points x−

1 = kq and x = kq + s (1 ≤ s ≤ q), we see that
[x−

1 , x]Z ⊂ pCl({kq + 1}) ⊂ V . �

Secondly, we claim that: for each a ∈ N,
·(∗12)a [x, xa]Z ⊂ V and ·(∗ ∗ 12)a [x−

a , x]Z ⊂ V hold.
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Proof of (∗12)a. We shall use induction on a. The former part of (∗11) above shows
that the case where a = 1 is true. We suppose the statement (∗12)a for the case where
a = t > 1 is true; then [x, xt]Z ⊂ V . By Theorem 4.2 (b2)(b2-1) and (b2-3) for the point
xt = (k+ t−1)q+j ∈ V , where j = q, it is shown that pKer({xt}) = V1,1((k+ t−1)q+q) =
{(k+t−1)q+1, xt, (k+t−1)q+q+1}; and so (k+t)q+1 ∈ V holds, because pKer({xt}) ⊂ V .
For the point (k + t)q + 1 ∈ V , we use Theorem 4.2 (b1)(b1-1)′; then, we have [xt, xt+1]Z =
[(k + t)q, (k + t + 1)q]Z ⊂ [(k + t − 1)q + 2, (k + t + 1)q]Z = pCl({(k + t)q + 1}) ⊂ V ; and
so [xt, xt+1]Z ⊂ V hold. Since [x, xt+1]Z = [x, xt]Z ∪ [xt, xt+1]Z, we show that [x, xt+1]Z ⊂ V
holds. Therefore, by induction on a, the statement (∗12)a is proved. �

The property (∗∗12)a is proved by argument similar to that in the proof of (∗12)a above;
and so it is omitted. �

Finally, we shall find the following contradiction (cf. (∗14) bellow). There exists a point
y ∈ Z such that:
·(∗13) y �∈ V , because V �= Z; and let y = s0q+ i0, where s0 ∈ Z and i0 ∈ Z with 1 ≤ i0 ≤ q.
Since x �= y, we have the following two cases:

Case 1. x < y: for this case, we pick the following point xb such that xb ≥ y, where
b := s0 − k +1. Indeed, we have that b ≥ 1 and xb = (k + b)q = s0q + q ≥ y hold. By (∗12)a

for a = b, it is shown that y ∈ [x, xb]Z ⊂ V ; and so y ∈ V .
Case 2. y < x: for this case, we pick the following point x−

d such that x−
d < y, where

d := k − s0 + 1. Indeed, we have that d ≥ 1 and x−
d = (k − d + 1)q = s0q < y hold, because

1 ≤ i0 ≤ q. By (∗ ∗ 12)a for a = d, it is shown that y ∈ [x−
d , x]Z ⊂ V ; and so y ∈ V .

By the both cases above, it is obtained that:
·(∗14) y ∈ V holds for the point y �∈ V (cf. (∗13) above). This (∗14) shows a contradiction;
therefore, (Z, κ(q, n)) is preconnected, where n ≡ 1 (mod q) (i.e. r = 1). �

Proof of Theorem A(iii) The proof is shown by Theorem 7.1 (i) above. �

We present the table of connectedness of (Z, κ(q, n)) from Theorem 7.1.

Table. The connectedness of (Z, κ(q, n)) (cf. Definition 2.2)

n, q connectedness; semi-connectedness; preconnectedness

n ≡ r (mod q)(1 ≤ r ≤ q − 1) ⇒ connected; non semi-connected
n ≡ r (mod q) (2 ≤ r ≤ q − 1) ⇒ connected; non preconnected
n ≡ 1 (mod q) ⇒ preconnected
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JOINT TOPOLOGICAL DIVISORS AND NONREMOVABLE IDEALS IN A

COMMUTATIVE REAL BANACH ALGEBRA

H. S. MEHTA, R. D. MEHTA AND A. N. ROGHELIA

Abstract.

The concept of joint topological zero divisors (JTZD) in a real Banach algebra was
discussed in [4]. In this paper we study the concepts of cortex, Šilov boundary and
non-removable ideals and relating them with ideals consisting of JTZD.

1 Introduction and Preliminaries The concepts of ideals consisting of JTZD, cortex

and non removable ideals for a complex Banach algebra are studied in detail [5, 6, 7, 8].

Here we extend some of these results for a real Banach algebra. We have modified certain

concepts and used the complexification technique to prove some results which was applied

effectively in [3].

Throughout the paper, A denotes a real commutative Banach algebra with identity,

Car (A) and M (A) denote the space of all nonzero (real) homomorphisms from A to C

called the carrier space and the space of all maximal ideals of A respectively. We refer to

[5] and [3] for the basic definitions.

Definition 1.1. Let A be a real Banach algebra with identity 1 and cxA = {(a, b) : a, b ∈ A}.

Then with the following operations, cxA becomes a complex algebra with identity (1, 0).

(a, b) + (c, d) = (a + c, b + d)
(α + iβ) (a, b) = (αa − βb, αb + βa)
(a, b) (c, d) = (ac − bd, ad + bc)





for all a, b, c, d ∈ A
α, β ∈ R

It is called the complixification of A. Further, there exists a norm ‖ · ‖cxA on cxA [3],

making cxA a Banach algebra and satisfying,

(i) max (‖a‖ , ‖b‖) ≤ ‖ (a, b)‖cxA ≤ 2max (‖a‖ , ‖b‖) for all a, b ∈ A.

(ii) ‖ (a, 0)‖cxA = ‖a‖ for all a ∈ A.
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Note that a → (a, 0) embeds A into cxA isometrically. Now onwards we use ‖(a, b)‖

instead of ‖(a, b)‖cxA.

We associate Car (cxA) and M (cxA) with A. The following diagram (Figure 1) shows

their interrelations.

Figure 1:

We list the properties of the maps shown in the diagram.

(i) R : Car (cxA) → Car (A) defined as R (ψ) = ψ/A, is a one-to-one, onto, continuous and

open mapping.

(ii) cx∗ : M (cxA) → M (A) defined by cx∗ (M) = M
∩

A is a two to one, onto continuous

and open mapping. Also, cx∗ (Γ (cxA)) = Γ (A) where, Γ (A) denote the Šilov boundary of

A [3].

(iii) ker : Car (A) → M (A) defined by ψ �→ kerψ is a two to one, onto, continuous mapping

[3].

(iv) If A is a complex Banach algebra, then the map ker is a one to one mapping.

Further, we define, σ : cxA → cxA by σ (f, g) = (f,−g). Then σ is a linear map which

is also isometry.

We shall need the next proposition to prove the main result.

Proposition 1.2. If N is a closed ideal in A, then NcxA is a closed ideal in cxA where,

NcxA = {(x, y) : x, y ∈ N}. Further if N is maximal, then NcxA is contained in exactly two

maximal ideals of cxA namely kerψ and ker
(
ψ̄ ◦ σ

)
, where ψ = R−1 (φ), ψ(x) = ψ(x) and

N = kerφ.

Proof. It is easy to verify that NcxA is a closed ideal in cxA. Let N ∈ M (A). Then,

N = kerφ for some φ ∈ Car (A). Note that ker φ = ker φ̄ and if R−1 (φ) = ψ, then
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R−1
(
φ̄
)

= ψ̄ ◦ σ.

Claim 1: NcxA = kerψ
∩

ker
(
ψ̄ ◦ σ

)
.

Let (x, y) ∈ NcxA with x, y ∈ N . Then φ (x) = φ (y) = 0 = φ̄ (x) = φ̄ (y), which

implies ψ (x, y) = φ(x) + iφ(y) = 0 and
(
ψ̄ ◦ σ

)
(x, y) = φ̄(x) + iφ̄(y) = 0. Hence, (x, y)

∈ kerψ
∩

ker
(
ψ̄ ◦ σ

)
. Thus, NcxA ⊂ ker ψ

∩
ker

(
ψ̄ ◦ σ

)
.

Conversely, if (x, y) ∈ kerψ
∩

ker
(
ψ̄ ◦ σ

)
, then 0 = ψ (x, y)= φ (x) + iφ (y) and

0 =
(
ψ̄ ◦ σ

)
(x, y) = φ̄ (x) + iφ̄ (y). So, φ (x) − iφ (y)= 0. Therefore, φ (x) = 0 = φ (y).

Hence, x, y ∈ N and so, (x, y) ∈ NcxA. Therefore, kerψ
∩

ker
(
ψ̄ ◦ σ

)
⊂ NcxA. Hence,

NcxA = kerψ
∩

ker
(
ψ̄ ◦ σ

)
.

Claim 2: NcxA is contained in only two maximal ideals namely kerψ and ker
(
ψ̄ ◦ σ

)
.

Suppose NcxA ⊂ M ′, where M ′ ∈ M (cxA), then M ′ = kerψ′ for some ψ′ ∈ Car (cxA).

Let φ′ = ψ′
|A = R (ψ′). Then, we show that kerφ = kerφ′.
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2 Joint topological zero divisor In this section, we have defined joint topological zero

divisor for a real Banach algebra. Also, we have proved some results similar to that of

complex Banach algebras [6].

Definition 2.1. Let A be a real commutative Banach algebra. A subset S of A is said to

be consisting of joint topological zero divisors (JTZD) if for every finite subset {x1, ..., xn}

of S

d (x1, ..., xn) = inf

{
n∑

i=1

‖xiz‖ : z ∈ A, ‖z‖ = 1

}
= 0.

Equivalently, there exists a net (zα) in A with ‖zα‖ = 1 such that lim
α

xzα=0 for each

x ∈ S [4]. In particular, if S is an ideal, then it is called an ideal consisting of JTZD. Note

that if S = {x}, then the above definition coincides with topological zero divisor.

Theorem 2.2. If A is a real commutative Banach algebra and I ⊂ A is a nonzero ideal

consisting of JTZD, then there exists a maximal ideal N in A consisting of JTZD and

I ⊂ N .
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non-removable ideals and relating them with ideals consisting of JTZD.

1 Introduction and Preliminaries The concepts of ideals consisting of JTZD, cortex

and non removable ideals for a complex Banach algebra are studied in detail [5, 6, 7, 8].

Here we extend some of these results for a real Banach algebra. We have modified certain

concepts and used the complexification technique to prove some results which was applied

effectively in [3].

Throughout the paper, A denotes a real commutative Banach algebra with identity,

Car (A) and M (A) denote the space of all nonzero (real) homomorphisms from A to C

called the carrier space and the space of all maximal ideals of A respectively. We refer to

[5] and [3] for the basic definitions.

Definition 1.1. Let A be a real Banach algebra with identity 1 and cxA = {(a, b) : a, b ∈ A}.

Then with the following operations, cxA becomes a complex algebra with identity (1, 0).

(a, b) + (c, d) = (a + c, b + d)
(α + iβ) (a, b) = (αa − βb, αb + βa)
(a, b) (c, d) = (ac − bd, ad + bc)




for all a, b, c, d ∈ A
α, β ∈ R

It is called the complixification of A. Further, there exists a norm ‖ · ‖cxA on cxA [3],

making cxA a Banach algebra and satisfying,

(i) max (‖a‖ , ‖b‖) ≤ ‖ (a, b)‖cxA ≤ 2max (‖a‖ , ‖b‖) for all a, b ∈ A.

(ii) ‖ (a, 0)‖cxA = ‖a‖ for all a ∈ A.

2010 Mathematics Subject Classification. 46J10, 46J20 .
Key words and phrases. Joint TZD, Cortex, Non-removable ideals .

Received August 6, 2015

JOINT TOPOLOGICAL DIVISORS AND NONREMOVABLE IDEALS IN A

COMMUTATIVE REAL BANACH ALGEBRA

H. S. MEHTA, R. D. MEHTA AND A. N. ROGHELIA

Abstract.

The concept of joint topological zero divisors (JTZD) in a real Banach algebra was
discussed in [4]. In this paper we study the concepts of cortex, Šilov boundary and
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To prove the above result we need the following lemmas.

Lemma 2.3. If I is an ideal in A consisting of JTZD, then

IcxA = {(x, y) : x, y ∈ I} is an ideal in cxA consisting of JTZD.

Proof. As we have noted in Proposition 1.2, IcxA is an ideal in cxA. To show that IcxA

consists of JTZD, let (x, y) ∈ IcxA. Then x, y ∈ I. Since, I consists of JTZD, there exists a

net (xα) in A with ‖xα‖ = 1 such that ‖xxα‖ < ε
2 for α ≥ αx and ‖yxα‖ < ε

2 for α ≥ αy.

Let αε ≥ αx and αε ≥ αy. Then ‖xxα‖ < ε
2 and ‖yxα‖ < ε

2 for α ≥ αε.

Consider zα = (xα, 0). Then, (zα) is a net in cxA. Also, ‖zα‖ = ‖(xα, 0)‖ = ‖xα‖ = 1

and ‖zα (x, y)‖ = ‖(xαx, xαy)‖ ≤ 2max (‖xαx‖ , ‖xαy‖) < ε for α ≥ αε. So, lim
α

zα (x, y) = 0

for each (x, y) ∈ IcxA. Hence, IcxA consists of JTZD.

Lemma 2.4. If J is an ideal in cxA consisting of JTZD, then J
∩

A is an ideal in A

consisting of JTZD.

Proof. Clearly, I = J
∩

A is an ideal in A. Let x ∈ I. Then, (x, 0) ∈ J . Therefore, there

exists a net (zα)α∈Λ in cxA with ‖zα‖ = 1 such that ‖zα (x, 0)‖ < ε for α ≥ αε.

Let zα = (xα, yα). Then ‖(xα, yα) (x, 0)‖ < ε for α ≥ αε. Therefore, ‖(xαx, yαx)‖ < ε

for α ≥ αε. So, max (‖xαx‖ , ‖yαx‖) ≤ ‖(xαx, yαx)‖ < ε for α ≥ αε. Hence, ‖xαx‖ < ε and

‖yαx‖ < ε for α ≥ αε. So, lim
α

xαx = 0 and lim
α

yαx = 0.

Now, max (‖xα‖ , ‖yα‖) ≤ ‖zα‖ = 1 ≤ 2 max (‖xα‖ , ‖yα‖) for each α. Therefore,

1
2 ≤ max (‖xα‖ , ‖yα‖) ≤ 1 for each α ∈ Λ.

Let

zα′ =

{
xα

‖xα‖ , if ‖xα‖ ≥ 1
2

yα

‖yα‖ , if ‖xα‖ < 1
2

It is clear that {zα′} is a net of norm one and lim
α

zα′x = 0. Hence, I consists of

JTZD.

Proof. (Theorem 2.2) Let I consist of JTZD. Then by Lemma 2.3, IcxA consists of JTZD.

Hence, there exists a maximal ideal M in cxA consisting of JTZD such that IcxA ⊂ M [6].

Let N = M
∩

A. Then by Lemma 2.4, N is in A and it consists of JTZD, and I ⊂ N . This

N is the required maximal ideal.
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3 Cortex The concept of cortex for a complex Banach algebra has been studied in [5].

The cortex for a complex Banach algebra A is defined as a subset of Car(A). Here, we

define the cortex slightly in a different manner.

Definition 3.1. Let A be a real commutative Banach algebra with identity. The set

{M ∈ M (A) : M consists of JTZD} is called the cortex of A and is denoted by Cor (A).

Note that for a complex Banach algebra A, Cor (A) can also be looked upon as a subset

of Car (A) as Car (A) ∼= M (A). Here we have considered cortex of a complex Banach

algebra A as a subset of M (A). The following result for a real Banach algebra A follows

immediately from the result of §2.

Theorem 3.2. cx∗ (Cor (cxA)) = Cor (A). Consequently Cor (A) is a nonempty compact

subset of M (A).

Corollary 3.3. Γ (A) ⊂ Cor (A).

Proof. Γ (A) = cx∗ (Γ (cxA))[3]⊂ cx∗ (Cor (cxA))[5]= Cor (A).

Lemma 3.4. Let ψ ∈ Car (cxA). Then kerψ ∈ Cor (cxA) if and only if

ker
(
ψ̄ ◦ σ

)
∈ Cor (cxA).

Proof. Let (f, g) ∈ cxA. Then,(f, g) ∈ ker ψ ⇔ ψ (f, g) = 0 ⇔ ψ̄ (f, g)=0

⇔
(
ψ̄ ◦ σ

)
(f,−g) = 0 ⇔ (f,−g) ∈ ker

(
ψ̄ ◦ σ

)
.

Let kerψ ∈ Cor (cxA). To show that ker
(
ψ̄ ◦ σ

)
∈ Cor (cxA), let (fi, gi) ∈ ker

(
ψ̄ ◦ σ

)

for i = 1, ..., n. Therefore, (fi,−gi) ∈ ker ψ for i = 1, ..., n. But kerψ consists of JTZD.

Hence, for given ε > 0 there exists (x, y) ∈ cxA with ‖(x, y)‖ = 1 such that

n∑
k=1

‖(fk,−gk) (x, y)‖ < ε.

Now, ‖(fk,−gk) (x, y)‖ = ‖(fk, gk) (x,−y)‖ as σ (f, g) = (f,−g) is an isometry. So,
∑n

k=1 ‖(fk, gk) (x,−y)‖ < ε. Hence, ker
(
ψ̄ ◦ σ

)
∈ Cor (cxA).

The converse follows from the fact ψ ◦ σ ◦ σ = ψ.

Remark 3.5. If we consider F = ker−1 (Γ (A)) and K = ker−1 (Cor (A)), then it is clear

from the definition of Γ (A) that ker |F is also two to one onto Γ (A). The following result

shows that ker |K is also two to one onto Cor (A).
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Proposition 3.6. R
(
ker−1 (Cor (cxA))

)
= ker−1 (Cor (A))

Proof. Let ψ ∈ ker−1 (Cor (cxA)) . Then ker ψ ∈ Cor (cxA). Now, R (ψ) = ψ|A = φ. To

prove φ ∈ ker−1 (Cor (A)), we have to show that kerφ ∈ Cor (A). Now, kerφ = ker ψ
∩

A.

Therefore, by Lemma 2.4, kerφ consists of JTZD. Hence, φ ∈ ker−1 (Cor (A)).

Conversely, let φ ∈ ker−1 (Cor (A)). Then kerφ = N ∈ Cor (A). Then, by Lemma

2.3, NcxA consists of JTZD. Hence, there exists a maximal ideal M ∈ Cor (cxA) such that

NcxA ⊂ M . But NcxA is contained in only two maximal ideals, kerψ and ker
(
ψ̄ ◦ σ

)
.

Therefore, either kerψ or ker
(
ψ̄ ◦ σ

)
consists of JTZD. So, by Lemma 3.4 in any case,

ker ψ ∈ Cor (cxA). Therefore, R
(
ker−1 (Cor (cxA))

)
= ker−1 (Cor (A)).

4 Extension and Non-removable ideals In this section, we characterize the cortex of

a real Banach algebra. For this, we define the concepts of extensions and non-removable

ideals for a real Banach algebra. Also, we have shown that the smallest complex extension

for a real Banach algebra is its complexification.

Definition 4.1. Let A and B be Banach algebras. We say that B is an extension of A if

there exists an isometrical into isomorphism ρ : A → B. In this case, we write A ⊂ B.

Theorem 4.2. Let A be a real commutative Banach algebra.

(i) If B is a real extension of A, then cxB is an extension of cxA with an equivalent norm.

(ii) If B is a complex extension of A, then B is also an extension of cxA, i.e., cxA is the

smallest complex extension of A.

Proof. (i) Let B be a real extension of A. Then there exists a real into isometrical isomor-

phism ρ : A → B. Define ρ′ : cxA → cxB by ρ′ (a, b) = (ρ (a) , ρ (b)). Then it is easy to

check that ρ′ is an algebra homomorphism. Further,‖ρ′ (a, b)‖ = ‖(ρ (a) , ρ (b))‖

≤ 2max (‖ρ (a)‖ , ‖ρ (b)‖) = 2max (‖a‖ , ‖b‖) ≤ 2 (‖(a, b)‖) and ‖(a, b)‖ ≤ 2max (‖a‖ , ‖b‖)

= 2max (‖ρ (a)‖ , ‖ρ (b)‖)≤ 2 (‖(ρ (a) , ρ (b))‖) = 2 ‖ρ′ (a, b)‖ .

Hence, 1
2 ‖(a, b)‖ ≤ ‖ρ′ (a, b)‖ ≤ 2 (‖(a, b)‖). Therefore, there exists an algebra norm

‖| · |‖ on cxB equivalent to the above norm on cxB such that ‖|ρ′ (a, b)|‖ = ‖(a, b)‖ for

every (a, b) ∈ cxA [5]. Hence, cxB is an extension of cxA.
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(ii) Let B be a complex extension of A. Then cxB ∼= B. So, as in part (1), we get B is an

extension of cxA.

Definition 4.3. An ideal I in a commutative Banach algebra A is called non-removable, if

in every commutative Banach algebra B ⊃ A, there exists a proper ideal J of B such that

J ⊃ I.

We shall need the following lemma.

Lemma 4.4. If I is non-removable in A, then IcxA is non-removable in cxA.

Proof. Let I be a non-removable ideal in A. To show that IcxA is non-removable in cxA,

let B be an extension of cxA. Then B is also an extension of A. Therefore, there exists

a proper ideal J ⊂ B such that I ⊂ J . So, IcxA ⊂ J . Hence, IcxA is non-removable in

cxA.

Theorem 4.5. An ideal in a real commutative Banach algebra is non-removable if and only

if it consists of JTZD.

Proof. Let A be a real commutative Banach algebra and I be an ideal consisting of JTZD.

Then there exists a net (zα) in A with ‖zα‖ = 1 and lim
α

xzα = 0 for every x ∈ I.

Let B ⊃ A be a commutative extension of A and let

J = {x1b1 + ... + xnbn : x1, ..., xn ∈ I, b1, ..., bn ∈ B,n ∈ N}

be the smallest ideal in B containing I. Suppose J is not proper. Then 1 ∈ J . Therefore,

there exists x1, ..., xn ∈ I and b1, ..., bn ∈ B such that
∑n

k=1 xkbk = 1.

Then, 1 = ‖zα‖ = ‖
∑n

k=1 zαxkbk‖ ≤
∑n

k=1 ‖zαxk‖ ‖bk‖ → 0 a contradiction. Hence, J

is proper and so I is non-removable.

Conversly, let I be a non-removable ideal in A. Then IcxA is non-removable ideal in

cxA by the above Lemma. Therefore, IcxA consists of JTZD [5]. Hence, I = IcxA

∩
A also

consists of JTZD by Lemma 2.4.

The next theorem gives characterization of Cor(A).
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α, β ∈ R

It is called the complixification of A. Further, there exists a norm ‖ · ‖cxA on cxA [3],

making cxA a Banach algebra and satisfying,

(i) max (‖a‖ , ‖b‖) ≤ ‖ (a, b)‖cxA ≤ 2max (‖a‖ , ‖b‖) for all a, b ∈ A.
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Theorem 4.6. Let A be a real commutative Banach algebra and φ ∈ Car (A). Then the

following statements are equivalent:

(i) ker φ ∈ Cor (A).

(ii) For every commutative Banach algebra B ⊃ A, there exists a multiplicative linear

functional ψ ∈ Car (B) such that φ = ψ|A.

(iii) For every commutative Banach algebra B ⊃ A, there exists a multiplicative linear

functional ψ such that kerψ ∈ Cor (B) and φ = ψ|A.

Proof. First we prove (i) ⇒ (iii). Let kerφ ∈ Cor (A). Then, there exists a net (zα) in

A with ‖zα‖ = 1 and lim
α

xzα = 0 for every x ∈ ker φ. Let B be a commutative Banach

algebra with B ⊃ A and I = {y ∈ B : yzα → 0}. Then I ⊃ kerφ and I consists of JTZD

in B, so by Theorem 2.2, there exists a maximal ideal J consists of JTZD in B such that

I ⊂ J . Let J = kerψ. Then ψ|A = φ.

(iii) ⇒ (ii) is clear.

Finally, we prove (ii) ⇒ (i) If B ⊃ A and ψ ∈ Car (B) extends φ, then kerφ ⊂ kerψ.

Hence, kerφ is a non-removable ideal in A. Hence, by Theorem 4.5, ker φ consists of JTZD.

Therefore, kerφ ∈ Cor (A).
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Abstract. The C-integral was introduced by B. Bongiorno as a minimal constructive
integration process of Riemann type which contains the Lebesgue integral and the
Newton integral. B. Bongiorno, Di Piazza and Preiss gave some criteria for the C-
integrability. The C̃-integral was introduced by D. Bongiorno as a minimal constructive
integration process of Riemann type which contains the Lebesgue integral and the
improper Newton integral. She gave some criteria for the C̃-integrability. On the other
hand, Nakanishi gave some criteria for the restricted Denjoy integrability. Kawasaki
and Suzuki gave new criteria for the C-integrability in the style of Nakanishi. In this
paper we will give new criteria for the C̃-integrability in the style of Nakanishi.

1 Introduction Throughout this paper we denote by (L)(S) and (D∗)(S) the class of
all Lebesgue integrable functions and the class of all restricted Denjoy integrable functions
from a measurable set S ⊂ R into R, respectively, and we denote by |A| the measure of a
measurable set A. We recall that a gauge δ is a function from an interval [a, b] into (0,∞)
and a δ-fine McShane partition is a collection {(Ik, xk) | k = 1, . . . , k0} of non-overlapping
intervals Ik ⊂ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk)) and

∑k0
k=1 |Ik| = b − a. If∑k0

k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine partial McShane partition.
We say that a function f from an interval [a, b] into R is Newton integrable if there exists
a differentiable function F from [a, b] into R such that F ′ = f on [a, b]. We denote by
(N)([a, b]) the class of all Newton integrable functions from [a, b] into R. In [3] B. Bongiorno,
Di Piazza and Preiss gave a minimal constructive integration process of Riemann type which
contains the Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno
et al. gave some criteria for the C-integrability. We say that a function f from an interval
[a, b] into R is improper Newton integrable if there exist a countable subset N ⊂ [a, b] and
a function F from [a, b] into R such that F ′ = f on [a, b]\N . We denote by (N∗)([a, b]) the
class of all improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave
a minimal constructive integration process of Riemann type which contains the Lebesgue
integral and the improper Newton integral. It is given as follows:

Definition 1.1. A function f from an inteval [a, b] into R is said to be C̃-integrable if there
exist a countable subset N ⊂ [a, b] and a number A such that for any positive number ε
there exists a gauge δ such that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

k0∑
k=1

d(Ik, xk) <
1
ε
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and xk ∈ N implies xk ∈ Ik. The constant A is denoted by

A = (C̃)
∫

[a,b]

f(x)dx.

We denote by (C̃)([a, b]) the class of all C̃-integrable functions from [a, b] into R.

Furthermore in [4] D. Bongiorno gave some criteria for the C̃-integrability. On the other
hand, in [9,12] Nakanishi gave criteria for the restricted Denjoy integrability. Motivated by
the results of Nakanishi, new criteria were considered in [8] for the pair of a function f from
[a, b] into R and an additive interval function F on [a, b]. In this paper, motivated by the
results above, we will give new criteria for the C̃-integrability in the style of Nakanishi.

2 Preliminaries In [4] D. Bongiorno gave a criterion for the C̃-integrability. By the the-
orem (C̃)([a, b]) is the minimal class which contains (L)([a, b]) and (N∗)([a, b]). Moreover
it is contained in (D∗)([a, b]). In this paper we refer to the following theorems given by
D. Bongiorno [4].

Theorem 2.1. Let f ∈ (C̃)([a, b]). Then there exists a countable subset N ⊂ [a, b] such
that for any positive number ε there exists a gauge δ such that

k0∑
k=1

����f(xk)|Ik| − (C̃)
∫

Ik

f(x)dx

���� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

k0∑
k=1

d(Ik, xk) <
1
ε

and xk ∈ N implies xk ∈ Ik.

Throughout this paper, we say that a function defined on the class of all intervals in
[a, b] is an interval function on [a, b]. If an interval function F on [a, b] satisfies F (I1 ∪ I2) =
F (I1) + F (I2) for any intervals I1, I2 ⊂ [a, b] with I1

i ∩ I2
i = ∅, where Ii is the interior of

I, then it is said to be additive.

Definition 2.1. Let F be an interval function on [a, b]. Then F is said to be C̃-absolutely
continuous on E ⊂ [a, b] if for any positive number ε there exist a countable subset N ⊂ E,
a gauge δ and a positive number η such that

k0∑
k=1

|F (Ik)| < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ N implies xk ∈ Ik;

(4)
∑k0

k=1 |Ik| < η.
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We denote by ACC̃(E) the class of all C̃-absolutely continuous interval functions on E.
Moreover F is said to be C̃-generalized absolutely continuous on [a, b] if there exists a
sequence {Em} of measurable sets such that

∪∞
m=1 Em = [a, b] and F ∈ ACC̃(Em) for any

m. We denote by ACGC̃([a, b]) the class of all C̃-generalized absolutely continuous interval
functions on [a, b].

Theorem 2.2. For any F ∈ ACGC̃([a, b]) there exists d
dxF ([a, x]) for almost every x ∈

[a, b], and there exists f ∈ (C̃)([a, b]) such that f(x) = d
dxF ([a, x]) for almost every x ∈ [a, b]

and

F (I) = (C̃)
∫

I

f(x)dx

for any interval I ⊂ [a, b].
Conversely the interval function F defined above for any f ∈ (C̃)([a, b]) satisfies F ∈

ACGC̃([a, b]).

On the other hand, in [9, 12] Nakanishi gave the following criteria for the restricted
Denjoy integrability. Firstly Nakanishi considered the following four criteria for the pair of
a function f from [a, b] into R and an additive interval function F on [a, b].

(A) For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];
(2) f ∈ (L)(Fn) for any n;

(3)

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Fn �= ∅.

(B) For any decreasing sequence {εn} tending to 0 there exist increasing sequences {Mn}
of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];
(2) Fn ⊂ Mn for any n and |[a, b] \

∪∞
n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4)

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Mn �= ∅.

(C) There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];
(2) f ∈ (L)(Fn) for any n;
(3) for any n and for any positive number ε there exists a positive number η such

that
�����

k0∑
k=1

F (Ik)

����� < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying
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(3.1) Ik ∩ Fn �= ∅ for any k;

(3.2)
∑k0

k=1 |Ik| < η.

(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D) There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) for any n and for any positive number ε there exists a positive number η such
that

�����
k0∑

k=1

F (Ik)

����� < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying

(4.1) Ik ∩ Mn �= ∅ for any k;

(4.2)
∑k0

k=1 |Ik| < η.

(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

Next Nakanishi gave the following theorem for the restricted Denjoy integrability.

Theorem 2.3. A function f from an interval [a, b] into R is restricted Denjoy integrable if
and only if there exists an additive interval function F on [a, b] such that the pair of f and
F satisfies one of (A), (B), (C) and (D). Moreover, if the pair of f and F satisfies one of
(A), (B), (C) and (D), then

F (I) = (D∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

Motivated by the results of Nakanishi, in [8] Kawasaki and Suzuki gave similar criteria
and theorem as Theorem 2.3 for the C-integrability.
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3 Main results Firstly we consider the following four criteria for the pair of a function
f from [a, b] into R and an additive interval function F on [a, b].

(A)C̃ For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) there exists a countable subset N ⊂ [a, b] independent of {εn} such that for
any n there exists a gauge δ such that

�����
k1∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩ Fn �= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying

(3.1) xk ∈ Fn for any k = k0 + 1, . . . , k1;

(3.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(3.3) xk ∈ N implies xk ∈ Ik.

(B)C̃ For any decreasing sequence {εn} tending to 0 there exist increasing sequences {Mn}
of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) there exists a countable subset N ⊂ [a, b] independent of {εn} such that for
any n there exists a gauge δ such that

�����
k1∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩ Mn �= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying

(4.1) xk ∈ Mn for any k = k0 + 1, . . . , k1;

(4.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(4.3) xk ∈ N implies xk ∈ Ik.

(C)C̃ There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

Scientiae Mathematicae Japonicae  

Toshiharu Kawasaki

Received March 3, 2015 ; revised May 20, 2015

Abstract. The C-integral was introduced by B. Bongiorno as a minimal constructive
integration process of Riemann type which contains the Lebesgue integral and the
Newton integral. B. Bongiorno, Di Piazza and Preiss gave some criteria for the C-
integrability. The C̃-integral was introduced by D. Bongiorno as a minimal constructive
integration process of Riemann type which contains the Lebesgue integral and the
improper Newton integral. She gave some criteria for the C̃-integrability. On the other
hand, Nakanishi gave some criteria for the restricted Denjoy integrability. Kawasaki
and Suzuki gave new criteria for the C-integrability in the style of Nakanishi. In this
paper we will give new criteria for the C̃-integrability in the style of Nakanishi.

 

 

 

 

 

Key words and phrases. C̃-integral, C-integral, Denjoy integral, Lebesgue integral, improper Newton
integral, Newton integral.

CRITERIA FOR THE C̃-INTEGRAL 49



6 T. KAWASAKI

(3) there exists a countable subset N ⊂ [a, b] such that for any n and for any
positive number ε there exist a positive number η and a gauge δ such that

�����
k0∑

k=1

F (Ik)

����� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying

(3.1) xk ∈ Fn for any k;

(3.2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3.3) xk ∈ N implies xk ∈ Ik;

(3.4)
∑k0

k=1 |Ik| < η.

(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D)C̃ There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) there exists a countable subset N ⊂ [a, b] such that for any n and for any
positive number ε there exist a positive number η and a gauge δ such that

�����
k0∑

k=1

F (Ik)

����� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying

(4.1) xk ∈ Mn for any k;

(4.2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(4.3) xk ∈ N implies xk ∈ Ik;

(4.4)
∑k0

k=1 |Ik| < η.

(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p = 1, 2, . . .} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.
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It is clear that (A)C̃ implies (B)C̃ and (C)C̃ implies (D)C̃ . Now we give the following
theorems for the C̃-integrability.

Theorem 3.1. Let f ∈ (C̃)([a, b]) and let F be the additive interval function on [a, b]
defined by

F (I) = (C̃)
∫

I

f(x)dx

for any interval I ⊂ [a, b]. Then the pair of f and F satisfies (A)C̃ .

Proof. Since f ∈ (C̃)([a, b]), we obtain f ∈ (D∗)([a, b]). Let {εn} be a decreasing sequence
tending to 0. Since by Theorem 2.3 the pair of f and F satisfies (A), for

{
εn

2

}
there exists

an increasing sequence {Fn} of closed sets such that (1) and (2) hold. Moreover
�����

k0∑
k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� <
εn

2

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik∩Fn �= ∅.
By Theorem 2.1 there exists a countable subset N ⊂ [a, b] independent of {εn} such that
for any n there exists a gauge δ such that

�����
k1∑

k=k0+1

(f(xk)|Ik| − F (Ik))

����� <
εn

4

for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b] satisfying
(3.2) and (3.3). Since fχFn ∈ (L)([a, b]), by the Saks-Henstock lemma for the McShane
integral, for instance see [6, Lemma 10.6], for any n there exists a gauge δ such that

�����
k1∑

k=k0+1

(
f(xk)χFn |Ik| − (L)

∫

Ik∩Fn

f(x)dx

)����� <
εn

4

for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b]. Since
f = fχFn on Fn, for any n there exists a gauge δ such that

�����
k1∑

k=k0+1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)�����

=

�����
k1∑

k=k0+1

(F (Ik) − f(xk)|Ik|)

����� +

�����
k1∑

k=k0+1

(
f(xk)χFn |Ik| − (L)

∫

Ik∩Fn

f(x)dx

)�����

<
εn

4
+

εn

4
=

εn

2

for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b] satisfying
(3.1), (3.2) and (3.3). Therefore

�����
k1∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)�����

≤

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� +

�����
k1∑

k=k0+1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)�����

<
εn

2
+

εn

2
= εn
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for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of non-overlapping
intervals in [a, b] which consists of a finite family {Ik | k = 1, . . . , k0} with Ik ∩ Fn �= ∅ and
a δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} satisfying (3.1), (3.2) and
(3.3), that is, (3) holds.

Theorem 3.2. If the pair of a function f from an interval [a, b] into R and an additive in-
terval function F on [a, b] satisfies (A)C̃ , then the pair of f and F satisfies (C)C̃ . Similarly,
if the pair of a function f from an inteval [a, b] into R and an additive interval function F
on [a, b] satisfies (B)C̃ , then the pair of f and F satisfies (D)C̃ .

Proof. Let {εn} be a decreasing sequence tending to 0. Then there exists an increasing
sequence {Fn} of closed sets such that (1) and (2) of (C)C̃ hold. We show (3) of (C)C̃ . Let
n be a natural number and let ε be a positive number. Since f ∈ (L)(Fn), there exists a
positive number ρ(n, ε) such that, if |E| < ρ(n, ε), then

����(L)
∫

E∩Fn

f(x)dx

���� <
ε

2
.

Take a natural number m(n, ε) such that εm(n,ε) < ε
2 and m(n, ε) ≥ n, and put η =

ρ(m(n, ε), ε). By (3) of (A)C̃ there exists a subset N ⊂ [a, b] independent of {εn} such
that for m(n, ε) there exists a gauge δm(n,ε). Let {(Ik, xk) | k = 1, . . . , k0} be a δm(n,ε)-fine
partial McShane partition in [a, b] satisfying (3.1), (3.2), (3.3) and (3.4) of (C)C̃ . Then we
obtain

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fm(n,ε)

f(x)dx

)����� < εm(n,ε) <
ε

2
.

Moreover, since
∑k0

k=1 |Ik| < η = ρ(m(n, ε), ε), we obtain
�����

k0∑
k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

����� <
ε

2
.

Therefore
�����

k0∑
k=1

F (Ik)

����� ≤

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fm(n,ε)

f(x)dx

)����� +

�����
k0∑

k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

�����
<

ε

2
+

ε

2
= ε.

Next we show (4) of (C)C̃ . Let I be a subinterval of [a, b]. In the case of I ∩ Fn = ∅ (4) of
(C)C̃ is clear. Consider the case of I ∩ Fn �= ∅. Let {Jp | p = 1, 2, . . .} be the sequence of
all connected components of Ii \Fn. Since I ∩Fm �= ∅ holds for any m ≥ n, by (3) of (A)C̃

we obtain
����F (I) − (L)

∫

I∩Fm

f(x)dx

���� < εm.

Since Jp ∩ Fm �= ∅ holds for any p, by (3) of (A)C̃ we obtain
�����
∞∑

p=1

(
F (Jp) − (L)

∫

Jp∩Fm

f(x)dx

)����� ≤ εm
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for any m ≥ n. On the other hand, we obtain

(L)
∫

I∩Fm

f(x)dx = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

for any m ≥ n. Therefore we obtain
�����F (I) −

(
(L)

∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp)

)�����

≤
����F (I) − (L)

∫

I∩Fm

f(x)dx

����

+

�����(L)
∫

I∩Fm

f(x)dx −

(
(L)

∫

I∩Fn

f(x)dx +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

)�����

+

�����−
∞∑

p=1

F (Jp) +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

�����
< εm + 0 + εm = 2εm

for any m ≥ n and hence

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp).

Similarly, we can prove that, if the pair of f and F satisfies (B)C̃ , then the pair of f
and F satisfies (D)C̃ .

Theorem 3.3. If the pair of a function f from an inteval [a, b] into R and an additive
interval function F on [a, b] satisfies (D)C̃ , then f ∈ (C̃)([a, b]) and

F (I) = (C̃)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

Proof. By (1) and (4) there exist a countable subset N ⊂ [a, b] and a increasing sequence
{Mn} of non-empty measurable sets such that

∪∞
n=1 Mn = [a, b] and for any n and for any

positive number ε there exist a positive number η and a gauge δ such that
�����

k0∑
k=1

F (Ik)

����� <
ε

2

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b] satisfying (4.1),
(4.2), (4.3) and (4.4). Therefore we obtain

k0∑
k=1

|F (Ik)| =

������
∑

F (xk)>0

F (Ik)

������
+

������
∑

F (xk)<0

F (Ik)

������
<

ε

2
+

ε

2
= ε
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and hence F ∈ ACGC̃([a, b]). By Theorem 2.2 there exists d
dxF ([a, x]) for almost every

x ∈ [a, b], and there exists g ∈ (C̃)([a, b]) such that

F (I) = (C̃)
∫

I

g(x)dx

for any interval I ⊂ [a, b]. We show that g = f almost everywhere. To show this, we
consider a function

gn(x) =
{

f(x), if x ∈ Fn,
g(x), if x �∈ Fn.

By [14, Theorem (5.1)] gn ∈ (D∗)(I) for any interval I ⊂ [a, b] and by (3)

(D∗)
∫

I

gn(x)dx = (D∗)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(D∗)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(C̃)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where {Jp | p = 1, 2, . . .} is the sequence of all connected components of Ii \ Fn. By
comparing the equation above with (5), we obtain

F (I) = (D∗)
∫

I

gn(x)dx.

Therefore we obtain d
dxF ([a, x]) = gn(x) = f(x) for almost every x ∈ Fn. By (2) we obtain

g(x) = d
dxF ([a, x]) = f(x) for almost every x ∈ [a, b].

By Theorems 3.1, 3.2 and 3.3 we obtain the following new criteria for the C̃-integrability.

Theorem 3.4. A function f from an interval [a, b] into R is C̃-integrable if and only if
there exists an additive interval function F on [a, b] such that the pair of f and F satisfies
one of (A)C̃ , (B)C̃ , (C)C̃ and (D)C̃ . Moreover, if the pair of f and F satisfies one of (A)C̃ ,
(B)C̃ , (C)C̃ and (D)C̃ , then

F (I) = (C̃)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].
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Abstract. This paper deals with a two-person zero-sum search game called a search
allocation game, in which a searcher distributes search resource to detect a target and
the target moves to evade the searcher. When the searcher starts his search operation
for the target, the target happens to stay at some position and have some energy for
movement. The target knows the initial state consisting of its initial position and initial
energy but the searcher does not. The problem is the game with private information
about the target’s initial state including initial energy. The payoff of the game is
the detection probability of the target. We use a convex programming formulation
and a linear programming one for the derivation of an equilibrium, which consists of
the value of the game, an optimal distribution of searching resource by the searcher
and an optimal movement strategy of the target. By some numerical examples, we
analyze players’ optimal strategies and evaluate the value of information about the
target initial state.

1 Introduction Search theory originates in military operations. Koopman [32], who
is a founder of search theory, summarized theoretical results of anti-submarine warfare
conducted by US Navy in WW2. He [33] mainly researched one-sided problems, in which
only the searcher designs a search plan by estimating the target movement. De Guenin [12]
studied an optimal distribution of search efforts by adopting general function as a detection
probability of target. Kadane [28] and Onaga [36] considered the criterion of searching
cost and Iida et al. [26] researched the search problem of a stationary target based on risk
criterion. There are other research focused on stationary targets, such as Gittins [11], who
considered the optimal strategies of a stationary hider and a searcher in two regions, and
Kress et al. [34], who took account of false detection occurrence in the search. Pollock [37],
Schweitzer [40] and Dobbie [7] studied moving target problems in two cells and Saretsalo
[39] extended their studies to the problem in a multi-dimensional Euclidean space. Iida
[24], Brown [4] and Washburn [43] also studied the moving target problems and devised
computational algorithms to derive a searcher’s optimal strategy in a general way.

Subsequently, research of search theory progressed to search game including not only
a searcher but also a target as a decision maker. Game theory is usually categorized into
cooperative game and non-cooperative game. Non-cooperative search game has two kinds
of models: search-evasion game (SEG) and search allocation game (SAG). In both models,
the target uses the moving strategy in the search space but the searcher’s strategies are
different. In the SEG, the searcher has the moving strategy as well as the target, but in the
SAG [17], he distributes searching resource in the search space to detect the target.

We list up the past research on the SEG as follows. Danskin [6] formulated the search
game between an anti-submarine-helicopter and a submarine as a datum search game and
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derived an optimal dipping position of the helicopter’s sonar. Washburn [42] discussed a
multi-stage game, in which the searcher makes a decision of the next position to go after
knowing the location of a target at every time. Kan [29] took the searcher’s search cost as
a payoff in a differential game. Nakai [35] studied an optimal target motion on a line with
a safety zone. Kikuta [31] investigated a SEG with the criterion of the traveling cost of the
searcher. There are other SEG models such as Eagle [8], Eagle and Washburn [9], Hohzaki
and Iida [19], Isler et al. [27], Zora et al. [44], Bhattachary [3] and Stipanovic et al. [41].

For the research on the SAG, Iida et al. [25] handled a two-person-zero-sum search
game, in which a mobile target chooses a path and a searcher distributes a limited amount
of search efforts. Hohzaki et al. [20] and Hohzaki [13] clarified the relationship between two
SAGs defined in a continuous search space and in a discrete space. Hohzaki and Washburn
[23] applied the SAG to a datum search in a continuous time. Ruckle [38] and Baston
and Kikuta [2] dealt with a kind of the SAG called the ambush game, where player I
chooses a crossing point on the border of a lattice space and player II puts obstacles to
intercept player I’s crossing. Dambreville and Le Carde [5] and Hohzaki [16] considered the
SAG taking account of some attributes of searching resource. Hohzaki [14] and Kekka and
Hohzaki [30] considered the search game with false contacts by the searcher. Hohzaki and
Ikeda [21] extended the target strategy to the movement with energy supply policy in their
SAG.

There are other types of search games, such as Baston and Garnaev [1], Gal and Howard
[10] and Hohzaki [15, 18]. Baston and Garnaev [1] discussed a non-zero-sum game with a
protector, who protects the target not to be detected by the searcher. Gal and Howard [10]
discussed a zero-sum game under the situation that the searcher does not know whether
the target wants to be searched or evade. Hohzaki [15] and Hohzaki [18] modeled the SAG
with many cooperative searchers and the SAG with two competitive searchers against the
target into a cooperative game and a nonzero-sum game, respectively.

Almost all SAGs mentioned above assume that the searcher knows the target initial
position and energy. Unlike the past models of the SAG, Hohzaki and Joo [22] first studied
a search game with target private information of its initial position. As well as the initial
position, target’s movement energy would be considered to become a private information
of the target in realistic search operations. The importance of the target’s energy can be
seen in various situations of military and non-military operations. When the artillery fires
at a retreating enemy in the long-distance area, a precise inference about residual fuel of
retreating vehicles makes the firing effective or successful. In maritime operations and air-
defense operations, a precise estimation on the mobility of suspicious boats or aircrafts would
bring a good result to the search operation for them following the report of their invasion.
In search and rescue operations, a rescue team is required to have a good estimation on
the mobility and the possession of foods and fuel of missing persons or vehicles in addition
to their missing point and missing time. As mentioned above, it is extremely important to
consider the energy or the mobility of moving targets in search games. Of course, the target
knows his initial position and energy at the beginning of the search but the searcher would
not. By those reasons, this paper aims to develop a searching game model taking account
of the uncertainty of the target’s initial position and initial energy on the searcher’s side
and to derive players’ rational decision making.

In the next section, we model a search game with two players, a searcher and a target,
in which the target initial state consisting of its initial position and initial energy is the
target’s private information but is unknown to the searcher. We formulate the problem into
a two-person game with incomplete information of the target initial state. In Section 3, we
derive an equilibrium point, which consists of the value of the game, an optimal distribution
strategy of searching resource and an optimal movement strategy of the target, by enumer-
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ating all target paths. We can easily imagine the combinatorial explosion for generating
all target paths. To cope with the problem, we propose a methodology for another type of
equilibrium point by a Markov movement of the target in Section 4. In Section 5, we do
some sensitivity analyses on equilibria with respect to some system parameters involved in
the model and then we evaluate the value of the information about the target initial state,
which indicates to what extent the searcher increases the detection probability of the target
by acquiring the information.

2 A One-Shot Game with Uncertainty of Target’s Initial State In a competitive
search game between a searcher and a target, the searcher starts a search operation if he
senses the existence of the target to some extent in many cases. In the cases, the search
happens to start for the target and therefore, in the beginning of the search, an initial state
of the target, such as his initial position and initial possession of moving energy, has some
randomness such that it seems to be given by nature. The target knows his initial state, of
course, and the searcher anticipates the state in a probabilistic way based on information
from his sensors. Under these situations, we consider a two-person zero-sum (TPZS) search
game between the target and the searcher with detection probability of the target as payoff.

(A1) A search space consists of a finite discrete geographic space and a finite discrete time.
The geographic space is represented by a set of cells K = {1, · · · ,K} and the time
space by a set of time points T = {1, · · · , T}.

(A2) In the beginning of the search, nature determines an initial state of the target ac-
cording to a probability law. An initial position s ∈ S0 ⊂ K and an initial energy
e0 of the target have probability distribution {f(s), s ∈ S0} (

∑
s∈S0

f(s) = 1) and
{g(e0), e0 ∈ E0} (

∑
e0∈E0

g(e0) = 1), respectively, which are known to both players.
S0 and E0 are finite countable sets and the random variables given by f(s) and g(e0)
are independent of each other.

(A3) The target moves from its initial position s as time goes by. Its movement has the
following constraints. He is allowed to move from cell i at time t to a limited area of
cells N(i, t). He consumes energy µ(i, j) to move from cell i to j. If he exhausts his
initial energy e0, he cannot move anywhere expect for staying at his current cell.

Let us denote all target paths starting from the initial position s until using up energy
e0 by Pse0 . The target chooses a path among them and goes along it. If he takes a
path ω ∈ Pse0 , he is in cell ω(t) ∈ K at time t ∈ T .

(A4) The searcher anticipates the initial cell s and energy e0 of the target by the probability
distribution {f(s), s ∈ S0} and {g(e0), e0 ∈ E0}, respectively, and starts a search
operation.

After he is allowed to start the search at time τ , he distributes his searching resource
in the space K to detect the target. We denote a time period of search after τ by
�T = {τ, τ + 1, · · · , T}. Φ(t) resources are available and infinitely divisible. Let us
denote a distribution plan of resource by ϕ = {ϕ(i, t), i ∈ K, t ∈ �T }, where ϕ(i, t) is
the amount of the resource distributed in cell i at time t.

(A5) If the searcher scatters x resources in cell i and the target is there, the searcher detects
the target with probability

1 − exp(−αix).(1)

Parameter αi indicates the efficiency of detection per unit resource in the cell i.
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If the searcher detects the target, the game ends and the searcher obtains reward 1
but the target incurs the same amount of loss.

¿From Assumption (A5), the search game is a TPZS game with detection probability as
payoff.

Let us begin with enumerating conditions of a feasible path ω ∈ Pse0 for the target with
its initial position s and energy e0. We call the initial state (s, e0) the type of the target.
Using notation e(t) which indicates residual energy of the target at time t, we express the
feasibility conditions of ω ∈ Pse0 , as follows:

(i) Condition of initial position: ω(1) = s

(ii) Condition of reachable cells: ω(t + 1) ∈ N(ω(t), t), t = 1, · · · , T − 1

(iii) Condition of initial energy: e(1) = e0

(iv) Condition of energy conservation: e(t + 1) = e(t)− µ(ω(t), ω(t + 1)), t = 1, · · · , T − 1

(v) Condition of movement energy: µ(ω(t), ω(t + 1)) ≤ e(t), t = 1, · · · , T − 1

We generate Pse0 for the target of type (s, e0) by enumerating path ω satisfying the con-
ditions above. Reversely, we can calculate e(t) by e(t) = e0 −

∑t−1
ξ=1 µ(ω(ξ), ω(ξ + 1)) for a

specific path ω.
We have a feasible region Ψ for a searcher’s strategy ϕ from Assumption (A4), as follows.

Ψ ≡


ϕ

������
∑

i∈K

ϕ(i, t) ≤ Φ(t), ϕ(i, t) ≥ 0, i ∈ K, t ∈ �T

 .(2)

Now we are going to formulate the payoff function of the game by using the players’ pure
strategies ϕ and ω ∈ Pse0 of the (s, e0)-type target. At time t, the target is at cell ω(t) and
ϕ(ω(t), t) searching resources are distributed there. Therefore, from the expression (1), we
have the following function as the payoff.

Rse0(ϕ, ω) = 1 − exp


−

∑

t∈�T
αω(t)ϕ(ω(t), t)


 .

We denote a mixed strategy of the (s, e0)-type target by πse0 ≡ {πse0(ω), ω ∈ Pse0}, where
πse0(ω) is the probability of taking path ω. The feasible region for the mixed strategy πse0

is

Πse0 ≡


πse0

������
∑

ω∈Pse0

πse0(ω) = 1, πse0(ω) ≥ 0, ω ∈ Pse0


 .(3)

The expected payoff, i.e. the detection probability of target, by a pure strategy ϕ and a
mixed strategy πse0 is given by

Rse0(ϕ, πse0) =
∑

ω∈Pse0

πse0(ω)Rse0(ϕ, ω)(4)

=
∑

ω∈Pse0

πse0(ω)




1 − exp


−

∑

t∈�T
αω(t)ϕ(ω(t), t)






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= 1 −
∑

ω∈Pse0

πse0(ω) exp


−

∑

t∈�T
αω(t)ϕ(ω(t), t)


 .

The (s, e0)-type target aims to minimize the payoff. The searcher does not know the type
of the target with certainty and he has to evaluate his payoff taking account of all strategies
of all types of target, π ≡ {πse0 , s ∈ S0, e0 ∈ E0}, based on the probability distribution
{f(s), s ∈ S0} and {g(e0), e0 ∈ E0}, as follows.

R(ϕ, π) =
∑

e0∈E0

g(e0)
∑
s∈S0

f(s)Rse0(ϕ, πse0)(5)

=
∑

e0∈E0

g(e0)
∑
s∈S0

f(s)
∑

ω∈Pse0

πse0(ω)




1 − exp


−

∑

t∈�T
αω(t)ϕ(ω(t), t)







= 1 −
∑

e0∈E0

g(e0)
∑
s∈S0

f(s)
∑

ω∈Pse0

πse0(ω) exp


−

∑

t∈�T
αω(t)ϕ(ω(t), t)




The searcher wants to maximize the payoff. In the next section, let us discuss the game
with the payoff, which looks different at first glance from each side of the searcher and the
target, and derive its equilibrium point.

3 Derivation of Equilibrium Point As seen from Eqs. (4) and (5), all types of tar-
gets, each of which aims for the minimization of its own payoff Rse0(ϕ, πse0), also minimize
the comprehensive payoff R(ϕ, π) in the aggregate. Therefore, an optimal strategy of the
searcher is given by the maximin optimization of R(ϕ, π). Let us begin the maximin opti-
mization. We can carry out the minimization of R(ϕ, π) with respect to π as follows:

min
π

R(ϕ, π) =
∑

e0∈E0

g(e0)
∑
s∈S0

f(s) min
ω∈Pse0

Rse0(ϕ, ω)(6)

=
∑

e0∈E0

g(e0)
∑
s∈S0

f(s) min
ω∈Pse0




1 − exp


−

∑

t∈�T
αω(t)ϕ(ω(t), t)







by making πse0(ω) = 0 for any path ω /∈ Ω+se0 ≡ {ω ∈ Pse0 |Rse0(ϕ, ω) = minp∈Pse0
Rse0(ϕ, p)}.

Furthermore, the maximization of the above minimized value with respect ϕ gives us a for-
mulation

(P 0
S) max

ϕ,{νse0}

∑
e0∈E0

g(e0)
∑
s∈S0

f(s)νse0

s.t. 1 − exp


−

∑

t∈�T
αω(t)ϕ(ω(t), t)


 ≥ νse0 , ω ∈ Pse0 , s ∈ S0, e0 ∈ E0,

ϕ ∈ Ψ.

By the replacement of νse0 with ηse0 ≡ − log(1−νse0), i.e., νse0 ≡ 1−exp(−ηse0), and noting∑
s f(s) = 1 and

∑
e0

g(e0) = 1, we can equivalently transform the above formulation to

(PS) max
ϕ,η

{
1 −

∑
e0∈E0

g(e0)
∑
s∈S0

f(s) exp(−ηse0)

}
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s.t.
∑

t∈�T
αω(t)ϕ(ω(t), t) ≥ ηse0 , ω ∈ Pse0 , s ∈ S0, e0 ∈ E0,(7)

∑

i∈K

ϕ(i, t) = Φ(t), t ∈ �T ,(8)

ϕ(i, t) ≥ 0, i ∈ K, t ∈ �T .

Because the feasible region of the above problem is a convex set and the objective function
is concave, the problem is a convex programming problem. It is easily solved by any general
commercial software package of numerical optimization.

Next let us derive an optimal strategy of the (s, e0)-type target. The target estimates
ϕ∗ by solving problem (PS) first and is going to take an optimal strategy πse0 to minimize
his payoff Rse0(ϕ

∗, πse0) as follows:

min
πse0

Rse0(ϕ
∗, πse0) = min

ω∈Pse0

Rse0(ϕ
∗, ω)

= min
ω∈Pse0




1 − exp


−

∑

t∈�T
αω(t)ϕ

∗(ω(t), t)







= 1 − exp


− min

ω∈Pse0

∑

t∈�T
αω(t)ϕ

∗(ω(t), t)


 = 1 − exp(−v∗

se0
),

where v∗se0
is given by

v∗se0
= min

ω∈Pse0

∑

t∈�T
αω(t)ϕ

∗(ω(t), t).

Comparing the above equation with Eq. (7), we can see that v∗se0
equals an optimal value

η∗
se0

and 1 − exp(−η∗
se0

) is the minimum detection probability of the (s, e0)-type target.
Using η∗

se0
, we redefine Ω+se0 ≡ {ω ∈ Pse0 |

∑
t∈�T αω(t)ϕ

∗(ω(t), t) = η∗
se0

}.
Hereafter, we want to carry out the minimax optimization of R(ϕ, π) to derive an op-

timal strategy of the target. However a direct approach to the optimization would be
difficult. Instead, we consider the conditions of the target strategy π to which the optimal
searcher’s strategy ϕ∗ given by (PS) becomes an optimal response. On the other hand, an
optimal response π to ϕ∗ is given by minimizing a linear function R(ϕ∗, π) of variable π or
equivalently by setting πse0(ω) = 0 for any ω /∈ Ω+se0 , as seen in the transformation (6).

We derive the necessary and sufficient conditions of the optimal response ϕ∗ to π by the
so-called Karush-Kuhn-Tucker (KKT) conditions of maxϕ R(ϕ, π) with respect to ϕ ∈ Ψ.
After defining a Lagrange function

L(ϕ; λ, η) ≡ R(ϕ, π) +
∑

t∈�T
λ(t)

(
Φ(t) −

∑
i∈K

ϕ(i, t)

)
+

∑

(i,t)∈K×�T
η(i, t)ϕ(i, t)

with Lagrangian multipliers {λ(t), t ∈ �T } and {η(i, t) ≥ 0, (i, t) ∈ K × �T }, we have the
KKT conditions as follows:

∂L

∂ϕ(i, t)
=

∂R(ϕ, π)
∂ϕ(i, t)

− λ(t) + η(i, t) = αi

∑
e0∈E0

g(e0)
∑
s∈S0

f(s)
∑

ω∈Ω
se0
it

πse0(ω)(9)
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× exp


−

∑

t′∈�T
αω(t′)ϕ(ω(t′), t′)


 − λ(t) + η(i, t) = 0, (i, t) ∈ K × �T ,

ϕ(i, t) ≥ 0, (i, t) ∈ K × �T ,∑
i∈K

ϕ(i, t) = Φ(t), t ∈ �T ,

η(i, t) ≥ 0, (i, t) ∈ K × �T ,(10)

η(i, t)ϕ(i, t) = 0, (i, t) ∈ K × �T .(11)

In the conditions, we use notation Ωse0
it ≡ {ω ∈ Pse0 |ω(t) = i}. From the previous discussion

about optimal target strategy and v∗
se0

, optimal πse0 should be πse0(ω) = 0 for ω /∈ Ω+se0

and the condition
∑

t′ αω(t′)ϕ
∗(ω(t′), t′) = η∗

se0
holds for any path ω ∈ Ω+se0 with positive

selection probability πse0(ω) > 0. Using these expressions, we can rewrite Eq. (9) into

αi

∑
e0∈E0

g(e0)
∑
s∈S0

f(s) exp(−η∗
se0

)
∑

ω∈Ω
+se0
it

πse0(ω) − λ(t) + η(i, t) = 0,(12)

(i, t) ∈ K × �T ,

where
Ω+se0

it ≡ {ω ∈ Pse0 | ω(t) = i,
∑

t′∈�T
αω(t′)ϕ

∗(ω(t′), t′) = η∗
se0

}.

Let us simplify the conditions (9), (10) and (11), as follows. If ϕ∗(i, t) > 0, we have
η(i, t) = 0 from Eq. (11) and then

αi

∑
e0∈E0

g(e0)
∑
s∈S0

f(s) exp(−η∗
se0

)
∑

ω∈Ω
+se0
it

πse0(ω) = λ(t)(13)

from Eq. (12). If ϕ∗(i, t) = 0, from Eq. (10), we have

αi

∑
e0∈E0

g(e0)
∑
s∈S0

f(s) exp(−η∗
se0

)
∑

ω∈Ω
+se0
it

πse0(ω) ≤ λ(t).(14)

Reversely, if the above two conditions hold, we can easily generate optimal multipliers
{λ∗(t)} and {η∗(i, t)} so as to satisfy the KKT conditions. Anyway, the original feasibility
conditions of πse0 are given by Πse0 of Eq. (3).

We have discussed the conditions of an optimal target strategy π = {πse0 , s ∈ S0, e0 ∈
E0} so far. If π satisfies all the conditions derived so far, the optimal searcher’s strategy
ϕ∗ given by problem (PS) is optimal to π and, at the same time, π is optimal to ϕ∗. The
two-sided optimality validates that π is in an equilibrium of the game. Summing up the
discussion so far, we have a linear programming problem to derive an optimal target strategy
π, as follows.

(PT ) min
π,λ

∑
e0∈E0

g(e0)
∑
s∈S0

f(s)
∑

ω∈Pse0

πse0(ω)




1 − exp


−

∑

t∈�T
αω(t)ϕ

∗(ω(t), t)







s.t.
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αi

∑
e0∈E0

g(e0)
∑
s∈S0

f(s) exp(−η∗
se0

)
∑

ω∈Ω
+se0
it

πse0(ω) = λ(t)

for (i, t) ∈ K × �T of ϕ∗(i, t) > 0,

αi

∑
e0∈E0

g(e0)
∑
s∈S0

f(s) exp(−η∗
se0

)
∑

ω∈Ω
+se0
it

πse0(ω) ≤ λ(t)

for (i, t) ∈ K × �T of ϕ∗(i, t) = 0,∑
ω∈Pse0

πse0(ω) = 1, s ∈ S0, e0 ∈ E0,

πse0(ω) ≥ 0, ω ∈ Pse0 , s ∈ S0, e0 ∈ E0.

4 Markov Movement Strategy of Target In Section 3, we enumerate all target paths
taking account of the target movement constraints in Assumption (A3) in Section 2 and
use the path set {Pse0 , s ∈ S0, e0 ∈ E0} to derive an equilibrium point of the game. The
proposed formulation is inconvenient for the game with a lot of time points because the
number of target paths would increase at an exponential rate of the number of time points.
To cope with the exponential expansion of the number of paths, we define a strategy of the
target by Markov movement strategy, which was first introduced into search games by Eagle
and Washburn [9] and sophisticated by Hohzaki et al. [20]. We represent a state of target
by (s, e0, i, t, e), where (s, e0) is a target type, and i, t and e are the current cell, the present
time and the residual energy, respectively, or a state of the (s, e0)-type target by (i, t, e). By
the Markov strategy, the target specifies the movement from the state (s, e0, i, t, e) to a cell
at the next time t + 1 in a probabilistic manner. The Markov strategy at time t depends
on not the past tracks of path before t but just a state at the present time t. We will show
the equivalence between the path selection strategy discussed in the previous section and
the Markov movement strategy later in the process of deriving an equilibrium point for the
Markov strategy. Anyway, we have to discriminate between the beginning point of time t
and the ending point of the time. Because the search operation is conducted between the
two points, the target lies at different levels at two time points from the survival point of
view even if the target is in the same state. We refer to the former time point as the BP of
time t and the latter one as the EP of t.

Let us denote all energy states of the (s, e0)-type target by F e0 ≡ {0, 1, · · · , e0}. To make
use of dynamic programming, we define an optimized value zse0(i, t, e) as the maximized
non-detection probability of the (s, e0)-type target who is in a state (i, t, e) at the BP of
time t and takes his optimal movement strategy since then until the end of the game. In this
section, we adopt the non-detection probability as the payoff for the sake of formulation.
Variable vse0(i, j, t, e) represents a Markov strategy of the (s, e0)-type target and indicates
the probability that the target in the state (i, t, e) moves to cell j at the next time t + 1.
Let us denote a set of cells to which the target can move at time t + 1 from (i, t, e) by
N(i, t, e) ≡ {j ∈ K|j ∈ N(i, t), µ(i, j) ≤ e} and a set of cells at the previous time t − 1,
from which the target can transition to the state (i, t, e) at time t, by N∗

e0
(i, t, e) ≡ {j ∈

K|i ∈ N(j, t − 1), e + µ(j, i) ≤ e0}.
The feasibility conditions of the Markov strategy vse0 are given by

Vse0 ≡ {{vse0(i, j, t, e), i, j ∈ K, t ∈ T \{T}, e ∈ F e0} |(15) ∑
j∈N(i,t,e)

vse0(i, j, t, e) = 1, vse0(i, j, t, e) = 0(j /∈ N(i, t, e)), vse0(i, j, t, e) ≥ 0} .

Before the main discussion of deriving an equilibrium, we prove the equivalency between the
path selection strategy {πse0(ω)} and the Markov strategy {vse0(i, j, t, e)} of the (s, e0)-type
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target. We accomplish the proof by showing that one expression is transformable from the
other one as follows, using notation e(ω, n) ≡ e0 −

∑n−1
k=1 µ(ω(k), ω(k + 1)):

πse0(ω) =
T−1∏
t=1

vse0(ω(t), ω(t + 1), t, e(ω, t)) for ω ∈ Pse0 ,

vse0(i, j, t, e) =

∑
{ω∈Ω

se0
it

|e(ω,t)=e,ω(t+1)=j} πse0(ω)∑
{ω∈Ω

se0
it

|e(ω,t)=e} πse0(ω)
.

If
∑

{ω∈Ω
se0
it

|e(ω,t)=e} πse0(ω) becomes zero in the denominator, the state (s, e0, i, t, e) is not
reachable and any Markov strategy vse0(i, j, t, e) is allowable.

We denote a strategy of the searcher by a distribution of searching resource {ϕ(i, t)},
as same as in Section 3. Considering the transition that the target in state (i, t, e) remains
surviving from the search operation at time t and goes to cell j at the next time t + 1, the
optimized value zse0(i, t, e) has the following recursive equation at any time t ∈ �T :

zse0(i, t, e) = max
{vse0 (i,j,t,e),j∈N(i,t,e)}

e−αiϕ(i,t)
∑

j∈N(i,t,e)

vse0(i, j, t, e)zse0(j, t + 1, e − µ(i, j)).

Taking account of the feasibility condition Vse0 of Eq. (15), we further transform the above
expression to

zse0(i, t, e) = max
j∈N(i,t,e)

e−αiϕ(i,t)zse0(j, t + 1, e − µ(i, j))(16)

≥ e−αiϕ(i,t)zse0(j, t + 1, e − µ(i, j)).

In a similar manner, we have the following equation during a time period T \�T with no
search operation:

zse0(i, t, e) = max
{vse0 (i,j,t,e),j∈N(i,t,e)}

∑
j∈N(i,t,e)

vse0(i, j, t, e)zse0(j, t + 1, e − µ(i, j))(17)

= max
j∈N(i,t,e)

zse0(j, t + 1, e − µ(i, j)) ≥ zse0(j, t + 1, e − µ(i, j)).

An equation zse0(i, T, e) = exp(−αiϕ(i, T )) holds at the last time T . Because the max-
imized non-detection probability of the (s, e0)-type target over an entire time points is
given by zse0(s, 1, e0) from its definition, the searcher wants to minimize its expectation∑

e0

∑
s g(e0)f(s)zse0(s, 1, e0) to obtain a minimax value (a maximin value for the original

payoff of the detection probability of target). From the discussion so far, we formulate the
minimax optimization into the following problem.

(PM0
S ) min

ϕ,z

∑
e0∈E0

g(e0)
∑
s∈S0

f(s)zse0(s, 1, e0)

s.t. zse0(i, t, e) ≥ zse0(j, t + 1, e − µ(i, j)),

j ∈ N(i, t, e), i ∈ K, t ∈ T \�T , e ∈ F e0 , s ∈ S0, e0 ∈ E0,

zse0(i, t, e) ≥ e−αiϕ(i,t)zse0(j, t + 1, e − µ(i, j)),

j ∈ N(i, t, e), i ∈ K, t ∈ �T \{T}, e ∈ F e0 , s ∈ S0, e0 ∈ E0,

zse0(i, T, e) = e−αiϕ(i,T ), i ∈ K, e ∈ F e0 , s ∈ S0, e0 ∈ E0,∑
i∈K

ϕ(i, t) = Φ(t), t ∈ �T ,

ϕ(i, t) ≥ 0, i ∈ K, t ∈ �T .
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We substitute wse0(i, t, e) ≡ − log zse0(i, t, e) for zse0(i, t, e) to have a formulation

(PM
S ) min

ϕ,w

∑
e0∈E0

g(e0)
∑
s∈S0

f(s) exp(−wse0(s, 1, e0))

s.t. wse0(i, t, e) ≤ wse0(j, t + 1, e − µ(i, j)),

j ∈ N(i, t, e), i ∈ K, t ∈ T \�T , e ∈ F e0 , s ∈ S0, e0 ∈ E0,

wse0(i, t, e) ≤ αiϕ(i, t) + wse0(j, t + 1, e − µ(i, j)),

j ∈ N(i, t, e), i ∈ K, t ∈ �T \{T}, e ∈ F e0 , s ∈ S0, e0 ∈ E0,

wse0(i, T, e) = αiϕ(i, T ), i ∈ K, e ∈ F e0 , s ∈ S0, e0 ∈ E0,∑
i∈K

ϕ(i, t) = Φ(t), t ∈ �T ,

ϕ(i, t) ≥ 0, i ∈ K, t ∈ �T .

Because zse0(i, t, e) lies in 0 < zse0(i, t, e) ≤ 1 from its definition, wse0(i, t, e) is nonnegative.
The formulation (PM

S ) is a convex minimization problem. In the formulation, there are
some variables with no effect on the optimal value, such as {wse0(i, 1, e), i �= s, e �= e0}. It
might be good to set these variables zeros. The setting corresponds to making variables zse0

1s in the formulation (PM0
S ). The variable setting also does not generate any constraint in

the problem and therefore they do not have any effect on the optimal value of (PM0
S ) at all.

Hereafter, we are going to derive an optimal Markov strategy of the target by us-
ing optimal solutions ϕ∗ and w∗

se0
already obtained from problem (PM

S ) and z∗se0
from

problem (PM0
S ). From the definition of z∗se0

(i, t, e), �z∗se0
(i, t, e) ≡ z∗se0

(i, t, e) exp(αiϕ
∗(i, t))

is the maximum non-detection probability after time t given by an optimal movement
of the target conditioned that the (s, e0)-type target is surviving in state (i, t, e) at the
EP of the time t. As the Markov movement strategy, we temporarily adopt variables
{�vse0(i, j, t, e), i, j ∈ K, t ∈ T \{T}, e ∈ F e0} other than variable vse0 for the expressional
sake. �vse0(i, j, t, e) indicates the probability that the (s, e0)-type target has not been de-
tected since the beginning, is in state (i, t, e) at the EP of time t and moves to cell j at
the next time t + 1. The movement strategy indirectly affects the following probabilities.
qse0(i, t, e) is the probability that the (s, e0)-type target reaches state (i, t, e) at the BP of
t with no detection. q′se0

(i, t, e) is the probability that the (s, e0)-type target reaches state
(i, t, e) at the EP of t with no detection.

Considering the state transition of the (s, e0)-type target, we have the following equa-
tions.

qse0(s, 1, e0) = 1, s ∈ S0, e0 ∈ E0,∑
i∈K

∑
e∈Fe0

qse0(i, 1, e) = 1, s ∈ S0, e0 ∈ E0,

q′se0
(i, t, e) = qse0(i, t, e), i ∈ K, t ∈ T \�T , e ∈ F e0 , s ∈ S0, e0 ∈ E0,

q′se0
(i, t, e) = qse0(i, t, e) exp(−αiϕ

∗(i, t)), i ∈ K, t ∈ �T , e ∈ F e0 , s ∈ S0, e0 ∈ E0,

qse0(i, t, e) =
∑

j∈N∗
e0

(i,t,e)

�vse0(j, i, t − 1, e + µ(j, i)),

i ∈ K, t ∈ T \{1}, e ∈ F e0 , s ∈ S0, e0 ∈ E0,

q′se0
(i, t, e) =

∑
j∈N(i,t,e)

�vse0(i, j, t, e), i ∈ K, t ∈ T \{T}, e ∈ F e0 , s ∈ S0, e0 ∈ E0.

Focusing a distribution of searching effort, {ϕ(i, t), i ∈ K}, at time t, we have an expression
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for the non-detection probability.

ht(ϕ) ≡
∑

e0∈E0

∑
s∈S0

∑
i∈K

∑
e∈Fe0

g(e0)f(s)qse0(i, t, e) exp(−αiϕ(i, t))�z∗se0
(i, t, e)

The optimal distribution {ϕ∗(i, t), i ∈ K} at time t must be an optimal solution of the
minimization problem of the above objective under constraints of

∑
i ϕ(i, t) = Φ(t) and

ϕ(i, t) ≥ 0 (i ∈ K). After defining a Lagrange function by

L(ϕ; λ, µ) ≡
∑

e0∈E0

∑
s∈S0

∑
i∈K

∑
e∈Fe0

g(e0)f(s)qse0(i, t, e) exp(−αiϕ(i, t))�z∗se0
(i, t, e)

+λ(t)

(∑
i∈K

ϕ(i, t) − Φ(t)

)
−

∑
i∈K

µ(i, t)ϕ(i, t),

we find KKT conditions as follows.

∂L

∂ϕ(i, t)
= −αi exp(−αiϕ(i, t))

∑
e0∈E0

∑
s∈S0

∑
e∈Fe0

g(e0)f(s)qse0(i, t, e)�z∗se0
(i, t, e)(18)

+λ(t) − µ(i, t) = 0, i ∈ K,

µ(i, t) ≥ 0, i ∈ K,(19)
µ(i, t)ϕ(i, t) = 0, i ∈ K,(20) ∑
i∈K

ϕ(i, t) = Φ(t),(21)

ϕ(i, t) ≥ 0, i ∈ K.(22)

We reconstruct conditions (18)∼(20) into equivalent conditions:

(i) If ϕ(i, t) > 0,

αi exp(−αiϕ(i, t))
∑

e0∈E0

∑
s∈S0

∑
e∈Fe0

g(e0)f(s)qse0(i, t, e)�z∗se0
(i, t, e) = λ(t).(23)

(ii) If ϕ(i, t) = 0,

αi

∑
e0∈E0

∑
s∈S0

∑
e∈Fe0

g(e0)f(s)qse0(i, t, e)�z∗se0
(i, t, e) ≤ λ(t).(24)

The total non-detection probability is expressed by
∑

e0,s,i,e g(e0)f(s)q′se0
(i, T, e) as well

as ht(ϕ). Now let us confirm the followings. First, an optimal Markov movement strategy
�v∗ maximizes the total non-dection probability. Secondly, if the conditions (23) and (24)
are valid for arbitrary i ∈ K and t ∈ �T , ϕ becomes an optimal response to the Markov
strategy �v. The discussion so far helps us formulate a linear programming problem to derive
an optimal Markov strategy �v∗ by using already-obtained ϕ∗ and �z∗.
(PM

T ) max�v,q,q′,λ

∑
e0∈E0

∑
s∈S0

∑

i∈K

∑
e∈Fe0

g(e0)f(s)q′se0
(i, T, e),

s.t. qse0(s, 1, e0) = 1, s ∈ S0, e0 ∈ E0,∑
i∈K

∑
e∈Fe0

qse0(i, 1, e) = 1, s ∈ S0, e0 ∈ E0,
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q′se0
(i, t, e) = qse0(i, t, e), i ∈ K, t ∈ T \�T , e ∈ F e0 , s ∈ S0, e0 ∈ E0,

q′se0
(i, t, e) = qse0(i, t, e) exp(−αiϕ

∗(i, t)), i ∈ K, t ∈ �T , e ∈ F e0 , s ∈ S0, e0 ∈ E0,

qse0(i, t, e) =
∑

j∈N∗
e0

(i,t,e)

�vse0(j, i, t − 1, e + µ(j, i)),

i ∈ K, t ∈ T \{1}, e ∈ F e0 , s ∈ S0, e0 ∈ E0,

q′se0
(i, t, e) =

∑
j∈N(i,t,e)

�vse0(i, j, t, e), i ∈ K, t ∈ T \{T}, e ∈ F e0 , s ∈ S0, e0 ∈ E0,

αi exp(−αiϕ
∗(i, t))

∑
e0∈E0

∑
s∈S0

∑
e∈Fe0

g(e0)f(s)qse0(i, t, e)�z∗se0
(i, t, e) = λ(t)

for (i, t) ∈ K × �T of ϕ∗(i, t) > 0,

αi

∑
e0∈E0

∑
s∈S0

∑
e∈Fe0

g(e0)f(s)qse0(i, t, e)�z∗se0
(i, t, e) ≤ λ(t)

for (i, t) ∈ K × �T of ϕ∗(i, t) = 0,

�vse0(i, j, t, e) ≥ 0, i, j ∈ K, t ∈ T \{T}, e ∈ F e0 , s ∈ S0, e0 ∈ E0,

�vse0(i, j, t, e) = 0, j /∈ N(i, t, e), i ∈ K, t ∈ T \{T}, e ∈ F e0 , s ∈ S0, e0 ∈ E0.

Using the optimal solution �v∗
se0

(i, j, t, e) of the problem (PM
T ), we can reconstruct an optimal

form of the original Markov strategy v∗se0
(i, j, t, e), as follows:

v∗se0
(i, j, t, e) =

�v∗se0
(i, j, t, e)∑

j∈N(i,t,e) �v∗
se0

(i, j, t, e)
.(25)

�v∗ includes the reachability of the target with no detection and there could be some cases
that the denominator of the formula is zero for some state (s, e0, i, t, e). The cases in-
dicate the impossibility of the state (s, e0, i, t, e) for the target in an optimal movement.
For the state (s, e0, i, t, e), we do not have to specify vse0(i, j, t, e) or any Markov strategy
vse0(i, j, t, e) is allowed.

5 Numerical Example In this section, we apply our methodology proposed in previous
sections to some numerical examples to analyze the features of optimal player’s strategy.

We consider a discrete cell space K = {1, . . . , 19}, shown by Fig. 1.
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Figure 1: A search space

We set a discrete time space by T = {1, 2, 3} and a searching period by T̂ = {2, 3}. A
searcher uses available searching resource Φ(2) = Φ(3) = 1 at each time point of T̂ . The
efficiency of detection of cell i, αi, is set as follows : α1 = 0.5, α2 = · · · = α7 = 0.6, α8 =
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widely spread its searching resource to all cells. The unchangingness of the optimal resource
distribution corresponds to an optimal distribution of target’s existence which also spreads
to all cells at early time for g(1) = 0 ∼ 0.5. We check it later, though. As seen in Fig. 3,
the searcher distributes larger amount of searching resource in smaller numbered cells at
t = 2 but in larger numbered cells at t = 3. This result explains that the searcher gradually
widens its focal area of search considering the target movement. Since cell s = 2 is an initial
target position as well as cell 1, larger amount of searching resource are distributed in its
neighboring cells 8, 9 and 19 at t = 2 compared to the other peripheral cells 10, · · · , 18.

Table 1: Optimal resource distribution in the case of g(1) = 0.6 ∼ 1.0
Cell \ g(1) g(1) = 0.6 g(1) = 0.7 g(1) = 0.8 g(1) = 0.9 g(1) = 1.0

t=2 t=3 t=2 t=3 t=2 t=3 t=2 t=3 t=2 t=3
1 .177 .031 .219 .027 .221 .025 .221 .025 .225 .021
2 .148 .026 .182 .022 .184 .021 .184 .021 .187 .017
3 .105 .069 .110 .094 .111 .094 .111 .094 .060 .144
4 .063 .110 .083 .122 .081 .124 .081 .124 .086 .119
5 .072 .102 .086 .119 .084 .120 .085 .120 .086 .119
6 .063 .110 .083 .122 .081 .124 .081 .124 .086 .119
7 .105 .069 .110 .094 .111 .094 .111 .094 .060 .144
8 .071 .077 .033 .143 .033 .143 .033 .142 .070 .106
9 .075 .074 .048 .128 .047 .128 .047 .128 .070 .106
10 .011 .065
11 .012 .064
12
13
14
15
16
17 .012 .064
18 .011 .065
19 .075 .074 .048 .128 .047 .128 .047 .128 .070 .106

Total 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

As seen from Table 1, as g(1) becomes larger and the target more likely has smaller
energy, the searcher distributes more resource in smaller areas in the vicinity of target’s
initial positions. There is no searching resource distributed in cells 12, · · · , 16 in the case
of g(1) = 0.6 and in cells 10, · · · , 18 in the case of g(1) ≥ 0.7. As g(1) becomes larger, the
possible area of target is getting smaller and the searcher carries out more effective search
by concentrating his resource on the smaller area.
(2) Features of optimal target’s strategy

Here we analyze optimal target strategy. Fig. 4 shows the probability distribution of
target’s existence weighted over all types of (s, e0) at time 2 and 3. The probability of tar-
get’s existence in cell i at time t is calculated by

∑
s∈S0

∑
e0∈E0

f(s)g(e0)
∑

ω∈Ω
+se0
it

π∗
se0

(ω).
¿From Fig. 4, we can pick up main features of the optimal target strategy: “diffusiveness”,
“uniformity” and “preference to ineffective cell of search”.
(i) Diffusiveness: The target possible area with positive probability quickly spreads to all
cells even at the early time t = 2 and the target distribution is kept stable although there is
a small bias based on efficiency parameter αi of each cell i. The quick diffusion and spread
of the target distribution over wider area is preferable for the target because it intervenes
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information. In some search operations such as anti-submarine warfare, it is conceivable
that an evading target refuels its energy to maintain its mobility like a submarine. To
investigate this problem, we require a model with an additional target strategy of energy
refueling.
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Abstract. This paper deals with a two-person zero-sum search game called a search
allocation game, in which a searcher distributes search resource to detect a target and
the target moves to evade the searcher. When the searcher starts his search operation
for the target, the target happens to stay at some position and have some energy for
movement. The target knows the initial state consisting of its initial position and initial
energy but the searcher does not. The problem is the game with private information
about the target’s initial state including initial energy. The payoff of the game is
the detection probability of the target. We use a convex programming formulation
and a linear programming one for the derivation of an equilibrium, which consists of
the value of the game, an optimal distribution of searching resource by the searcher
and an optimal movement strategy of the target. By some numerical examples, we
analyze players’ optimal strategies and evaluate the value of information about the
target initial state.
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Abstract. In this paper, the author introduce and study new notions of continuity,
compactness and stability in ditopological texture spaces based on the notions of semi-
g-open and semi-g-closed sets and some of their characterizations are obtained.

1 Introduction Textures and ditopological texture spaces were first introduced by L.
M. Brown as a point-based setting for the study fuzzy topology. The study of compactness
and stability in ditopological texture spaces was started to begin in [6]. In this paper,
we introduce and study the concepts of semi-g-bicontinuity, semi-g-bi-irresolute, semi-g-
compactness and semi-g-stability in ditopological texture spaces.

2 Preliminaries The following are some basic definitions of textures we will need later
on.
Texture space: [6] Let S be a set. Then ϕ ⊆ P (S) is called a texturing of S, and S is
said to be textured by ϕ if

1. (ϕ,⊆) is a complete lattice containing S and φ and for any index set I and Ai ∈ ϕ,
i ∈ I, the meet

∧
i∈I Ai and the join

∨
i∈I Ai in ϕ are related with the intersection

and union in P (S) by the equalities∧
i∈I Ai =

∩
i∈I Ai

for all I, while∨
i∈I Ai =

∪
i∈I Ai

for all finite I.

2. ϕ is completely distributive.

3. ϕ separates the points of S. That is, given s1 �= s2 in S we have L ∈ ϕ with s1 ∈ L,
s2 /∈ L, or L ∈ ϕ with s2 ∈ L, s1 /∈ L.

If S is textured by ϕ then (S, ϕ) is called a texture space, or simply a texture.
Complementation: [6] A mapping σ : ϕ → ϕ satisfying σ(σ(A)) = A, ∀A ∈ ϕ and
A ⊆ B ⇒ σ(B) ⊆ σ(A), ∀A,B ∈ ϕ is called a complementation on (S, ϕ) and (S, ϕ, σ) is
then said to be a complemented texture.

For a texture (S, ϕ), most properties are conveniently dened in terms of the p-sets

Ps =
∩
{A ∈ ϕ : s ∈ A}

and the q-sets,

Qs =
∨
{A ∈ ϕ : s /∈ A}.

Ditopology: [6] A dichotomous topology on a texture (S, ϕ), or ditopology for short, is a
pair (τ, k) of subsets of ϕ, where the set of open sets τ satisfies
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1. S, φ ∈ τ ,

2. G1, G2 ∈ τ ⇒ G1 ∩ G2 ∈ τ , and

3. Gi ∈ τ, i ∈ I ⇒
∨

i Gi ∈ τ ,

and the set of closed sets k satisfies

1. S, φ ∈ k,

2. K1, K2 ∈ k ⇒ K1 ∪ K2 ∈ k, and

3. Ki ∈ k, i ∈ I ⇒
∩

Ki ∈ k.

Hence a ditopology is essentially a ”topology” for which there is no a priori relation between
the open and closed sets.
For A ∈ ϕ we define the closure [A] and the interior ]A[ of A under (τ, k) by the equalities

[A] =
∩
{K ∈ k : A ⊆ K} and ]A[=

∨
{G ∈ τ : G ⊆ A}

We refer to τ as the topology and k as the cotopology of (τ, k).
If (τ, k) is a ditopology on a complemented texture (S, ϕ, σ), then we say that (τ, k)

is complemented if the equality k = σ(τ) is satisfied. In this study, a complemented
ditopological texture space is denoted by (S, ϕ, τ, k, σ).
In this case we have σ([A]) =]σ(A)[ and σ(]A[) = [σ(A)].

We denote by O(S, ϕ, τ, k), or when there can be no confusion by O(S), the set of open
sets in ϕ. Likewise, C(S, ϕ, τ, k), C(S) will denote the set of closed sets.

Let (S1, ϕ1) and (S2, ϕ2) be textures. In the following definition we consider the product
texture [3] P (S1) ⊗ ϕ2, and denote by P (s,t), Q(s,t), respectively the p-sets and q-sets for
the product texture (S1 × S2, P (S1) ⊗ ϕ2).
Direlation: [5] Let (S1, ϕ1) and (S2, ϕ2) be textures. Then

1. r ∈ P (S1) ⊗ ϕ2 is called a relation from (S1, ϕ1) to (S2, ϕ2) if it satisfies

R1 r �⊆ Q(s,t), Ps′ �⊆ Qs ⇒ r �⊆ Q(s′ ,t).

R2 r �⊆ Q(s,t) ⇒ ∃s
′ ∈ S1 such that Ps �⊆ Qs′ and r �⊆ Q(s′ ,t).

2. R ∈ P (S1) ⊗ ϕ2 is called a corelation from (S1, ϕ1) to (S2, ϕ2) if it satisfies

CR1 P (s,t) �⊆ R, Ps �⊆ Qs′ ⇒ P (s′ ,t) �⊆ R.
CR2 P (s,t) �⊆ R ⇒ ∃s

′ ∈ S1 such that Ps′ �⊆ Qs and P (s′ ,t) �⊆ R.

3. A pair (r,R), where r is a relation and R a corelation from (S1, ϕ1) to (S2, ϕ2) is
called a direlation from (S1, ϕ1) to (S2, ϕ2).

One of the most useful notions of (ditopological) texture spaces is that of difunction. A
difunction is a special type of direlation.
Difunctions: [5] Let (f, F ) be a direlation from (S1, ϕ1) to (S2, ϕ2). Then (f, F ) is called
a difunction from (S1, ϕ1) to (S2, ϕ2) if it satisfies the following two conditions.
DF1 For s, s

′ ∈ S1, Ps �⊆ Qs′ ⇒ ∃t ∈ S2 such that f �⊆ Q(s,t) and P (s′ ,t) �⊆ F .
DF2 For t, t

′ ∈ S2 and s ∈ S1, f �⊆ Q(s,t) and P (s,t′ ) �⊆ F ⇒ Pt′ �⊆ Qt.
Image and Inverse Image: [5] Let (f, F ) : (S1, ϕ1) → (S2, ϕ2) be a difunction.

1. For A ∈ ϕ1, the image f→A and the co-image F→A are defined by

f→A =
∩
{Qt : ∀s, f �⊆ Q(s,t) ⇒ A ⊆ Qs},

F→A =
∨
{Pt : ∀s, P (s,t) �⊆ F ⇒ Ps ⊆ A}.
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2. For B ∈ ϕ2, the inverse image f←B and the inverse co-image F←B are defined by

f←B =
∨
{Ps : ∀t, f �⊆ Q(s,t) ⇒ Pt ⊆ B},

F←B =
∩
{Qs : ∀t, P (s,t) �⊆ F ⇒ B ⊆ Qt}.

For a difunction, the inverse image and the inverse co-image are equal, but the image and
co-image are usually not.
Bicontinuity: [4] The difunction (f, F ) : (S1, ϕ1, τ1, k1) → (S2, ϕ2, τ2, k2) is called contin-
uous if B ∈ τ2 ⇒ F←B ∈ τ1, cocontinuous if B ∈ k2 ⇒ f←B ∈ k1, and bicontinuous if it is
both continuous and cocontinuous.
Surjective difunction: [5] Let (f, F ) : (S1, ϕ1) → (S2, ϕ2) be a difunction. Then (f, F )
is called surjective if it satisfies the condition
SUR. For t, t

′ ∈ S2, Pt �⊆ Qt′ ⇒ ∃s ∈ S1 with f �⊆ Q(s,t′ ) and P (s,t) �⊆ F .
If (f, F ) is surjective then F→(f←B) = B = f→(F←B) for all B ∈ ϕ2 [[5], Corollary

2.33]
[5] Let (f, F ) be a difunction between the complemented textures (S1, ϕ1, σ1) and

(S2, ϕ2, σ2). The complement (f, F )
′

= (F
′
, f

′
) of the difunction (f, F ) is a difunction,

where f
′

=
∩
{Q(s,t)|∃u, v with f �⊆ Qu,v, σ1(Qs) �⊆ Qu and Pv �⊆ σ2(Pt)} and F

′
=∨

{P (s,t)|∃u, v with Pu,v �⊆ F, Pu �⊆ σ1(Ps) and σ2(Qt) �⊆ Qv}. If (f, F ) = (f, F )
′
then the

difunction (f, F ) is called complemented.
[7] Let (S, ϕ, τ, k) be a ditopological texture space. A set A ∈ ϕ is called semi-open

(semi-closed) if A ⊆ []A[] (][A][⊆ A). We denote by SO(S, ϕ, τ, k), or when there can be
no confusion by SO(S), the set of semi-open sets in ϕ. Likewise, SC(S, ϕ, τ, k), or SC(S)
will denote the set of semi-closed sets. [2] Let (S, ϕ, τ, k) be a ditopological texture space.
A subset A of a texture ϕ is said to be generalized closed (g-closed for short) if A ⊆ G ∈ τ
then [A] ⊆ G. [2] Let (S, ϕ, τ, k, σ) be a complemented ditopological texture space. A
subset A of a texture ϕ is said to be generalized open (g-open for short) if σ(A) is g-closed.
We denote by gc(S, ϕ, τ, k), or when there can be no confusion by gc(S), the set of g-closed
sets in ϕ. Likewise, go(S, ϕ, τ, k, σ), or go(S) will denote the set of g-open sets.

[1] Let (S, ϕ, τ, k) be a ditopological texture space. A subset A of a texture ϕ is said to
be semi-g-closed if A ⊆ G ∈ SO(S) then [A] ⊆ G.

We denote by semigc(S, ϕ, τ, k), or when there can be no confusion by semigc(S), the
set of semi-g-closed sets in ϕ. [1] Let (S, ϕ, τ, k, σ) be a complemented ditopological texture
space. A subset A of a texture ϕ is called semi-g-open if σ(A) is semi-g-closed.

We denote by semigo(S, ϕ, τ, k, σ), or when there can be no confusion by semigo(S), the
set of semi-g-open sets in ϕ. [1] Let (S, ϕ, τ, k, σ) be a complemented ditopological texture
space. For A ∈ ϕ, we define the semi-g-closure [A]semi−g and the semi-g-interior ]A[semi−g

of A under (τ, k) by the equalities

[A]semi−g =
∩
{K ∈ semigc(S) : A ⊆ K} and ]A[semi−g=

∪
{G ∈ semigo(S) : G ⊆ A}.

3 semi-g-bicontinuous, semi-g-bi-irresolute, semi-g-compact and semi-g-stable
The difunction (f, F ) : (S1, ϕ1, τ1, k1, σ1) → (S2, ϕ2, τ2, k2, σ2) is called:

1. semi-g-continuous (semi-g-irresolute), if F←(G) ∈ semigo(S1), for every G ∈ O(S2)
(G ∈ semigo(S2)).

2. semi-g-cocontinuous (semi-g-co-irresolute), if f←(G) ∈ semigc(S1), for every G ∈ k2

(G ∈ semigc(S2)).

3. semi-g-bicontinuous, if it is semi-g-continuous and semi-g-cocontinuous.

4. semi-g-bi-irresolute, if it is semi-g-irresolute and semi-g-co-irresolute.
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Let (f, F ) : (S1, ϕ1, τ1, k1, σ1) → (S2, ϕ2, τ2, k2, σ2) be a difunction. Then:

1. Every continuous is semi-g-continuous.

2. Every cocontinuous is semi-g-cocontinuous.

3. Every semi-g-irresolute is semi-g-continuous.

4. Every semi-g-co-irresolute is semi-g-cocontinuous.

Clear. Let (f, F ) : (S1, ϕ1, τ1, k1, σ1) → (S2, ϕ2, τ2, k2, σ2) be a difunction. Then:

1. The following are equivalent:

(a) (f, F ) is semi-g-continuous.

(b) ]F→A[S2⊆ F→]A[S1
semi−g, ∀A ∈ ϕ1.

(c) f←]B[S2⊆]f←B[S1
semi−g, ∀B ∈ ϕ2.

2. The following are equivalent:

(a) (f, F ) is semi-g-cocontinuous.

(b) f→[A]S1
semi−g ⊆ [f→A]S2 , ∀A ∈ ϕ1.

(c) [F←B]S1
semi−g ⊆ F←[B]S2 , ∀B ∈ ϕ2.

We prove (1), leaving the dual proof of (2) to the interested reader.
(a) ⇒ (b). Let A ∈ ϕ1. From [[5], Theorem 2.24 (2 a)] and the definition of interior,

f←]F→(A)[S2⊆ f←(F→(A)) ⊆ A.

Since inverse image and co-image under a difunction is equal, f←]F→(A)[S2= F←]F→(A)[S2 .
Thus, f←]F→(A)[S2∈ semigo(S1), by semi-g-continuity. Hence

f←]F→(A)[S2⊆]A[S1
semi−g

and applying [[5], Theorem 2.24 (2 b)] gives

]F→(A)[S2⊆ F→(f←(]F→(A)[S2) ⊆ F→]A[S1
semi−g,

which is the required inclusion.
(b) ⇒ (c). Take B ∈ ϕ2. Applying inclusion (b) to A = f←(B) and using [[5], Theorem
2.24 (2 b)] gives

]B[S2⊆]F→f←(B)[S2⊆ F→]f←(B)[S1
semi−g.

Hence, we have f←]B[S2⊆ f←F→]f←(B)[S1
semi−g⊆]f←(B)[S1

semi−g by [[5], Theorem 2.24 (2
a)].
(c) ⇒ (a). Applying (c) for B ∈ O(S2) gives

f←(B) = f←]B[S2⊆]f←(B)[S1
semi−g,

so F←(B) = f←(B) =]f←(B)[S1
semi−g∈ semigo(S1). Hence, (f, F ) is semi-g-continuous.

Let (f, F ) : (S1, ϕ1, τ1, k1, σ1) → (S2, ϕ2, τ2, k2, σ2) be a difunction. Then:

1. The following are equivalent:
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(a) (f, F ) is semi-g-irresolute.
(b) ]F→A[S2

semi−g⊆ F→]A[S1
semi−g, ∀A ∈ ϕ1.

(c) f←]B[S2
semi−g⊆]f←B[S1

semi−g, ∀B ∈ ϕ2.

2. The following are equivalent:

(a) (f, F ) is semi-g-co-irresolute.
(b) f→[A]S1

semi−g ⊆ [f→A]S2
semi−g, ∀A ∈ ϕ1.

(c) [F←B]S1
semi−g ⊆ F←[B]S2

semi−g, ∀B ∈ ϕ2.

We prove (1), leaving the dual proof of (2) to the interested reader.
(a) ⇒ (b). Take A ∈ ϕ1. Then

f←]F→A[S2
semi−g⊆ f←(F→A) ⊆ A

by [[5], Theorem 2.24 (2 a)]. Now f←]F→A[S2
semi−g= F←]F→A[S2

semi−g∈ semigo(S1)
by semi-g-irresolute, so f←]F→A[S2

semi−g⊆]A[S1
semi−g and applying [[5], Theorem 2.24 (2 b)]

gives

]F→A[S2
semi−g⊆ F→(f←]F→A[S2

semi−g⊆ F→]A[S1
semi−g,

which is the required inclusion.
(b) ⇒ (c). Take B ∈ ϕ2. Applying inclusion (b) to A = f←B and using [[5], Theorem 2.24
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]B[S2
semi−g⊆]F→(f←B)[S2

semi−g⊆ F→]f←B[S1
semi−g.

Hence, f←]B[S2
semi−g⊆ f←F→]f←B[S1

semi−g⊆]f←B[S2
semi−g by [[5], Theorem 2.24 (2 a)].
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f←B = f←]B[S2
semi−g⊆]f←B[S1

semi−g,

so F←B = f←B =]f←B[S1
semi−g∈ semigo(S1). Hence, (f, F ) is semi-g-irresolute.

Let (Sj , ϕj , τj , kj , σj), for j ∈ {1, 2}, be complemented ditopology and (f, F ) : (S1, ϕ1) →
(S2, ϕ2) be complemented difunction. If (f, F ) is semi-g-continuous then (f, F ) is semi-g-
cocontinuous. Since (f, F ) is complemented, (F

′
, f

′
) = (f, F ). From [[5], Lemma 2.20],

σ1((f
′
)←(B)) = f←(σ2(B)) and σ1((F

′
)←(B)) = F←(σ2(B)) for all B ∈ ϕ2. The proof is

clear from these equalities.
Let (Sj , ϕj , τj , kj , σj), j = 1, 2, complemented ditopology and (f, F ) : (S1, ϕ1) →

(S2, ϕ2) be complemented difunction. If (f, F ) is semi-g-irresolute then (f, F ) is semi-g-
co-irresolute. Clear. A complemented ditopological texture space (S, ϕ, τ, k, σ) is called
semi-g-compact if every cover of S by semi-g-open has a finite subcover. Here we recall that
C = {Aj : j ∈ J}, Aj ∈ ϕ is a cover of S if

∨
C = S.

Let (S, ϕ, τ, k, σ) be a complemented ditopological texture space. Then:

1. Every semi-g-compact is compact.

2. Every g-compact is semi-g-compact.

Clear. If (S, ϕ, τ, k, σ) is semi-g-compact and L = {Fj : j ∈ J} is a family of semi-g-closed
sets with ∩L = φ, then ∩{Fj : j ∈ J

′} = φ for J
′ ⊆ J finite. Suppose that (S, ϕ, τ, k, σ)

is semi-g-compact and let L = {Fj : j ∈ J} be a family of semi-g-closed sets with ∩L = φ.
Clearly C = {σ(Fj) : j ∈ J} is a family of semi-g-open sets. Moreover,
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Abstract. In this paper, the author introduce and study new notions of continuity,
compactness and stability in ditopological texture spaces based on the notions of semi-
g-open and semi-g-closed sets and some of their characterizations are obtained.

1 Introduction Textures and ditopological texture spaces were first introduced by L.
M. Brown as a point-based setting for the study fuzzy topology. The study of compactness
and stability in ditopological texture spaces was started to begin in [6]. In this paper,
we introduce and study the concepts of semi-g-bicontinuity, semi-g-bi-irresolute, semi-g-
compactness and semi-g-stability in ditopological texture spaces.

2 Preliminaries The following are some basic definitions of textures we will need later
on.
Texture space: [6] Let S be a set. Then ϕ ⊆ P (S) is called a texturing of S, and S is
said to be textured by ϕ if

1. (ϕ,⊆) is a complete lattice containing S and φ and for any index set I and Ai ∈ ϕ,
i ∈ I, the meet

∧
i∈I Ai and the join

∨
i∈I Ai in ϕ are related with the intersection

and union in P (S) by the equalities∧
i∈I Ai =

∩
i∈I Ai

for all I, while∨
i∈I Ai =

∪
i∈I Ai

for all finite I.

2. ϕ is completely distributive.

3. ϕ separates the points of S. That is, given s1 �= s2 in S we have L ∈ ϕ with s1 ∈ L,
s2 /∈ L, or L ∈ ϕ with s2 ∈ L, s1 /∈ L.

If S is textured by ϕ then (S, ϕ) is called a texture space, or simply a texture.
Complementation: [6] A mapping σ : ϕ → ϕ satisfying σ(σ(A)) = A, ∀A ∈ ϕ and
A ⊆ B ⇒ σ(B) ⊆ σ(A), ∀A,B ∈ ϕ is called a complementation on (S, ϕ) and (S, ϕ, σ) is
then said to be a complemented texture.

For a texture (S, ϕ), most properties are conveniently dened in terms of the p-sets

Ps =
∩
{A ∈ ϕ : s ∈ A}

and the q-sets,

Qs =
∨
{A ∈ ϕ : s /∈ A}.

Ditopology: [6] A dichotomous topology on a texture (S, ϕ), or ditopology for short, is a
pair (τ, k) of subsets of ϕ, where the set of open sets τ satisfies
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∨
C =

∨
{σ(Fj) : j ∈ J} = σ(∩{Fj : j ∈ J}) = σ(φ) = S,

and so we have J
′ ⊆ J finite with

∨
{σ(Fj) : j ∈ J

′} = S. Hence ∩{Fj : j ∈ J
′} = φ.

Let (f, F ) : (S1, ϕ1, τ1, k1, σ1) → (S2, ϕ2, τ2, k2, σ2) be an semi-g-irresolute difunction. If
A ∈ ϕ1 is semi-g-compact then f→A ∈ ϕ2 is semi-g-compact. Take f→A ⊆

∨
j∈J Gj ,

where Gj ∈ semigo(S2), j ∈ J . Now by [[5], Theorem 2.24 (2 a) and Corollary 2.12 (2)] we
have

A ⊆ F←(f→A) ⊆ F←(
∨

j∈J Gj) =
∨

j∈J F←Gj .

Also, F←Gj ∈ semigo(S1) because (f, F ) is semi-g-irresolute. So by the semi-g-compactness
of A there exists J

′ ⊆ J finite such that A ⊆ ∪j∈J′ F←Gj . Hence

f→A ⊆ f→(∪j∈J′ F←Gj) = ∪j∈J ′ f→(F←Gj) ⊆ ∪j∈J ′ Gj

by [[5], Corollary 2.12 (2) and Theorem 2.24 (2 b)]. This establishes that f→A is semi-g-
compact.

Let (f, F ) : (S1, ϕ1, τ1, k1, σ1) → (S2, ϕ2, τ2, k2, σ2) be a surjective semi-g-irresolute di-
function. Then, if (S1, ϕ1, τ1, k1, σ1) is semi-g-compact so is (S2, ϕ2, τ2, k2, σ2). This
follows by taking A = S1 in Theorem 3 and noting that f→S1 = f→(F←S2) = S2 by [[5],
Proposition 2.28 (1 c) and Corollary 2.33 (1)].

A complemented ditopological texture space (S, ϕ, τ, k, σ) is called semi-g-stable if every
semi-g-closed set F ∈ ϕ\{S} is semi-g-compact in S. Let (S, ϕ, τ, k, σ) be a complemented
ditopological texture space. Then:

1. Every semi-g-stable is stable.

2. Every g-stable is semi-g-stable.

Clear. Let (S, ϕ, τ, k, σ) be semi-g-stable. If G is an semi-g-open set with G �= φ and
D = {Fj : j ∈ J} is a family of semi-g-closed sets with ∩j∈JFj ⊆ G then ∩j∈J ′ Fj ⊆ G for
a finite subsets J

′
of J . Let (S, ϕ, τ, k, σ) be semi-g-stable, let G be an semi-g-open set

with G �= φ and D = {Fj : j ∈ J} be a family of semi-g-closed sets with ∩j∈JFj ⊆ G. Set
K = σ(G). Then K is semi-g-closed and satisfies K �= S. Hence K is semi-g-compact. Let
C = {σ(F )|F ∈ D}. Since ∩D ⊆ G we have K ⊆

∨
C, that is C is an semi-g-open cover of

K. Hence there exists F1, F2, ..., Fn ∈ D so that

K ⊆ σ(F1) ∪ σ(F2) ∪ ... ∪ σ(Fn) = σ(F1 ∩ F2 ∩ ... ∩ Fn).

This gives F1∩F2∩...∩Fn ⊆ σ(K) = G, so ∩j∈J ′ Fj ⊆ G for a finite subsets J
′
= {1, 2, ..., n}

of J . Let (S1, ϕ1, τ1, k1, σ1), (S2, ϕ2, τ2, k2, σ2) be two complemented ditopological
texture spaces with (S1, ϕ1, τ1, k1, σ1) is semi-g-stable, and (f, F ) : (S1, ϕ1, τ1, k1, σ1) →
(S2, ϕ2, τ2, k2, σ2) be an semi-g-bi-irresolute surjective difunction. Then (S2, ϕ2, τ2, k2, σ2) is
semi-g-stable. Take K ∈ semigc(S2) with K �= S2. Since (f, F ) is semi-g-co-irresolute, so
f←K ∈ semigc(S1). Let us prove that f←K �= S1. Assume the contrary. Since f←S2 = S1,
by [[5], Lemma 2.28 (1 c)] we have f←S2 ⊆ f←K, whence S2 ⊆ K by [[5], Corollary 2.33 (1
ii)] as (f, F ) is surjective. This is a contradiction, so f←K �= S1. Hence f←(K) is semi-g-
compact in (S1, ϕ1, τ1, k1, σ1) by semi-g-stability. As (f, F ) is semi-g-irresolute, f→(f←K)
is semi-g-compact for the ditopology (τ2, k2) by Theorem 3, and by [[5], Corollary 2.33 (1)]
this set is equal to K. This establishes that (S2, ϕ2, τ2, k2, σ2) is semi-g-stable.
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∨
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and union in P (S) by the equalities∧
i∈I Ai =

∩
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for all I, while∨
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and the q-sets,
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Ditopology: [6] A dichotomous topology on a texture (S, ϕ), or ditopology for short, is a
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Abstract. In the present paper, the order preserving property for fuzzy vectors
is investigated, and some classes of fuzzy vectors, which have the order preserving
property and seem to be useful for applications, are constructed and proposed.

1 Introduction and preliminaries The concept of fuzzy vectors is an extension of the
concept of fuzzy numbers, and it is useful for representing uncertain multidimensional quan-
tities. Some properties of fuzzy vectors are investigated in [8]. Fuzzy linear programming
problems involving oblique fuzzy vectors and fuzzy mathematical programming problems
involving fuzzy vectors are considered in [2] and [7], respectively. When an ordering be-
tween any two fuzzy vectors is defined, the order preserving property for fuzzy vectors make
fuzzy mathematical programming problems involving fuzzy vectors easy to solve. The order
preserving property for fuzzy vectors is considered in the present paper. In the following,
some basic notations and definitions are given.

For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[ = {x ∈ R : a ≤ x < b},
]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}. In addition, we set
Rn

+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let N be the set of all natural

numbers. For S ⊂ Rn, we denote the closure, interior, and complement of S by cl(S),
int(S), and Sc, respectively.

A fuzzy set s̃ on Rn is identified with its membership function s̃ : Rn → [0, 1]. Let
F(Rn) be the set of all fuzzy sets on Rn. Let s̃ ∈ F(Rn). For α ∈ ]0, 1], the set [s̃]α = {x ∈
Rn : s̃(x) ≥ α} is called the α-level set of s̃. The 0-level set of s̃ is defined as [s̃]0 = cl({x ∈
Rn : s̃(x) > 0}), and [s̃]0 is called the support of s̃. The fuzzy set s̃ is said to be closed if
s̃ is upper semicontinuous on Rn. The fuzzy set s̃ is closed if and only if [s̃]α is closed for
any α ∈ ]0, 1]. The fuzzy set s̃ is said to be convex if s̃(λx + (1 − λ)y) ≥ min{s̃(x), s̃(y)}
for any x, y ∈ Rn and any λ ∈ [0, 1], that is, s̃ is quasiconcave on Rn. The fuzzy set s̃ is
convex if and only if [s̃]α is convex for any α ∈ ]0, 1].

We define fuzzy vectors.

Definition 1 (See [7]). A fuzzy set s̃ ∈ F(Rn) is called a fuzzy vector on Rn if s̃ satisfies
the following conditions:

(i) there exists a unique vector c ∈ Rn, called the center of s̃, such that s̃(c) = 1,

(ii) s̃ is a closed fuzzy set, that is, s̃ is upper semicontinuous on Rn,

(iii) s̃ is a convex fuzzy set, that is, s̃ is quasiconcave on Rn,

(iv) [s̃]0 is bounded.

Let FV(Rn) be the set of all fuzzy vectors on Rn. In [7], a fuzzy mathematical pro-
gramming problem with a fuzzy vector-valued objective function is considered. Assume
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that an ordering between any two fuzzy vectors is defined based on an ordering between
two α-level sets of the fuzzy vectors for any α ∈ [0, 1]. Then, the fuzzy mathematical
programming problem is equivalent to a mathematical programming problem with infinite
many set-valued objective functions. If the fuzzy vector-valued objective function has the
order preserving property, then the fuzzy mathematical programming problem is equivalent
to a mathematical programming problem with finite many set-valued objective functions.
Therefore, the order preserving property of the fuzzy vector-valued objective function make
the fuzzy mathematical programmig problem easy to solve. The order preserving property
of a fuzzy vector-valued function is equivalent to the order preserving property of a class of
fuzzy vectors.

In the present paper, the order preserving property for fuzzy vectors is investigated,
and some classes of fuzzy vectors, which have the order preserving property and seem to be
useful for applications, are constructed and proposed.

For a crisp set S ⊂ Rn, the function cS : Rn → {0, 1} defined as

cS(x) =
{

1 if x ∈ S,
0 if x /∈ S

for each x ∈ Rn is called the indicator function of S. A fuzzy set s̃ ∈ F(Rn) can be
represented as

s̃ = sup
α∈]0,1]

αc[es]α , (1)

which is known as the decomposition theoren; see, for example, [1]. In order to construct
fuzzy sets from classes of crisp sets, we set

S(Rn) = {{Sα}α∈]0,1] : Sα ⊂ Rn, α ∈ ]0, 1], and Sβ ⊃ Sγ for β, γ ∈ ]0, 1] with β < γ},

and define a mapping M : S(Rn) → F(Rn) as

M({Sα}α∈]0,1]) = sup
α∈]0,1]

αcSα (2)

for each {Sα}α∈]0,1] ∈ S(Rn). When s̃ = M({Sα}α∈]0,1]) for s̃ ∈ F(Rn) and {Sα}α∈]0,1] ∈
S(Rn), s̃ is called the fuzzy set generated by {Sα}α∈]0,1], and {Sα}α∈]0,1] is called the
generator of s̃. For {Sα}α∈]0,1] ∈ S(Rn) and x ∈ Rn, it follows that

M({Sα}α∈]0,1])(x) = sup
α∈]0,1]

αcSα
(x) = sup{α ∈ ]0, 1] : x ∈ Sα},

where sup ∅ = 0. Based on the mapping M defined by (2), the decomposition theorem (1)
can be represented as s̃ = M({[s̃]α}α∈]0,1]) for s̃ ∈ F(Rn).

The following proposition shows a relationship between level sets of a fuzzy set and the
generator of the fuzzy set.

Proposition 1 (See [3]). Let {Sα}α∈]0,1] ∈ S(Rn), and let s̃ = M({Sα}α∈]0,1]). Then,
[s̃]α =

⋂
β∈]0,α[ Sβ for any α ∈ ]0, 1].

The remainder of the present paper is organized as follows. In Section 2, orderings of
fuzzy sets are defined, and their properties are investigated. In Section 3, the concept of the
order preserving property for fuzzy vectors is introduced. Then, in order to construct some
classes of fuzzy vectors which have the order preserving property, properties of orderings of
crisp sets are investigated when the crisp sets vary parametrically. In Section 4, some classes
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of fuzzy vectors which have the order preserving property are constructed and proposed.
Finally, conclusions are presented in Section 5.

2 Ordering of fuzzy sets In this section, orderings of fuzzy sets are defined, and their
properties are investigated.

In order to define orderings of fuzzy sets based on level sets of the fuzzy sets, orderings
of crisp sets are defined as follows.

Definition 2 (See [5, 6, 7]). Let A,B ⊂ Rn.

(i) We write A ≤S B or B ≥S A if B ⊂ A + Rn
+ and A ⊂ B + Rn

−.

(ii) We write A <S B or B >S A if B ⊂ A + int(Rn
+) and A ⊂ B + int(Rn

−).

The binary relation ≤S in Definition 2 is a pseudo order on the set of all subsets of Rn.
The following proposition shows fundamental properties of ≤S and <S in Definition 2.

Proposition 2 (See [4]). Let A,B ⊂ Rn.

(i) The relation A ≤S B holds if and only if the following two conditions (i-1) and (i-2) are
satisfied: (i-1) for any y ∈ B, there exists x ∈ A such that x ≤ y; (i-2) for any x ∈ A, there
exists y ∈ B such that x ≤ y.

(ii) The relation A <S B holds if and only if the following two conditions (ii-1) and (ii-2)
are satisfied: (ii-1) for any y ∈ B, there exists x ∈ A such that x < y; (ii-2) for any x ∈ A,
there exists y ∈ B such that x < y.

(iii) A ≤S A.

(iv) If A <S B, then A ≤S B.

(v) It does not always hold that A <S B even if A ≤S B.

(vi) If A = ∅ and B �= ∅, then A �≤S B, B �≤S A, A �<S B, and B �<S A.

(vii) A <S A and A �<S A are both possible.

(viii) ∅ ≤S ∅, ∅ <S ∅, Rn ≤S Rn, Rn <S Rn.

Based on the orderings of crisp sets given in Definition 2 and level sets of fuzzy sets,
orderings of fuzzy sets are defined as follows.

Definition 3 (See [4]). Let ã, b̃ ∈ F(Rn).

(i) We write ã � b̃ or b̃ � ã if [ã]α ≤S [̃b]α for any α ∈ [0, 1].

(ii) We write ã ≺ b̃ or b̃ � ã if [ã]α <S [̃b]α for any α ∈ [0, 1].

The binary relation � in Definition 3 is a pseudo order on F(Rn), and � is called the
fuzzy max order. In [7], for ã, b̃ ∈ FV(Rn), �M and ≺M are defined as follows:

• we write ã �M b̃ or b̃ �M ã if inf([̃b]α) ⊂ inf([ã]α) + Rn
+ and sup([ã]α) ⊂ sup([̃b]α) +

Rn
− for any α ∈ [0, 1],

• we write ã ≺M b̃ or b̃ �M ã if inf([̃b]α) ⊂ inf([ã]α)+int(Rn
+) and sup([ã]α) ⊂ sup([̃b]α)

+ int(Rn
−) for any α ∈ [0, 1],
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Abstract. In the present paper, the order preserving property for fuzzy vectors
is investigated, and some classes of fuzzy vectors, which have the order preserving
property and seem to be useful for applications, are constructed and proposed.

1 Introduction and preliminaries The concept of fuzzy vectors is an extension of the
concept of fuzzy numbers, and it is useful for representing uncertain multidimensional quan-
tities. Some properties of fuzzy vectors are investigated in [8]. Fuzzy linear programming
problems involving oblique fuzzy vectors and fuzzy mathematical programming problems
involving fuzzy vectors are considered in [2] and [7], respectively. When an ordering be-
tween any two fuzzy vectors is defined, the order preserving property for fuzzy vectors make
fuzzy mathematical programming problems involving fuzzy vectors easy to solve. The order
preserving property for fuzzy vectors is considered in the present paper. In the following,
some basic notations and definitions are given.

For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[ = {x ∈ R : a ≤ x < b},
]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}. In addition, we set
Rn

+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let N be the set of all natural

numbers. For S ⊂ Rn, we denote the closure, interior, and complement of S by cl(S),
int(S), and Sc, respectively.

A fuzzy set s̃ on Rn is identified with its membership function s̃ : Rn → [0, 1]. Let
F(Rn) be the set of all fuzzy sets on Rn. Let s̃ ∈ F(Rn). For α ∈ ]0, 1], the set [s̃]α = {x ∈
Rn : s̃(x) ≥ α} is called the α-level set of s̃. The 0-level set of s̃ is defined as [s̃]0 = cl({x ∈
Rn : s̃(x) > 0}), and [s̃]0 is called the support of s̃. The fuzzy set s̃ is said to be closed if
s̃ is upper semicontinuous on Rn. The fuzzy set s̃ is closed if and only if [s̃]α is closed for
any α ∈ ]0, 1]. The fuzzy set s̃ is said to be convex if s̃(λx + (1 − λ)y) ≥ min{s̃(x), s̃(y)}
for any x, y ∈ Rn and any λ ∈ [0, 1], that is, s̃ is quasiconcave on Rn. The fuzzy set s̃ is
convex if and only if [s̃]α is convex for any α ∈ ]0, 1].

We define fuzzy vectors.

Definition 1 (See [7]). A fuzzy set s̃ ∈ F(Rn) is called a fuzzy vector on Rn if s̃ satisfies
the following conditions:

(i) there exists a unique vector c ∈ Rn, called the center of s̃, such that s̃(c) = 1,

(ii) s̃ is a closed fuzzy set, that is, s̃ is upper semicontinuous on Rn,

(iii) s̃ is a convex fuzzy set, that is, s̃ is quasiconcave on Rn,

(iv) [s̃]0 is bounded.

Let FV(Rn) be the set of all fuzzy vectors on Rn. In [7], a fuzzy mathematical pro-
gramming problem with a fuzzy vector-valued objective function is considered. Assume
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where inf(S) = {x ∈ S : there does not exist y ∈ S such that y ≤ x and y �= x} and sup(S)
= {x ∈ S : there does not exist y ∈ S such that y ≥ x and y �= x} for S ⊂ Rn. The binary
relation �M is an extension of the fuzzy max order for fuzzy numbers given in [9].

The following proposition shows that � and ≺ in Definition 3 coincide with �M and ≺M

on FV(Rn), respectively. Therefore, � and ≺ are extensions of �M and ≺M , respectively.

Proposition 3. Let ã, b̃ ∈ FV(Rn).

(i) ã � b̃ if and only if ã �M b̃.

(ii) ã ≺ b̃ if and only if ã ≺M b̃.

Proof. Let α ∈ [0, 1]. We set A = [ã]α and B = [̃b]α. Since A and B are nonempty
compact convex sets, it follows that inf(A) �= ∅, sup(A) �= ∅, inf(B) �= ∅, and sup(B) �= ∅.
In order to show (i) and (ii), it is sufficient to show that (i-1) B ⊂ A + Rn

+ if and only
if inf(B) ⊂ inf(A) + Rn

+, (i-2) A ⊂ B + Rn
− if and only if sup(A) ⊂ sup(B) + Rn

−, (ii-1)
B ⊂ A + int(Rn

+) if and only if inf(B) ⊂ inf(A) + int(Rn
+), and (ii-2) A ⊂ B + int(Rn

−) if
and only if sup(A) ⊂ sup(B) + int(Rn

−). We show only (i-1). (i-2), (ii-1), and (ii-2) can
be shown in the similar way to (i-1). If B ⊂ A + Rn

+, then inf(B) ⊂ B ⊂ A + Rn
+ ⊂

inf(A) + Rn
+ + Rn

+ = inf(A) + Rn
+. If inf(B) ⊂ inf(A) + Rn

+, then B ⊂ inf(B) + Rn
+ ⊂

inf(A) + Rn
+ + Rn

+ = inf(A) + Rn
+ ⊂ A + Rn

+. �

3 Order preserving property In this section, the concept of the order preserving prop-
erty for fuzzy vectors is introduced. Then, in order to construct some classes of fuzzy
vectors which have the order preserving property, properties of the orderings of crisp sets
are investigated when the crisp sets vary parametrically.

The orderings of two fuzzy sets in Definition 3 are defined by infinite many orderings of
level sets of the fuzzy sets. If finite many orderings of level sets of two fuzzy sets imply the
orderings of the fuzzy sets, then it makes the orderings of fuzzy sets easy to deal with for
applications. Such property is called the order preserving property, and defined for fuzzy
vectors as follows.

Definition 4. (i) Fuzzy vectors ã, b̃ ∈ FV(Rn) are said to be order preserving on Rn if
[ã]0 ≤S [̃b]0 and [ã]1 ≤S [̃b]1 imply ã � b̃, or if [ã]0 ≥S [̃b]0 and [ã]1 ≥S [̃b]1 imply ã � b̃.

(ii) A class of fuzzy vectors, G ⊂ FV(Rn), is said to be order preserving on Rn if any ã, b̃ ∈ G
are order preserving on Rn.

Definition 5. (i) Fuzzy vectors ã, b̃ ∈ FV(Rn) are said to be strictly order preserving on
Rn if [ã]0 <S [̃b]0 and [ã]1 <S [̃b]1 imply ã ≺ b̃, or if [ã]0 >S [̃b]0 and [ã]1 >S [̃b]1 imply
ã � b̃.

(ii) A class of fuzzy vectors, G ⊂ FV(Rn), is said to be strictly order preserving on Rn if
any ã, b̃ ∈ G are strictly order preserving on Rn.

In the following, in order to construct some classes of fuzzy vectors which have the order
preserving property, properties of the orderings of crisp sets are investigated when the crisp
sets vary parametrically.

The following proposition shows properties of the orderings of crisp sets when the crisp
sets vary parametrically.

Proposition 4. Let A,B ⊂ Rn, and let a, b ∈ Rn. In addition, let r : [0, 1] → [0, 1] be a

Scientiae Mathematicae Japonicae　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　1

ORDER PRESERVING PROPERTY FOR FUZZY VECTORS

MASAMICHI KON

Received January 20, 2015

Abstract. In the present paper, the order preserving property for fuzzy vectors
is investigated, and some classes of fuzzy vectors, which have the order preserving
property and seem to be useful for applications, are constructed and proposed.

1 Introduction and preliminaries The concept of fuzzy vectors is an extension of the
concept of fuzzy numbers, and it is useful for representing uncertain multidimensional quan-
tities. Some properties of fuzzy vectors are investigated in [8]. Fuzzy linear programming
problems involving oblique fuzzy vectors and fuzzy mathematical programming problems
involving fuzzy vectors are considered in [2] and [7], respectively. When an ordering be-
tween any two fuzzy vectors is defined, the order preserving property for fuzzy vectors make
fuzzy mathematical programming problems involving fuzzy vectors easy to solve. The order
preserving property for fuzzy vectors is considered in the present paper. In the following,
some basic notations and definitions are given.

For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[ = {x ∈ R : a ≤ x < b},
]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}. In addition, we set
Rn

+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let N be the set of all natural

numbers. For S ⊂ Rn, we denote the closure, interior, and complement of S by cl(S),
int(S), and Sc, respectively.

A fuzzy set s̃ on Rn is identified with its membership function s̃ : Rn → [0, 1]. Let
F(Rn) be the set of all fuzzy sets on Rn. Let s̃ ∈ F(Rn). For α ∈ ]0, 1], the set [s̃]α = {x ∈
Rn : s̃(x) ≥ α} is called the α-level set of s̃. The 0-level set of s̃ is defined as [s̃]0 = cl({x ∈
Rn : s̃(x) > 0}), and [s̃]0 is called the support of s̃. The fuzzy set s̃ is said to be closed if
s̃ is upper semicontinuous on Rn. The fuzzy set s̃ is closed if and only if [s̃]α is closed for
any α ∈ ]0, 1]. The fuzzy set s̃ is said to be convex if s̃(λx + (1 − λ)y) ≥ min{s̃(x), s̃(y)}
for any x, y ∈ Rn and any λ ∈ [0, 1], that is, s̃ is quasiconcave on Rn. The fuzzy set s̃ is
convex if and only if [s̃]α is convex for any α ∈ ]0, 1].

We define fuzzy vectors.

Definition 1 (See [7]). A fuzzy set s̃ ∈ F(Rn) is called a fuzzy vector on Rn if s̃ satisfies
the following conditions:

(i) there exists a unique vector c ∈ Rn, called the center of s̃, such that s̃(c) = 1,

(ii) s̃ is a closed fuzzy set, that is, s̃ is upper semicontinuous on Rn,

(iii) s̃ is a convex fuzzy set, that is, s̃ is quasiconcave on Rn,

(iv) [s̃]0 is bounded.

Let FV(Rn) be the set of all fuzzy vectors on Rn. In [7], a fuzzy mathematical pro-
gramming problem with a fuzzy vector-valued objective function is considered. Assume
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monotone decreasing function. Assume that r(0) = 1 and r(1) = 0. We set F (α) = r(α)A
+ a and G(α) = r(α)B + b for each α ∈ [0, 1].

(i) If F (0) ≤S G(0) and F (1) ≤S G(1), then F (α) ≤S G(α) for any α ∈ [0, 1].

(ii) If F (0) <S G(0) and F (1) <S G(1), then F (α) <S G(α) for any α ∈ [0, 1].

Proof. We show only (i). (ii) can be shown in the similar way to (i). ¿From Proposition
2, if A = ∅ or B = ∅, then the conclusion is obtained. Suppose that A �= ∅ and B �= ∅. Let
α ∈ [0, 1]. Since F (0) ≤S G(0) and F (1) ≤S G(1), it follows that B + b ⊂ A + a + Rn

+,
A + a ⊂ B + b + Rn

−, and a ≤ b. Though it needs to show that (i-1) r(α)B + b ⊂ r(α)A
+ a + Rn

+ and (i-2) r(α)A + a ⊂ r(α)B + b + Rn
−, we show only (i-1). (i-2) can be shown

in the similar way to (i-1). Let x ∈ r(α)B + b. Then, there exists y ∈ B such that x =
r(α)y + b. Since a ≤ b, there exists d1 ∈ Rn

+ such that b = a + d1. Since B + b ⊂ A
+ a + Rn

+, there exist z ∈ A and d2 ∈ Rn
+ such that y + b = z + a + d2. Therefore, we

have x = r(α)y + b = r(α)(y + b) + (1 − r(α))b = r(α)(z + a + d2) + (1 − r(α))(a + d1)
= r(α)z + a + (r(α)d2 + (1 − r(α))d1) ∈ r(α)A + a + Rn

+. �

The following proposition shows sufficient conditions for generated fuzzy sets by the
mapping M defined by (2) to be fuzzy vectors.

Proposition 5. Let A ⊂ Rn be a convex set containing the origin, and let a ∈ Rn. In
addition, let r : [0, 1] → [0, 1] be a monotone decreasing function. We set F (α) = r(α)A+a
for each α ∈ [0, 1], and s̃ = M({F (α)}α∈]0,1]).

(i) s̃ is a convex fuzzy set.

(ii) If A is a closed set, then s̃ is a closed fuzzy set.

(iii) If A is a compact set, r(1) = 0, and r is left-continuous at 1, then s̃ ∈ FV(Rn).

Proof. (i) and (ii) follow from Proposition 1. We show (iii). Since A is a closed convex
set, s̃ is a closed convex fuzzy set from (i) and (ii).

We show that {x ∈ Rn : s̃(x) > 0} is bounded. For x ∈ Rn \ (A + a), since F (α) ⊂
F (0) = r(0)A+a ⊂ A+a for any α ∈ [0, 1], it follows that s̃(x) = supα∈]0,1] αcF (α)(x) = 0.
Since (A + a)c ⊂ {x ∈ Rn : s̃(x) = 0}, it follows that {x ∈ Rn : s̃(x) > 0} ⊂ A + a.
Therefore, {x ∈ Rn : s̃(x) > 0} is bounded.

For x ∈ Rn, we show that s̃(x) = 1 if and only if x = a. Since a = r(α)0 + a ∈
r(α)A + a = F (α) for any α ∈ [0, 1], it follows that s̃(a) = supα∈]0,1] αcF (α)(a) = 1. For
b ∈ Rn, we show that b �= a implies s̃(b) < 1. Since A is bounded, there exists L > 0
such that A ⊂ BL = {x ∈ Rn : ‖x‖ ≤ L}, where ‖ · ‖ is the Euclidean norm. Since
r(α)A ⊂ r(α)BL for any α ∈ [0, 1], it follows that F (α) = r(α)A + a ⊂ r(α)BL + a for any
α ∈ [0, 1]. We set β = ‖b − a‖. Since r(1) = 0 and r is left-continuous at 1, there exists
δ > 0 such that |α − 1| < δ and α ∈ [0, 1] imply r(α) < β

L . Thus, there exists α0 ∈ ]0, 1[
such that α ∈ [α0, 1] implies b /∈ r(α)BL + a, and then b /∈ F (α) = r(α)A + a for any
α ∈ [α0, 1]. Therefore, we have s̃(b) = supα∈]0,1] αcF (α)(b) ≤ α0 < 1. �

The following proposition shows a property of the ordering of crisp sets decreasing
parametrically.

Proposition 6. Let F (β), G(β) ⊂ Rn, β ∈ ]0, 1] be closed sets. Assume that F (γ) ⊃
F (δ) and G(γ) ⊃ G(δ) for γ, δ ∈ ]0, 1] with γ ≤ δ, and that ∪β∈]0,1]F (β) and ∪β∈]0,1]G(β)
are bounded. Let α ∈ ]0, 1]. Assume that ∩β∈]0,α[F (β) �= ∅ and ∩β∈]0,α[G(β) �= ∅. If F (β)
≤S G(β) for any β ∈ ]0, α[, then ∩β∈]0,α[F (β) ≤S ∩β∈]0,α[G(β).
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is investigated, and some classes of fuzzy vectors, which have the order preserving
property and seem to be useful for applications, are constructed and proposed.

1 Introduction and preliminaries The concept of fuzzy vectors is an extension of the
concept of fuzzy numbers, and it is useful for representing uncertain multidimensional quan-
tities. Some properties of fuzzy vectors are investigated in [8]. Fuzzy linear programming
problems involving oblique fuzzy vectors and fuzzy mathematical programming problems
involving fuzzy vectors are considered in [2] and [7], respectively. When an ordering be-
tween any two fuzzy vectors is defined, the order preserving property for fuzzy vectors make
fuzzy mathematical programming problems involving fuzzy vectors easy to solve. The order
preserving property for fuzzy vectors is considered in the present paper. In the following,
some basic notations and definitions are given.

For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[ = {x ∈ R : a ≤ x < b},
]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}. In addition, we set
Rn

+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let N be the set of all natural

numbers. For S ⊂ Rn, we denote the closure, interior, and complement of S by cl(S),
int(S), and Sc, respectively.

A fuzzy set s̃ on Rn is identified with its membership function s̃ : Rn → [0, 1]. Let
F(Rn) be the set of all fuzzy sets on Rn. Let s̃ ∈ F(Rn). For α ∈ ]0, 1], the set [s̃]α = {x ∈
Rn : s̃(x) ≥ α} is called the α-level set of s̃. The 0-level set of s̃ is defined as [s̃]0 = cl({x ∈
Rn : s̃(x) > 0}), and [s̃]0 is called the support of s̃. The fuzzy set s̃ is said to be closed if
s̃ is upper semicontinuous on Rn. The fuzzy set s̃ is closed if and only if [s̃]α is closed for
any α ∈ ]0, 1]. The fuzzy set s̃ is said to be convex if s̃(λx + (1 − λ)y) ≥ min{s̃(x), s̃(y)}
for any x, y ∈ Rn and any λ ∈ [0, 1], that is, s̃ is quasiconcave on Rn. The fuzzy set s̃ is
convex if and only if [s̃]α is convex for any α ∈ ]0, 1].

We define fuzzy vectors.

Definition 1 (See [7]). A fuzzy set s̃ ∈ F(Rn) is called a fuzzy vector on Rn if s̃ satisfies
the following conditions:

(i) there exists a unique vector c ∈ Rn, called the center of s̃, such that s̃(c) = 1,

(ii) s̃ is a closed fuzzy set, that is, s̃ is upper semicontinuous on Rn,

(iii) s̃ is a convex fuzzy set, that is, s̃ is quasiconcave on Rn,

(iv) [s̃]0 is bounded.

Let FV(Rn) be the set of all fuzzy vectors on Rn. In [7], a fuzzy mathematical pro-
gramming problem with a fuzzy vector-valued objective function is considered. Assume
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Proof. For any β ∈ ]0, α[, since F (β) ≤S G(β), it follows that G(β) ⊂ F (β) + Rn
+ and

F (β) ⊂ G(β) + Rn
−. Though it needs to show that (i) ∩β∈]0,α[G(β) ⊂ ∩β∈]0,α[F (β) + Rn

+

and (ii) ∩β∈]0,α[F (β) ⊂ ∩β∈]0,α[G(β) + Rn
−, we show only (i). (ii) can be shown in the

similar way to (i). Since G(β) ⊂ F (β) + Rn
+ for any β ∈ ]0, α[, it follows that ∩β∈]0,α[G(β)

⊂ ∩β∈]0,α[

(
F (β) + Rn

+

)
. Thus, it is sufficient to show that ∩β∈]0,α[

(
F (β) + Rn

+

)
⊂ ∩β∈]0,α[

F (β) + Rn
+. Let x ∈ ∩β∈]0,α[

(
F (β) + Rn

+

)
. For each β ∈ ]0, α[, there exist yβ ∈ F (β)

and dβ ∈ Rn
+ such that x = yβ + dβ . Fix any {βk} ⊂ ]0, α[ with βk → α. Since {yβk

} ⊂
∪β∈]0,1]F (β) is bounded, without loss of generality, suppose that yβk

→ y0 for some y0 ∈
Rn. Then, it follows that dβk

= x − yβk
→ x − y0 ∈ Rn

+. For any β ∈ ]0, α[, there exists
k0 ∈ N such that k ≥ k0 implies βk ∈ ]β, α[, and it follows that {yβk

}k≥k0 ⊂ F (β), and
that yβk

→ y0 ∈ F (β) since F (β) is a closed set. Since y0 ∈ F (β) for any β ∈ ]0, α[, we
have x = y0 + (x − y0) ∈ ∩β∈]0,α[F (β) + Rn

+. �

The following proposition shows a property of 0-level sets of generated fuzzy sets by the
mapping M defined by (2).

Proposition 7. Let A ⊂ Rn be a compact convex set containing the origin, and let a
∈ Rn. In addition, let r : [0, 1] → [0, 1] be a monotone decreasing function. Assume that
r(0) = 1, and that r is right-continuous at 0. We set F (α) = r(α)A + a for each α ∈ [0, 1],
and s̃ = M

(
{F (α)}α∈]0,1]

)
. Then, A + a = [s̃]0.

Proof. Since F (α) = r(α)A + a ⊂ F (0) = A + a for any α ∈ [0, 1], it follows that s̃(x)
= 0 for x ∈ Rn \ (A + a). Since (A + a)c ⊂ {x ∈ Rn : s̃(x) = 0}, it follows that A +
a ⊃ {x ∈ Rn : s̃(x) > 0}. Therefore, we have A + a ⊃ [s̃]0 since A + a is a closed set.

Let x0 ∈ A + a. Then, there exists y0 ∈ A such that x0 = y0 + a. If y0 = 0, then x0

= a ∈ [s̃]0. Thus, suppose that y0 �= 0. We set λ0 = max{λ ≥ 0 : λy0 ∈ A} ≥ 1.
Suppose that λ0 > 1, and fix any sufficiently small δ > 0. Since r is right-continuous at

0, α ∈ [0, δ[ implies 1− r(α) < 1− 1
λ0

. For any α ∈ [0, δ[, it follows that 0 < 1
r(α)λ0

< 1 and
r(α)λ0y0 ∈ r(α)A, and that y0 = 1

r(α)λ0
·r(α)λ0y0 ∈ r(α)A, and that x0 = y0+a ∈ r(α)A+

a = F (α), and that cF (α)(x0) = 1. Therefore, since s̃(x0) = supα∈]0,1] αcF (α)(x0) ≥ δ > 0,
we have x0 ∈ [s̃]0.

Suppose that λ0 = 1. By the same arguments as in the case λ0 > 1, it can be seen that
s̃(λy0 + a) > 0 for any λ ∈ ]0, 1[. Choose any {λk} ⊂ ]0, 1[ with λk → 1. Since {λky0 + a}
⊂ {x ∈ Rn : s̃(x) > 0}, we have λky0 + a → y0 + a = x0 ∈ [s̃]0. �

The following proposition shows a property of crisp sets decreasing parametrically.

Proposition 8. Let A ⊂ Rn be a compact convex set containing the origin, and let a ∈
Rn. In addition, let r : [0, 1] → [0, 1] be a monotone decreasing function. We set F (β) =
r(β)A+a for each β ∈ [0, 1]. If r is left-continuous at α ∈ ]0, 1], then F (α) = ∩β∈]0,α[F (β).

Proof. It follows that F (α) = r(α)A + a ⊂ ∩β∈]0,α[(r(β)A + a) = ∩β∈]0,α[F (β). In order
to show that r(α)A + a ⊃ ∩β∈]0,α[(r(β)A + a), suppose that x0 ∈ ∩β∈]0,α[(r(β)A + a) and
x0 /∈ r(α)A + a. Since x0 ∈ ∩β∈]0,α[(r(β)A + a) ⊂ A + a, it follows that x0 − a ∈ A.
Since x0 /∈ r(α)A + a, it follows that x0 − a /∈ r(α)A. Thus, it follows that r(α) < 1 and
x0 − a �= 0. We set λ0 = max{λ ≥ 0 : λ(x0 − a) ∈ A} ≥ 1. Then, since x0 − a ∈ 1

λ0
A

and x0 − a /∈ r(α)A, it follows that 1
λ0

> r(α). Fix any sufficiently small δ > 0. Since r is
left-continuous at α, β ∈ ]α− δ, α] implies r(β)− r(α) < 1

λ0
− r(α). Fix any β0 ∈ ]α− δ, α[.

Then, it follows that r(β0) < 1
λ0

. If x0 − a /∈ r(β0)A, then it follows that x0 /∈ r(β0)A + a,
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Abstract. In the present paper, the order preserving property for fuzzy vectors
is investigated, and some classes of fuzzy vectors, which have the order preserving
property and seem to be useful for applications, are constructed and proposed.

1 Introduction and preliminaries The concept of fuzzy vectors is an extension of the
concept of fuzzy numbers, and it is useful for representing uncertain multidimensional quan-
tities. Some properties of fuzzy vectors are investigated in [8]. Fuzzy linear programming
problems involving oblique fuzzy vectors and fuzzy mathematical programming problems
involving fuzzy vectors are considered in [2] and [7], respectively. When an ordering be-
tween any two fuzzy vectors is defined, the order preserving property for fuzzy vectors make
fuzzy mathematical programming problems involving fuzzy vectors easy to solve. The order
preserving property for fuzzy vectors is considered in the present paper. In the following,
some basic notations and definitions are given.

For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[ = {x ∈ R : a ≤ x < b},
]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}. In addition, we set
Rn

+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let N be the set of all natural

numbers. For S ⊂ Rn, we denote the closure, interior, and complement of S by cl(S),
int(S), and Sc, respectively.

A fuzzy set s̃ on Rn is identified with its membership function s̃ : Rn → [0, 1]. Let
F(Rn) be the set of all fuzzy sets on Rn. Let s̃ ∈ F(Rn). For α ∈ ]0, 1], the set [s̃]α = {x ∈
Rn : s̃(x) ≥ α} is called the α-level set of s̃. The 0-level set of s̃ is defined as [s̃]0 = cl({x ∈
Rn : s̃(x) > 0}), and [s̃]0 is called the support of s̃. The fuzzy set s̃ is said to be closed if
s̃ is upper semicontinuous on Rn. The fuzzy set s̃ is closed if and only if [s̃]α is closed for
any α ∈ ]0, 1]. The fuzzy set s̃ is said to be convex if s̃(λx + (1 − λ)y) ≥ min{s̃(x), s̃(y)}
for any x, y ∈ Rn and any λ ∈ [0, 1], that is, s̃ is quasiconcave on Rn. The fuzzy set s̃ is
convex if and only if [s̃]α is convex for any α ∈ ]0, 1].

We define fuzzy vectors.

Definition 1 (See [7]). A fuzzy set s̃ ∈ F(Rn) is called a fuzzy vector on Rn if s̃ satisfies
the following conditions:

(i) there exists a unique vector c ∈ Rn, called the center of s̃, such that s̃(c) = 1,

(ii) s̃ is a closed fuzzy set, that is, s̃ is upper semicontinuous on Rn,

(iii) s̃ is a convex fuzzy set, that is, s̃ is quasiconcave on Rn,

(iv) [s̃]0 is bounded.

Let FV(Rn) be the set of all fuzzy vectors on Rn. In [7], a fuzzy mathematical pro-
gramming problem with a fuzzy vector-valued objective function is considered. Assume

2010 Mathematics Subject Classification. Primary 03E72; Secondary 90C70.
Key words and phrases. order preserving property, fuzzy vector, fuzzy max order.

90



DEGREE OF NON-CONVEXITY 7

and that x0 /∈ ∩β∈]0,α[(r(β)A + a), wihch is a contradiction. Thus, in order to show that
x0 − a /∈ r(β0)A, suppose that x0 − a ∈ r(β0)A. Then, since λ0(x0 − a) ∈ λ0r(β0)A and
λ0r(β0) < 1, for sufficiently small ε > 0, it follows that (1+ε)λ0(x0−a) ∈ (1+ε)λ0r(β0)A ⊂
A and λ0 < (1 + ε)λ0, which contradict the definition of λ0. �

4 Main results In this section, based on the mapping M defined by (2), some classes of
fuzzy vectors which have the order preserving property are constructed and proposed.

The following proposition shows sufficient conditions for generated fuzzy vectors by the
mapping M defined by (2) to have the order preserving property.

Proposition 9. Let A,B ⊂ Rn be compact convex sets containing the origin, and let a, b
∈ Rn. In addition, let r : [0, 1] → [0, 1] be a monotone decreasing function. Assume that
r(0) = 1 and r(1) = 0, and that r is right-continuous at 0 and left-continuous at 1. We set
F (α) = r(α)A + a and G(α) = r(α)B + b for each α ∈ [0, 1], and ã = M

(
{F (α)}α∈]0,1]

)

and b̃ = M
(
{G(α)}α∈]0,1]

)
.

(i) If [ã]0 ≤S [̃b]0 and [ã]1 ≤S [̃b]1, then ã � b̃.

(ii) Assume that r is left-continuous. If [ã]0 <S [̃b]0 and [ã]1 <S [̃b]1, then ã ≺ b̃.

Proof. (i) It follows that A + a ≤S B + b from Proposition 7, and that a ≤ b from
Proposition 5. ¿From Proposition 4, it follows that r(α)A + a ≤S r(α)B + b for any
α ∈ [0, 1]. Since [ã]α = ∩β∈]0,α[(r(β)A+a) and [̃b]α = ∩β∈]0,α[(r(β)B +b) for any α ∈ ]0, 1]
from Proposition 1, it follows that [ã]α ≤S [̃b]α for any α ∈ [0, 1] from Proposition 6.
Therefore, we have ã � b̃.

(ii) It follows that A + a <S B + b from Proposition 7, and that a < b from Proposition
5. ¿From Proposition 4, it follows that r(α)A + a <S r(α)B + b for any α ∈ [0, 1]. Since
[ã]α =

⋂
β∈]0,α[(r(β)A + a) = r(α)A + a and [̃b]α =

⋂
β∈]0,α[(r(β)B + b) = r(α)B + b for

any α ∈ ]0, 1] from Propositions 1 and 8, it follows that [ã]α <S [̃b]α for any α ∈ [0, 1].
Therefore, we have ã ≺ b̃. �

In the following, some classes of fuzzy vectors which have the order preserving property
are constructed based on the obtained results. Let C(Rn) be the set of all compact convex
subsets of Rn containing the origin, and let R be the set of all monotone decreasing functions
from [0, 1] to [0, 1]. We set

R1 = {r ∈ R : r(0) = 1, r(1) = 0,

and r is right-continuous at 0 and left-continuous at 1 },
R2 = {r ∈ R1 : r is left-continuous }.

In addition, we set

Sr(Rn) = {{r(α)A + a}α∈]0,1] : A ∈ C(Rn), a ∈ Rn},
FVr

1(Rn) = {M({Sα}α∈]0,1]) : {Sα}α∈]0,1] ∈ Sr(Rn)} = M(Sr(Rn))

for each r ∈ R1, and

FVr
2(Rn) = {M({Sα}α∈]0,1]) : {Sα}α∈]0,1] ∈ Sr(Rn)} = M(Sr(Rn))

for each r ∈ R2.
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Abstract. In the present paper, the order preserving property for fuzzy vectors
is investigated, and some classes of fuzzy vectors, which have the order preserving
property and seem to be useful for applications, are constructed and proposed.

1 Introduction and preliminaries The concept of fuzzy vectors is an extension of the
concept of fuzzy numbers, and it is useful for representing uncertain multidimensional quan-
tities. Some properties of fuzzy vectors are investigated in [8]. Fuzzy linear programming
problems involving oblique fuzzy vectors and fuzzy mathematical programming problems
involving fuzzy vectors are considered in [2] and [7], respectively. When an ordering be-
tween any two fuzzy vectors is defined, the order preserving property for fuzzy vectors make
fuzzy mathematical programming problems involving fuzzy vectors easy to solve. The order
preserving property for fuzzy vectors is considered in the present paper. In the following,
some basic notations and definitions are given.

For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[ = {x ∈ R : a ≤ x < b},
]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}. In addition, we set
Rn

+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let N be the set of all natural

numbers. For S ⊂ Rn, we denote the closure, interior, and complement of S by cl(S),
int(S), and Sc, respectively.

A fuzzy set s̃ on Rn is identified with its membership function s̃ : Rn → [0, 1]. Let
F(Rn) be the set of all fuzzy sets on Rn. Let s̃ ∈ F(Rn). For α ∈ ]0, 1], the set [s̃]α = {x ∈
Rn : s̃(x) ≥ α} is called the α-level set of s̃. The 0-level set of s̃ is defined as [s̃]0 = cl({x ∈
Rn : s̃(x) > 0}), and [s̃]0 is called the support of s̃. The fuzzy set s̃ is said to be closed if
s̃ is upper semicontinuous on Rn. The fuzzy set s̃ is closed if and only if [s̃]α is closed for
any α ∈ ]0, 1]. The fuzzy set s̃ is said to be convex if s̃(λx + (1 − λ)y) ≥ min{s̃(x), s̃(y)}
for any x, y ∈ Rn and any λ ∈ [0, 1], that is, s̃ is quasiconcave on Rn. The fuzzy set s̃ is
convex if and only if [s̃]α is convex for any α ∈ ]0, 1].

We define fuzzy vectors.

Definition 1 (See [7]). A fuzzy set s̃ ∈ F(Rn) is called a fuzzy vector on Rn if s̃ satisfies
the following conditions:

(i) there exists a unique vector c ∈ Rn, called the center of s̃, such that s̃(c) = 1,

(ii) s̃ is a closed fuzzy set, that is, s̃ is upper semicontinuous on Rn,

(iii) s̃ is a convex fuzzy set, that is, s̃ is quasiconcave on Rn,

(iv) [s̃]0 is bounded.

Let FV(Rn) be the set of all fuzzy vectors on Rn. In [7], a fuzzy mathematical pro-
gramming problem with a fuzzy vector-valued objective function is considered. Assume
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involving fuzzy vectors are considered in [2] and [7], respectively. When an ordering be-
tween any two fuzzy vectors is defined, the order preserving property for fuzzy vectors make
fuzzy mathematical programming problems involving fuzzy vectors easy to solve. The order
preserving property for fuzzy vectors is considered in the present paper. In the following,
some basic notations and definitions are given.
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]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[ = {x ∈ R : a < x < b}. In addition, we set
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+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let N be the set of all natural

numbers. For S ⊂ Rn, we denote the closure, interior, and complement of S by cl(S),
int(S), and Sc, respectively.

A fuzzy set s̃ on Rn is identified with its membership function s̃ : Rn → [0, 1]. Let
F(Rn) be the set of all fuzzy sets on Rn. Let s̃ ∈ F(Rn). For α ∈ ]0, 1], the set [s̃]α = {x ∈
Rn : s̃(x) ≥ α} is called the α-level set of s̃. The 0-level set of s̃ is defined as [s̃]0 = cl({x ∈
Rn : s̃(x) > 0}), and [s̃]0 is called the support of s̃. The fuzzy set s̃ is said to be closed if
s̃ is upper semicontinuous on Rn. The fuzzy set s̃ is closed if and only if [s̃]α is closed for
any α ∈ ]0, 1]. The fuzzy set s̃ is said to be convex if s̃(λx + (1 − λ)y) ≥ min{s̃(x), s̃(y)}
for any x, y ∈ Rn and any λ ∈ [0, 1], that is, s̃ is quasiconcave on Rn. The fuzzy set s̃ is
convex if and only if [s̃]α is convex for any α ∈ ]0, 1].

We define fuzzy vectors.

Definition 1 (See [7]). A fuzzy set s̃ ∈ F(Rn) is called a fuzzy vector on Rn if s̃ satisfies
the following conditions:

(i) there exists a unique vector c ∈ Rn, called the center of s̃, such that s̃(c) = 1,

(ii) s̃ is a closed fuzzy set, that is, s̃ is upper semicontinuous on Rn,

(iii) s̃ is a convex fuzzy set, that is, s̃ is quasiconcave on Rn,

(iv) [s̃]0 is bounded.

Let FV(Rn) be the set of all fuzzy vectors on Rn. In [7], a fuzzy mathematical pro-
gramming problem with a fuzzy vector-valued objective function is considered. Assume
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Abstract. An industry which is recently applied to revenue management is restau-
rant. The revenue management for restaurant is called restaurant revenue manage-
ment. The restaurant revenue management has a problem by which state space enor-
mously expands because of multi-dimensional resources and customers. This problem
gives rise to some practical difficulty: computation complexity increases, required data
size for optimal policy becomes larger and etc.. This paper presents a sufficient condi-
tion for substantially reducing data size of optimal policy.

1 Introduction There are many scenes at which a business manager controls the limited
resources for variable demand to aim to maximize his(her) company’s benefit. For companies
with fixed capacity, dealing with perishable products and large fixed cost, how to manage
the demand (e.g. setting variable terms and prices for each product and etc.) significantly
affects their benefit. This management is widely known as revenue management or yield
management. Traditional applications of the revenue management are airline, hotel and car
rental industries.

In theory of the revenue management, there is a problem in which threshold price is
solved by using dynamic programming. This problem is used to decide whether a revenue
manager should accept for a request of reservation in a certain period to maximize revenue.
This control by using the threshold price is called bid price control. Lee and Hersh(1993)
suggested a bid price control model for airline industry with single resource, multiple book-
ing classes and multiple seat booking. Further, they indicated monotonicity of threshold
price for their model. However, the model did not include assumptions of cancellation and
overbooking. Subramanian et al.(1999) considered a model with cancellation and overbook-
ing, and added some assumptions to declare monotonicity of threshold price. Researches,
problems, traditional models, and a glossary of revenue management for airline can be found
in McGill and Ryzin(1999).

Recently, for non-traditional industries, the bid price control models have been widely
researched. Chiang, Chen and Xu(2007) reviewed recent application and techniques of rev-
enue management. One of the non-traditional industries which is applicable to the theory
of revenue management is restaurant industry. The revenue management for restaurant
is called restaurant revenue management. The bid price control model for the restaurant
revenue management additionally need to decide which table a party should be allocated if
the party should be accepted. The policy is called seating policy in Guerriero et al.(2014).
There are not many researches which deals with the seating policy. Bertsimas and Sh-
ioda(2003) presented some models: an integer programming, a stochastic programming,
and an approximate dynamic programming model. Guerriero et al.(2014) suggested a dy-
namic programming model with no waiting line, reservation, and meal duration by using the
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paper shows a sufficient condition for reducing varieties of optimal policy, and its structural
property. In section 3, the structural property is confirmed by numerical examples.

2 A model and its property

2.1 Conditions and notation To simplify a model, some conditions are given to parties
and tables. The conditions are that a composition of the tables can not be modified to suit
the arriving party, size of the parties can not be divided to suit the tables, and the size of the
parties does not exceed a maximum of the tables in the restaurant. Further, tables of the
same size and seats are not distinguished. Suppose sets P = {1, · · · , P} and I = {1, · · · , I}
for notations. The notations about the party and the table are shown as

• P : the number of different party sizes,

• I: the number of different table sizes,

• gp: the party size for p ∈ P ,

• ti: the table size for i ∈ I,

• mi: the number of the table for i ∈ I.

To simplify, we regard p ∈ P as a party with party size gp, and i ∈ I as a table with
table size ti, respectively. Throughout this paper, a party p and a table i are indexed as
g1 < g2 < · · · < gp and t1 < t2 < · · · < ti, respectively. In addition, subsets for p ∈ P and
i ∈ I are indicated as

• Pi = {p ∈ P : gp ≤ ti}, i ∈ I: the party set which is able to be allocated to a table
i ∈ I with the number of the different party sizes P i,

• Ip = {i ∈ I : gp ≤ ti}, p ∈ P : the table set to which a party p ∈ P is able to be
allocated with the number of the different table sizes Ip.

The opening horizon is sufficiently divided into the N + 1 periods n = 0, 1, · · · , N . One
event of the customer’s arrival or departure occurs in the period n. A period N corresponds
to opening of the restaurant and a period 0 corresponds to closing of the restaurant. Parties
arrive according to time-dependent Poisson process while the restaurant is opening. All of
them are walk-in customers, without reservation. Departure process of the parties depends
on not their length of staying time, but the state of restaurant and the period. Notations
about the state space, the arrival and departure rate, and expected revenue are shown as

• Xi = {xi = (xi
p) : xi

p ≥ 0, p ∈ Pi ;
∑

p xp ≤ mi}, i ∈ I : state space for a table i ∈ I

where xi
p is the number of parties who are sitting in a table i ∈ Ip,

• Xn = {X = (x1| · · · |xI) : xi ∈ Xi, i ∈ I;
∑

i

∑
p xi

p ≤ N − n}, n = 0, · · ·N : state
space for a restaurant with a submatrix xi in a period n,

• rn
p : the expected revenue for a party p ∈ P in a period n,

• λn
p (X): the arrival rate for a party p ∈ P and a state X ∈ Xn in a period n, where

λn
p (X) > 0,

• qn
ip(X): the departure rate for a party p ∈ Pi where i ∈ I, and a state X ∈ Xn in a

period n,
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the demand (e.g. setting variable terms and prices for each product and etc.) significantly
affects their benefit. This management is widely known as revenue management or yield
management. Traditional applications of the revenue management are airline, hotel and car
rental industries.

In theory of the revenue management, there is a problem in which threshold price is
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This control by using the threshold price is called bid price control. Lee and Hersh(1993)
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• λn
0 : a probability of a null event in period n.

Suppose that |Xn| corresponds to the number of elements of the state space Xn for n.
Referring p.15 in Stanley(1997), we can obtain a maximum of |Xn| for n: χ = maxn{|Xn|}
as

χ =
I∏

i=1

(
mi + P i

P i

)
.(1)

The eq.(1) is helpful to roughly estimate size of state space for a restaurant. From the
assumption of the arrival and the departure process in a period n, the equation

P∑
p=1

λn
p (X) +

P∑
p=1

∑
i∈Ip

qn
ip(X) + λn

0 (X) = 1(2)

is obtained.

2.2 A formulation of model Let Un(X) be the maximal expected revenue from oper-
ating over periods n to 0. Firstly, Suppose the maximal expected revenue in a general form
as follows.

Un(X) =
P∑

p=1

λn
p (X)

{(
rn
p − min

i∈Ip

∆i
pUn−1(X)

)+

+ Un−1(X)

}

+
P∑

p=1

∑
i∈Ip

qn
ip(X)Un−1(X − ei

p)

+


1 −

P∑
p=1

λn
p (X) −

P∑
p=1

∑
i∈Ip

qn
ip(X)


 Un−1(X),(3)

X ∈ Xn, n ≥ 1,

where ei
p = (x1| · · · |xI) in which xi

p = 1 and otherwise 0, (a)+ = max{a, 0}, and ∆i
pUn(X) =

Un(X) − Un(X + ei
p). Boundary conditions are that Un(X) = −∞ for X /∈ Xn, and

U0(X) = 0 for X ∈ X0. The mini∈Ip ∆i
pUn(X) means a threshold price for a party

p ∈ Pi , such that the party p who arrives for the state X in n is acceptable if rn
p

exceeds the threshold price mini∈Ip ∆i
pUn(X) and not acceptable if rn

p is less than the
threshold price mini∈Ip ∆i

pUn(X)(See pp.31-32 in Talluri and Ryzin(2005).). ∆i
pUn(X) is

an opportunity cost of accepting the party p for the table i ∈ Ip in n + 1. Note that

λn
0 (X) = 1−

∑P
p=1 λn

p (X)−
∑P

p=1

∑
i∈Ip

qn
ip(X) from eq.(2). The first member of the right

hand in (3) indicates a expected value in a case where a party arrives at a restaurant in
a period n. If a p is accepted in the table i ∈ Ip, then a expected value for the case is
rn
p − ∆i

pUn−1(X) in n. The second member indicates a expected value in a case where a
party sitting in a restaurant leaves in a period n. The third member is for a case where no
event occurs in a period n. From eq.(3), optimal policy is indicated as below.

Optimal policy: An optimal policy for a party p ∈ P and a state X ∈ Xn is that if
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mously expands because of multi-dimensional resources and customers. This problem
gives rise to some practical difficulty: computation complexity increases, required data
size for optimal policy becomes larger and etc.. This paper presents a sufficient condi-
tion for substantially reducing data size of optimal policy.

1 Introduction There are many scenes at which a business manager controls the limited
resources for variable demand to aim to maximize his(her) company’s benefit. For companies
with fixed capacity, dealing with perishable products and large fixed cost, how to manage
the demand (e.g. setting variable terms and prices for each product and etc.) significantly
affects their benefit. This management is widely known as revenue management or yield
management. Traditional applications of the revenue management are airline, hotel and car
rental industries.

In theory of the revenue management, there is a problem in which threshold price is
solved by using dynamic programming. This problem is used to decide whether a revenue
manager should accept for a request of reservation in a certain period to maximize revenue.
This control by using the threshold price is called bid price control. Lee and Hersh(1993)
suggested a bid price control model for airline industry with single resource, multiple book-
ing classes and multiple seat booking. Further, they indicated monotonicity of threshold
price for their model. However, the model did not include assumptions of cancellation and
overbooking. Subramanian et al.(1999) considered a model with cancellation and overbook-
ing, and added some assumptions to declare monotonicity of threshold price. Researches,
problems, traditional models, and a glossary of revenue management for airline can be found
in McGill and Ryzin(1999).

Recently, for non-traditional industries, the bid price control models have been widely
researched. Chiang, Chen and Xu(2007) reviewed recent application and techniques of rev-
enue management. One of the non-traditional industries which is applicable to the theory
of revenue management is restaurant industry. The revenue management for restaurant
is called restaurant revenue management. The bid price control model for the restaurant
revenue management additionally need to decide which table a party should be allocated if
the party should be accepted. The policy is called seating policy in Guerriero et al.(2014).
There are not many researches which deals with the seating policy. Bertsimas and Sh-
ioda(2003) presented some models: an integer programming, a stochastic programming,
and an approximate dynamic programming model. Guerriero et al.(2014) suggested a dy-
namic programming model with no waiting line, reservation, and meal duration by using the
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rn
p − mini∈Ip

∆i
pUn−1(X) ≥ 0, then a party p is accepted in a table arg min

i∈Ip

∆i
pUn−1(X),

and if rn
p − mini∈Ip ∆i

pUn−1(X) < 0, then a party p is denied.

Then, Some assumptions are supposed to simplify the eq.(3).

Assumption 1. assume λn
p (X) = λn

p for p ∈ P and X ∈ Xn in n = 0, · · · , N.

Assumption 2. assume qn
ip(X) = xi

pq
n
ip for p ∈ Pi where i ∈ I and X ∈ Xn in n = 0, · · · , N.

The Assumption 1 indicates that arrival rates do not depend on states, which means
that congestion level of a restaurant does not affect the arrival rates. The Assumption 2
indicates that a party p in a table i and a period n departs independently of other parties
sitting in other table, which implies that a party leaves from a restaurant according to
exponential distribution. Let t be ∆N + ∆N−1 + · · · + ∆n+1 where ∆n is the length of
the nth period. Suppose t = 0 for Nth period. λn

p indicates fp(t)∆n where fp(t), 0 ≤
t ≤ ∆N + ∆N−1 + · · · + ∆1 is a mean of time-dependent Poisson distribution for a p. qn

ip

indicates µip(t)∆n where µip(t), 0 ≤ t ≤ ∆N +∆N−1+· · ·+∆1 is a parameter of exponential
distribution at time t for a p sitting in a table i ∈ Ip. For detail of this method, Subramanian
et al.(1999) explained in Appendex A.

Under these assumptions, the eq.(3) can be rewritten as the equation

Un(X) =
P∑

p=1

λn
p

{(
rn
p − min

i∈Ip

∆i
pUn−1(X)

)+

+ Un−1(X)

}

+
P∑

p=1

∑
i∈Ip

xi
pq

n
ipUn−1(X − ei

p)

+


1 −

P∑
p=1

λn
p −

P∑
p=1

∑
i∈Ip

xi
pq

n
ip


Un−1(X),(4)

X ∈ Xn, n ≥ 1.

Boundary conditions are not modified. The eq.(4) is close to a equation which is ex-
tended by cancellation process for the model with upgrades which is suggested as eq.(1)
in Steinhardt and Gönsch(2012). However, state space of the model in Steinhardt and
Gönsch(2012) is different from the one which is defined in this paper as previously shown in
Sec.1.1. Note that the first member of eq.(4) is a case of the one of eq.(1) in Steinhardt and
Gönsch(2012) because of physical bundles between parties and tables, and the condition on
which composition of the tables and size of the parties are fixed. For proofs as following
sections, policy vector d is defining.

Let the policy vector be d = (dp) where p ∈ P . An element of the policy vector dp is
a table i ∈ Ip (dp = i) if a party p is accepted into the table, or 0 (dp = 0) if a party p is
denied. Assume that if there are some acceptable tables, then the smallest i is selected. As
the result, a set of policy vector is defined as

Dn(X) = {d = (dp) : (dp = 0)∨
(
(X + edp

p ∈ Xn) ∧ (dp ∈ Ip)
)
, p ∈ P}, X ∈ Xn, n = 1, · · · , N.

2.3 Property of ∆i
pUn(X) and the optimal policy Supposing the Assumption 3 as

below, a monotonicity which is similar to the monotonicity suggested as Proposition 1 in
Steinhardt and Gönsch(2012) is obtained for ∆i

pUn(X) in eq.(4).
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Assumption 3. assume qn
δp = qn

δ′p for p ∈ P and δ, δ′ ∈ Ip in n = 0, · · · , N where Ip ≥ 2
and δ �= δ′.

Lemma 1. Under assumuption 1 to 3, for a given p ∈ P and X ∈ Xn in n = 0, · · · , N ,

(5) ∆δ
pUn(X) ≤ ∆δ′

p Un(X)

where δ, δ′ ∈ Ip, tδ < tδ′ ,
∑

p xδ
p < mδ, and

∑
p xδ′

p < mδ′ .

Proof. Un(X + eδ
p) ≥ Un(X + eδ′

p ) should be indicated by induction for ∆δ
pUn(X) ≤

∆δ′

p Un(X). For n = 0, It is obvious that U0(X +eδ
p) = U0(X +eδ′

p ) = 0. Then, assume that
Un−1(X + eδ

p) ≥ Un−1(X + eδ′

p ). Let the first member, the second member, and the third
member of the equation (4) call arrival part, departure part, and null part, respectively. In
the following, we are indicating the orderings of each part.

Firstly, an order of the arrival part is indicated. The arrival part of eq.(4) is rewritten
using the optimal vector as

max
d∈Dn(X)




∑
p|dp �=0

λn
p (rn

p + Un−1(X + edp
p )) +

∑
p|dp=0

λn
pUn−1(X)


 .

Let optimal policy vectors for Un(X +eδ
p) and Un(X +eδ′

p ) be d(δ)∗ and d(δ′)∗, respectively.

For a given p ∈ P , there are four cases for d
(δ)∗
p and d

(δ′)∗
p as follows.

i) In the case: d
(δ)∗
p �= 0 and d

(δ′)∗
p �= 0, we should make a comparison between rn

p +

Un−1(X + eδ
p + e

d(δ)∗
p

p ) and rn
p + Un−1(X + eδ′

p + e
d(δ′)∗

p
p ) for the arrival parts of Un(X + eδ

p)

and Un(X +eδ′

p ). Further, this case is divided into two cases for ordering between d
(δ)∗
p and

d
(δ′)∗
p .

i-1)In the case: d
(δ)∗
p ≤ d

(δ′)∗
p , from the inductive hypothesis, rn

p + Un−1(X + eδ
p + e

d(δ)∗
p

p ) ≥

rn
p + Un−1(X + eδ′

p + e
d(δ)∗

p
p ) ≥ rn

p + Un−1(X + eδ′

p + e
d(δ′)∗

p
p ) is obtained

i-2)In the case: d
(δ)∗
p > d

(δ′)∗
p , from the inductive hypothesis and number of capacities

of tables, d
(δ)∗
p ≤ δ′ and d

(δ′)∗
p = δ is obtained. Thus, rn

p + Un−1(X + eδ
p + e

d(δ)∗
p

p ) ≥

rn
p + Un−1(X + eδ′

p + eδ
p) = rn

p + Un−1(X + eδ′

p + e
d(δ′)∗

p
p ).

ii)In the case: d
(δ)∗
p = 0 and d

(δ′)∗
p �= 0, we should make a comparison between Un−1(X+eδ

p)

and rn
p + Un−1(X + eδ′

p + e
d(δ′)∗

p
p ). From the inductive hypothesis and d

(δ)∗
p = 0, Un−1(X +

eδ
p) ≥ rn

p + Un−1(X + eδ
p + e

d(δ′)∗
p

p ) ≥ rn
p + Un−1(X + eδ′

p + e
d(δ′)∗

p
p ).

iii)In the case: d
(δ)∗
p �= 0 and d

(δ′)∗
p = 0, we should make a comparison between rn

p +

Un−1(X + eδ
p + e

d(δ)∗
p

p ) and Un−1(X + eδ′

p ). From the inductive hypothesis and d
(δ)∗
p �= 0,

rn
p + Un−1(X + eδ

p + e
d(δ)∗

p
p ) ≥ Un−1(X + eδ

p) ≥ Un−1(X + eδ′

p ).

iv)In the case: d
(δ)∗
p = d

(δ′)∗
p = 0, from the inductive hypothesis, It is obvious that Un−1(X+

eδ
p) ≥ Un−1(X + eδ′

p ).
Next, we consider the departure parts. To simplify the notation, suppose that qn

ip = qn
p .

For the p, the departure parts of Un(X + eδ
p) and Un(X + eδ′

p ) are
∑
i∈Ip

(xi
p + eδi

p )qn
p Un−1(X + eδ

p − ei
p)(6)
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and
∑
i∈Ip

(xi
p + eδ′i

p )qn
p Un−1(X + eδ′

p − ei
p),(7)

respectively, where eki
p = 1 if i = k and otherwise eki

p = 0. The eq.(6) and (7) can stand for

qn
p

{
· · · + (xδ

p + 1)Un−1(X + eδ
p − eδ

p) + · · · + xδ′

p Un−1(X + eδ
p − eδ′

p ) + · · ·
}

= qn
p

{
Un−1(X) + x1

pUn−1(X + eδ
p − e1

p) + · · ·
}

(8)

and

qn
p

{
· · · + xδ

pUn−1(X + eδ′

p − eδ
p) + · · · + (xδ′

p + 1)Un−1(X + eδ′

p − eδ′

p ) + · · ·
}

= qn
p

{
Un−1(X) + x1

pUn−1(X + eδ′

p − e1
p) + · · ·

}
,(9)

respectively. Therefore, from the inductive hypothesis,
∑

i∈Ip
(xi

p + eδi
p )qn

p Un−1(X + eδ
p −

ei
p) ≥

∑
i∈Ip

(xi
p + eδ′i

p )qn
p Un−1(X + eδ′

p − ei
p) is obtained.

Finally, we consider the null parts. For the p, the null parts of Un(X+eδ
p) and Un(X+eδ′

p )
are


1 − λn

p −
∑
i∈Ip

(xi
p + eδi

p )qn
p


 Un−1(X + eδ

p)(10)

and

1 − λn

p −
∑
i∈Ip

(xi
p + eδ′i

p )qn
p


 Un−1(X + eδ′

p ),(11)

respectively. In these equations, the coefficients of the Un−1(X + eδ
p) and Un−1(X + eδ′

p )
are the same. Thus,

1 − λn

p −
∑
i∈Ip

(xi
p + eδ

p)q
n
p


 Un−1(X + eδ

p) ≥


1 − λn

p −
∑
i∈Ip

(xi
p + eδ′

p )qn
p


 Un−1(X + eδ′

p )

is obtained from the inductive hypothesis.
From these ordering of the arrival parts, the departure parts, and the null parts of

Un(X + eδ
p) and Un(X + eδ′

p ), the eq.(5) is indicated.

The Assumption 3 means that departure rate depends on only a period and a party size.
Thus, qn

ip stands for qn
p to simplify in the following. For this assumption, Kimes et al.(2004)

suggested that meal duration which relates to the departure rate did not depend on position,
configuration, and size of tables while it depended on the size of a party. Therefore, the
Assumption 3 can be considered as realistic one.

For the submatrix xi of X ∈ Xn, suppose
∑

p xi
p := xi. Furthermore, let X ∈ Xn and

X̂ ∈ Xn be the states with submatrices xi and x̂i, respectively, where X �= X̂ and xi = x̂i

for i ∈ I. This assumption for X and X̂ is used in the following this section.
The Claim 1 is obtained from the Lemma 1.

A CONDITION FOR REDUCING EXPANSIVE VARIATIONS OF
OPTIMAL POLICY IN RESTAURANT REVENUE MANAGEMENT

YU OGASAWARA

Received May 31, 2015; revised January 19, 2015

Abstract. An industry which is recently applied to revenue management is restau-
rant. The revenue management for restaurant is called restaurant revenue manage-
ment. The restaurant revenue management has a problem by which state space enor-
mously expands because of multi-dimensional resources and customers. This problem
gives rise to some practical difficulty: computation complexity increases, required data
size for optimal policy becomes larger and etc.. This paper presents a sufficient condi-
tion for substantially reducing data size of optimal policy.

1 Introduction There are many scenes at which a business manager controls the limited
resources for variable demand to aim to maximize his(her) company’s benefit. For companies
with fixed capacity, dealing with perishable products and large fixed cost, how to manage
the demand (e.g. setting variable terms and prices for each product and etc.) significantly
affects their benefit. This management is widely known as revenue management or yield
management. Traditional applications of the revenue management are airline, hotel and car
rental industries.

In theory of the revenue management, there is a problem in which threshold price is
solved by using dynamic programming. This problem is used to decide whether a revenue
manager should accept for a request of reservation in a certain period to maximize revenue.
This control by using the threshold price is called bid price control. Lee and Hersh(1993)
suggested a bid price control model for airline industry with single resource, multiple book-
ing classes and multiple seat booking. Further, they indicated monotonicity of threshold
price for their model. However, the model did not include assumptions of cancellation and
overbooking. Subramanian et al.(1999) considered a model with cancellation and overbook-
ing, and added some assumptions to declare monotonicity of threshold price. Researches,
problems, traditional models, and a glossary of revenue management for airline can be found
in McGill and Ryzin(1999).

Recently, for non-traditional industries, the bid price control models have been widely
researched. Chiang, Chen and Xu(2007) reviewed recent application and techniques of rev-
enue management. One of the non-traditional industries which is applicable to the theory
of revenue management is restaurant industry. The revenue management for restaurant
is called restaurant revenue management. The bid price control model for the restaurant
revenue management additionally need to decide which table a party should be allocated if
the party should be accepted. The policy is called seating policy in Guerriero et al.(2014).
There are not many researches which deals with the seating policy. Bertsimas and Sh-
ioda(2003) presented some models: an integer programming, a stochastic programming,
and an approximate dynamic programming model. Guerriero et al.(2014) suggested a dy-
namic programming model with no waiting line, reservation, and meal duration by using the

201x Mathematics Subject Classification. Primary xxXxx, xxXxx; Secondary xxXxx, xxXxx.
Key words and phrases. Revenue management, Network revenue management, Restaurant revenue

management, Bid price control, Dynamic programming, Monotonicity.

Scientiae Mathematicae Japonicae Online 

99



108 YU OGASAWARA

Claim 1. If optimal policy vectors d∗ and d̂
∗

for the states X and X̂, respectively, are
d∗p �= 0 and d̂∗p �= 0, then d∗

p = d̂∗p.

Proof. From d∗p �= 0 and d̂∗p �= 0, arrival parts of Un(X) and Un(X̂) are

λn
p (rn

p + Un−1(X + ed∗
p))(12)

and

λn
p (rn

p + Un−1(X̂ + ed̂∗
p)),(13)

respectively. From xi = x̂i, the table sets which are able to be d∗p and d̂∗
p for p ∈ P are the

same. Then, d∗p = d̂∗p is obtained.

Suppose an assumption for the ordering of departure process of parties p ∈ P , and a
proposition about a monotonicity of ∆i

pUn(X) for p ∈ P as below.

Assumption 4. For ψ ∈ P and ψ′ ∈ P where ψ < ψ′, assume qn
ψ ≥ qn

ψ′ in n = 0, · · · , N.

Proposition 1. Under the Assumption 1 to 4, for a given σ ∈ I at which Pσ ≥ 2,

∆δ
ψUn(X) ≤ ∆δ

ψ′Un(X),(14)

where ψ,ψ′ ∈ Pσ and ψ < ψ′, in n = 0, · · · , N .

Proof. It is obtained by induction. Un(X + eδ
ψ) ≥ Un(X + eδ

ψ′) should be indicated for
∆δ

ψUn(X) ≤ ∆δ
ψ′Un(X). In the case n = 0, U0(X + eδ

ψ) = U0(X + eδ
ψ′) is clear. Then,

assume that ∆δ
ψUn−1(X) ≤ ∆δ

ψ′Un−1(X).
Firstly, we consider about the arrival parts. Let the optimal vectors for the states X+eδ

ψ

and X + eδ
ψ′ be d(ψ)∗ and d(ψ′)∗ , respectively.

i)In the case: d
(ψ)∗

p �= 0 and d
(ψ′)∗

p �= 0, we make a comparison between rn
p +Un−1(X +eδ

ψ +

e
d(ψ)∗

p
p ) and rn

p + Un−1(X + eδ
ψ′ + e

d(ψ′)∗
p

p ). The optimal vectors for the states X + eδ
ψ and

X + eδ
ψ′ are d

(ψ)∗

p = d
(ψ′)∗

p from the Claim 1 because capacities of the states are the same.

Hence, rn
p + Un−1(X + eδ

ψ + e
d(ψ)∗

p
p ) ≥ rn

p + Un−1(X + eδ
ψ′ + e

d(ψ′)∗
p

p ) is indicated.

ii)In the case: d
(ψ)∗

p �= 0 and d
(ψ′)∗

p = 0, we compare rn
p + Un−1(X + eδ

ψ + e
d(ψ)∗

p
p ) to

Un−1(X+eδ
ψ′). From the inductive hypothesis and d

(ψ′)∗

p = 0, rn
p +Un−1(X +eδ

ψ +e
d(ψ)∗

p
p ) ≥

Un−1(X + eδ
ψ) ≥ Un−1(X + eδ

ψ′) is obtained.

iii)In the case: d
(ψ)∗

p = 0 and d
(ψ′)∗

p �= 0, we make a comparison between Un−1(X +eδ
ψ) and

rn
p +Un−1(X+eδ

ψ′ +e
d(ψ′)∗

p
p ). From the inductive hypothesis and d

(ψ)∗

p = 0, Un−1(X+eδ
ψ) >

rn
p + Un−1(X + eδ

ψ + e
d(ψ)∗

p
p ) ≥ rn

p + Un−1(X + eδ
ψ + e

d(ψ′)∗
p

p ) ≥ rn
p + Un−1(X + eδ

ψ′ + e
d(ψ′)∗

p
p )

is obtained.
iv)In the case: d

(ψ)∗

p = 0 and d
(ψ′)∗

p = 0, it is obvious.
Then, we consider the departure parts of Un(X + eδ

ψ) and Un(X + eδ
ψ′) which are

P∑
p=1

∑
i∈Ip

(xi
p + eδi

ψp)q
n
p Un−1(X + eδ

p − ei
p)(15)
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Abstract. An industry which is recently applied to revenue management is restau-
rant. The revenue management for restaurant is called restaurant revenue manage-
ment. The restaurant revenue management has a problem by which state space enor-
mously expands because of multi-dimensional resources and customers. This problem
gives rise to some practical difficulty: computation complexity increases, required data
size for optimal policy becomes larger and etc.. This paper presents a sufficient condi-
tion for substantially reducing data size of optimal policy.

1 Introduction There are many scenes at which a business manager controls the limited
resources for variable demand to aim to maximize his(her) company’s benefit. For companies
with fixed capacity, dealing with perishable products and large fixed cost, how to manage
the demand (e.g. setting variable terms and prices for each product and etc.) significantly
affects their benefit. This management is widely known as revenue management or yield
management. Traditional applications of the revenue management are airline, hotel and car
rental industries.

In theory of the revenue management, there is a problem in which threshold price is
solved by using dynamic programming. This problem is used to decide whether a revenue
manager should accept for a request of reservation in a certain period to maximize revenue.
This control by using the threshold price is called bid price control. Lee and Hersh(1993)
suggested a bid price control model for airline industry with single resource, multiple book-
ing classes and multiple seat booking. Further, they indicated monotonicity of threshold
price for their model. However, the model did not include assumptions of cancellation and
overbooking. Subramanian et al.(1999) considered a model with cancellation and overbook-
ing, and added some assumptions to declare monotonicity of threshold price. Researches,
problems, traditional models, and a glossary of revenue management for airline can be found
in McGill and Ryzin(1999).

Recently, for non-traditional industries, the bid price control models have been widely
researched. Chiang, Chen and Xu(2007) reviewed recent application and techniques of rev-
enue management. One of the non-traditional industries which is applicable to the theory
of revenue management is restaurant industry. The revenue management for restaurant
is called restaurant revenue management. The bid price control model for the restaurant
revenue management additionally need to decide which table a party should be allocated if
the party should be accepted. The policy is called seating policy in Guerriero et al.(2014).
There are not many researches which deals with the seating policy. Bertsimas and Sh-
ioda(2003) presented some models: an integer programming, a stochastic programming,
and an approximate dynamic programming model. Guerriero et al.(2014) suggested a dy-
namic programming model with no waiting line, reservation, and meal duration by using the

201x Mathematics Subject Classification. Primary xxXxx, xxXxx; Secondary xxXxx, xxXxx.
Key words and phrases. Revenue management, Network revenue management, Restaurant revenue

management, Bid price control, Dynamic programming, Monotonicity.

Scientiae Mathematicae Japonicae Online 

100



A CONDITION FOR REDUCING EXPANSIVE VARIATIONS OF OPTIMAL POLICY 109

and

P∑
p=1

∑
i∈Ip

(xi
p + eδi

ψ′p)q
n
p Un−1(X + eδ′

p − ei
p),(16)

respectively, where eki
lp = 1 if i = k and p = l, otherwise eki

lp = 0.
We should consider only the cases p = ψ, i = σ and p = ψ′, i = δ for the eq.(15) and

eq.(16) as

· · · + qn
ψUn−1(X) + xδ

ψqn
ψUn−1(X + eδ

ψ − eδ
ψ) + · · ·(17)

· · · + xδ
ψ′qn

ψ′Un−1(X + eδ
ψ − eδ

ψ′) + · · ·

and

· · · + xδ
ψqn

ψUn−1(X + eδ
ψ′ − eδ

ψ) + · · ·(18)

· · · + qn
ψ′Un−1(X) + xδ

ψ′qn
ψ′Un−1(X + eδ

ψ′ − eδ
ψ′) + · · · .

From the inductive hypothesis and the Assumption 4, it is indicated that

P∑
p=1

∑
i∈Ip

(xi
p + eδi

ψp)q
n
p Un−1(X + eδ

p − ei
p) ≥

P∑
p=1

∑
i∈Ip

(xi
p + eδi

ψ′p)q
n
p Un−1(X + eδ′

p − ei
p).

Finally, we consider the null parts. It is clear that coefficients of the null parts of
Un(X + eδ

ψ) and Un(X + eδ
ψ′) are the same.

From the ordering of the each part, we obtain that ∆δ
ψUn(X) ≤ ∆δ

ψ′Un(X).

The Assumption 4 means that a party stochastically stays longer than the smaller one.
Thompson(2009) applied this assumption to his simulation study. Furthermore, the re-
searches in Kimes et al.(2003) and Bell and Pliner(2004) showed that a correlation between
the size of a party and meal duration is significantly positive for real restaurants. Therefore,
the Assumption 4 is considered as realistic one.

The Remark 1 for the Proposition 1 is indicated as follows.

Remark 1. Note that the monotonicity of the Proposition 1 does not depend on the
expected revenue rn

p , which is same to the Lemma 1. Seeing the proof for the Proposition1,
we can recognize that the Assumption 4 is used in only the members of Un−1(X) in the
eq.(17) and (18). Further, the orderings for the each part expect the the members of
Un−1(X) in eq.(17) and (18) is conditioned by the inductive hypothesis and facts of the
cases. Thus, the ordering of the Proposition 1 is conditioned by only the ordering of
departure rates between the parties.

Thus, from the Proposition 1 and its character, a difference between the maximal ex-
pected revenues Un(X) and Un(X̂) stems from differences for departure rates among parties.
If there are differences for departure rates among parties, then they are affected by all fac-
tors; arrival rates, rewards, and etc. as a matter of course. However, If there are not
the differences for departure rates among parties, then there is not the difference between
Un(X) and Un(X̂), nevertheless the parties have difference parameters each other.

From the monotonicities which is indicated in this paper, a sufficient condition which
is able to reduce variations of optimal policies can be obtained. The sufficient condition is
shown as Theorem 1. For given a party p ∈ P , let d

∗
p be the minimum i ∈ Ip where the

mi −
∑

k∈Pi
xi

k > 0.
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Theorem 1. If the condition

rn
p /∈

[
min(∆

d
∗
p

p Un−1(X), ∆
d
∗
p

p Un−1(X̂)), max(∆
d
∗
p

p Un−1(X), ∆
d
∗
p

p Un−1(X̂))
)

(19)

is satisfied for a given p ∈ P and n, then the optimal vectors d∗ and d̂
∗

for the states X
and X̂, respectively is that d∗

p = d̂∗p for the p ∈ P in the period n.

Proof. The d∗p and d̂∗p are divided in four cases.
i)In the case: d∗

p �= 0 and d̂∗
p �= 0, from the Claim 1, d∗p = d̂∗

p.
ii)In the case: d∗

p = 0 and d̂∗p �= 0, from d∗p = 0, we obtain that

λn
pUn−1(X) > max

dp|dp �=0

{
λn

p (rn
p + Un−1(X + edp

p ))
}

.(20)

In addition, the eq.(20) can be rewritten to

λn
pUn−1(X) > λn

p (rn
p + Un−1(X + e

d̂∗
p

p ))(21)

from the condition xi = x̂i. We also obtain that

λn
pUn−1(X̂) ≤ λn

p (rn
p + Un−1(X̂ + e

d̂∗
p

p ))(22)

because of d̂∗p �= 0. From the eq.(21) and (22), we indicate

∆
d̂∗

p
p Un−1(X̂) ≤ rn

p < ∆
d̂∗

p
p Un−1(X)(23)

as a condition for d∗p = 0 and d̂∗
p �= 0.

iii)In the case: d∗
p �= 0 and d̂∗

p = 0, calculating this case similar to the case ii), we can obtain

∆
d∗

p
p Un−1(X) ≤ rn

p < ∆
d∗

p
p Un−1(X̂)(24)

as a condition for d∗p �= 0 and d̂∗
p = 0.

iv)In the case: d∗p = 0 and d̂∗p = 0, it is clearly.
Then, the relation between d̂∗p and d∗p in eq.(23) and (24) is d̂∗p = d∗

p = d
∗
p due to xi = x̂i,

Lemma 1, and d̂∗
p, d

∗
p �= 0. Therefore, if a range which does not include the ranges (23) and

(24):

rn
p /∈

[
min(∆

d
∗
p

p Un−1(X), ∆
d
∗
p

p Un−1(X̂)), max(∆
d
∗
p

p Un−1(X), ∆
d
∗
p

p Un−1(X̂))
)

(25)

is satisfied for a p ∈ P and n, then d∗
p = d̂∗

p.

The remark of the Theorem 1 is below.

Remark 2. The range(19) indicates a sufficient condition which makes the same optimal

policy for the state X and X̂. The width of the range |∆d
∗
p

p Un−1(X)−∆
d
∗
p

p Un−1(X̂)| stands
for difficulty of reducing variety of the optimal policies. If the width becomes narrower,
then it is more difficult to insert the expected revenue rn

p into the range and optimal policy
goes to depend only capacities for tables.
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The width of the range |∆d
∗
p

p Un−1(X) − ∆
d
∗
p

p Un−1(X̂)| can be rewritten |Un−1(X̂) −
Un−1(X) + Un−1(X + e

d
∗
p

p ) − Un−1(X̂ + e
d
∗
p

p )| where the Proposition 1 is applicable to

Un−1(X̂) − Un−1(X) and Un−1(X + e
d
∗
p

p ) − Un−1(X̂ + e
d
∗
p

p ). If there are not differences in
departure rates among parties, then the width is effected by nothing because the width
is zero, regardless of existing differences in arrival rates or expected revenues among the
parties. As a consequence of this property, existing the differences in departure rates among
parties is an only trigger for expanding varieties of optimal policy.

3 Numerical Examples In this section, we confirm the feature which is stated in
the Remark 2. Numerical examples are computed using an equation which is applied
the Assumptions 1 to 4 to the eq.(4). Configurations for tables and parties are which
P = 2, I = 2, g1 = 1, g2 = 2, t1 = 1, t2 = 2, m1 = 2, and m2 = 2. From this parameters
sets, χ is 18 by using eq.(1). Arrival rates, departure rates, and expected revenues for each
party p ∈ P in a period n are shown in Table 1.

The parameters set in Table 1 is named Sample 1. The Sample 1 has a single peak for
the arrival rates, departure rates, and expected revenues. The peak time is likely lunch
time. The expected revenues in the Sample 1 are set to increase as they get closer to the
peak time since a restaurant which is considered for this section also serves as a cafe except
in lunch time. Optimal policies for p = 1 which is computed from the Sample 1 are shown
in Table 2. The values in cells of the Table 2 stand for policy vectors.

Seeing optimal policies for states (2|1,0) and (2|0,1), we can find that the optimal
policies in n = 16 and 17 are difference between the states; nevertheless capacities for the
states are the same. Let the states (2|1,0) and (2|0,1) be X and X̂, respectively. To

confirm the Theorem 1 for the states, ∆d
∗
1

1 Un−1(X) and ∆d
∗
1

1 Un−1(X̂) where d
∗
1 = 2, are

shown in Table 3 which also includes the expected revenue rn
1 to make a comparison easily.

Table 1: Arrival rates, departure rates, and expected revenues of Sample 1.
Arrival Rate Departure Rate Reward

n λn
1 λn

2 qn
1 qn

2 rn
1 rn

2
0-5 .021 .014 .018 .014 3 6
6-7 .105 .070 .088 .070 4 8
8-11 .150 .100 .125 .100 5 10
12-13 .105 .070 .088 .070 4 8
14-20 .021 .014 .018 .014 3 6

r16
1 and r17

1 are put in the ranges between ∆d
∗
1

1 Un−1(X) and ∆d
∗
1

1 Un−1(X̂) for n = 16 and
n = 17. Then, for a case where there is not difference in departure rates between parties,
we have computed the range. Sample 2 is the case in which the departure rates for p = 2
become the same to the ones for p = 1 for the Sample 1. ∆d

∗
1

1 Un−1(X), ∆d
∗
1

1 Un−1(X̂), and
the width of the range are shown as Table 4.
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Table 3: The range in Theorem 1 for the states X and X̂.
n rn

1 ∆
d
∗
1

1 Un−1(X) ∆
d
∗
1

1 Un−1(X̂)
0 3 – –
1 3 0.000 0.000
2 3 0.147 0.147
3 3 0.282 0.282
4 3 0.405 0.406
5 3 0.518 0.521
6 4 0.622 0.626
7 4 1.348 1.360
8 5 1.785 1.814
9 5 2.551 2.601
10 5 2.932 3.006
11 5 3.174 3.262
12 4 3.337 3.434
13 4 3.172 3.272
14 3 3.095 3.193
15 3 3.040 3.140
16 3 2.989 3.090
17 3 2.941 3.043

Table 4: The range and the difference for Sample 2.
n ∆

d
∗
1

1 Un−1(X̂) ∆
d
∗
1

1 Un−1(X) Dif.
0 – – –
1 0.000 0.000 0.000
2 0.147 0.147 0.000
3 0.282 0.282 0.000
4 0.405 0.405 0.000
5 0.518 0.518 0.000
6 0.622 0.622 0.000
7 1.348 1.348 0.000
8 1.786 1.786 0.000
9 2.555 2.555 0.000
10 2.940 2.940 0.000
11 3.189 3.189 0.000
12 3.359 3.359 0.000
13 3.199 3.199 0.000
14 3.128 3.128 0.000
15 3.075 3.075 0.000
16 3.026 3.026 0.000
17 2.980 2.980 0.000

We can confirm that the width of eq.(19) is zero since there is not difference in the
departure rates between the parties. Remember that there is difference in the arrival rates
and the expected revenues between the parties. Additionally, how the range has influence
on the difference for departure rates is indicated. Let additional datasets in where the
departure rate for p = 2 is multiplied by 0.75, 0.5, and 0.25 for the Sample 1 be Sample 3,
4, and 5, respectively. The widths of the ranges for the states X and X̂ which are computed
from the Sample 1 to 5 are shown in Table 5. We can recognize that the widths enlarge for
all n if the differences for the departure rates enlarge. Thus, what increasing difference for
the departure rates enlarges the width of the range is suggested.
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Table 5: The widths of the ranges for the samples.
n Sample2 Sample1 Sample3 Sample4 Sample5
1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
3 0.000 0.001 0.001 0.002 0.002
4 0.000 0.001 0.003 0.004 0.006
5 0.000 0.003 0.005 0.008 0.011
6 0.000 0.004 0.008 0.013 0.017
7 0.000 0.013 0.025 0.038 0.052
8 0.000 0.029 0.058 0.088 0.119
9 0.000 0.050 0.101 0.154 0.209
10 0.000 0.074 0.150 0.229 0.310
11 0.000 0.088 0.180 0.275 0.374
12 0.000 0.097 0.198 0.302 0.410
13 0.000 0.101 0.204 0.311 0.421
14 0.000 0.098 0.199 0.302 0.407
15 0.000 0.100 0.202 0.306 0.411
16 0.000 0.101 0.204 0.308 0.411
17 0.000 0.101 0.204 0.308 0.410

4 Conclusion This study has presented the formulation which is modeled seating prob-
lem as bid price control by dynamic programming(Markov decision process). Further, the
sufficient condition which makes variations of optimal policy reduce and its property have
been indicated. It is meaningful to investigate the sufficient condition because reducing
variations of optimal policies leads requisite data capacity to reduce.

This paper’s result indicates that we should pay attention to difference for departure
rates among parties. Specially, if there is not difference in departure rates among the parties
for big scale problem, then results of the Theorem 1 and Proposition 1 have significance. If
parameters sets are that P = 4, I = 2, gp = p, t1 = 2, t2 = 4, m1 = 6, and m2 = 7 where
p ∈ P , then χ = 9240. However, if there is not difference in departure rates for the case, a
maximum of the variations of optimal policies is reduced to 56.

However, This study’s result is based on the assumption which is that departure rates
depend on exponential distribution. It is mystery that what kinds of restaurant; first-food
restaurant, traditional restaurant, cafeteria restaurant, cafe restaurant, and etc.. can be
approximately applied to this assumption. This question is a big future issue for this study.

Although this study’s model has the problem for a restaurant, the model also corresponds
to a upgrade model with departure of parties where resources are rooms or tables. Some
other future issues are mentioned that for example, considering meal duration as probability
distribution, investigating effect of elements; arrival rate, reward, and etc. for the width of
the sufficient condition, and making a relation between this results and heuristic calculation
method of existing researches clear.
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