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Abstract. In the present paper we introduce q-deformations of the Chebyshev hy-
pergroups of the first kind and of the second kind as models of q-deformations of
countable discrete hypergroups. Moreover we study q-deformations of character hy-
pergroups K(Ĝ) of certain compact groups G.

1 Introduction

The notion of compact quantum groups is introduced in [14] and [15] by S. L. Woronowicz.
Especially, he studied the structure of SUq(2) which is obtained by a q-deformation of SU(2)
in the category of Hopf algebras. Compact quantum groups play an important role not only
in mathematics but also in theoretical physics.

Deformations of groups and hypergroups are investigated in [16] by K. A. Ross and D.
Xu and our previous paper [6] in the category of hypergroups. Many new hypergroups are
produced by deforming groups and hypergroups. The notion of q-deformations of groups
and hypergroups is one of the way to understand hypergroup structures.

The structure of countable discrete hypergroups arising from orthogonal polynomials
has been studied by many authors (for example [7], [8] and [9]). But there is no notion of
q-deformations of countable discrete hypergroups in the category of hypergroups. In the
present paper, we consider q-deformations of countable discrete commutative hypergroups,
mainly of the Chebyshev hypergroups T of the first kind and Fd(U) of the second kind. In
the present paper the q-deformation Kq of a countable discrete hypergroup K is to deform
continuously structures of K by a parameter q (0 < q ≤ 1) and K1 = K in the category
of hypergroups. A notion of dimension functions of countable discrete hypergroups and of
fusion rule algebras plays an essential role in our discussions.

In section 3, we consider dimension functions of countable discrete hypergroups as well
as of fusion rule algebras. In section 4, we discuss q-deformations Tq of the Chebyshev
hypergroup T of the first kind. Moreover we consider q-deformations Kq(Ĝ) of a character
hypergroup K(Ĝ) of the compact group G = T �α Z2 as an application of q-deformations
of T . In section 5, we discuss q-deformations Uq of the Chebyshev hypergroup Fd(U)
of the second kind which is obtained by normalization of the fusion rule algebra U by
the dimension function d of U . Moreover we investigate q-deformations Kq(ŜU(2)) of a
character hypergroup K(ŜU(2)) of the compact Lie group SU(2).

2010 Mathematics Subject Classification. 20N20, 58H15.
Key words and phrases. Deformation, Hypergroup, Character hypergroup.
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2 Preliminary

For a countable discrete set K = {X0, X1, X2, · · · , Xn, · · · } we denote the algebraic
complex linear space based on K by CK, namely

CK =

{
X =

∞∑
k=0

akXk : ak ∈ C, |supp(X)| < +∞

}
,

where |supp(X)| is the cardinal number of supp(X) and the support of X is

supp(X) := {k : ak �= 0}.

A countable discrete hypergroup (K, CK, ◦, ∗) consists of the set K = {X0, X1, · · · , Xn, · · · }
together with a product (called convolution) ◦ and an involution ∗ in the complex linear
space CK satisfying the following conditions.

(1) For Xm, Xn ∈ K, the convolution Xm ◦ Xn belongs to CK and

Xm ◦ Xn =
∑

k∈S(m,n)

ak
mnXk,

where

S(m,n) := supp(Xm ◦ Xn), ak
mn ≥ 0 and

∑
k∈S(m,n)

ak
mn = 1.

(2) The space (CK, ◦, ∗) is an associative ∗-algebra with unit X0.

(3) The map Xn �→ X∗
n is a bijection on K. Moreover for all Xm, Xn ∈ K, Xn = X∗

m if
and only if 0 ∈ supp(Xm ◦ Xn).

We denote the hypergroup (K, CK, ◦, ∗) by K. A hypergroup K is called commutative if
the convolution ◦ on CK is commutative and be called hermitian if X∗

n = Xn.

If the given countable discrete hypergroup K is commutative, its dual K̂ can be intro-
duced as the set of all bounded functions χ �= 0 on CK satisfying

χ(Xm ◦ Xn) = χ(Xm)χ(Xn), χ(X∗
n) = χ(Xn)

for all Xi, Xj ∈ K. This set of characters K̂ of K becomes a compact space with respect to
the topology of uniform convergence on compact sets, but generally fails to be a hypergroup.
If K̂ is a hypergroup, then K is called a strong hypergroup or a hypergroup of strong type.

Let G be a compact group and Ĝ the set of all equivalence classes of irreducible repre-
sentations of G. Put

K(Ĝ) := {ch(π) : π ∈ Ĝ},

where
ch(π)(g) :=

1
dim π

tr(π(g)) (g ∈ G).

Then K(Ĝ) always becomes a discrete commutative hypergroup which is called the character
hypergroup of G. (Refer to [1] for details.)
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Let K = (K, CK, ◦, ∗) be a countable discrete hypergroup where K = {X0, X1, · · · , Xn,
· · · }. For q (0 < q ≤ 1), put Kq = {X0(q), X1(q), · · · , Xn(q), · · · } a new basis in CK. Then
the convolution Xm(q) and Xn(q) of CK is defined by

Xm(q) ◦ Xn(q) :=
∞∑

k=0

ak
mn(q)Xk(q)

where ak
mn(q) is continuous with respect to q. The involution ∗ of Kq is given by

Xn(q)∗ = Xm(q)∗ when X∗
n = Xm.

For the hypergroup Kq = (Kq, CK, ◦, ∗) satisfies the following conditions

Xn(1) = Xn and Xn(q) → Xn as q → 1,

we call Kq a q-deformation of K.

A fusion rule algebra (F, CF, �,−) consists of the set F = {Y0, Y1, · · · , Yn, · · · } together
with a product (called convolution) � and an involution − in the complex linear space CF
based on F satisfying the following conditions.

(1) For Ym, Yn ∈ F , the convolution Ym � Yn belongs to CF and

Ym � Yn =
∑

k∈S(m,n)

ak
mnYk (ak ∈ Z+ = {0, 1, 2, · · · }),

Y −
n � Yn = Y0 +

∑
k∈S(m,n)

k �=0

ak
mnYk.

where S(m, n) := supp(Ym � Yn).

(2) The space (CF, �,−) is an associative involutive algebra with unit Y0.

We denote the fusion rule algebra (F, CF, �,−) by F .

For the dual Ĝ of a compact group G, put

F(Ĝ) := {Ch(π) : π ∈ Ĝ},

where
Ch(π)(g) := tr(π(g)) (g ∈ G).

Then F(Ĝ) always becomes a fusion rule algebra.

3 A dimension function

In this section, we discuss a dimension function of a countable discrete hypergroup and
a fusion rule algebra.

For a countable discrete hypergroup K, the mapping d from K to R×
+ = {x ∈ R : x > 0}

is called a dimension function of K if d is a homomorphism in the sense that

Xm ◦ Xn =
∑

k∈S(m,n)

ak
mnXk ⇒ d(Xm)d(Xn) =

∑
k∈S(m,n)

ak
mnd(Xk).
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104 T. TSURII

The dimension function d of K is uniquely extendable as a linear mapping from CK to C
and satisfies

d(Xm ◦ Xn) = d(Xm)d(Xn).

Proposition 3.1 Let K be a countable discrete hypergroup where K = {X0, X1, · · · , Xn, · · · }.
For the dimension function d of K, put

cn :=
1

d(Xn)
Xn and Kd := {c0, c1, · · · , cn, · · · }.

Then Kd is a hypergroup.

Proof By the axiom (1) of a countable discrete hypergroup, the structure equation of K
is written by

Xm ◦ Xn =
∑

k∈S(m,n)

ak
mnXk.

Hence, the structure equation of Kd is

cm ◦ cn =
1

d(Xm)d(Xn)
Xm ◦ Xn

=
1

d(Xm)d(Xn)

∑
k∈S(m,n)

ak
mnXk

=
∑

k∈S(m,n)

ak
mnd(Xk)

d(Xm)d(Xn)
ck.

Here we note that ∑
k∈S(m,n)

ak
mnd(Xk)

d(Xm)d(Xn)
= 1

by the fact
d(Xm)d(Xn) =

∑
k∈S(m,n)

ak
mnd(Xk).

It is clear that the coefficients of the convolution cm ◦ cn are non-negative. It is easy
to check other conditions of axiom of a countable discrete hypergroup. Hence, Kd is a
countable discrete hypergroup. �

Remark If K is a finite hypergroup, the dimension function d of K is known to be unique
such that d(Xk) = 1 for all Xk ∈ K.

For a fusion rule algebra F , the dimension function d of F is defined in a similar way to
the above.

Proposition 3.2 Let F be a fusion rule algebra where F = {Y0, Y1, · · · , Yn, · · · }. For the
dimension function d of a fusion rule algebra F , put

bn :=
1

d(Yn)
Yn and Fd := {b0, b1, · · · , bn, · · · }.

Then Fd becomes a hypergroup.

Proof The desired assertion is obtained in a similar way to the proof of Proposition 3.1.
�
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4 Q-deformations of the Chebyshev hypergroup of the first kind

Let Tn(x) be the Chebyshev polynomial of the first kind of degree n, then Tn(x) (n =
0, 1, 2, · · · ) satisfy the following equation.

Tm(x)Tn(x) =
1
2
T|m−n|(x) +

1
2
Tm+n(x).

Then, for the set T = {T0, T1, · · · , Tn, · · · }, (T , CT , ◦, ∗) is a countable discrete hypergroup
by the product

Tm ◦ Tn := Tm(x)Tn(x).

The hypergroup T = (T , CT , ◦, ∗) is called the Chebyshev hypergroup of the first kind.

Next, we consider a mapping dq from T to R×
+. For Tn ∈ T the mapping dq defined by

dq(Tn) := Tn

(
q + q−1

2

)
=

qn + q−n

2
≥ 1.

Proposition 4.1 The mapping dq from T to R×
+ is a dimension function of T .

Proof Put x(q) := q+q−1

2 and dq(Tn) = Tn(x(q)). Then

dq(Tm)dq(Tn) = Tm(x(q))Tn(x(q))

=
1
2
T|m−n|(x(q)) +

1
2
Tm+n(x(q))

=
1
2
dq(T|m−n|) +

1
2
dq(Tm+n)

Hence, dq is a dimension function of T . �

Next, put

Xn(q) :=
1

dq(Tn)
Tn and Tq := {X0(q), X1(q), · · · , Xn(q), · · · }.

Then the following theorem holds.

Theorem 4.2 Tq becomes a hypergroup which is a q-deformation of T . The structure
equation is

Xm(q) ◦ Xn(q) =
∑

k∈S(m,n)

ak
mn(q)Xk(q)

where S(m,n) = {|m − n|,m + n} and

ak
mn(q) =

qk + q−k

(qm + q−m)(qn + q−n)
.

Proof By Proposition 3.1, Tq is a hypergroup. The convolution Xm(q) and Xn(q) is

Xm(q) ◦ Xn(q) =
1

dq(Tm)dq(Tn)
Tm ◦ Tn =

∑
k∈S(m,n)

dq(Tk)
2dq(Tm)dq(Tn)

Xk(q)
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where S(m, n) = {|m − n|,m + n}. Then

ak
mn(q) =

dq(Tk)
2dq(Tm)dq(Tn)

=
qk + q−k

(qm + q−m)(qn + q−n)
.

Hence, we see that ak
mn(q) is continuous with respect to q. The involution ∗ of Tq is an

identity map by the fact that

Xn(q) =
1

dq(Tn)
Tn and T ∗

n = Tn.

When q = 1, it is clear that Xn(1) = Tn. Since dq(Tn) = qn+q−n

2 is continuous, Xn(q) → Tn

as q → 1. Hence, Tq is a q-deformation of T . �

Let α be an action of Z2 = {e, g} (g2 = e) on the torus T = {z ∈ C : |z| = 1} defined by

αg(z) = z.

Then we have a compact group G = T �α Z2 in the form of a semi-direct product. We
consider q-deformations of the character hypergroup K(Ĝ) of G = T �α Z2. The dual of T̂
of T and Ẑ2 of Z2 are given by

T̂ = {χn : n ∈ Z}, where χn(z) = zn for z ∈ T,

Ẑ2 = {τ0, τ1}, where τ2
1 = τ0.

For χ ∈ T̂ and τ ∈ Ẑ2, the irreducible representations ρ0, ρ1 and πn (n = 1, 2, · · · ) of
G = T �α Z2 are written by

ρ0((z, h)) = τ0(h) = 1, ρ1((z, h)) = τ1(h),

πn = indG
T χn (n = 1, 2, · · · ).

Then the dual Ĝ of G is determined by Ĝ = {ρ0, ρ1, π1, π2, · · · , πn, · · · } by Mackey Machine.
For the irreducible representations πn (n = 1, 2, · · · ), put

Ch(πn)(g) := tr(πn(g)) (g ∈ G)

and
F(Ĝ) := {ρ0, ρ1, Ch(π1), Ch(π2), · · · , Ch(πn), · · · }.

Then F(Ĝ) becomes a fusion rule algebra with unit ρ0. The structure equations are

ρ2
1 = ρ0, ρ1Ch(πn) = Ch(πn),

Ch(πm)Ch(πn) = Ch(π|m−n|) + Ch(πm+n) (m �= n),

Ch(πn)2 = ρ0 + ρ1 + Ch(π2n).

Moreover, put

ch(πn) :=
1

dimπn
Ch(πn) =

1
2
Ch(πn)

and
K(Ĝ) = {ρ0, ρ1, ch(π1), ch(π2), · · · , ch(πn), · · · }.
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Then K(Ĝ) becomes a hypergroup with unit ρ0 by Proposition 3.2. This hypergroup K(Ĝ)
is the character hypergroup of G. The hypergroup structure of K(Ĝ) is the hypergroup join
of Z2 by T which is written by

K(Ĝ) = Z2 ∨ T .

Hence, we obtain a q-deformation Kq(Ĝ) of the countable discrete hypergroup K(Ĝ) as
follows.

Theorem 4.3 The hypergroup Kq(Ĝ) = Z2 ∨ Tq is a q-deformation of K(Ĝ).

The hypergroups T and K(Ĝ) are strong hypergroup. Since T̂ = Kα(T) and K̂(Ĝ) =
K(G) where Kα(T) is the orbital hypergroup of the action α of Z2 on T and K(G) is the
conjugacy class hypergroup of G.

Conjecture When q �= 1, the hypergroups Tq and Kq(Ĝ) are not strong.

5 Q-deformations of the Chebyshev hypergroup of the second kind

Let Un(x) be the Chebyshev polynomial of the second kind of degree n, then Un(x)
(n = 0, 1, 2, · · · ) satisfy the following equation.

Um(x)Un(x) = U|m−n|(x) + U|m−n|+2(x) + · · · + Um+n(x).

Hence, for the set U = {U0, U1, · · · , Un, · · · }, (U , CU , �,−) has the structure of a fusion rule
algebra by the product

Um � Un := Um(x)Un(x).

The canonical dimension function d of U is given by

d(Un) = n + 1.

Put
cn :=

1
d(Un)

Un and Fd(U) := {c0, c1, · · · , cn, · · · }.

Then Fd(U) becomes a hypergroup by the product

cm ◦ cn :=
1

d(Um)
Um � 1

d(Un)
Un.

This hypergroup is called the Chebyshev hypergroup of the second kind. The structure
equation is

cm ◦ cn =
|m − n| + 1

(m + 1)(n + 1)
c|m−n| +

|m − n| + 3
(m + 1)(n + 1)

c|m−n|+2 + · · ·

+
m + n + 1

(m + 1)(n + 1)
cm+n,

where c0 is the unit element and c∗n = cn.

Next, we consider a mapping dq from U to R×
+. For Un ∈ U , the mapping dq defined by

dq(Un) := Un

(
q + q−1

2

)
=

qn+1 − q−(n+1)

q − q−1
= qn + qn−2 + · · · + q−n (0 < q ≤ 1).
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Proposition 5.1 The mapping dq from U to R×
+ is a dimension function of U .

Proof The proof is obtained in a similar way to Proposition 4.1. �

Put
Xn(q) :=

1
dq(Un)

Un and Uq := {X0(q), X1(q), · · · , Xn(q), · · · }.

Then the following theorem holds.

Theorem 5.2 Uq becomes a hypergroup which is a q-deformation of Fd(U). The structure
equation is

Xm(q) ◦ Xn(q) =
∑

k∈S(m,n)

ak
mn(q)Xk(q)

where S(m, n) = {|m − n|, |m − n| + 2, · · · ,m + n} and

ak
mn(q) =

(q − q−1)(qk+1 − q−(k+1))
(qm+1 − q−(m+1))(qn+1 − q−(n+1))

.

Proof By Proposition 3.1, Uq is a hypergroup. The convolution Xm(q) and Xn(q) is

Xm(q) ◦ Xn(q) =
1

dq(Um)dq(Un)
Um � Un =

∑
k∈S(m,n)

dq(Uk)
dq(Um)dq(Un)

Xk(q)

where S(m, n) = {|m − n|, |m − n| + 2, · · · ,m + n}. Then,

ak
mn(q) =

dq(Uk)
dq(Um)dq(Un)

=
(q − q−1)(qk+1 − q−(k+1))

(qm+1 − q−(m+1))(qn+1 − q−(n+1))
.

The coefficients ak
mn(q) can also write

ak
mn(q) =

(qk + qk−2 + · · · + q−k)
(qm + qm−2 + · · · + q−m)(qn + qn−2 + · · · + q−n)

.

Hence, we see that ak
mn(q) is continuous with respect to q. The involution of Uq is an

identity map by the fact that

Xn(q) =
1

dq(Un)
Un and U∗

n = Un.

When q = 1, it is clear that Xn(1) = 1
n+1Un. Since dq(Un) = qn + qn−2 + · · · + q−n is

continuous, Xn(q) → 1
n+1Un as q → 1. Hence, Uq is a q-deformation of Fd(U). �

Next, we consider the relation with the dual ŜU(2) = {π0, π1, · · · , πn, · · · }, where

dim πn = n + 1 and πm ⊗ πn
∼= π|m−n| ⊕ π|m−n|+2 ⊕ · · · ⊕ πm+n.

The character ρn of πn ∈ ŜU(2) is given by

ρn(g) = tr(πn(g)) (g ∈ SU(2)).

Then,
ρmρn = ρ|m−n| + ρ|m−n|+2 + · · · + ρm+n
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as a function on SU(2). Put F(ŜU(2)) = {ρ0, ρ1, · · · , ρn, · · · }. Then F(ŜU(2)) becomes a
fusion rule algebra and isomorphic to U .

For the representative element g = gθ =
(

cos θ − sin θ
sin θ cos θ

)
∈ SU(2) in the conjugacy

class of SU(2),

ρn(gθ) =
sin(n + 1)θ

sin θ
= Un(cos θ).

Put
χn =

1
dq(Un)

ρn (0 < q ≤ 1)

and
Kq(ŜU(2)) = {χ0, χ1, · · · , χn, · · · }.

Then, Kq(ŜU(2)) is a hypergroup which is isomorphic to Uq.

Remark The hypergroups Fd(U) and K(ŜU(2)) are strong hypergroups.

Conjecture The q-deformations Uq of Fd(U) and Kq(ŜU(2)) of K(ŜU(2)) are not strong
when q �= 1.

Conjecture The character hypergroup K(ŜUq(2)) of the quantum group SUq(2) is well
defined and

Kq(ŜU(2)) ∼= K(ŜUq(2)).
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pergroups K(Ĝ) of certain compact groups G.

1 Introduction

The notion of compact quantum groups is introduced in [14] and [15] by S. L. Woronowicz.
Especially, he studied the structure of SUq(2) which is obtained by a q-deformation of SU(2)
in the category of Hopf algebras. Compact quantum groups play an important role not only
in mathematics but also in theoretical physics.

Deformations of groups and hypergroups are investigated in [16] by K. A. Ross and D.
Xu and our previous paper [6] in the category of hypergroups. Many new hypergroups are
produced by deforming groups and hypergroups. The notion of q-deformations of groups
and hypergroups is one of the way to understand hypergroup structures.

The structure of countable discrete hypergroups arising from orthogonal polynomials
has been studied by many authors (for example [7], [8] and [9]). But there is no notion of
q-deformations of countable discrete hypergroups in the category of hypergroups. In the
present paper, we consider q-deformations of countable discrete commutative hypergroups,
mainly of the Chebyshev hypergroups T of the first kind and Fd(U) of the second kind. In
the present paper the q-deformation Kq of a countable discrete hypergroup K is to deform
continuously structures of K by a parameter q (0 < q ≤ 1) and K1 = K in the category
of hypergroups. A notion of dimension functions of countable discrete hypergroups and of
fusion rule algebras plays an essential role in our discussions.

In section 3, we consider dimension functions of countable discrete hypergroups as well
as of fusion rule algebras. In section 4, we discuss q-deformations Tq of the Chebyshev
hypergroup T of the first kind. Moreover we consider q-deformations Kq(Ĝ) of a character
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in the category of Hopf algebras. Compact quantum groups play an important role not only
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Deformations of groups and hypergroups are investigated in [16] by K. A. Ross and D.
Xu and our previous paper [6] in the category of hypergroups. Many new hypergroups are
produced by deforming groups and hypergroups. The notion of q-deformations of groups
and hypergroups is one of the way to understand hypergroup structures.

The structure of countable discrete hypergroups arising from orthogonal polynomials
has been studied by many authors (for example [7], [8] and [9]). But there is no notion of
q-deformations of countable discrete hypergroups in the category of hypergroups. In the
present paper, we consider q-deformations of countable discrete commutative hypergroups,
mainly of the Chebyshev hypergroups T of the first kind and Fd(U) of the second kind. In
the present paper the q-deformation Kq of a countable discrete hypergroup K is to deform
continuously structures of K by a parameter q (0 < q ≤ 1) and K1 = K in the category
of hypergroups. A notion of dimension functions of countable discrete hypergroups and of
fusion rule algebras plays an essential role in our discussions.

In section 3, we consider dimension functions of countable discrete hypergroups as well
as of fusion rule algebras. In section 4, we discuss q-deformations Tq of the Chebyshev
hypergroup T of the first kind. Moreover we consider q-deformations Kq(Ĝ) of a character
hypergroup K(Ĝ) of the compact group G = T �α Z2 as an application of q-deformations
of T . In section 5, we discuss q-deformations Uq of the Chebyshev hypergroup Fd(U)
of the second kind which is obtained by normalization of the fusion rule algebra U by
the dimension function d of U . Moreover we investigate q-deformations Kq(ŜU(2)) of a
character hypergroup K(ŜU(2)) of the compact Lie group SU(2).
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Abstract. This paper considers a route optimization problem in advanced electri-
cal PCB inspections. By considering the constraint that “camera-based alignment of
position” needs to be conducted before electrical tests, the PCB inspection route op-
timization problem (PCBIRP) is modeled as a precedence-constrained traveling sales-
man problem (PCTSP), especially, as a pickup and delivery traveling salesman problem
(PDTSP). Two of mixed 0-1 integer programming problem formulations are proposed.
The computational times for the proposed formulations are compared by solving bench-
mark instances using some of well-known mathematical programming solvers.

1 Introduction Printed circuit boards (PCBs) have been used in almost all electric de-
vices. There are many of previous studies on optimization techniques for PCB manufactur-
ing processes such as assembly operations [1, 5, 11] and drilling processes [2]. On the other
hand, optimization techniques for PCB inspections have not been sufficiently developed so
far except for some studies on multi-chip module substrate testing [10, 14].

PCB inspections are quite important to enhance the reliability of manufactured PCBs.
In addition, since the number of PCBs to be inspected has been recently increasing, the
speedup of PCB inspections has become one of the most important issues in the field. In
production processes of PCBs, defect generation may arise due to some trouble, which
prevents PCBs from working properly. In electrical PCB inspections, all the PCBs arrayed
in a plain are visited and tested by an inspection jig in some sequence or order.

Since the inspection time is dependent on the length of traveling (visiting) route of an
inspection jig, it is worth finding the best inspection sequence or route in order to reduce
the inspection time. On the other hand, the procedure of the camera-based “alignment” of
position (hereafter we call it just an alignment operation) is additionally needed before elec-
trical tests in recently-developed PCB inspection machines. However, a route optimization
problem in such advanced inspections with alignment operations has not been discussed so
far, and there has been no article to model the problem using mathematical programming.

This paper is organized as follows: Section 2 reviews an advanced electrical PCB in-
spection method involving “alignment” operations, and discusses the necessity of route
optimization. In Section 3, we model the PCB inspection route optimization problem
(PCBIRP) as a class of pickup and delivery traveling salesman problems (PDTSPs) [3, 15]
and provide two of mixed 0-1 integer programming problem formulations. In Section 4,
numerical experiments are conducted by solving benchmark instances based on real PCB
wiring patterns, using some of well-known mathematical programming solvers. Finally, in
Section 5, we summarize this paper and discuss future works.
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2 Preliminaries In this section, we review an advanced electrical PCB inspection method
and explain the reason why the alignment operations via a camera have been recently nec-
essary in PCB inspections. In addition, we discuss the necessity of considering route opti-
mization problems in electrical PCB inspections with alignment operations.

2.1 Electrical test of PCB In production process of PCBs, various wiring patterns are
etched on PCBs. When some trouble happens in forming wiring patterns, PCBs may include
some defects such as open (disconnection) defects and/or short-circuit defects. PCBs have
bulged parts, called contact pads, as shown in Figure 1, which are used to electrically inspect
PCBs. In some cases, the number of pins is more than 1,000. The diameter of contact pads
is about 100 ∼ 300 µm.

Top view of a PCB

Contact pad: 100~300μm

PCB

Side view of a PCB

Figure 1: Contact pads in a PCB

In order to electrically test wiring patterns on PCBs, a test jig, called a probe jig, is
used, as shown on the left-hand side of Figure 2. A probe jig contains many sharp, thin
and conductive pins with a diameter of 20∼130µm. The number of pins is usually equal to
that of contact pads, and there is a one-to-one correspondence between contact pads and
pins.

Probe jig

PCB

Pin: 20～～～～130μm

Probe jig

PCB

Figure 2: Electrical test via a probe jig

Electrical tests are conducted by pressing a probe jig onto a PCB and by feeding electric
currents through pins into contact pads of PCB wirings, as shown on the right-hand side of
Figure 2. Electric currents are fed into wiring through pins in order to check if each wiring
has defects such as open or short circuits. Therefore, for valid tests, every pin of the probe
jig needs to have a contact with the corresponding contact pad.

To exactly conduct the electrical continuity test, each PCB has the so-called “test po-
sition.” For valid tests, it is necessary to make the reference point of a probe jig exactly
located at the test position of a PCB, as shown on the left-hand side of Figure 3.

To be more specific, when the reference point of a probe jig is precisely placed at the test
position of a PCB, each pin of the probe jig has a contact with its corresponding contact
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production processes of PCBs, defect generation may arise due to some trouble, which
prevents PCBs from working properly. In electrical PCB inspections, all the PCBs arrayed
in a plain are visited and tested by an inspection jig in some sequence or order.

Since the inspection time is dependent on the length of traveling (visiting) route of an
inspection jig, it is worth finding the best inspection sequence or route in order to reduce
the inspection time. On the other hand, the procedure of the camera-based “alignment” of
position (hereafter we call it just an alignment operation) is additionally needed before elec-
trical tests in recently-developed PCB inspection machines. However, a route optimization
problem in such advanced inspections with alignment operations has not been discussed so
far, and there has been no article to model the problem using mathematical programming.

This paper is organized as follows: Section 2 reviews an advanced electrical PCB in-
spection method involving “alignment” operations, and discusses the necessity of route
optimization. In Section 3, we model the PCB inspection route optimization problem
(PCBIRP) as a class of pickup and delivery traveling salesman problems (PDTSPs) [3, 15]
and provide two of mixed 0-1 integer programming problem formulations. In Section 4,
numerical experiments are conducted by solving benchmark instances based on real PCB
wiring patterns, using some of well-known mathematical programming solvers. Finally, in
Section 5, we summarize this paper and discuss future works.
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pad of the PCB, as shown on the right-hand side of Figure 3.

Top view Side view Top view Side view 

Reference point

Test position

Figure 3: Proper inspection

On the other hand, as shown in Figure 4, when the reference point is not placed at
the test position, inspection failures occur. In this case, because some of pins do not have
contacts with their corresponding contact pads, electric currents are not fed into wiring
lines through the pins, which causes the misjudgment of whether there is a defect or not.

Top view Side viewTop viewSide view

Figure 4: Failed inspection

2.2 Electrical PCB inspection with alignment operations Recently, inspection
failures tend to occur more frequently than before, because the miniaturization of electronic
devices makes it more difficult to exactly put the reference point of a probe jig onto the test
position of a PCB. Since PCB sheets are very thin like pieces of paper, they easily undergo
deflections. When there is a deflection in a PCB sheet, the position of the reference point
of a probe jig is changed from the regular position, which leads to the situation that some
pins of the probe jig do not have contacts with their corresponding contact pads.

In order to deal with such a change of the test position due to the deflection of PCB
sheets, the “alignment” operation has been introduced in advanced PCB inspection systems.
A camera is attached to the probe jig, and each PCB has one or two alignment marks, as
shown in Figure 5 (in this case, the PCB has two alignment marks). We call a probe jig
with a camera “a probe unit.” The camera is used to capture the images of alignment
marks, which acquires the information on the exact coordinate of the test position.

Thus, the advanced PCB inspection method involving alignment operations consists of
two steps, Alignment operation and Electrical test, as follows:

[Procedures of electrical PCB inspections with alignment operations]
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Probe unit

Camera Alignment mark

Figure 5: Alignment marks (captured by the camera of a probe unit)

Step 1 (Alignment operation):
Move the camera of the probe unit to the position of an alignment mark so that the
camera can capture the image of the alignment mark (cf. the left-hand side of Figure
6).

Step 2 (Electrical test):
Move the reference point of the probe unit to the test position of the PCB so that the
probe jig can properly press onto each wiring pattern of the PCB (cf. the right-hand
side of Figure 6).

Step 1: Alignment Step 2: Electrical test

Figure 6: Electrical PCB inspection (alignment operation and electrical test)

2.3 Route optimization Route optimization in PCB inspections is considerably impor-
tant. Even if the reduced inspection time is several percent, it can bring a great effect on
cost reduction as well as on productive efficiency of PCBs. It is because there are a large
number of PCB sheets to be inspected in the field, and the number of PCB sheets to be
inspected by one machine per day is more than 1,000.

Each of PCB sheets consists of many PCBs with the same wiring patterns which are
arrayed in a plane. Figure 7 is a simple example of a PCB sheet which consists of only 4
(2×2) PCBs. In general, the number of the same wiring pattern arrayed in one PCB sheet
ranges from 4 to around 200.

Our interest is to find the shortest route for inspecting all the PCBs in the sheet. The
route length is dependent on the visiting sequence (order) of the probe jig. Figure 8 shows
a simple inspection sequence in which the test position for each PCB is visited immediately
after the corresponding alignment marks are visited in order. It should be noted here that
each test position does not need to be visited immediately after the corresponding alignment
marks are visited.
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Initial position 

Figure 7: PCB sheet

Initial position

Figure 8: Simple visiting sequence (order): Example 1

Figure 9 shows another simple inspection sequence in which test positions are visited
after all the alignment marks are visited. A probe unit firstly moves to the alignment mark
located at the upper left, and then visits only alignment marks in order. After all the
alignment marks are visited, the probe unit moves to the nearest test position from the
lastly visited alignment mark, and visits only test positions in the inverse sequence (order)
of alignment marks that were already visited.

Initial position

Figure 9: Simple visiting sequence (order): Example 2

Apparently, the inspection routes based on the sequence shown in Figures 8 and 9 are
not optimal, and there may exist other shorter routes. This kind of optimization problem
for obtaining the shortest route in electrical PCB inspections with alignment operations has
not been discussed so far.

In the next section, we will address how to find an optimal inspection route in advanced
electrical PCB inspections.
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3 Modelling and problem formulation In this section, we show that the problem of
finding an optimal inspection route, namely, an inspection route with the minimum length
(an optimal route) can be modeled as a kind of PDTSPs, and that it is formulated as mixed
0-1 integer programming problems.

3.1 Pickup and delivery traveling salesman problem (PDTSP) A pickup and
delivery traveling salesman problem (PDTSP) [3, 15] is a kind of TSPs in which all vertices
are characterized as pickup and/or delivery vertices. PDTSPs can be roughly classified into
three groups [3] such as 1) one-to-one, 2) many-to-many, 3) one-to-many-to-one. In one-to-
one problems, each commodity has exactly one pickup vertex and one delivery vertex. In
many-to-many PDTSPs, several origins (pickup vertices) and destinations (delivery vertices)
are characterized for each commodity. In one-to-many-to-one PDTSPs, some commodities
(e.g., food or drinks) are delivered from the depot to customers while other commodities
(e.g., empty bottles) supplied by the customers are brought back to the depot.

As will be discussed in the next section, the PCB inspection route optimization prob-
lem (PCBIRP) can be modeled as a many-to-one or one-to-one problem in which each
commodity has several (or one) pickup vertices (vertex) but only one delivery vertex.

3.2 Modelling based on a PDTSP To illuminate the readers’ understanding of the
ideas of this paper, we give graphical explanations with the example shown in Figure 7. In
order for the camera of a probe unit to capture the images of alignment marks, the camera
must be moved to alignment mark A, as shown in Figure 10. This operation is equivalent
to moving the reference point of the probe unit (the center of the probe jig) to vertex A′.
Thus, we consider the graph in which the alignment mark A is moved to A′.

A

A’

Figure 10: Image capturing of alignment mark A

In a similar manner, we transfer all the positions of alignment marks, and obtain a new
graph shown in Figure 11, which represents a set of vertices to be visited by the reference
point of a probe unit.

As described before, there are precedence constraints between alignment marks and their
corresponding test position for each PCB. In Figure 12, dotted lines represent precedence
relations, which means that for each PCB, two alignment marks must be visited before the
corresponding test position is visited.

In general, when the number of alignment marks is two, the PCBIRP can be modeled
as a two-to-one PDTSP; two alignment marks are regarded as pickup vertices, and the
corresponding one test position is regarded as a delivery vertex. It should be noted that
each vertex is characterized as either of pickup and delivery vertices. This is different from
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Figure 11: Vertices to be visited by the probe unit

a

c

b

d

Figure 12: Precedence relationships between alignment marks and test positions
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the original many-to-many PDTSPs; the original many-to-many PDTSPs allow each vertex
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Path length: 766.0mm

Figure 13: Simple inspection route

Figure 14 shows the optimal route, namely, the shortest route (cycle). In the next
section, we shall give mathematical programming formulations in order to obtain an optimal
route.

Path length: 733.8mm

Figure 14: Optimal inspection route

3.3 Integer programming-based problem formulation Here, we formulate the PCBIRP
as mixed 0-1 integer programming problems. In preparation for problem formulation, we
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use the following mathematical notation:

0: Vertex corresponding to the initial point of a probe unit
B: Set of PCBs to be tested, defined by {1, 2, . . . , l}
Ap: Set of vertices corresponding to alignment marks of p-th PCB (p ∈ B)
tp: Vertex corresponding to the test position of p-th PCB (p ∈ B)
N : Set of all the vertices to be visited by a probe unit defined by N = ∪l

p=1 (Ap ∪ {tp})
eij : Edge between vertices i and j (i, j ∈ N ∪ {0})
E: Set of all the edges eij , ∀i, j ∈ N ∪ {0}
cij : Length of eij (eij ∈ E)

For notational convenience, the test position for the p-th PCB is represented as a sin-
gleton {tp}, although there is only a single test position for each PCB. As for alignment
marks, since there are one or two alignment marks, the number of elements in Ap is one
or two. Figure 15 shows an example of 4 PCBs where there are 13 numbered vertices
0∪N = {0, 1, . . . , 12} in which B = {1, 2, 3, 4} (l = 4), A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6},
A4 = {7, 8}, t1 = 9, t2 = 10, t3 = 11, t4 = 12 and N = {1, 2, . . . , 12}.

p = 1

p = 2

p = 3

p = 4

1
0

2
9

3
4

10

5 6
11

7
8

12

Figure 15: Number of vertices

In order to formulate PCBIRPs as mathematical programming problems, we introduce
decision variables xijs as follows:

xij =
{

1 if j is visited immediately after i is visited
0 otherwise.

Decision variable xij is used to represent inspection routes, namely, to construct a route
by connecting all edges with xij = 1.

In this paper, we consider the well-known “polynomial formulations” where the number
of constraints and variables is a polynomial function of the number of vertices (cities). One
of the most well-known polynomial formulations of TSPs is given by Miller-Tucker-Zemlin
(MTZ) [13]. The PCBIRP cannot directly be modeled as the original MTZ formulation
because the original MTZ formulation does not take into consideration the precedence
relationship between vertices.

On the basis of MTZ formulation, we firstly provide the following new formulation,
called PCBIRP-MTZ, in which the precedence constraints with respect to alignment marks
and test positions are added to the original MTZ formulation:
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PCBIRP-MTZ:

minimize
∑

i∈N∪{0}

∑
j∈N∪{0}

(j �=i)

cijxij(1)

subject to
∑

j∈N∪{0}
(j �=i)

xij = 1, ∀i ∈ N ∪ {0}(2)

∑
i∈N∪{0}

(i�=j)

xij = 1, ∀j ∈ N ∪ {0}(3)

uj ≥ ui + 1 − (n − 1)(1 − xij), ∀i, j ∈ N, i �= j(4)
1 ≤ uj ≤ n − 1, ∀j ∈ N(5)
ui ≤ uj − 1, ∀i ∈ Ap, ∀j ∈ {tp}, ∀p ∈ B(6)
xij ∈ {0, 1}, ∀i, j ∈ N ∪ {0}, i �= j,(7)

where (1) represents the route length. Constraints (2) and (3) impose that the out-degree
and in-degree of each vertex, respectively, is equal to one. Constraints (4) prevent subtours
not containing node 0 and imply uj ≥ ui + 1 whenever xij = 1, where ui, i ∈ N is an
arbitrary real number representing the order of vertex i in the optimal tour. Together with
(2) and (3), constraints (4) guarantee that subtours containing node 0 are not allowed.
Constraints (6) guarantee that all the alignment marks i ∈ Ap of the p-th PCB are visited
before the corresponding test position j ∈ {tp} is visited.

We propose another formulation which is an extended version of PCBIRP-MTZ. Desrochers
and Laporte [6] proposed a formulation in which the MTZ constraints were lifted into facets
of the underlying TSP polytope. Along this line, we provide the following new formulation,
called PCBIRP-DL, which is obtained by replacing constraints (4) and (5) in PCBIRP-MTZ
with the lifted constraints (11)-(13):

PCBIRP-DL:

minimize
∑

i∈N∪{0}

∑
j∈N∪{0}

(j �=i)

cijxij(8)

subject to
∑

j∈N∪{0}
(j �=i)

xij = 1, ∀i ∈ N ∪ {0}(9)

∑
i∈N∪{0}

(i�=j)

xij = 1, ∀j ∈ N ∪ {0}(10)

uj ≥ ui + 1 − (n − 1)(1 − xij) + (n − 3)xji, ∀i, j ∈ N, i �= j(11)
1 + (1 − x0j) + (n − 3)xj0 ≤ uj , ∀j ∈ N(12)
uj ≤ (n − 1) − (n − 3)x0j − (1 − xj0), ∀j ∈ N,(13)
ui ≤ uj − 1, ∀i ∈ Ap, ∀j ∈ {tp}, ∀p ∈ B(14)
xij ∈ {0, 1}, ∀i, j ∈ N ∪ {0}, i �= j,(15)

where constraints (11) are obtained by lifting (4), and constraints (12) and (13) are obtained
by lifting (5). By introducing lifted constraints (11)-(13), PCBIRP-DL is a tighter formu-
lation than PCBIRP-MTZ, which means that the formulation of PCBIRP-DL is expected
to solve PCBIRPs faster than the formulation of PCBIRP-MTZ.
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can be considered practical when CPLEX or Gurobi is used because it takes less than 3
minutes to solve the problem with 16 PCBs in a sheet.
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Figure 16: Computational time for solving different-size benchmark instances

Table 2 shows the route length of the optimal solution obtained using mathematical
programming solvers. In this table, ”Simple route” represents the simple PCB inspection
route in which all the alignment marks are firstly visited and then all the test positions are
visited in a simple order, like the route as shown in Figure 13. It is observed from Table
2 that the PCB inspection routes obtained by the proposed formulations are averagely
around 50% shorter than simple routes that had been previously employed in the field of
PCB inspections with alignment operations.

5 Conclusion In this paper, we have newly modeled a route optimization problem in
advanced PCB electrical inspections, which had not been discussed so far. We have formu-
lated the PCB inspection route optimization problem (PCBIRP) as a class of PDTSPs, and
provided two types of mixed 0-1 integer programming problem formulations based on MTZ
formulation and its extension. Some experiments have been conducted using bench mark
instances based on real PCB wiring patterns. The proposed method can yield averagely
50% shorter inspection route than the previous method. Also, it has been shown that the
procedure of ”lifting” is promising for solving the PCBIRP.

As a future study, we will address other alternative polynomial formulations (formu-
lations in which the number of constraints and variables is a polynomial function of the
number of vertices ) of PCBIRP using flow-based formulations [17]. In addition, it is in-
teresting to consider branch-and-cut methods by extending the polytope of PDTSPs [7].
Since the number of PCBs is 100 to 200 in some cases, it is also important to consider some
efficient heuristic algorithms. Hence, another future work is to consider novel heuristic
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Table 2: The lengths of PCB inspection routes
n Simple route Optimal route Improvement rate (%)
1 647.1 647.1 0.0
2 1062.2 762.2 28.2
3 1478.2 895.3 39.4
4 1894.8 1057.4 44.2
5 2311.6 1198.8 48.1
6 2640.0 1380.4 47.7
7 2855.4 1459.4 48.9
8 3072.2 1531.2 50.2
9 3290.9 1693.7 48.5

10 3512.9 1808.0 48.5
11 3878.2 2050.0 47.1
12 4277.6 2114.4 50.6
13 4681.7 2225.7 52.5
14 5089.2 2322.7 54.3
15 5498.9 2383.6 56.7
16 5850.7 2570.7 56.1
17 6074.9 2644.2 56.4
18 6302.1 2715.9 56.9
19 6533.2 2883.2 55.9
20 6769.6 2992.8 55.8
21 7148.0 3241.9 54.6
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and provide two of mixed 0-1 integer programming problem formulations. In Section 4,
numerical experiments are conducted by solving benchmark instances based on real PCB
wiring patterns, using some of well-known mathematical programming solvers. Finally, in
Section 5, we summarize this paper and discuss future works.
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algorithms as some extensions of conventional efficient algorithms such as Lin-Kernighan
method [12] and its variants [9]. These extensions will be discussed elsewhere in near future.
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Abstract. This paper considers a route optimization problem in advanced electri-
cal PCB inspections. By considering the constraint that “camera-based alignment of
position” needs to be conducted before electrical tests, the PCB inspection route op-
timization problem (PCBIRP) is modeled as a precedence-constrained traveling sales-
man problem (PCTSP), especially, as a pickup and delivery traveling salesman problem
(PDTSP). Two of mixed 0-1 integer programming problem formulations are proposed.
The computational times for the proposed formulations are compared by solving bench-
mark instances using some of well-known mathematical programming solvers.

1 Introduction Printed circuit boards (PCBs) have been used in almost all electric de-
vices. There are many of previous studies on optimization techniques for PCB manufactur-
ing processes such as assembly operations [1, 5, 11] and drilling processes [2]. On the other
hand, optimization techniques for PCB inspections have not been sufficiently developed so
far except for some studies on multi-chip module substrate testing [10, 14].

PCB inspections are quite important to enhance the reliability of manufactured PCBs.
In addition, since the number of PCBs to be inspected has been recently increasing, the
speedup of PCB inspections has become one of the most important issues in the field. In
production processes of PCBs, defect generation may arise due to some trouble, which
prevents PCBs from working properly. In electrical PCB inspections, all the PCBs arrayed
in a plain are visited and tested by an inspection jig in some sequence or order.

Since the inspection time is dependent on the length of traveling (visiting) route of an
inspection jig, it is worth finding the best inspection sequence or route in order to reduce
the inspection time. On the other hand, the procedure of the camera-based “alignment” of
position (hereafter we call it just an alignment operation) is additionally needed before elec-
trical tests in recently-developed PCB inspection machines. However, a route optimization
problem in such advanced inspections with alignment operations has not been discussed so
far, and there has been no article to model the problem using mathematical programming.

This paper is organized as follows: Section 2 reviews an advanced electrical PCB in-
spection method involving “alignment” operations, and discusses the necessity of route
optimization. In Section 3, we model the PCB inspection route optimization problem
(PCBIRP) as a class of pickup and delivery traveling salesman problems (PDTSPs) [3, 15]
and provide two of mixed 0-1 integer programming problem formulations. In Section 4,
numerical experiments are conducted by solving benchmark instances based on real PCB
wiring patterns, using some of well-known mathematical programming solvers. Finally, in
Section 5, we summarize this paper and discuss future works.
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Abstract.The aim of the present paper is devoted to discuss some more properties
of γ-irresolute mappings and contra-γ-irresolute mappings. Also, we introduce and
study two new weak homeomorphisms such as contra-γr-homeomorphisms and contra-
γ-homeomorphisms. Further, we investigate some groups related to the mappings above
and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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In Section 5, we study some topological properties on related topics of transformations on
the digital line (Z, κ) (so-called Khalimsky lines [21], [22, p.7, line −6], [23, p.905, p.908]),
and for a specific subset H of the digital line (Z, κ), we determine the group structure
(Example 5.13) of γr-h(Z, Z \ H;κ), γr-h0(Z, Z \ H;κ) and γr-h(H; κ|H).

Throughout the present paper, (X, τ), (Y, σ) and (Z, η) (or simply X,Y and Z) represent
nonempty topological spaces on which no separation axioms are assumed, unless otherwise
mentioned.

2 Contra-γ-irresolute mappings and γ-irresolute mappings This section is de-
voted to discuss the relation among γ-irresolute mappings [15], contra-γ-irresolute mappings
[16][28], perfectly contra-γ-irresolute mappings [16] and some mappings (cf. Definitions 2.1,
2.2).

Definition 2.1 A mapping f : (X, τ) → (Y, σ) is said to be:
(i) b-continuous [12] (or γ-continuous [15]), if f−1(V ) is a b-closed (or γ-closed) set of

(X, τ) for each closed set V of (Y, σ);
(ii) perfectly continuous [31], if f−1(V ) is clopen in (X, τ) for each open set V of (Y, σ);
(iii) contra-continuous [11], if f−1(V ) is closed in (X, τ) for each open set V of (Y, σ);
(iv) contra-γ-continuous [16] (or contra-b-continuous [28]) if f−1(V ) ∈ γC(X, τ) for each

open set V of (Y, σ);
(iv)

′
strongly contra-γ-continuous (cf. (iv)), if f is a contra-γ-continuous mapping such

that the inverse image of each open set of (Y, σ) has an interior point;
(v) B-continuous [34], if f−1(V ) is a B-set of (X, τ) for each nonempty open set V of

(Y, σ), where the B-set is the intersection of an open set and a semi-closed set of (X, τ) (this
is defined by [34], cf. [10, Theorem 2.3]).

(v)
′

B∗-continuous (cf. (v)), if f−1(V ) contains a nonempty B-set of (X, τ) for each
nonempty open set V of (Y, σ);

(vi) pre-b-closed [15] (or pre-γ-closed), if f(G) is b-closed (or γ-closed) in (Y, σ) for each
b-closed (or γ-closed) set G of (X, τ).

Definition 2.2 A mapping f : (X, τ) → (Y, σ) is said to be:
(i) γ-irresolute (or b-irresolute [15]) (resp. irresolute [8, Definition 1.1]), if f−1(U) ∈

γO(X, τ) (resp. f−1(U) ∈ SO(X, τ)) for every set U ∈ γO(Y, σ) (resp. U ∈ SO(Y, σ));
(ii) contra-γ-irresolute [16] (or contra-b-irresolute [28]) (resp.-

contra-irresolute), if f−1(U) ∈ γC(X, τ) (resp. f−1(U) ∈ SC(X, τ)) for every set U ∈
γO(Y, σ) (resp. U ∈ SO(Y, σ));

(iii) perfectly contra-γ-irresolute [29] (resp. perfectly contra-irresolute), if f−1(V ) is γ-
clopen (resp. semi-open and semi-closed) in (X, τ) for each set V ∈ γO(Y, σ) (resp. V ∈
SO(Y, σ)).

Theorem 2.3 A mapping f : (X, τ) → (Y, σ) is B∗-continuous, if one of the following
conditions is satisfied:

(1) f is a strongly contra-γ-continuous mapping,
(2) f is an onto and B-continuous mapping. �

We have the following diagram among several mappings defined above, where p → q (resp.
p’ � q’) means that p implies q (resp. p’ and q’ are independent). The implications are not
reversible and the independence is explained (cf. Remark 2.4 below).

contra-continuous
↙ ↘

contra-γ-continuous � B-continuous ← onto and B-continuous
↑ ↓

strongly contra-γ-continuous → B∗-contiuous.
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Remark 2.4 (i) Let (R, �) be the real line with the Euclidean topology �. The following
functions f, 1R : (R, �) → (R, �) of (i) below are seen in [12].

(i) (i-1) Let f : (R, �) → (R, �) be a mapping defined by f(x) = [x], where [x] is the
Gaussian symbol. Then, f is contra-γ-continuous (cf. Definition 2.1(iv)). However, f is not
contra-continuous, because for an open interval (1/2, 3/2), f−1((1/2, 3/2)) = [1, 2) is not
closed in (R, �).

(i-2) The identity mapping 1R : (R, �) → (R, �) is B-continuous (cf. Definition 2.1(v)) but
not contra-γ-continuous, since the inverse image of each singleton is not γ-open. Moreover,
1R is not contra-continuous.

(ii) The following mapping f : (X, τ) → (X, τ) is contra-γ-continuous; but f is not
B-continuous. Let X := {a, b, c} and τ := {∅, {a, b}, X}. Then, we have γC(X, τ) =
{∅,{a},{b},{c}, {b, c},{a, c},X} and SC(X, τ) = {∅,{c},X}. We define the mapping f by
f(a) := a, f(b) := c, f(c) := b.

(iii) The converse of Theorem 2.3 under the assumption (1) is not reversible. Let X :=
{a, b, c} and τ := {∅, {a}, {b}, {a, b}, X}. Let f : (X, τ) → (X, τ) be a mapping defined by
f(a) := b, f(b) := c, f(c) := a. Then, since γC(X, τ) = SC(X, τ) = P (X)\{{a, b}}, we show
f is B-continuous and onto. By Theorem 2.3 under the assumption (2), it is obtained that f
is B∗-continuous. This mapping f is contra-γ-continuous; but Int(f−1({a})) = Int({c}) = ∅
hold; and so f is not strongly contra-γ-continuous.

(iv) The converse of Theorem 2.3 under the assumption (2) is not reversible. The map-
ping f : (X, τ) → (X, τ) defined in (ii) above is not B-continuous (cf. (ii)). But, f is
B∗-continuous, because {c} and X are the nonempty B-sets.

(v) The contra-γ-continuous mapping f : (X, τ) → (X, τ) of (ii) above is not strongly
contra-γ-continuous (cf. Definition 2.1(iv)

′
), because

Int(f−1({a, b})) = ∅.

Remark 2.5 (i) Let X = {a, b}, τ = {∅, X, {a}} and σ = {∅, X, {b}}. Then the identity
mapping 1X : (X, τ) → (X,σ) is a contra-γ-continuous mapping but it is not γ-continuous.

(ii) The identity mapping 1R : (R, �) → (R, �) of Remark 2.4(i)(i-2) is γ-continuous but
it is not contra-γ-continuous.

Remark 2.6 The following properties are well known. (i) [4, Theorem 3.7(i)] if f : (X, τ) →
(Y, σ) is contra-γ-irresolute and g : (Y, σ) → (Z, η) is γ-continuous, then g ◦ f is contra-γ-
continuous.

(ii) Every homeomorphism is γ-irresolute.

Remark 2.7 (i) By the following examples (i-1) and (i-2), it is shown that the contra-
γ-irresoluteness and γ-irresoluteness are independent notions: let X := {a, b, c} and τ :=
{X, ∅, {a}, {a, b}}.
(i-1) The identity mapping on (X, τ) above is γ-irresolute; but it is not contra-γ-irresolute.
(i-2) Let f : (X, τ) → (X, τ) be a mapping defined by f(a) := b, f(b) := b, f(c) := a. Then,
f is contra-γ-irresolute; but f is not γ-irresolute.

(ii) In general, for any topological space (X, τ), the identity mapping 1X : (X, τ) → (X, τ)
is contra-γ-irresolute if and only if γO(X, τ) = γC(X, τ) holds. And, 1X on any topological
space (X, τ) is γ-irresolute.

Remark 2.8 (i) Every contra-γ-irresolute mapping is contra-γ-continuous, but it is shown
that its converse is not true, by the following example. Let X = {a, b, c}, τ={∅,{a},
{b},{a, b},X}. Let f : (X, τ) → (X, τ) be a mapping defined by f(a) := c, f(b) := a, f(c) :=
b.

(ii) For a mapping f : (X, τ) → (Y, σ), f is contra-γ-irresolute if and only if the inverse
image f−1(F ) of each γ-closed set F of (Y, σ) is γ-open in (X, τ).
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In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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Remark 2.9 (i) The following diagram of implications is well known:
· contra-irresolute ←− perfectly contra-irresolute −→ irresolute.

We have the following diagram of implications:
· contra-γ-irresolute ←− perfectly contra-γ-irresolute −→ γ-irresolute;

and they are not reversible (cf. Remark 2.7(i) above and Remark 2.10 below):
(ii) In the implications above, the irresoluteness (resp. contra-irresoluteness, perfectly

contra-irresoluteness) and the γ-irresoluteness (resp. contra-γ-irresoluteness, perfectly contra-
γ-irresoluteness) are independent (cf. (a), (b), (c) below).

Let X = {a, b, c}. We consider the following topologies on X : τ := {X, ∅, {a}, {b}, {a, b}},
τ1 := {X, ∅, {a}, {a, b}}, τ2 := {X, ∅, {c}, {a, b}} and τ3 := {X, ∅}. We have the following
dates: SO(X, τ) = γO(X, τ) = P (X) \ {{c}}; SO(X, τ1) = γO(X, τ1)={∅, {a}, {a, b},{a, c},
X}; SO(X, τ2) = τ2, γO(X, τ2) = P (X); SO(X, τ3) = {∅, X}, γO(X, τ3) = P (X).

(a) (a-1) Define a mapping f : (X, τ) → (X, τ2) as follows: f(a) = a, f(b) = c and
f(c) = b. Then f is irresolute; f is not γ-irresolute.
(a-2) Let f : (X, τ3) → (X, τ) be the identity mapping. Then f is γ-irresolute; f is not
irresolute.

(b) (b-1) Let f : (X, τ2) → (X, τ1) be the identity mapping. Then f is contra-γ-irresolute;
f is not contra-irresolute.
(b-2) Define a mapping f : (X, τ1) → (X, τ2) as follows: f(a) := a, f(b) := a, f(c) := b.
Then f is contra-irresolute; f is not contra-γ-irresolute.

(c) (c-1) Let f : (X, τ3) → (X, τ2) be the identity mapping. Then f is perfectly contra-
γ-irresolute; f is not perfectly contra-irresolute.
(c-2) Define a mapping f : (X, τ) → (X, τ2) as follows: f(a) := c, f(b) := a, f(c) := b. Then
f is perfectly contra-irresolute; f is not perfectly contra-γ-irresolute.

Remark 2.10 We have a decomposition of perfectly contra-γ-irresolute mappings. The
following conditions (1) and (2) are equivalent: (1) f : (X, τ) → (Y, σ) is perfectly contra-
γ-irresolute; (2) f : (X, τ) → (Y, σ) is contra-γ-irresolute and γ-irresolute.

3 Groups γr-h(X; τ)∪ contra-γr-h(X; τ) and h(X; τ)∪ contra-h(X; τ) We have a new
homeomorphism invariant for topological spaces (cf. Theorems 3.4, 3.5, Corollary 3.6).

Definition 3.1 (i) A mapping f : (X, τ) → (Y, σ) is said to be:
(i-1) ([20, Definiton 4.12]) a γr-homeomorphism if f is a γ-irresolute bijection and f−1

is γ-irresolute;
(i-2) a contra-γr-homeomorphism if f is a contra-γ-irresolute bijection and f−1 is contra-

γ-irresolute;
(ii) (ii-1) ([20, Definition 4.12]) a γ-homeomorphism if f is a γ-continuous bijection and

f−1 is γ-continuous;
(ii-2) a contra-γ-homeomorphism (resp. contra-homeomorphism) if f is a contra-γ-continuous

(resp. contra-continuous) bijection and f−1 is contra-γ-continuous (resp. contra-continuous).

Definition 3.2 We recall and define the following families of mappings from (X, τ) onto
itself.
· ([20, Definition 4.13]) γr-h(X; τ) := {f |f : (X, τ) → (X, τ) is a γr-homeomorphism} (by
[20, Theorem 4.14(ii)], it is proved that γr-h(X; τ) forms a group under the composition of
mappings);
· contra-γr-h(X; τ) := {f |f : (X, τ) → (X, τ) is a contra-γr-homeomorphism};
· h(X; τ) := {f |f : (X, τ) → (X, τ) is a homeomorphism};
· contra-h(X; τ) := {f |f : (X, τ) → (X, τ) is a contra-homeomorphism};
· G(X,τ) := γr-h(X; τ) ∪ contra-γr-h(X; τ);
· H(X,τ) := h(X; τ) ∪ contra-h(X; τ).
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of γ-irresolute mappings and contra-γ-irresolute mappings. Also, we introduce and
study two new weak homeomorphisms such as contra-γr-homeomorphisms and contra-
γ-homeomorphisms. Further, we investigate some groups related to the mappings above
and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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Proposition 3.3 Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two mappings between
topological spaces.

(i) (i-1) ([20, Theorem 4.14(ii)]) If f and g are γ-irresolute, then g ◦ f is γ-irresolute.
(i-2) ([20, Theorem 4.14(ii)]) The identity mapping 1X : (X, τ) → (X, τ) is γ-irresolute.
(i-3) If f and g are contra-γ-irresolute, then g ◦ f is γ-irresolute.
(ii) (ii-1) If f is contra-γ-irresolute and g is γ-irresolute, then g◦f is contra-γ-irresolute.
(ii-2) If f is γ-irresolute and g is contra-γ-irresolute, then g ◦ f is contra-γ-irresolute. �

Theorem 3.4 Let G(X,τ) and H(X,τ) be the families of mappings defned in Definition 3.2.
(i) G(X,τ) forms a group under the composition of mappings.
(ii) γr-h(X; τ) forms a subgroup of G(X,τ) (cf. [20, Theorem 4.14(ii)]).
(iii) The group h(X; τ) is a subgroup of γr-h(X; τ) ([20, Theorem 4.14(iii)]) and h(X; τ)

is also a subgroup of G(X,τ).
(iv) H(X,τ) forms a group under the composition of mappings. The group h(X; τ) is a

subgroup of H(X,τ).
(v) If τ = γO(X, τ) holds, then G(X,τ) = H(X,τ). �

We note that the binary operation ωG(X,τ) : G(X,τ) × G(X,τ) → G(X,τ) is well defined by
ωG(X,τ)(a, b) := b◦a, where a, b ∈ G(X,τ) and b◦a denotes the composition of two mappings
a, b defined by (b ◦ a)(x) = b(a(x)) for any x ∈ X (cf. Proposition 3.3). And, the restriction
ωG(X,τ)|γr-h(X; τ) × γr-h(X; τ) is denoted shortly by ωX .

Theorem 3.5 (i) If f : (X, τ) → (Y, σ) is a γr-homeomorphism (resp. contra-γr-homeomorphism),
then the mapping f induces an isomorphism f∗ : G(X,τ) → G(Y,σ), where f∗ is defined by
f∗(a) := f ◦ a ◦ f−1 for any a ∈ G(X,τ). Moreover,

(a) (g◦f)∗ = g∗◦f∗ : G(X,τ) → G(Z,η), where g : (Y, σ) → (Z, η) is a γr-homeomorphism
(resp. contra-γr-homeomorphism),

(b) (1X)∗ = 1 : G(X,τ) → G(X,τ) is the identity isomorphism,
(c) f∗(γr-h(X; τ)) = γr-h(Y ; σ), f∗(h(X; τ)) ⊆ γr-h(Y ;σ) and

f∗(contra-γr-h(X; τ)) = contra-γr-h(Y ; σ) hold.
(ii) Especially, if f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are homeomorphisms, then

the induced mappings f∗ : G(X,τ) → G(Y,σ) and g∗ : G(Y,σ) → G(Z,η) are isomorphisms (cf.
(i)). Moreover, they have the same property of (a),(b) and (c) in (i). We note that, in (c),
f∗(h(X; τ)) = h(Y ;σ) holds. �

Corollary 3.6 (cf. Definition 3.2, Theorem 3.5) (i) If G(X,τ) �∼= G(Y,σ) (i.e. G(X,τ) is not
isomorphic to G(Y,σ) as groups), then there does not exist any γr-homeomorphism between
two topological spaces (X, τ) and (Y, σ); and hence (X, τ) �∼= (Y, σ) (i.e., (X, τ) is not home-
omorphic to (Y, σ)).

(ii) If γr-h(X; τ) �∼= γr-h(Y ; σ) (i.e., γr-h(X; τ) is not isomorphic to γr-h(Y ; σ) as
groups), then there does not exist any γr-homeomorphism between (X, τ) and (Y, σ). �

Example 3.7 (i) In Section 5, we give a special example of group γr-h(H,κ|H), where
(H,κ|H) is a subspace of the digital line (Z, κ)(cf. Example 5.13).

(ii) Let (X, τ) and (Y, σ) be two topological spaces, where X = Y := {a, b, c}, τ :=
{∅, {a}, {b, c}, X} and σ := {∅,{a},{b},{a, b},Y }. Then, it is shown that G(X,τ) = γr-
h(X; τ) ∼= S3(=the symetric group of degree 3) and G(Y,σ) = γr-h(Y ; σ) = {1Y , hc}, where
hc : (Y, σ) → (Y, σ) is a bijection defined by hc(a) := b, hc(b) := a, hc(c) := c; and hence
G(X,τ) �∼= G(Y,σ). Thus, using Corollary 3.6(i), we can assure that there is never exists
any γr-homeomorphism between (X, τ) and (Y, σ). We note that h(X; τ) = {1X , ha} and
h(Y ; σ) = {1Y , hc} hold, where ha : (X, τ) → (X, τ) is a bijection defined by ha(a) :=
a, ha(b) := c, ha(c) := b; and so h(X; τ) ∼= h(Y ;σ) holds.

(iii) Let (X, τ) be the topological space of (ii) above and let (Y1, σ1) be a topological
space such that Y1 := {a, b, c} and σ1 := {∅,{a},{b},{a, b},{a, c}
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and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).

∗2010 Mathematics Subject Classification. 54C08;64C40,54J05.
Key words and phrases. γ-open sets, b-open set, γ-irresolute mappings, contra-γ-irresolute mappings, γr-
homeomorphisms, contra-γr-homeomorphisms, digital lines.

237



6 H.Maki, A.I.EL-Maghrabi

,Y1}. Then, we have that G(X,τ) �∼= G(Y1,σ1) and h(X; τ) �∼= h(Y1; σ1). Using Corollary 3.6,
there is never exist any γr-homeomorphism between (X, τ) and (Y1, σ1).

(iv) Let (Y1, σ1) be the topological space of (iii) above and let (Y2, σ2) be a topologi-
cal space such that Y2 := {a, b, c} and σ2 := {∅, {a}, Y2}. Then, we have that G(Y1,σ1)

∼=
G(Y2,σ2), γr-h(Y1, σ1) �∼= γr-h(Y2, σ2) and h(Y1, σ1) �∼= h(Y2, σ2) hold. We can apply Corol-
lary 3.6(ii) for this example (iii).

(v) For the digital line (Z, κ), we have an example of a subgroup of H(Z,κ) (cf. Exam-
ple 5.10(iv)).

4 Two subgroups of γr-h(X; τ) and their properties The purpose of the present
section is to prove Theorem 4.9.

Definition 4.1 For a subset G of X, we define the following families of mappings:
(i) γr-h(X,G; τ) := {a| a ∈ γr-h(X; τ) and a(G) = G};
(ii) γr-h0(X,G; τ) := {a| a ∈ γr-h(X; τ) and a(x) = x for every point x ∈ G}.

Theorem 4.2 Let H be a subset of a topological space (X, τ). The families γr-h(X,X \
H; τ) and γr-h0(X,X \H; τ) form two subgroups of γr-h(X, τ) and γr-h(X,X \H; τ) = γr-
h(X,H; τ) holds. �

For the group γr-h(X,X \H; τ), say A, (resp. γr-h0(X,X \H; τ), say A0,) of Theorem 4.2,
we define the binary operation ωX,H : A × A → A (resp. ωX,H0 : A0 × A0 → A0) by
ωX,H(a, b) := (ωG(X,τ)|A × A)(a, b) = b ◦ a (resp. ωX,H0(a, b) := (ωG(X,τ)|A0 × A0)(a, b) =
b ◦ a) (cf. a few lines after Theorem 3.4).

In order to investigate precisely some structures of γr-h(H,X\H; τ |H) (cf. Theorem 4.9),
we need the following definitions and properties.

Definition 4.3 Let H, K be subsets of X and Y , respectively. For a mapping f : X → Y
satisfying a property K = f(H), we define the following mapping rH,K(f) : H → K by
rH,K(f)(x) = f(x) for every x ∈ H.

Then, we have the following properties:
(4.a) jK ◦ rH,K(f) = f |H : H → Y , where jK : K → Y be the inclusion defined by

jK(y) = y for every y ∈ K and f |H : H → Y is the restriction of f to H defined by
(f |H)(x) = f(x) for every x ∈ H.

(4.b) Especially, we consider the following case where X = Y,H = K ⊆ X. If a(H) = H
and b(H) = H, then rH,H(b◦a) = rH,H(b)◦rH,H(a) holds, where a, b : X → X are mappings.

(4.c) If a mapping a : X → X is a bijection such that a(H) = H, then rH,H(a) : H → H
is bijective and rH,H(a−1) = (rH,H(a))−1.

In Theorem 4.4 below, we recall well known properties on γ-open sets and they are
needed later. For a subset H of (X, τ) and a subset U ⊆ H, IntH(U) (resp. ClH(U)) is the
interior (resp. closure) of the set U in a subspace (H, τ |H). The γ-interior of a subset A of
(X, τ) is defined by
· γInt(A) :=

∪
{V |V ⊆ A, V ∈ γO(X, τ)}. It is well known that: for a set A ⊆ X,

· ([6, Proposition 2.5]) γInt(A) = A ∩ (Int(Cl(A)) ∪ Cl(Int(A))) and
· γCl(A) = A∪ (Int(Cl(A))∩Cl(Int(A))) hold (e.g., [19, Lemma 2.6(iii)], [3, Lemma 3.2]).
And, by [6, Proposition 2.3(a)] (cf. Theorem 4.4(iii)), it is shown that
· γCl(A) ∈ γC(X, τ) and γInt(A) ∈ γO(X, τ), where A is a subset of (X, τ).
· γO(H, τ |H) := {U ⊆ H| U is γ-open in (H, τ |H)};
· γC(H, τ |H) := {F ⊆ H| F is γ-closed in (H, τ |H)};
· γClH(U) :=

∩
{F | U ⊆ F, F ∈ γC(H, τ |H)}, where U ⊆ H ⊆ X.
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holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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Theorem 4.4 (i) ([15],e.g.,[14, Lemma 2.2];[1, Proof of Theorem 2.3(3)]). Let H ⊆ X and
A1 ⊆ X. If H is α-open in (X, τ) and A1 is γ-open in (X, τ), then A1 ∩ H is γ-open in
(H, τ |H).

(ii) ([15];e.g.,[14, Lemma 2.4]) Let A ⊆ H ⊆ X. If A is γ-open in (H, τ |H) and H is
α-open in (X, τ), then A is γ-open in (X, τ).

(iii) ([6, Proposition 2.3(a)]) Arbitrary union of γ-open sets of (X, τ) is γ-open in (X, τ).
(iv) ([6, Proposition 2.4(2)]) Let H ⊆ X and A1 ⊆ X. If H is α-open in (X, τ) and A1

is γ-open in (X, τ), then A1 ∩ H is γ-open in (X, τ).
(v) If B ⊆ H ⊆ X and H is α-open in (X, τ), then γCl(B) ∩ H = γClH(B) holds.
(vi) Let F ⊆ H ⊆ X. If H is α-open and γ-closed in (X, τ) and F is γ-closed in

(H, τ |H), then F is γ-closed in (X, τ). �

Remark 4.5 It follows from the following example that one of the assumptions of Theo-
rem 4.4(vi) is not removed. Let X := {a, b, c} and τ := {∅, {a}, X} (cf. the space (Y2, σ2)
of Example 3.7(iv)). For a subset H := {a, c}, the set H is γ-closed in (H, τ |H) and it is
α-open in (X, τ), but H is not γ-closed in (X, τ).

Proposition 4.6 (i) If f : (X, τ) → (Y, σ) is γ-irresolute and a subset H is α-open in
(X, τ), then f |H : (H, τ |H) → (Y, σ) is γ-irresolute.

(ii) Let k : (X, τ) → (K,σ|K) be a mapping and jK : (K,σ|K) → (Y, σ) be the inclusion,
where K ⊆ Y . Then, the following properties (1), (2) are equivalent, under the assumption
that K is α-open in (Y, σ):
(1) k : (X, τ) → (K,σ|K) is γ-irresolute;
(2) jK ◦ k : (X, τ) → (Y, σ) is γ-irresolute.

(iii) If f : (X, τ) → (Y, σ) is γ-irresolute, H is α-open in (X, τ) and f(H) is α-open in
(Y, σ), then rH,f(H)(f) : (H, τ |H) → (f(H), σ|f(H)) is γ-irresolute (cf. Definition 4.3).

Proof. The properties (i) and (ii)(1)⇒(2) (resp. (ii)(2)⇒(1)) are proved by using Theo-
rem 4.4(i) (resp. Theorem 4.4(ii)). The property (iii) is proved by (i),(ii) above and (4.a)
after Definition 4.3. �

Definition 4.7 For an α-open subset H of (X, τ), the following mappings (rH)∗ : γr-
h(X,X \ H; τ) → γr-h(H; τ |H) and (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) are well
defined as follows (cf. Proposition 4.6(iii)), respectively:

(rH)∗(f) := rH,H(f) for every f ∈ γr-h(X,X \ H; τ);
(rH)∗,0(g) := rH,H(g) for every g ∈ γr-h0(X,X \ H; τ).

Lemma 4.8 (A pasting lemma for γ-irresolute mappings) Let X = U1 ∪ U2, where U1

and U2 are α-open sets in (X, τ), and f1 : (U1, τ |U1) → (Y, σ) and f2 : (U2, τ |U2) → (Y, σ)
are γ-irresolute mappings such that f1(x) = f2(x) for every point x ∈ U1 ∩ U2. Then its
combination f1∇f2 : (X, τ) → (Y, σ) is γ-irresolute, where (f1∇f2)(x) := fj(x) for every
x ∈ Uj(j ∈ {1, 2}).

Proof. Let V ∈ γO(Y, σ). By Theorem 4.4 (ii) and (iii), it is proved that (f1∇f2)−1(V ) ∈
γO(X, τ), because f−1

i (V ) ∈ γO(Ui, τ |Ui), f−1
i (V ) ∈-

γO(X, τ) for each i ∈ {1, 2} and (f1∇f2)−1(V ) = f−1
1 (V ) ∪ f−1

2 (V ) hold. �

Theorem 4.9 Let H be a subset of a topological space (X, τ).
(i) (i-1) If H is α-open in (X, τ), then the mappings (rH)∗ : γr-h(X,X \ H; τ) → γr-

h(H; τ |H) and (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) are homomorphisms of groups
(cf. Definition 4.7). Moreover, (rH)∗|B0 = (rH)∗,0 holds, where B0 := γr-h0(X,X \ H; τ).

(i-2) If H is α-open and α-closed in (X, τ), then the mappings (rH)∗ : γr-h(X,X \
H; τ) → γr-h(H; τ |H) and (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) are onto homo-
morphisms of groups.
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for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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(ii) For an α-open subset H of (X, τ), we have the following isomorphisms of groups:
(ii-1) γr-h(X,X \ H; τ)/Ker(rH)∗ ∼= Im(rH)∗;
(ii-2) γr-h0(X,X\H; τ) ∼= Im(rH)∗,0, where Ker(rH)∗:= {a ∈ γr-h(X,X\H; τ)| (rH)∗(a) =

1X} is a normal subgroup of γr-h(X,X\H; τ); Im(rH)∗:={(rH)∗(a)| a ∈ γr-h(X,X\H; τ)}
and Im(rH)∗,0:={(rH)∗,0(b)| b ∈ γr-h0(X,X \ H; τ)} are subgroups of γr-h(H; τ).

(iii) For an α-open and α-closed subset H of (X, τ), we have the following isomorphisms
of groups:

(iii-1) γr-h(H; τ |H) ∼= γr-h(X,X \ H; τ)/Ker(rH)∗;
(iii-2) γr-h(H; τ |H) ∼= γr-h0(X,X \ H; τ).

Proof. (i) (i-1) Since H is α-open in (X, τ), the mappings (rH)∗ and (rH)∗,0 are well
defined (cf. Definition 4.7). Let a, b ∈ γr-h(X,X \H; τ) and ωX,H : γr-h(X,X \H; τ)× γr-
h(X,X \H; τ)) → γr-h(X,X \H; τ) be the binary operation of the group γr-h(X,X \H; τ)
(cf. a few lines after Theorem 4.2). Then, (rH)∗(ωX,H(a, b)) =(rH)∗(b ◦ a) = rH,H(b ◦ a) =
(rH,H(b)) ◦ (rH,H(a)) = ωH((rH)∗(a), (rH)∗(b)) hold, where ωH is the binary operation of
the group γr-h(H; τ |H) (cf. a few lines after Theorem 3.4). Thus, (rH)∗ is a homomorphism
of group. Similarly, the mapping (rH)∗,0 : γr-h0(X,X \ H; τ) → γr-h(H; τ |H) is also a
homomorphism of groups. It is obviously shown that (rH)∗|γr-h0(X,X \ H; τ) = (rH)∗,0

holds (cf. Definition 4.1, Definition 4.7).
(i-2) Let h ∈ γr-h(H; τ |H). We consider the combination h1 := (jH ◦h)∇(jX\H ◦1X\H) :

(X, τ) → (X, τ). By Proposition 4.6 (ii) and the assumption of α-openness of H, it is shown
that the two mappings jH ◦ h : (H, τ |H) → (X, τ) and jH ◦ h−1 : (H, τ |H) → (X, τ)
are γ-irresolute. Moreover, under the assumption of α-openness of X \ H, jX\H ◦ 1X\H :
(X \ H, τ |(X \ H)) → (X, τ) is γ-irresolute. By using Lemma 4.8 for an α-open cover
{H,X \ H} of X, the combination above h1 : (X, τ) → (X, τ) is γ-irresolute and h1 is
bijective and its inverse mapping h−1

1 = (jH ◦h−1)∇(jX\H ◦1X\H) is also γ-irresolute. Thus,
we have that h1 ∈ γr-h(X, τ). Since h1(x) = x for every point x ∈ X \H, we conclude that
h1 ∈ γr-h0(X,X \H; τ) and so h1 ∈ γr-h(X,X \H; τ); moreover, (rH)∗,0(h1) = (rH)∗(h1) =
rH,H(h1) = h.

(ii) By (i-1) above and the first isomorphism theorem of group theory, it is shown that
there are group isomorphisms below, under the assumption of the α-openness of H in (X, τ):
(4.d) γr-h(X,X \ H; τ)/Ker(rH)∗ ∼= Im(rH)∗ and
(4.e) γr-h0(X,X \ H; τ)/Ker(rH)∗,0

∼= Im(rH)∗,0, where Ker(rH)∗,0 := {a ∈ γr-h0(X,X \
H; τ)| (rH)∗,0(a) = 1X}.

It is shown that Ker(rH)∗,0 = {1X}. Indeed, let u0 ∈ Ker(rH)∗,0 ⊂ γr-h0(X,X \H; τ);
then (rH)∗,0(u0) = 1H , where 1H is the identity element of γr-h(H; τ |H). By Definitions 4.7
and 4.3, we have that, for any point x ∈ H, ((rH)∗,0(u0))(x) = (rH,H(u0))(x) = u0(x) and
so, u0(x) = 1H(x); and, for any point x ∈ X \H,u0(x) = x (cf. Definition 4.1(ii)). Thus, we
conclude that u0 = 1X ; and hence Ker(rH)∗,0 = {1X}. Therefore, by using the isomorphism
(4.e) above, we have the isomorphism (ii-2).

(iii) By (i-2) and (ii), the isomorphisms (iii-1) and (iii-2) are obtained. �

Example 4.10 (i) In Example 5.13 of Section 5, the groups in Theorem 4.9 above are given
for a special subspace (H,κ|H) of the digital line (Z, κ).

(ii) Let (X, τ) be the topological space of Example 3.7(ii) throughout the present Exam-
ple 4.10(ii).
(ii-1) Let H := {a}. Since H = {a} is α-open and α-closed in the topologica space (X, τ),
then we apply Theorem 4.9(iii) to the present case; and so, we have the following result:
γr-h(H; τ |H) ∼= γr-h(X,X \ H; τ)/Ker(rH)∗ ∼= γr-h0(X,X \ H; τ).

We can check directly the group isomorphisms as follows: we have the date: γr-h(X,X \
H; τ) = {1X , ha}, Ker(rH)∗ = {1X , ha}, γO(H, τ |H) = {∅,H}, γr-h(H; τ |H) = {1H} and
γr-h0(X,X \ H; τ) = {1X}, where τ |H = {∅,H}.
(ii-2) Let H := {b, c}. Then H is α-open and α-closed in (X, τ). Now, we apply Theorem 4.9
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of γ-irresolute mappings and contra-γ-irresolute mappings. Also, we introduce and
study two new weak homeomorphisms such as contra-γr-homeomorphisms and contra-
γ-homeomorphisms. Further, we investigate some groups related to the mappings above
and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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(iii) to the present case; and we can also check directly the group isomorphisms: we have
the date as follows: γr-h(X,X \H; τ) = {1X , ha}, Ker(rH)∗ = {1X}, γO(H, τ |H) = P (H),
γr-h(H; τ |H) = {1H , ha|H} and γr-h0(X,X \ H; τ) = {1X ,ha}, where τ |H = {∅, H}.

Example 4.11 Even if a subset H of a topological space (X, τ) is not α-closed and it
is α-open (cf. Theorem 4.9(i)(i-2)), we have some examples such that the homomorphisms
(rH)∗ and (rH)∗,0 are onto.

(i) For example, let (X, τ) be a topological space and (H, τ |H) a subspace of (X, τ), where
X := {a, b, c}, H =: {a, b} and τ := {∅, {a}, {b}, {a, b}, X}; and so, τ |H = {∅, {a}, {b},H}.
Then, we see that γO(X, τ) = P (X) \ {{c}} and τα = τ . The subset H is α-open and it is
not α-closed in (X, τ). Hence by Theorem 4.9(i)(i-1), the mappings (rH)∗ and (rH)∗,0 are
homomorphisms of groups. Because of X \ H = {c}, we see that γr-h0(X,X \ H; τ) = γr-
h(X,X \ H; τ) and (rH,0)∗ = (rH)∗. And it is shown directly that γr-h(X,X \ H; τ) =
{1X , hc} ∼= Z2, (hc)2 = 1X , and γr-h(H; τ |H) = {1H , ta,b}, where hc : (X, τ) → (X, τ) and
ta,b : (H, τ |H) → (H, τ |H) are the bijections defined by hc(a) = b, hc(b) = a, hc(c) = c and
ta,b(a) = b, ta,b(b) = a, respectively. Then, we prove that : (rH)∗ : γr-h(X,X \ H; κ) → γr-
h(H; τ |H) is onto; Ker(rH)∗ = {1X}. By using Theorem 4.9(i)(i-1) and (ii), we have that
γr-h(H; τ |H) ∼= γr-h(X,X \ H; τ)/Ker(rH)∗ = γr-h(X,X \ H; τ) hold.

(ii) In Section 5, we give an example of an onto homomorphism (rH)∗, where H :=
{−1, 0, 1} of the digital line (Z, κ) (cf. Example 5.13(iv)).

5 Examples on the digital line (Z, κ) We recall that the digital line is the set of the
integers, Z, equipped with the topology κ having {{2s − 1, 2s, 2s + 1}| s ∈ Z}, say G, as
a subbase (e.g., [24, p.175], [26, Section 3(I)], [23, p.905,p.908]). This topological space is
denoted by (Z, κ). By the definition of topology κ, every singleton {2u+1} is open in (Z, κ)
and it is not closed in (Z, κ), where u ∈ Z. Every singleton {2s} is closed in (Z, κ) and it is
not open in (Z, κ), where s ∈ Z. In the present paper, we denote: U(2s) := {2s−1, 2s, 2s+1}
and U(2u+1) := {2u+1} for each point 2s and 2u+1 of (Z, κ), respectively; and U(2s) and
U(2u + 1) are two typical open sets of (Z, κ). And, U(x) above is called the smallest open
set containing the point x of (Z, κ), where x ∈ Z. It is well known that: for a nonempty
open set U and a point x of (Z, κ), if x ∈ U , then U(x) ⊆ U holds (e.g., [26, Section 3]).

(I) Characterizations of γ-open sets in the digital line (Z, κ) (cf. Theorems 5.1
and 5.5 below). First, we recall some properties on the digital line (Z, κ) : κ = PO(Z, κ)
and PO(Z, κ) ⊆ SO(Z, κ) = γO(Z, κ) = βO(Z, κ) (cf. [9], [17], [33]). Secondly, we need
some notations and properties (e.g., [18, Sections 1, 2], [26, Sections 2, 3]): let A be a
nonempty subset of (Z, κ), Aκ := {x ∈ A| {x} is open in (Z, κ)}; AF := {x ∈ A| {x} is
closed in (Z, κ)}. It is easily shown that:
(i) Aκ = {2s + 1 ∈ A| s ∈ Z}; AF = {2m ∈ A| m ∈ Z}; and
(ii) A = Aκ ∪ AF (Aκ ∩ AF = ∅), where A is any subset of (Z, κ).

By Takigawa [32, Theorems 1, 2 and 3], some characterizations of any preopen sets,
semi-open sets and semi-preopen sets in the digital n-space (Zn, κn) are investigated, where
n ≥ 1. The following property is obtained by a special case of [32, Theorem 2 or Theorem
3] for the digital line (i.e., n = 1).

Theorem 5.1 (A special case of Takigawa [32, Theorem 2 or Theorem 3]) A subset E is
γ-open in (Z, κ) if and only if E ⊆ Cl(Eκ) holds in (Z, κ).

Remark 5.2 (i) If Aκ = ∅ for a subset A of (Z, κ), then A is closed in (Z, κ). The converse
of above implication is not true; a subset {2s, 2s+1, 2s+2} is closed in (Z, κ), where s ∈ Z;
and ({2s, 2s + 1, 2s + 2})κ = {2s + 1} �= ∅.

(ii) Cl(A) = Cl(Aκ) ∪ A holds for a subset A of (Z, κ).

Definition 5.3 ([7, Definition 5.3]) Let A be a subset of (Z, κ).
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Abstract.The aim of the present paper is devoted to discuss some more properties
of γ-irresolute mappings and contra-γ-irresolute mappings. Also, we introduce and
study two new weak homeomorphisms such as contra-γr-homeomorphisms and contra-
γ-homeomorphisms. Further, we investigate some groups related to the mappings above
and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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Key words and phrases. γ-open sets, b-open set, γ-irresolute mappings, contra-γ-irresolute mappings, γr-
homeomorphisms, contra-γr-homeomorphisms, digital lines.
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(i) For a point x ∈ Z, the following set VA(x) is defined: if x + 1 ∈ A, then VA(x) :=
{x, x + 1} (sometimes it is denoted by VA

+(x), or shortly V +(x)); if x + 1 �∈ A, then
VA(x) := {x − 1, x} (sometimes it is denoted by VA

−(x), or shortly V −(x)). Thus, we have
that VA(x) = VA

+(x) or VA
−(x).

(ii) VA :=
∪
{VA(x)| x ∈ AF} if AF �= ∅; VA := ∅ if AF = ∅.

Example 5.4 (i) A subset {x, x + 1} of Z is γ-open and γ-closed in (Z, κ) for any point
x ∈ Z.

(ii) (cf. [7, Example 5.5]) For a point x ∈ Z and a subset A ⊆ Z, the set VA(x) is both
γ-open and γ-closed in (Z, κ) (cf. Definition 5.3).

Finally, the following characterization (Theorem 5.5) is obtained by using the equality
γO(Z, κ) = βO(Z, κ) and [7, Theorem 5.7]. We note that we are able to have directly an
alternative proof of Theorem 5.5 using the characterization of Theorem 5.1 above.

Theorem 5.5 ([7, Theorem 5.7]) Let B be a nonempty subset of (Z, κ). Then the following
statements hold.

(i) Assume that BF �= ∅.
(i-1) If B is γ-open in (Z, κ), then B is expressible as the union: B = VB ∪ Bκ, where

VB :=
∪
{VB(x)|x ∈ BF} (cf. Definiton 5.3).

(i-2) If B satisfies a property that B = VB ∪ Bκ, then B is γ-open in (Z, κ).
(ii) Assume that BF = ∅. Then, VB = ∅ and B = Bκ hold and B is open in (Z, κ); and

so B is γ-open in (Z, κ). �

Example 5.6 Suppose that a singleton {x} is closed in (Z, κ) (i.e., x is even in Z) and y
is any point with y �= x. Then,
(i) {x, y} is γ-closed in (Z, κ);
(ii) {x, y} is γ-open if and only if y = x + 1 or y = x − 1.

(II) Some transformations on (Z, κ).

Definition 5.7 Let te+,o− : (Z, κ) → (Z, κ), t− : (Z, κ) → (Z, κ) and fs : (Z, κ) → (Z, κ),
where s ∈ Z, be the transformations defined by the following form, respectively: for every
point x ∈ Z,
(i) te+,o−(x) := x + 1 if x is even and te+,o−(x) := x − 1 if x is odd;
(ii) t−(x) := −x; (iii) fs(x) := x + s.

Theorem 5.8 For any γ-open set A of (Z, κ), we have the following properties:
(i) te+,o−

−1(A) is explessible as the union of arbitrary collection of γ-closed sets of (Z, κ);
(ii) t−

−1(A) is explessible as the union of arbitrary collection of γ-closed sets of (Z, κ);
(iii)([7, Lemma 5.8(vii), Theorem 5.10(iii)]) f2m+1

−1(A) and f2m+1(A) are explessible
as the union of arbitrary collection of γ-closed sets of (Z, κ), where m ∈ Z.

Proof. (i) By using Definition 5.3, Example 5.6(i) and Definition 5.7, it is shown that, for
any set B and any point x ∈ Z, te+,o−

−1(VB(x)) is γ-closed in (Z, κ) (cf. Definition 5.3(i),
Example 5.6(i), Definition 5.7); te+,o−

−1(Bκ) =
∪
{{2s}| 2s + 1 ∈ B} holds, because

Bκ =
∪
{{2s + 1}| 2s + 1 ∈ B}). And, so te+,o−

−1(Bκ) is the union of the collection
{{2s}| 2s + 1 ∈ B} of γ-closed sets. Let A ∈ γO(Z, κ). By Theorem 5.5(i-1) and (ii), it
is shown that te+,o−

−1(A) = (
∪
{te+,o−

−1(VA(x))| x ∈ AF})∪te+,o−
−1(Aκ) (if AF �= ∅)

and te+,o−
−1(A) = te+,o−

−1(Aκ) (if AF = ∅); and so, by the properties above respectively,
te+,o−

−1(A) is the union of a collection of γ-closed sets.
(ii) By an argument similar to that in (i), the statement (ii) is proved (cf. Definition 5.3,

Example 5.4).
(iii) This is shown by the property that γO(Z, κ) = βO(Z, κ) (cf. (I) above) and the

corresponding property on β-openess version [7, Lemma 5.8(vii), Theorem 5.10(iii)]. �
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Abstract.The aim of the present paper is devoted to discuss some more properties
of γ-irresolute mappings and contra-γ-irresolute mappings. Also, we introduce and
study two new weak homeomorphisms such as contra-γr-homeomorphisms and contra-
γ-homeomorphisms. Further, we investigate some groups related to the mappings above
and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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Remark 5.9 Let A2k := {2k, 2k + 1} ∪ {2(k + 1) + 1, 2(k + 1) + 2}. Since Int(Cl(A2k)) ∩
Cl(Int(A2k)) = {2k + 1, 2(k + 1), 2(k + 1) + 1} �⊆ A2k hold, A2k is not γ-closed. But, A2k

is the union of two γ-closed sets {2k, 2k + 1} and {2(k + 1) + 1, 2(k + 2)} of (Z, κ) (cf.
Example 5.4 (i)).

Example 5.10 (i) te+,o− �∈ γr-h(Z;κ) and te+,o− �∈ contra-γr-h(Z; κ) hold.
(ii) t− ∈ h(Z, κ) holds and so t− ∈ γr-h(Z;κ).
(iii) (iii-1) f2m+1 �∈ γr-h(Z; κ) and f2m+1 �∈ contra-γr-h(Z; κ);

(iii-2) f2m+1 �∈ h(Z; κ).
(iv) f2m ∈ h(Z; κ) and f2m+1 ∈ contra-h(Z; κ) hold; and hence {fs|s ∈ Z} forms a

subgroup of H(Z,κ).

(III) A group structure of γr-h(H; κ|H), where H := {−1, 0, 1}.

Lemma 5.11 Let s, u ∈ Z. If f : (Z, κ) → (Z, κ) is a γr-homeomorphism (i.e., f ∈ γr-
h(Z, κ)), then

(i) f(U(2s)) = U(2a) holds for some point 2a ∈ Z;
(ii) f(U(2u + 1)) = U(2v + 1) holds for some point 2v + 1 ∈ Z. �

Notation Let H be the smallest open set containing 0, U(0) := {−1, 0,+1}, which is used
in Example 5.13 below. A family of subsets of (Z, κ), say {Hj |j ∈ Z with j ≥ 1}, is defined
by : H1 := H = U(0) and Hi := U(−(2i − 2)) ∪ Hi−1 ∪ U(2i − 2) for each integer i ≥ 2,
where U(2s) := {2s − 1, 2s, 2s + 1}(s ∈ Z).

It is easily shown that Hi =
∪
{U(−(2j − 2)) ∪ U(2j − 2)| j ∈ Z with 1 ≤ j ≤ i} holds

for each integer i ≥ 2; and if i ≤ j, then Hi ⊆ Hj and
∪
{Hj | j ∈ Z with j ≥ 1} = Z.

Lemma 5.12 below is proved by an argument similar to that in [30, Claim in Proof of
Proposition 6.1]; we use induction on m ∈ Z and Lemma 5.11; and so we omite the proof.

Lemma 5.12 Let f ∈ γr-h(Z, Z\H; κ) and {Hj |j ∈ Z with j ≥ 1} be the family of subsets
defined by Notation above, where H = H1 = {−1, 0, 1}, i.e., H = U(0).

(i) If f |H = t−|H, then f |Hm = t−|Hm for any interger m with m ≥ 2.
(ii) If f |H = 1H , then f |Hm = 1Hm for any integer m with m ≥ 2. �

Using Lemma 5.11 and Lemma 5.12, we can examine the isomorphisms of Theorem 4.9(ii)
for the following α-open set H := U(0) which is not α-closed in (Z, κ).

Example 5.13 Let (H,κ|H) be a subspace of (Z, κ), where H := {−1, 0,+1} is the smallest
open set containing 0 ∈ Z, i.e., H = U(0). Then, we have the following properties: (i) γr-
h(Z, Z \ H; κ) = {1Z, t−}; (ii) γr-h0(Z, Z \ H; κ) = {1Z}; (iii) γr-h(H;κ|H) = {1H , t−|H};
(iv) Im(rH)∗ = {1H , t−|H} and (rH)∗ : γr-h(Z, Z \ H; κ) → γr-h(H,κ|H) is onto; (v)
Ker(rH)∗ = {1Z}.
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Abstract.The aim of the present paper is devoted to discuss some more properties
of γ-irresolute mappings and contra-γ-irresolute mappings. Also, we introduce and
study two new weak homeomorphisms such as contra-γr-homeomorphisms and contra-
γ-homeomorphisms. Further, we investigate some groups related to the mappings above
and some examples of them on digital lines.

1 Introduction and preliminaries D.Andrijević [6] (resp. A.A. EL-Atik [15] and
J. Dontchev and M. Przemski [13]) introduced independently the concept of b-open sets [6]
(resp. γ-open sets [15] and sp-open sets [13]). A subset A of a topological space (X, τ) is
called a γ-open set [15] (or b-open set [6], sp-open set [13]), if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))
holds in (X, τ); and the complement of a γ-open (or b-open, sp-open) set is called γ-closed
(or b-closed, sp-closed). Throughout the present paper, we use the terminology due to [15]
for the naming of the above set, i.e., γ-open sets, γ-closed sets. The γ-closure of a subset E
of (X, τ) is defined by γCl(E) :=

∩
{F |E ⊆ F, F is γ-closed in (X, τ)}; and it is the smallest

γ-closed set containing E (cf. Theorem 4.4(iii)); we recall some importante properties of
γ-open sets in Section 4 (Theorem 4.4).

In the present paper, we use the following notations (cf. [28] [19, p.2]):
γO(X, τ) := {U |U is γ-open in (X, τ)};
γC(X, τ) := {F |F is γ-closed in (X, τ), i.e., Int(Cl(F )) ∩ Cl(Int(F )) ⊆ F}.
SO(X, τ) := {U |U is semi-open in (X, τ), i.e., U ⊆ Cl(Int(U))} [25];
SC(X, τ) := {F |F is semi-closed in (X, τ), i.e., Int(Cl(F )) ⊆ F}.
τα := {V | V is α-open in (X, τ), i.e., V ⊆ Int(Cl(Int(V )))} [27].
βO(X, τ) = SPO(X, τ) := {W | W is β-open (or semi-preopen) in (X, τ), i.e., W ⊆
Cl(Int(Cl(W )))} [2],[5]. It is well known that:
τα ⊆ SO(X, τ) ⊆ γO(X, τ) ⊆ βO(X, τ) hold in general.

In Section 2, we mention some relations among γ-irresoluteness [12], pre-γ-closedness [15],
contra-γ-irresoluteness ([16] [28]) and some mappings (cf. Definitions 2.1, 2.2).

In Section 3, after the work due to A.Keskin and T.Noiri [20], we study a new group,
say γr-h(X; τ) ∪ contra-γr-h(X; τ) (Theorem 3.4(i), Corollary 3.6(i)). By the article [20,
Definition 4.13, Theorem 4.14(ii)], the concept of the family γr-h(X; τ) is introduced and it
is proved that γr-h(X; τ) forms a group. The family contra-γr-h(X; τ) is one of all contra-γ-
homeomorhpisms on (X, τ) (cf. Definition 3.2). The group γr-h(X; τ)∪contra-γr-h(X; τ) is
one of the group invariants of a topological space (X, τ) under a γr-homeomorphism between
topological spaces (Theorem 3.5(i)). By Theorem 3.4(iii)(cf. (iv)), it is shown that the group
h(X; τ) of all homeomorphisms on (X, τ) is a subgroup of the group γr-h(X; τ) ∪ contra-
γr-h(X; τ).

In Section 4, we introduce two subgroups of γr-h(X; τ) (Definition 4.1) and so we can
investigate some group structure of γr-h(H; τ |H) for the subspace (H, τ |H) of (X, τ) (The-
orems 4.2 and 4.9(iii)).
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Abstract. We consider a one dimensional isentropic periodic flow of a compressible
viscous fluid driven by a self-gravitation of the fluid. We show the existence of an
unbounded solution of a system describing the flow. A sufficient condition for the
unboundedness is given in terms of the initial values of an energy form.

1 Introduction Let us consider a one dimensional isentropic flow of a compressible vis-
cous fluid in the Lagrangian mass coordinates:

(1.1)




∂tv − ∂xu = 0,

∂tu+ ∂x(av
−γ)− µ∂x

(
∂xu

v

)
= G,

where specific volume v, assumed to take positive values, and velocity u of the fluid are
unknown functions of the time and space variables t ≥ 0 and x ∈ R, pressure av−γ a
function of v with constants a > 0 and γ ≥ 1, and µ > 0 the viscosity constant. The second
member G is an external force specified below. We are mainly concerned with the so-called
isentropic flow, i.e., γ > 1, though, we occasionally refer to the isothermal flow, i.e. γ = 1
for the sake of comparison.

The initial or initial-boundary value problem for (1.1) with a prescribed forcing term G
has been studied by several authors. Since the pioneering work of Kanel’ [3], showing the
existence of global bounded solutions to the system (1.1) on the whole line with G ≡ 0, the
boundedness is one of the crucial keys to study the asymptotic behavior of the solutions.
Closely related with the present paper are the works of Matsumura and Nishida [4], and
Matsumura and Yanagi [5]. In [4] it is shown that the isothermal system on a finite interval
with a general bounded forcing term G has a unique global bounded solution for any smooth
initial data. In [5] a similar result was obtained for the isentropic system but on the
assumption of smallness of γ − 1 depending on the data. Both the results fail to mention
whether an unbounded solution exists or not for the isentropic system with a bounded
forcing term.

This paper handles the system (1.1) under the L-periodic condition:

(1.2) v(t, x+ L) = v(t, x), u(t, x+ L) = u(t, x)

with a rather special forcing term depending on the unknowns:

(1.3) G(t, x) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy,
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where KL(x, y) is the Green kernel of the operator −∂2
x on the L-periodic functions with

average 0:

KL(x, y) =

∞∑
n=1

L

2π2n2
cos

2πn

L
(x− y),

or

(1.4) KL(x, y) = −|x− y|
2

+
(x− y)2

2L
+

L

12
, 0 ≤ x, y ≤ L,

v̄ the average of the specific volume:

v̄ =
1

L

∫ L

0

v(t, x)dx,

and G > 0 the gravitational constant. This is the representation in the Lagrangian mass
coordinates of a force field that takes into account only the part of Newton’s gravitation
corresponding to the disturbance in an infinite homogeneous fluid, and is often adopted in
the classical theory of gravitational instability for the fluid. See Weinberg [7], Chapter 15.
Notice that the field is consistent with static equilibria of the fluid.

Since the average v̄ as well as that of u is a constant of motion in view of (1.1), the
forcing term (1.3) is a bounded function of the variables t and x. This enables us to show
the boundedness of any smooth solutions to the isothermal system just in the same manner
as in [4]. As for the isentropic system, however, the situation proves to be quite different.
Indeed, on the assumption 1 < γ < 2 we show the existence of unbounded solutions in the
sense that

sup
t,x

v(t, x) = ∞.

To be precise we present an initial condition for unbounded solutions in terms of the form
for a state (v, u) given by

(1.5) E(v, u) =
∫ L

0

1

2
u(x)2dx+ E(v)

with

E(v) =
∫ L

0

a

(
v(x)− v̄

v̄γ
− v(x)1−γ − v̄1−γ

1− γ

)
dx(1.6)

− 2πG

v̄

∫ L

0

∫ L

0

KL(x, y)(v(x)− v̄)(v(y)− v̄)dxdy.

This form, called the energy form associated with the system (1.1)–(1.3), is decreasing and
bounded along the orbit of a solution to the system, which turns out to be the key to find
out the unboundedness condition.

The paper is organized as follows. In Section 2, after a brief comment on the class of
solutions concerned, we present two theorems. One refers to the structure of the whole
stationary solutions. The other constitutes the main part of the paper showing an initial
condition for unbounded solutions to the Cauchy problem. In Section 3 we study the
large time behavior of bounded solutions and show a reason why the stationary problem is
inevitably related to the unboundedness of solutions to the Cauchy problem. In Section 4
we study the structure of the whole stationary solutions with the comparison of the values of
energy form at the stationary solutions. From this together with the decreasing property of
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forcing term.
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energy form we formulate an initial condition for unbounded solutions. Finally in Section 5,
focusing on the behavior of the energy form near the stationary solutions, we supplement
the condition for unboundedness to make it meaningful.

This paper completes the preceding one [6] with details of the unboundedness of solutions
to the isentropic system. By replacing (1.6) with

E(v) =
∫ L

0

a

(
v(x)− v̄

v̄
− log

v(x)

v̄

)
dx

− 2πG

v̄

∫ L

0

∫ L

0

KL(x, y)(v(x)− v̄)(v(y)− v̄)dxdy

some results of the present paper are, with natural modifications, valid also for the isother-
mal system. See [6].

2 Notation and main results For a nonnegative integer m and a positive number L let
Cm be the space of m times continuously differentiable periodic real-valued functions on R
with period L, and Hm the Sobolev space of locally square integrable L-periodic real-valued
functions on R equipped with scalar product

(h1, h2)Hm =
m∑
j=0

∫ L

0

∂j
xh1(x)∂

j
xh2(x)dx

and norm ∥h∥Hm =
√
(h, h)Hm . We write H0 = L2 as usual. Let s be a nonnegative integer

and X a Banach space with norm ∥ · ∥. The space of s-times continuously differentiable
functions on [0,∞) with values in X is denoted by Cs([0,∞);X). Hs

loc(0,∞;X) denotes the
space of X-valued strongly measurable functions on [0,∞) whose distributional derivatives
up to order s are locally square integrable, i.e.,

∫ T

0

∥∂k
t u(t)∥2dt < ∞ for any k = 0, . . . , s and T > 0.

Noting that the forcing term (1.3) is a bounded function of the variables t and x on the
time interval of existence for a solution, we are allowed to consider a unique global solution
for the Cauchy problem of (1.1)–(1.3) having initial value (v0, u0) ∈ H1 ×H1 with v0 > 0
arbitrarily given at t = 0, as for the initial-boundary value problem on a finite interval
supplemented by solid boundary condition with a general bounded forcing term. In what
follows the solution of the Cauchy problem is meant by a unique global solution having the
property {

v ∈ C1([0,∞);L2) ∩ C0([0,∞);H1), v(t, · ) > 0,

u ∈ H1
loc(0,∞;L2) ∩ L2

loc(0,∞;H2).

Without loss of generality we may assume that the average of u vanishes, taking (v, u− ū)
as new unknown functions, if necessary.

In order to present an initial condition for unbounded solutions we first refer to the
structure of the stationary solutions to (1.1)–(1.3). Noting that the average v̄ of v is
a constant of motion, we consider the stationary solutions on the following manifold in
H1 ×H1 parametrized by a positive number V :

MV = {(v, u) ∈ H1 ×H1; v > 0, v̄ = V, ū = 0}.
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Clearly, the trivial solution (V, 0) lies in MV . A non-trivial stationary solution, if exists,
has the least period L/j for some positive integer j. Let us now introduce a function Iγ on
the interval (0, (γ − 1)−1/2) expressed as

(2.1) Iγ(θ) = θ

∫ 1

0

1√
1− y

1

f+(F+
−1(θ2y))

dy + θ

∫ 1

0

1√
1− y

1

f−(F−
−1(θ2y))

dy,

where the functions f+(r), F+(r) on r ≥ 0, and f−(r), F−(r) on 0 ≤ r < 1 are given by

f+(r) = 1− (1 + r)−1/γ , F+(r) =

∫ r

0

f+(s) ds,

f−(r) = −{1− (1− r)−1/γ}, F−(r) =

∫ r

0

f−(s) ds.

As shown by Lemma 4 below in Section 4, Iγ is a monotone increasing function with
Iγ(θ) >

√
2γπ provided that 1 < γ < 2. Moreover, Iγ(θ) has a finite limit as θ →

(γ − 1)−1/2 − 0.

Theorem 1 Assume 1 < γ < 2. For V > 0 let kmin and kmax, respectively, be the smallest
and the largest integers j satisfying

(2.2)
( aγπ

GV γ

)1/2

<
L

j
<

Iγ((γ − 1)−1/2 − 0)√
2γπ

( aγπ

GV γ

)1/2

.

Then, for j = kmin, . . . , kmax there exists on MV a stationary solution of (1.1)–(1.3) with
least period L/j. The whole stationary solutions lying in MV except for the trivial one are
given by (ṽ(j)( · − α), 0), 0 ≤ α < L/j, j = kmin, . . . , kmax, where (ṽ(j), 0) is one of the
stationary solutions with least period L/j.

Remark 1 When V ≤
(
aγπ
GL2

)1/γ
, no integer satisfies the condition (2.2), and hence the

stationary problem admits on MV only the trivial solution. When
(
aγπ
GL2

)1/γ
< V <(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ

, (2.2) holds with j = 1, and hence kmin = 1, while when V ≥
(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ

, kmin, if it makes sense, must be greater than or equal to 2.

Let us recall the energy form (1.5) with (1.6). By L-periodicity of v we have E(v( · −α)) =
E(v) for any α ∈ R. The following theorem gives an initial condition for unbounded solutions
to the isentropic system (1.1)–(1.3) with 1 < γ < 2.

Theorem 2 Assume 1 < γ < 2. Let V ≥
(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ

and ṽ(kmin) be as in

Theorem 1.
(i) The subset of H1 ×H1 given by

(2.3) AV =

{
(v, u) ∈ MV

����� E(v, u) <
{
E(ṽ(kmin)), if integers j with (2.2) exist,

0, otherwise

}

is nonempty.
(ii) Any solution of (1.1)–(1.3) with initial value from AV is unbounded, i.e.,

sup
t,x

v(t, x) = ∞.
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Abstract. We consider a one dimensional isentropic periodic flow of a compressible
viscous fluid driven by a self-gravitation of the fluid. We show the existence of an
unbounded solution of a system describing the flow. A sufficient condition for the
unboundedness is given in terms of the initial values of an energy form.

1 Introduction Let us consider a one dimensional isentropic flow of a compressible vis-
cous fluid in the Lagrangian mass coordinates:

(1.1)




∂tv − ∂xu = 0,

∂tu+ ∂x(av
−γ)− µ∂x

(
∂xu

v

)
= G,

where specific volume v, assumed to take positive values, and velocity u of the fluid are
unknown functions of the time and space variables t ≥ 0 and x ∈ R, pressure av−γ a
function of v with constants a > 0 and γ ≥ 1, and µ > 0 the viscosity constant. The second
member G is an external force specified below. We are mainly concerned with the so-called
isentropic flow, i.e., γ > 1, though, we occasionally refer to the isothermal flow, i.e. γ = 1
for the sake of comparison.

The initial or initial-boundary value problem for (1.1) with a prescribed forcing term G
has been studied by several authors. Since the pioneering work of Kanel’ [3], showing the
existence of global bounded solutions to the system (1.1) on the whole line with G ≡ 0, the
boundedness is one of the crucial keys to study the asymptotic behavior of the solutions.
Closely related with the present paper are the works of Matsumura and Nishida [4], and
Matsumura and Yanagi [5]. In [4] it is shown that the isothermal system on a finite interval
with a general bounded forcing term G has a unique global bounded solution for any smooth
initial data. In [5] a similar result was obtained for the isentropic system but on the
assumption of smallness of γ − 1 depending on the data. Both the results fail to mention
whether an unbounded solution exists or not for the isentropic system with a bounded
forcing term.

This paper handles the system (1.1) under the L-periodic condition:

(1.2) v(t, x+ L) = v(t, x), u(t, x+ L) = u(t, x)

with a rather special forcing term depending on the unknowns:

(1.3) G(t, x) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy,
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Remark 2 In view of the decreasing property of the energy form shown by Lemma 1 in the
following section the statement of Theorem 2 suggests that E(ṽ(kmin)) if it makes sense or
else E(V ) = 0 is minimal amongst the values of the energy form evaluated at the stationary

solutions on MV . This itself is true also for the case V <
(

aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ

as shown

by Proposition 1 in Section 4, however, in this case we fail to refer to the existence or
nonexistence of unbounded solutions for some technical reasons. See Remark 3 in the final
section.

3 Large time behavior of bounded solutions As a preliminary but vital step, we
devote this section to the study of the global behavior of a solution of (1.1)–(1.3) subject
to

(3.1) sup
t,x

v(t, x) < ∞.

The results in the present section have already been given in [6] with rather detailed proofs,
however, we give them for the sake of completeness.

We first show that the energy form (1.5) with (1.6) is non-increasing along the orbits of
solutions. This is true for any γ > 1 regardless of the boundedness of solutions.

Lemma 1 For a solution (v, u) of (1.1)–(1.3) put

(3.2) E(t) = E(v(t, · ), u(t, · )), t ≥ 0.

Then we have

(3.3)
dE

dt
(t) = −µ

∫ L

0

∂xu(t, x)
2

v(t, x)
dx ≤ 0, inf

t
E(t) = E(∞) > −∞.

Proof: Taking the derivative of E and then using the symmetry of the integral kernel KL,
we obtain an expression for the derivative dE/dt as

∫ L

0

{
u(t, x)∂tu(t, x) +

(
av̄−γ − av(t, x)−γ

)
∂tv(t, x)

−4πG

v̄

∫ L

0

KL(x, y)(v(t, y)− v̄)dy ∂tv(t, x)

}
dx.

After substituting ∂xu for ∂tv, by integration by parts we get

dE

dt
(t) =

∫ L

0

u(t, x)

{
∂tu(t, x) + ∂x

(
av(t, x)−γ

)
+

4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy

}
dx.

Using the second equation of (1.1), by integration by parts we obtain the desired equality
for dE/dt. The boundedness of E from below follows from

v − v̄

v̄γ
− v1−γ − v̄1−γ

1− γ
≥ 0,

the positivity of v and the boundedness of the kernel KL. �

Integrating the equality (3.3) over (0,∞), we obtain the following.
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Corollary of Lemma 1 We have

(3.4) µ

∫ ∞

0

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt = E(0)− E(∞) < ∞.

The following lemma shows that if 1 < γ ≤ 2, the upper bound of v controls the H1

norm as well as the lower bound of v of a solution. Notice that the same result holds true
of the isothermal system without any assumptions on a priori bounds of a solution. See
Matsumura and Nishida [4].

Lemma 2 Assume 1 < γ ≤ 2. For a solution (v, u) of (1.1)–(1.3) with ū = 0, if it is
bounded in the sense of (3.1), then we have

(3.5) sup
t

∥v(t, · )∥H1 < ∞, sup
t

∥u(t, · )∥H1 < ∞, inf
t,x

v(t, x) > 0.

Proof: We consider the forcing term (1.3) as a bounded function of the variables t and x,
and make use of the equalities

d

dt

∫ L

0

{
1

2
u(t, x)2 + a

(
v(t, x)− v̄

v̄γ
− v(t, x)1−γ − v̄1−γ

1− γ

)}
dx(3.6)

= −µ

∫ L

0

∂xu(t, x)
2

v(t, x)
dx+

∫ L

0

G(t, x)u(t, x)dx,

d

dt

∫ L

0

(
µ

2

∂xv(t, x)
2

v(t, x)2
− u(t, x)

∂xv(t, x)

v(t, x)

)
dx(3.7)

= −aγ

∫ L

0

∂xv(t, x)
2

v(t, x)γ+2
dx+

∫ L

0

∂xu(t, x)
2

v(t, x)
dx−

∫ L

0

G(t, x)∂xv(t, x)
v(t, x)

dx.

Combining the equalities as (3.6)+(µ/2)×(3.7), we prove that the quantity

∫ L

0

{
1

2
u(t, x)2 − µ

2
u(t, x)

∂xv(t, x)

v(t, x)
+

µ2

4

∂xv(t, x)
2

v(t, x)2
(3.8)

+a

(
v(t, x)− v̄

v̄γ
− v(t, x)1−γ − v̄1−γ

1− γ

)}
dx

is bounded with respect to the variable t. For this purpose we need to estimate the

bounds of
∫ L

0
u(t, x)2dx,

∫ L

0
∂xv(t,x)

2

v(t,x)2 dx and
∫ L

0

(
v(t,x)−v̄

v̄γ − v(t,x)1−γ−v̄1−γ

1−γ

)
dx in terms of

∫ L

0
∂xu(t,x)

2

v(t,x) dx and
∫ L

0
∂xv(t,x)

2

v(t,x)γ+2 dx. Since ū = 0, choosing such an xt ∈ [0, L) as u(t, xt) = 0

for every t ≥ 0, and then using Schwarz’ lemma, for x ∈ [0, L] we have

|u(t, x)| =
����
∫ x

xt

∂yu(t, y)dy

����

≤
∫ L

0

v(t, y)1/2
|∂yu(t, y)|
v(t, y)1/2

dy

≤

(∫ L

0

v(t, y)dy

)1/2 (∫ L

0

∂yu(t, y)
2

v(t, y)
dy

)1/2

,

from which we obtain

(3.9)

∫ L

0

u(t, x)2dx ≤ L2v̄

∫ L

0

∂xu(t, x)
2

v(t, x)
dx.
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As for the estimate of
∫ L

0
∂xv(t,x)

2

v(t,x)2 dx and
∫ L

0

(
v(t,x)−v̄

v̄γ − v(t,x)1−γ−v̄1−γ

1−γ

)
dx, we make use of

the assumption (3.1) noting that 1 < γ ≤ 2. It is clear that

∫ L

0

∂xv(t, x)
2

v(t, x)2
dx ≤

(
sup
t,x

v(t, x)

)γ ∫ L

0

∂xv(t, x)
2

v(t, x)γ+2
dx.

For every t ≥ 0 choosing xt ∈ [0, L) so that v(t, xt) = v̄ holds, by Schwarz’ lemma we have

����
v(t, x)1−γ − v̄1−γ

1− γ

���� =
����
∫ x

xt

∂yv(t, y)

v(t, y)γ
dy

����

≤

(∫ L

0

v(t, y)2−γdy

)1/2 (∫ L

0

∂yv(t, y)
2

v(t, y)γ+2
dy

)1/2

≤ L1/2

(
sup
t,y

v(t, y)

)(2−γ)/2
(∫ L

0

∂yv(t, y)
2

v(t, y)γ+2
dy

)1/2

for x ∈ [0, L], and hence,

∫ L

0

(
v(t, x)− v̄

v̄γ
− v(t, x)1−γ − v̄1−γ

1− γ

)
dx

=

�����
∫ L

0

v(t, x)1−γ − v̄1−γ

1− γ
dx

�����

≤ L3/2

(
sup
t,x

v(t, x)

)(2−γ)/2
(∫ L

0

∂xv(t, x)
2

v(t, x)γ+2
dx

)1/2

.

We thus obtain a differential inequality for (3.8) showing its boundedness. Since the first
three terms of the integrand of (3.8) constitute a positive quadratic form in two variables
u and ∂xv/v, the boundedness of v as in (3.5) follows from that of (3.8) immediately. Once
the boundedness of v is obtained, that of u in H1 follows just in the same manner as in [4].
We thus conclude (3.5). �

Let (v, u) be a solution of (1.1)–(1.3) with initial value (v0, u0). If (3.5) holds, then
the orbit of the solution is a precompact set of C0 × C0 by the Ascoli-Arzelá theorem. In
particular, the ω-limit set of the orbit defined by

ω(v0, u0) =

∞∩
n=1

{(v(t, · ), u(t, · )); t ≥ n}
C0×C0

is nonempty. The following lemma shows that the large time behavior of a bounded solution
is under the control of the set of stationary solutions.

Lemma 3 Assume that 1 < γ ≤ 2. Let (v, u) be a bounded solution of (1.1)–(1.3) with
initial value (v0, u0) and ū = 0. Then, for (vω, uω) ∈ ω(v0, u0) we have vω ∈ C∞, vω > 0,
vω = v0, uω = 0, and

(3.10) ∂x
(
avω(x)

−γ
)
= −4πG

vω
∂x

∫ L

0

KL(x, y)(vω(y)− vω)dy,

that is, (vω, uω) is a static and stationary solution of (1.1)–(1.3) having the average in
common with the initial value.
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Proof: By Lemma 2 we have inft,x v(t, x) > 0, and hence vω > 0. It is clear that vω = v0.
We show that uω = 0. Choose an increasing sequence {tn;n = 1, 2, . . . , } of positive

numbers such that tn ≥ n and limn→∞(v(tn, · ), u(tn, · )) = (vω, uω) in C0 × C0. Since E
given by (3.2) is decreasing, we have

lim
t→∞

E(t) = lim
n→∞

E(tn) = E(vω, uω)

and

lim
n→∞

∫ tn+1

tn

E(t)dt = E(vω, uω).(3.11)

Representing
∫ tn+1

tn
E(t)dt as

∫ tn+1

tn

(∫ L

0

1

2
u(t, x)2dx

)
dt+

∫ tn+1

tn

(E(v(t, · ))− E(v(tn, · ))) dt+ E(v(tn, · )),

we take the limit in (3.11) term by term. Since

(3.12) lim
n→∞

∫ tn+1

tn

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt = 0

by (3.4), it follows from (3.9) that

(3.13) lim
n→∞

∫ tn+1

tn

(∫ L

0

1

2
u(t, x)2dx

)
dt = 0.

We next take the limit of the second term using

(3.14) lim
n→∞

∫ tn+1

tn

(∫ L

0

|v(t, x)− v(tn, x)|dx

)
dt = 0.

This follows from estimating the integral with respect to the variable x in (3.14) with the use

of the equality v(t, x)− v(tn, x) =
∫ t

tn
∂xu(s, x)ds, t ∈ [tn, tn + 1], due to the first equation

of (1.1), as

∫ L

0

|v(t, x)− v(tn, x)|dx

≤
∫ tn+1

tn

(∫ L

0

|∂xu(s, x)|dx

)
ds

≤

{∫ tn+1

tn

(∫ L

0

v(s, x)dx

)
ds

}1/2 {∫ tn+1

tn

(∫ L

0

∂xu(s, x)
2

v(s, x)
dx

)
ds

}1/2

=
√
Lv̄

{∫ tn+1

tn

(∫ L

0

∂xu(s, x)
2

v(s, x)
dx

)
ds

}1/2

,

and then applying (3.12). From the expression

v(t, x)1−γ − v(tn, x)
1−γ = (1− γ)

∫ 1

0

{ξv(t, x) + (1− ξ)v(tn, x)}−γ
dξ (v(t, x)− v(tn, x))
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viscous fluid driven by a self-gravitation of the fluid. We show the existence of an
unbounded solution of a system describing the flow. A sufficient condition for the
unboundedness is given in terms of the initial values of an energy form.

1 Introduction Let us consider a one dimensional isentropic flow of a compressible vis-
cous fluid in the Lagrangian mass coordinates:

(1.1)




∂tv − ∂xu = 0,

∂tu+ ∂x(av
−γ)− µ∂x

(
∂xu

v

)
= G,

where specific volume v, assumed to take positive values, and velocity u of the fluid are
unknown functions of the time and space variables t ≥ 0 and x ∈ R, pressure av−γ a
function of v with constants a > 0 and γ ≥ 1, and µ > 0 the viscosity constant. The second
member G is an external force specified below. We are mainly concerned with the so-called
isentropic flow, i.e., γ > 1, though, we occasionally refer to the isothermal flow, i.e. γ = 1
for the sake of comparison.

The initial or initial-boundary value problem for (1.1) with a prescribed forcing term G
has been studied by several authors. Since the pioneering work of Kanel’ [3], showing the
existence of global bounded solutions to the system (1.1) on the whole line with G ≡ 0, the
boundedness is one of the crucial keys to study the asymptotic behavior of the solutions.
Closely related with the present paper are the works of Matsumura and Nishida [4], and
Matsumura and Yanagi [5]. In [4] it is shown that the isothermal system on a finite interval
with a general bounded forcing term G has a unique global bounded solution for any smooth
initial data. In [5] a similar result was obtained for the isentropic system but on the
assumption of smallness of γ − 1 depending on the data. Both the results fail to mention
whether an unbounded solution exists or not for the isentropic system with a bounded
forcing term.

This paper handles the system (1.1) under the L-periodic condition:

(1.2) v(t, x+ L) = v(t, x), u(t, x+ L) = u(t, x)

with a rather special forcing term depending on the unknowns:

(1.3) G(t, x) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy,
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we have

∫ tn+1

tn

(∫ L

0

v(t, x)1−γ − v̄1−γ

1− γ
dx−

∫ L

0

v(tn, x)
1−γ − v̄1−γ

1− γ
dx

)
dt

=

∫ 1

0

{∫ tn+1

tn

(∫ L

0

{ξv(t, x) + (1− ξ)v(tn, x)}−γ
(v(t, x)− v(tn, x))dx

)
dt

}
dξ.

Since {ξv(t, x) + (1− ξ)v(tn, x)}−γ ≤ (inft,x v(t, x))
−γ

, 0 ≤ ξ ≤ 1, we obtain

lim
n→∞

∫ tn+1

tn

(∫ L

0

v(t, x)1−γ − v̄1−γ

1− γ
dx−

∫ L

0

v(tn, x)
1−γ − v̄1−γ

1− γ
dx

)
dt = 0.

Similarly, it follows from

(v(t, x)− v̄)(v(t, y)− v̄)− (v(tn, x)− v̄)(v(tn, y)− v̄)

= (v(t, x)− v(tn, x))(v(t, y)− v̄) + (v(tn, x)− v̄)(v(t, y)− v(tn, y))

and the boundedness of the kernel KL that

lim
n→∞

∫ tn+1

tn

(∫ L

0

∫ L

0

KL(x, y)(v(t, x)− v̄)(v(t, y)− v̄)dxdy

−
∫ L

0

∫ L

0

KL(x, y)(v(tn, x)− v̄)(v(tn, y)− v̄)dxdy

)
dt = 0.

We thus obtain

lim
n→∞

∫ tn+1

tn

(E(v(t, · ))− E(v(tn, · ))) dt = 0,

and hence,

lim
n→∞

∫ tn+1

tn

E(t)dt = lim
n→∞

E(v(tn, · )) = E(vω).

Comparing this result with (3.11), we have
∫ L

0
uω(x)

2dx = 0, that is, uω = 0.
Finally we prove that vω is smooth and subject to (3.10). Let {tn;n = 1, 2, . . . , } be

as above. Take a test function ϕ ∈ H1, and a smooth function θ of the real variable

with support contained in the interval (0, 1), θ ≥ 0, and
∫ 1

0
θ(t)dt = 1. Multiply the

second equation of (1.1) by θ(t − tn)ϕ(x) and integrate the both sides of the result over
[tn, tn + 1]× [0, L]. Integration by parts yields

−
∫ tn+1

tn

θ′(t− tn)

(∫ L

0

ϕ(x)u(t, x)dx

)
dt

−
∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)av(t, x)
−γdx

)
dt

+ µ

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
∂xu(t, x)

v(t, x)
dx

)
dt

=

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
4πG

v̄

∫ L

0

KL(x, y)(v(t, y)− v̄)dydx

)
dt.
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With the use of (3.14) we can handle the second term on the left-hand side and the term
on the right-hand side in the same manner as shown above:

lim
n→∞

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)av(t, x)
−γdx

)
dt

=

∫ L

0

∂xϕ(x)avω(x)
−γdx,

lim
n→∞

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
4πG

v̄

∫ L

0

KL(x, y)(v(t, y)− v̄)dydx

)
dt

=

∫ L

0

∂xϕ(x)
4πG

v̄

∫ L

0

KL(x, y)(vω(y)− v̄)dydx.

As for the third term on the left-hand side we have the following estimate by Schwarz’
lemma:�����

∫ tn+1

tn

θ(t− tn)

(∫ L

0

∂xϕ(x)
∂xu(t, x)

v(t, x)
dx

)
dt

�����

≤

{∫ tn+1

tn

θ(t− tn)
2

(∫ L

0

∂xϕ(x)
2

v(t, x)
dx

)
dt

}1/2 {∫ tn+1

tn

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt

}1/2

≤

(
1

inft,x v(t, x)

∫ 1

0

θ(t)2dt

∫ L

0

∂xϕ(x)
2dx

)1/2 {∫ tn+1

tn

(∫ L

0

∂xu(t, x)
2

v(t, x)
dx

)
dt

}1/2

,

which shows that the term tends to 0 as n → ∞ in view of (3.12). Similarly, the first term
on the left-hand side tends to 0 as n → ∞ from (3.13). Thus we obtain

−
∫ L

0

∂xϕ(x)avω(x)
−γdx =

∫ L

0

∂xϕ(x)
4πG

vω

∫ L

0

KL(x, y)(vω(y)− vω)dydx,

the equality (3.10) for vω in the distribution sense. Using the smoothing property of the
integral operator with kernel KL, by bootstrap argument we can derive the smoothness of
vω from vω ∈ C0. �

4 Structure of stationary solutions From the observation of the large time behavior
of bounded solutions to (1.1)–(1.3) we see that a solution is necessarily unbounded if it fails
to approach the set of stationary solutions. This together with Lemma 1, which claims
that the energy form is decreasing along the orbit of any solution, implies that, if there
exists a state on MV at which the energy form takes a value smaller than those of the
energy form evaluated at the stationary solutions on MV , then the orbit passing such a
state is apart from the set of the stationary solutions and must be unbounded. This gives
us the idea of providing, in terms of the energy form, an initial condition for unbounded
solutions in reference to the structure of stationary solutions. Based on this idea, we first
prove Theorem 1, and then examine at which stationary solution on MV the energy form
takes the minimal value.

Let us consider the stationary problem for (1.1)–(1.3):

(4.1)




∂xu(x) = 0,

∂x(av(x)
−γ) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(y)− v̄)dy.
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Our first task in the present section is to seek all the solutions of (4.1) lying in MV for every
V > 0. Clearly we have u = 0. By the change of unknown functions r(x) = (v(x)/V )−γ−1,
we transform the problem into an equivalent one of finding L-periodic solutions to the
following differential equation:

(4.2) ∂2
xr(x) + λf(r(x)) = 0, r(x) > −1,

with

f(r) = 1− (1 + r)−1/γ , λ =
4πGV γ

a
.

An L-periodic solution r of (4.2) has a critical point x0, i.e., ∂xr(x0) = 0. Since both
r(x+x0) and r(−x+x0) satisfy (4.2) with coincidence of the Cauchy data at x = 0, by the
uniqueness of solutions to the Cauchy problem for (4.2) we have r(x + x0) = r(−x + x0),
and therefore both are even functions. Thus, r is given by an appropriate shift of an even
solution. In view of this fact, we seek even L-periodic solutions of (4.2).

To this end we make use of the relation between the period of a solution and the first
integral. The first integral of (4.2), usually called the energy of the orbit, is given by

I =
1

2
∂xr(x)

2 + λF (r(x))

with

F (r) =

∫ r

0

f(s)ds = r − γ

γ − 1

{
(1 + r)1−1/γ − 1

}
, r > −1.

F is monotone decreasing on (−1, 0] and monotone increasing on [0,∞), having the limit
at either end of the half line:

F (−1 + 0) =
1

γ − 1
, F (∞) = ∞.

We can therefore find a unique closed orbit with energy I if and only if

0 < I <
λ

γ − 1
.

The period l of the orbit with energy I is given by

l = 2

∫ rmax

rmin

dr√
2(I − λF (r))

,

where rmin < 0 and rmax > 0 are the minimum and the maximum of the solution r,
respectively. Notice that

(4.3) F (rmin) = F (rmax) =
I
λ
.

Dividing the integral into two parts, one over (rmin, 0) and the other over (0, rmax), and
changing the variables by y = (λ/I)F (r), we get

(4.4) l =
√

2/λIγ

(√
I/λ

)
,

where Iγ is a function on (0, (γ − 1)−1/2) given by (2.1). The following lemma shows that
the period of an orbit is a monotone increasing function of its energy provided 1 < γ < 2.
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Lemma 4 Assume 1 < γ < 2. Then, I ′γ(θ) > 0. Moreover we have

Iγ(+0) =
√

2γπ, Iγ((γ − 1)−1/2 − 0) < ∞.

Proof: Put

(4.5) Iγ,±(θ) =

∫ 1

0

1√
1− y

θ

f±
(
F±

−1(θ2y)
)dy

and express Iγ(θ) as the sum of Iγ,+(θ) and Iγ,−(θ). Since

∂

∂θ

(
F±

−1(θ2y)
)
=

2θy

f±
(
F±

−1(θ2y)
) ,

we have

∂

∂θ

(
θ

f±
(
F±

−1(θ2y)
)
)

=
f±

(
F±

−1(θ2y)
)2 − 2θ2yf ′

±
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3

=
f±

(
F±

−1(θ2y)
)2 − 2F±

(
F±

−1(θ2y)
)
f ′
±

(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3 .

Noting that

lim
z→+0

f±(z)
2 − 2F±(z)f

′
±(z)

f±(z)3
= −1

3

f ′′
±(0)

f ′
±(0)

2
,

we apply differentiation under the integral sign to (4.5) to obtain

I ′γ,±(θ) =

∫ 1

0

1√
1− y

f±
(
F±

−1(θ2y)
)2 − 2F±

(
F±

−1(θ2y)
)
f ′
±

(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3 dy

and

(4.6) lim
θ→+0

I ′γ,±(θ) = −1

3

f ′′
±(0)

f ′
±(0)

2

∫ 1

0

dy√
1− y

dy = −2

3

f ′′
±(0)

f ′
±(0)

2
.

Similarly, we have

∂

∂θ

(
f±

(
F±

−1(θ2y)
)2 − 2F±

(
F±

−1(θ2y)
)
f ′
±

(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)3

)

=
2θy g

(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)5

=
2
√
yF±

(
F±

−1(θ2y)
)1/2

g
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)5

with
g(z) = 2F±(z)

(
3f ′

±(z)
2 − f±(z)f

′′
±(z)

)
− 3f±(z)

2f ′
±(z).

Since

lim
z→+0

F±(z)
1/2g(z)

f±(z)5
= lim

z→+0

(
F±(z)

f±(z)2

)1/2 2F±(z)
(
3f ′

±(z)
2 − f±(z)f

′′
±(z)

)
− 3f±(z)

2f ′
±(z)

f±(z)4
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∂tv − ∂xu = 0,
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−γ)− µ∂x
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v

)
= G,

where specific volume v, assumed to take positive values, and velocity u of the fluid are
unknown functions of the time and space variables t ≥ 0 and x ∈ R, pressure av−γ a
function of v with constants a > 0 and γ ≥ 1, and µ > 0 the viscosity constant. The second
member G is an external force specified below. We are mainly concerned with the so-called
isentropic flow, i.e., γ > 1, though, we occasionally refer to the isothermal flow, i.e. γ = 1
for the sake of comparison.

The initial or initial-boundary value problem for (1.1) with a prescribed forcing term G
has been studied by several authors. Since the pioneering work of Kanel’ [3], showing the
existence of global bounded solutions to the system (1.1) on the whole line with G ≡ 0, the
boundedness is one of the crucial keys to study the asymptotic behavior of the solutions.
Closely related with the present paper are the works of Matsumura and Nishida [4], and
Matsumura and Yanagi [5]. In [4] it is shown that the isothermal system on a finite interval
with a general bounded forcing term G has a unique global bounded solution for any smooth
initial data. In [5] a similar result was obtained for the isentropic system but on the
assumption of smallness of γ − 1 depending on the data. Both the results fail to mention
whether an unbounded solution exists or not for the isentropic system with a bounded
forcing term.

This paper handles the system (1.1) under the L-periodic condition:

(1.2) v(t, x+ L) = v(t, x), u(t, x+ L) = u(t, x)

with a rather special forcing term depending on the unknowns:

(1.3) G(t, x) = −4πG

v̄
∂x
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0
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=
5f ′′

±(0)
2 − 3f ′

±(0)f
′′′
± (0)

12
√
2f ′

±(0)
7/2

,

again by differentiation under the integral sign the second derivative of Iγ,± is given by

(4.7) I ′′γ,±(θ) =

∫ 1

0

1√
1− y

2θy g
(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)5 dy,

a continuous function on (0, (γ − 1)−1/2). Now we put ζ = (1± z)−1/γ and express g(z) as

g(z) =
ζ1+2γ

γ2
h(ζ)

with

h(ζ) =
γ(1 + γ)

1− γ
ζ2−γ +

2(1 + γ)(2− γ)

1− γ
ζ1−γ + (2− γ)ζ−γ +

2(γ − 2)

1− γ
ζ − 2(1 + γ)

1− γ
.

Since

h′(ζ) =
γ(1 + γ)(2− γ)

1− γ
ζ1−γ + 2(1 + γ)(2− γ)ζ−γ − γ(2− γ)ζ−1−γ +

2(γ − 2)

1− γ
,

and since

h′′(ζ) = γ(1 + γ)(2− γ)ζ−γ − 2γ(1 + γ)(2− γ)ζ−1−γ + γ(1 + γ)(2− γ)ζ−2−γ

= γ(1 + γ)(2− γ)ζ−2−γ(ζ − 1)2

≥ 0

for 1 < γ < 2, we have h(1) = h′(1) = 0 and therefore h(ζ) > 0, ζ ̸= 1. The integrand
in (4.7) is positive, and so is I ′′γ,±(θ) for θ ∈ (0, (γ − 1)−1/2). This implies that I ′γ =

I ′γ,+ + I ′γ,− as well as I ′γ,± is monotone increasing on (0, (γ − 1)−1/2). Using f ′
±(0) = 1/γ

and f ′′
±(0) = ∓(1+1/γ)/γ, from (4.6) we obtain limθ→+0 I

′
γ(θ) = 0, and hence I ′γ is positive

on (0, (γ − 1)−1/2), as desired.
Since

θ

f±
(
F±

−1(θ2y)
) =

1
√
y

(
F±

(
F±

−1(θ2y)
)

f±
(
F±

−1(θ2y)
)2

)1/2

,

and since the function z → F±(z)/f±(z)
2 is bounded on

(
0, F±

−1
(
(γ − 1)−1 − 0

))
, we can

take the limit of Iγ,±(θ) at either end of the interval (0, (γ− 1)−1/2) under the integral sign
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lim
θ→+0

Iγ,±(θ) = lim
z→+0

(
F±(z)

f±(z)2

)1/2 ∫ 1

0

dy√
1− y

√
y
=

π

(2f ′
±(0))

1/2
=

(γ

2

)1/2

π

and

lim
θ→(γ−1)−1/2−0

Iγ,±(θ) =

∫ 1

0

1√
1− y

√
y

(
F±

(
F±

−1(y/(γ − 1))
)

f±
(
F±

−1(y/(γ − 1))
)2

)1/2

dy < ∞,

showing that Iγ(+0) =
√
2γπ and Iγ((γ − 1)−1/2 − 0) < ∞. �
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By Lemma 4, from the formula (4.4) we obtain a necessary and sufficient condition for
the existence and uniqueness of l-periodic orbits for (4.2):

(4.8)
√

4γ/λπ < l <
√

2/λIγ((γ − 1)−1/2 − 0).

Recalling λ = 4πGV γ/a, we obtain the assertion of Theorem 1 immediately.

We proceed to another task of finding out the stationary solutions with minimal value
of the energy form. Assume that the stationary problem for (1.1)–(1.3) has a non-trivial
solution on MV . For j = kmin, . . . , kmax choose a stationary solution (ṽ(j), 0) ∈ MV with
least period L/j as in Theorem 1, and put

(4.9) SV = {(ṽ(j), 0); j = kmin, . . . , kmax} ∪ {(V, 0)}.

We compare the values E(ṽ(j)), j = kmin, . . . , kmax, and E(V ) = 0 with each other. To this
end we introduce the following function with respect to the periods of stationary solutions:

ε(l) =

∫ l

0

a

(
ṽl(x)− V

V γ
− ṽl(x)1−γ − V 1−γ

1− γ

)
dx

− 2πG

V

∫ l

0

∫ l

0

Kl(x, y)(ṽ
l(x)− V )(ṽl(y)− V )dxdy,

where (ṽl, 0) is the non-trivial solution of the stationary problem (4.1) parametrized by
L = l with ṽl having the average V , the least period l, and the maximum at x = 0. In view
of (4.8), ṽl as well as ε(l) is well defined for l with

(4.10)
( aγπ

GV γ

)1/2

< l <
Iγ((γ − 1)−1/2 − 0)√

2γπ

( aγπ

GV γ

)1/2

.

With this function the value E(ṽ(j)) is expressed as follows.

Lemma 5 For j = kmin, . . . , kmax we have

(4.11) E(ṽ(j)) = jε(L/j).

Proof: Put lj = L/j. Notice that E(ṽ(j)) = E(ṽlj ). In the expression

E(vlj ) =
∫ L

0

a

(
ṽlj (x)− V

V γ
− ṽlj (x)1−γ − V 1−γ

1− γ

)
dx

− 2πG

V

∫ L

0

∫ L

0

KL(x, y)(ṽ
lj (x)− V )(ṽlj (y)− V )dxdy

we divide every integral on the interval [0, L] into the integrals on the subintervals [mlj , (m+
1)lj ], m = 0, . . . , j−1, and rewrite every piece as an integral on [0, lj ] by change of variables.
By periodicity of ṽlj we obtain

E(ṽ(j)) = j

∫ lj

0

a

(
ṽlj (x)− V

V γ
− ṽlj (x)1−γ − V 1−γ

1− γ

)
dx(4.12)

− 2πG

V

∫ lj

0

∫ lj

0

j−1∑
m,n=0

KL(x+mlj , y + nlj)(ṽ
lj (x)− V )(ṽlj (y)− V )dxdy.
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Noting that 0 ≤ x+mlj , y+nlj ≤ L for 0 ≤ x, y ≤ lj and m,n = 0, . . . , j − 1, we calculate

the sum
∑j−1

m,n=0 KL (x+mlj , y + nlj) with the use of the expression (1.4) of KL:

j−1∑
m,n=0

KL (x+mlj , y + nlj)

= −1

2

j−1∑
m,n=0

|x− y + (m− n)lj |+
1

2L

j−1∑
m,n=0

{x− y + (m− n)lj}2 +
L

12
j2

= −1

2

[∑
m=n

|x− y|+
∑
m>n

{x− y + (m− n)lj} −
∑
m<n

{x− y + (m− n)lj}

]

+
1

2L

j−1∑
m,n=0

{
(x− y)2 + 2(m− n)(x− y)lj + (m− n)2l2j

}
+

L

12
j2

= −1

2

(
j|x− y|+ 2

∑
m>n

(m− n)lj

)
+

1

2L

{
j2(x− y)2 + 2

∑
m>n

(m− n)2l2j

}
+

L

12
j2

= −j
|x− y|

2
+ j

(x− y)2

2lj
+

∑
m>n

{
(m− n)2

j
− (m− n)

}
lj +

lj
12

j3.

Here we have

∑
m>n

{
(m− n)2

j
− (m− n)

}

=

j−1∑
m=1

m∑
k=1

(
k2

j
− k

)

=

j−1∑
m=1

(
2m3 + 3m2 +m

6j
− m2 +m

2

)

=
1

12

[{
j(j − 1)2 + (j − 1)(2j − 1) + (j − 1)

}
− {j(j − 1)(2j − 1) + 3j(j − 1)}

]

=
1

12
(−j3 + j),

and hence,

j−1∑
m,n=0

KL (x+mlj , y + nlj) = j

{
−|x− y|

2
+

(x− y)2

2lj
+

lj
12

}
= jKlj (x, y).

This together with (4.12) gives (4.11). �

Since

E(ṽ(j)) = L
ε(L/j)

L/j

by (4.11), the j-dependence of E(ṽ(j)) would be known from the behavior of the function
l �→ ε(l)/l on the interval (4.10). We first show the differentiability of the function. Put
rl(x) = (ṽl(x)/V )−γ − 1. Notice that rl is a solution of (4.2) having the least period l and
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the minimum at x = 0. Let us denote the minimum by rlmin, negative for l with (4.10). By
(4.3) the energy of the orbit of rl is λF (rlmin). Therefore, from (4.4) we obtain

l =
√

2/λ Iγ

(√
F (rlmin)

)
.

By the monotonicity of Iγ due to Lemma 4,

(4.13) F
(
rlmin

)
=

(
Iγ

−1
(
l
√

λ/2
))2

holds. Since Iγ is continuously differentiable, so is the function l �→ rlmin on (4.10). By
continuous dependence on initial data in the Cauchy problem for (4.2) the correspondence
l �→ rl defines a continuously differentiable function on (4.10) with values in the space of
continuous functions on R, and so does the correspondence l �→ ṽl. From this together
with the expression (1.4) of the kernel KL with L = l the differentiability of the function
l �→ ε(l) on (4.10) easily follows.

The following lemma shows that the function under consideration is monotonic and
negative.

Lemma 6 We have (ε(l)/l)
′
< 0 and ε(l) < 0.

Proof: Put ṽl0 = ṽl(0). We take the derivative of ε(l) and rewrite the result using ṽl(l) = ṽl0,∫ l

0
∂lṽ

l(x)dx = V − ṽl0 from
∫ l

0
ṽl(x)dx = V l, and the symmetry of the Green kernel Kl(x, y).

After rearrangement of terms we obtain

ε′(l) = −a
(ṽl0)

1−γ − V 1−γ

1− γ

−
∫ l

0

aṽl(x)−γ∂lṽ
l(x)dx− 4πG

V

∫ l

0

∫ l

0

Kl(x, y)(ṽ
l(y)− V )dy ∂lṽ

l(x)dx

− 4πG

V

∫ l

0

Kl(l, y)(ṽ
l(y)− V )dy(ṽl0 − V )

− 2πG

V

∫ l

0

∫ l

0

∂lKl(x, y)(ṽ
l(x)− V )(ṽl(y)− V )dxdy.

Here we notice that ṽl is subject to the following equation equivalent to the second one of
(4.1) with L = l:

(4.14) −aṽl(x)−γ +
1

l

∫ l

0

aṽl(x)−γdx− 4πG

V

∫ l

0

Kl(x, y)(ṽ
l(y)− V )dy = 0.

Then the sum of the second and the third terms on the right-hand side is

−1

l

∫ l

0

aṽl(x)−γdx

∫ l

0

∂lṽ
l(x)dx =

1

l

∫ l

0

aṽl(x)−γdx (ṽl0 − V ).

Adding the forth term to this expression and using (4.14) with x = l, we see that the sum
of the above three terms turns out to be a(ṽl0−V )/(ṽl0)

γ . Since ṽl is axially symmetric with
respect to x = l/2, the last term on the right-hand side vanishes in view of

∂lKl(x, y) = − (x− y)2

2l2
+

1

12
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= − 1

2l2

{(
x− l

2

)2

+

(
y − l

2

)2

− 2

(
x− l

2

)(
y − l

2

)}
+

1

12
, 0 ≤ x, y ≤ l.

Summing up, we obtain

ε′(l) = a

{
− (ṽl0)

1−γ − V 1−γ

1− γ
+

ṽl0 − V

(ṽl0)
γ

}
.

From this expression the function l �→ ε(l) is twice continuously differentiable and

ε′′(l) = −aγ
∂lṽ

l
0 (ṽ

l
0 − V )

(ṽl0)
γ+1

.

Since ṽl attains its maximum at x = 0, we have ṽl0 − V > 0. Moreover, from ṽl0 =

V
(
1 + rlmin

)−1/γ
with rlmin as above, we obtain

∂lṽ
l
0 = −V

γ
(1 + rlmin)

−1/γ−1∂lr
l
min.

Thus, the sign of ε′′(l) coincides with that of ∂lr
l
min. Taking the derivatives of the both

sides of (4.13), we obtain

f(rlmin)∂lr
l
min =

√
2λIγ

−1
(
l
√

λ/2
)
(Iγ

−1)′
(
l
√

λ/2
)
,

positive in view of Lemma 4. Since rlmin is negative, so are f
(
rlmin

)
and ∂lr

l
min. We thus

conclude that ε′′(l) < 0.

We next take the limit as l →
(

aγπ
GV γ

)1/2
+0 in (4.13). By Lemma 4 we have F (rlmin) →

(Iγ
−1(

√
2γπ + 0))2 = 0, and hence rlmin → 0. By continuous dependence on initial data

in the Cauchy problem for (4.2) we obtain the uniform convergence of both rl and ṽl as

l →
(

aγπ
GV γ

)1/2
+0, showing rl(x) → 0 and ṽl(x) → V on R. Thus, ε(l) as well as ε′(l) tends

to 0 as l →
(

aγπ
GV γ

)1/2
+ 0. From these in combination with (ε(l)/l)′ = (lε′(l)− ε(l))/l2 and

(lε′(l)− ε(l))′ = lε′′(l) < 0, we conclude that (ε(l)/l)′ < 0 and ε(l) < 0. �
As a consequence of Lemma 6 we obtain

Proposition 1 For j1, j2 = kmin, . . . , kmax with j1 < j2, we have

E(ṽ(j1)) < E(ṽ(j2)) < E(V ) = 0.

In particular, E(ṽ(kmin)) is minimal amongst the values of the energy form on SV .

5 Initial condition for unbounded solutions Proposition 1 claims that the subset
AV of H1 ×H1 given by (2.3) consists of the states on MV at which the energy form takes
values smaller than any values of the energy form evaluated at the stationary solutions
on MV . As proved earlier, the orbit of a solution to (1.1)–(1.3) passing through AV is
necessarily unbounded, i.e., supt,x v(t, x) = ∞. In this way we obtain an initial condition
for unbounded solutions as presented by Theorem 2. The problem to be settled is to find
a condition that ensures the non-emptiness of AV . The final section is devoted to a partial
answer to the problem, proving Theorem 2.

Our strategy is to find an element of AV in a small neighborhood of a stationary solution
giving the minimal value of the energy form on SV given by (4.9). In order to introduce the
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idea we begin by examining the behavior of the energy form near an arbitrary stationary
solution. Let (ṽ, 0) ∈ MV be a stationary solution of (1.1)–(1.3), and (v, u) ∈ MV a state
in a neighborhood of the stationary solution. We introduce the displacement from the
stationary solution as

ϕ(x) = v(x)− ṽ(x), ψ(x) = u(x).

Suppose the displacement is small enough in amplitude. Since

(ṽ(x) + ϕ(x))1−γ − ṽ(x)1−γ

1− γ
= ṽ(x)−γϕ(x)− 1

2
γṽ(x)−γ−1ϕ(x)2 +O(|ϕ(x)|3),

evaluating the form (1.6) at v = ṽ + ϕ, we obtain

E(ṽ + ϕ)

= E(ṽ) +
∫ L

0

(
−aṽ(x)−γ − 4πG

V

∫ L

0

KL(x, y)(ṽ(y)− V )dy

)
ϕ(x)dx

+
1

2

∫ L

0

a
γϕ(x)2

ṽ(x)γ+1
dx− 2πG

V

∫ L

0

∫ L

0

KL(x, y)ϕ(x)ϕ(y)dxdy +O(∥ϕ∥L∞)∥ϕ∥2L2

with ∥ϕ∥L∞ the supremum norm of ϕ. As in (4.14), ṽ satisfies the equation

(5.1) −aṽ(x)−γ +
1

L

∫ L

0

aṽ(x)−γdx− 4πG

V

∫ L

0

KL(x, y)(ṽ(y)− V )dy = 0.

Since the average of ϕ vanishes, this implies that

(5.2) E(ṽ + ϕ) = E(ṽ) + 1

2
Q[ϕ] +O(∥ϕ∥L∞)∥ϕ∥2L2 ,

where Q is the quadratic form on the Hilbert space H = {φ ∈ L2; φ̄ = 0} defined by

Q[φ] =

∫ L

0

a
γφ(x)2

ṽ(x)γ+1
dx− 4πG

V

∫ L

0

∫ L

0

KL(x, y)φ(x)φ(y)dxdy.

Now suppose the quadratic form Q admits a negative value, i.e., Q[φ0] < 0 for some φ0 ∈ H.
By approximation of functions we may assume that φ0 is smooth. Evaluating the energy
form (1.5) with (1.6) at (v, u) = (ṽ + εφ0, 0) for small |ε|, from (5.2) we obtain

E(ṽ + εφ0, 0) = E(ṽ) + 1

2
ε2Q[φ0] +O(|ε|3).

This shows that the energy form takes a value smaller than its value at the stationary
solution in any small neighborhood of that stationary solution.

In order to examine the sign of Q we make use of the expression

Q[φ] =
a

V γ+1
(Tφ, φ)L2 ,

where T is the self-adjoint operator on H given by

(5.3) (Tφ)(x) =
γφ(x)

(1 + w̃(x))γ+1
− 1

L

∫ L

0

γφ(x)

(1 + w̃(x))γ+1
dx− λ

∫ L

0

KL(x, y)φ(y)dy

with w̃ = ṽ/V −1 and λ = 4πGV γ/a. We are concerned with the spectrum σ(T ) of T since
the lower bound of σ(T ) gives inf∥φ∥L2=1(Tφ, φ)L2 .
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In case ṽ = V , that is, w̃ = 0 the spectrum of T is easily obtained from that of the Green
operator of −d2/dx2 on H. The spectrum consists of double eigenvalues γ− (λL2)/(4π2j2)
with two independent eigenvectors cos(2πj/L)x and sin(2πj/L)x, j = 1, 2, . . . , and the
accumulation point γ of them. Thus, we obtain

(5.4) inf σ(T ) = γ − λL2

4π2

immediately.
In considering the spectrum of T corresponding to a non-trivial stationary solution (ṽ, 0)

some preliminary observations are in order. Since (Tφ, φ)L2 ≤
∫ L

0
γφ(x)2

(1+w̃(x))γ+1 dx for φ ∈ H,

we have inf σ(T ) ≤ γ(1+max w̃)−γ−1. In the region below γ(1+max w̃)−γ−1 the spectrum
in fact consists of eigenvalues of T . This follows from rewriting an equation Tφ− Λφ = ψ
in H with parameter Λ < γ(1 + max w̃)−γ−1 as PΛφ− λKLφ = ψ with

(PΛφ)(x) =

{
γ

(1 + w̃(x))γ+1
− Λ

}
φ(x)− 1

L

∫ L

0

γφ(x)

(1 + w̃(x))γ+1
dx,

(KLφ)(x) =

∫ L

0

KL(x, y)φ(y)dy,

noting the positivity of PΛ and the compactness of KL, and applying the the Riesz-Schauder
theory to the compact operator PΛ

−1KL on H. We next remark that (ṽ( · − α), 0) is also
a stationary solution of (1.1)–(1.3) for any α ∈ R, and hence

− 1

(1 + w̃(x− α))γ
+

1

L

∫ L

0

dx

(1 + w̃(x− α))γ
− λ

∫ L

0

KL(x, y)w̃(y − α)dy

holds by (5.1). Differentiating this relation with respect to α and evaluating the result at
α = 0, we obtain

γw̃′(x)

(1 + w̃(x))γ+1
− 1

L

∫ L

0

γw̃′(x)

(1 + w̃(x))γ+1
dx− λ

∫ L

0

KL(x, y)w̃
′(y)dy = 0,

that is, Tw̃′ = 0. This shows that T has a non-trivial null space with an eigenvector
w̃′ ̸= 0. Let us define a self-adjoint operator on H corresponding to the stationary solution
(ṽ( · − α), 0) by (5.3):

(Tαφ)(x) =
γφ(x)

(1 + w̃(x− α))γ+1
− 1

L

∫ L

0

γφ(x)

(1 + w̃(x− α))γ+1
dx− λ

∫ L

0

KL(x, y)φ(y)dy.

Our last remark here is that the point spectrum of Tα coincides with that of T for any
α ∈ R with the correspondence of associating eigenspaces given by the shift of functions
φ �→ φ( · − α), for from the equation Tφ = Λφ we have

γφ(x− α)

(1 + w̃(x− α))γ+1
− 1

L

∫ L+α

α

γφ(x− α)

(1 + w̃(x− α))γ+1
dx

− λ

∫ L+α

α

KL(x− α, y − α)φ(y − α)dy = Λφ(x− α),

and hence Tαφ( · − α) = Λφ( · − α) in view of KL(x − α, y − α) = KL(x, y) and the L-
periodicity of w̃, φ and KL(x, · ). To sum up, we are allowed to study the lower bound of
T focusing on the nonpositive eigenvalues of T after a favorable shift of ṽ.
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With the above considerations in mind we prove the following.

Lemma 7 Let k be an integer satisfying (2.2), and ṽ(k) as in Theorem 1. Let T be the
self-adjoint operator on H that corresponds to the stationary solution (ṽ(k), 0) by (5.3). If
k ≥ 2, then the lower bound of T is a negative eigenvalue.

Proof: As shown just before the statement of the lemma, we may assume that ṽ(k) is even
and attains its maximum at x = 0. Such a stationary solution with least period L/k
is unique. Rewriting (2.2) with a parameter λ = 4πGV γ/a, we consider the stationary
solution as parametrized over the interval

(5.5) γ

(
2πk

L

)2

< λ < 2

(
Iγ

(
(γ − 1)−1/2 − 0

)
k

L

)2

,

and denote ṽ(k)/V − 1 by w̃λ. We first notice that λ �→ w̃λ is a continuous function with
values in the space of continuously differentiable L-periodic functions on (5.5) with uniform
limit

lim
λ→γ(2πk/L)2+0

w̃λ(x) = 0.

To show this put rλ = (1 + w̃λ)
−γ − 1 and notice that rλ is a solution of (4.2) attaining its

minimum rλ,min, which is negative, at x = 0. Since the energy of the orbit of rλ is given

by λ
(
Iγ

−1
(
(L/k)

√
λ/2

))2

, we have F (rλ,min) =
(
Iγ

−1
(
(L/k)

√
λ/2

))2

. See (4.3) and

(4.4). This together with

lim
λ→γ(2πk/L)2+0

Iγ
−1

(
(L/k)

√
λ/2

)
= Iγ

−1
(√

2γπ + 0
)
= 0,

coming from Lemma 4, implies that rλ,min depends continuously on λ with rλ,min → 0

as λ → γ (2πk/L)
2
+ 0. The continuity of rλ with respect to λ as well as the uniform

convergence rλ(x) → 0 as λ → γ (2πk/L)
2
+ 0 follows from continuous dependence on

initial data in the Cauchy problem for (4.2). Thus, the map λ �→ w̃λ enjoys the continuity
as desired. Now put

(Tλφ)(x) =
γφ(x)

(1 + w̃λ(x))γ+1
− 1

L

∫ L

0

γφ(x)

(1 + w̃λ(x))γ+1
dx− λ

∫ L

0

KL(x, y)φ(y)dy.

In view of KL(−x, y) = KL(x,−y) and the L-periodicity of w̃λ and KL(x, · ), Tλ maps
an odd function into an odd one. The restriction of Tλ onto the subspace H(o) = {φ ∈
H;φ(−x) = −φ(x)} of H is denoted by T

(o)
λ . As shown above, T

(o)
λ as well as Tλ has the

eigenvalue 0 with eigenvector w̃′
λ ∈ H(o). Moreover, the eigenvalue 0 is simple. This is

because the equation T
(o)
λ φ = 0 is equivalent to the second order linear differential equation

∂2
x

{
γ(1 + w̃λ(x))

−γ−1φ(x)
}
+ λφ(x) = 0 and any odd solution of the differential equation

must be proportional to the solution w̃′
λ by the uniqueness of solutions to the Cauchy

problem. Noting that inf σ(Tλ) ≤ inf σ(T
(o)
λ ), we show that the lower bound of T

(o)
λ is

negative.

From the continuous dependence of w̃λ on λ we see that the correspondence λ �→ T
(o)
λ is

continuous on the interval (5.5) up to the left end γ (2πk/L)
2
with respect to the operator

norm. The limit T
(o)

γ(2πk/L)2+0
is the restriction onto H(o) of the operator (5.3) with λ =

γ (2πk/L)
2
and w̃ = 0, and its lower bound is the eigenvalue γ(1 − k2) with eigenvector
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sin(2π/L)x, as shown by (5.4). Thus, the correspondence λ �→ inf σ(T
(o)
λ ) gives a continuous

function on (5.5) with

lim
λ→γ(2πk/L)2+0

inf σ(T
(o)
λ ) = inf σ(T

(o)

γ(2πk/L)2+0
) = γ(1− k2),

which is negative by the assumption k ≥ 2. Put c(λ) = inf σ(T
(o)
λ ) and suppose the function

λ �→ c(λ) admits a nonnegative value on (5.5). In view of the continuity of the function

and c(γ (2πk/L)
2
+ 0) < 0 as proved above, there does exist a zero of the function. The

smallest zero is denoted by λ∗. For γ (2πk/L)
2
< λ < λ∗, since c(λ) < 0, c(λ) is proved

to be an eigenvalue as the lower bound of Tλ is. Let φλ be an eigenvector associated
with c(λ) satisfying ∥φλ∥L2 = 1. By the boundedness of {φλ; γ (2πk/L)

2
< λ < λ∗} in

H(o) we can choose a sequence {λn;n = 1, 2, . . . } and an element φλ∗ of H(o) so that

γ (2πk/L)
2
< λn < λ∗, λn → λ∗ as n → ∞, and the sequence {φλn ;n = 1, 2, . . . } converges

to φλ∗ weakly in H(o) as n → ∞. Noting that φλ(1 + w̃λ)
−γ−1 is an odd function, we

rewrite T
(o)
λ φλ = c(λ)φλ as

φλ(x) =
(1 + w̃λ(x))

γ+1

γ

(
λ

∫ L

0

KL(x, y)φλ(y)dy + c(λ)φλ(x)

)

and then take the limit along the sequence. Since, as λ → λ∗, w̃λ converges uniformly
to w̃λ∗ and c(λ) → c(λ∗) = 0, and since the integral operator with kernel KL is compact
on H(o), the sequence {φλn ;n = 1, 2, . . . , } converges strongly in L2 and also in H(o).

Therefore, ∥φλ∗∥L2 = 1 and T
(o)
λ∗

φλ∗ = 0 hold. This shows that φλ∗ is an eigenvector of

T
(o)
λ∗

associated with the eigenvalue 0. Since w̃′
λ and φλ are orthogonal to each other for

γ (2πk/L)
2
< λ < λ∗, so are w̃′

λ∗
and φλ∗ by passage to the limit along the sequence and the

continuity of w̃′
λ with respect to λ. In particular, w̃′

λ∗
and φλ∗ are independent, however,

this contradicts the simplicity of the eigenvalue 0.

Thus, the lower bound of T
(o)
λ must be negative over the interval (5.5), as desired. �

We are now in position to present a condition for AV to be nonempty. Given Propo-
sition 1 and Lemma 7, we think it reasonable to pick up the cases in which the minimal
value of the energy form on SV as in (4.9) is attained either at the stationary solution
(ṽ(kmin), 0) with kmin ≥ 2 or at the trivial solution (V, 0) with inf σ(T ) < 0. In view of
Remark 1 and (5.4), the condition that we propose turns out to be

V ≥
(
aIγ((γ − 1)−1/2 − 0)2

2πGL2

)1/γ

,

the assumption of Theorem 2. Now the proof of the theorem is completed.

Remark 3 In the proof of Lemma 7 we rely on the fact that the lower bound of the

operator T
(o)
λ is somewhere negative on the interval (5.5). Here we essentially make use of

the assumption k ≥ 2. In case k = 1, however, the situation is subtle, and in fact the lower
bound of T corresponding to the stationary solution (ṽ(1), 0) proves the eigenvalue 0, which
is isolated and simple. An outline of the reasoning is given by [6], where the spectrum of the
restriction of Tλ onto the space of even functions are considered with the use of Lemma 4
and the result of Crandall and Rabinowitz [2] on the perturbation of simple eigenvalues along
bifurcation curves of stationary solutions. The result shows, in some sense, the stability of
the set of stationary solutions having a profile in common, and in order to find an element
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Abstract. We consider a one dimensional isentropic periodic flow of a compressible
viscous fluid driven by a self-gravitation of the fluid. We show the existence of an
unbounded solution of a system describing the flow. A sufficient condition for the
unboundedness is given in terms of the initial values of an energy form.

1 Introduction Let us consider a one dimensional isentropic flow of a compressible vis-
cous fluid in the Lagrangian mass coordinates:

(1.1)




∂tv − ∂xu = 0,

∂tu+ ∂x(av
−γ)− µ∂x

(
∂xu

v

)
= G,

where specific volume v, assumed to take positive values, and velocity u of the fluid are
unknown functions of the time and space variables t ≥ 0 and x ∈ R, pressure av−γ a
function of v with constants a > 0 and γ ≥ 1, and µ > 0 the viscosity constant. The second
member G is an external force specified below. We are mainly concerned with the so-called
isentropic flow, i.e., γ > 1, though, we occasionally refer to the isothermal flow, i.e. γ = 1
for the sake of comparison.

The initial or initial-boundary value problem for (1.1) with a prescribed forcing term G
has been studied by several authors. Since the pioneering work of Kanel’ [3], showing the
existence of global bounded solutions to the system (1.1) on the whole line with G ≡ 0, the
boundedness is one of the crucial keys to study the asymptotic behavior of the solutions.
Closely related with the present paper are the works of Matsumura and Nishida [4], and
Matsumura and Yanagi [5]. In [4] it is shown that the isothermal system on a finite interval
with a general bounded forcing term G has a unique global bounded solution for any smooth
initial data. In [5] a similar result was obtained for the isentropic system but on the
assumption of smallness of γ − 1 depending on the data. Both the results fail to mention
whether an unbounded solution exists or not for the isentropic system with a bounded
forcing term.

This paper handles the system (1.1) under the L-periodic condition:

(1.2) v(t, x+ L) = v(t, x), u(t, x+ L) = u(t, x)

with a rather special forcing term depending on the unknowns:

(1.3) G(t, x) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy,
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of AV for
(
aγπ
GL2

)1/γ
< V <

(
aIγ((γ−1)−1/2−0)2

2πGL2

)1/γ

we are forced to study the behavior of

the energy form beyond a small neighborhood of the set of stationary solutions, which is a

global and therefore difficult problem. The situation is quite similar in case V ≤
(
aγπ
GL2

)1/γ
since the trivial solution (V, 0) is the unique stationary solution on MV with stability in
some sense.
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(1.1)




∂tv − ∂xu = 0,

∂tu+ ∂x(av
−γ)− µ∂x

(
∂xu

v

)
= G,

where specific volume v, assumed to take positive values, and velocity u of the fluid are
unknown functions of the time and space variables t ≥ 0 and x ∈ R, pressure av−γ a
function of v with constants a > 0 and γ ≥ 1, and µ > 0 the viscosity constant. The second
member G is an external force specified below. We are mainly concerned with the so-called
isentropic flow, i.e., γ > 1, though, we occasionally refer to the isothermal flow, i.e. γ = 1
for the sake of comparison.

The initial or initial-boundary value problem for (1.1) with a prescribed forcing term G
has been studied by several authors. Since the pioneering work of Kanel’ [3], showing the
existence of global bounded solutions to the system (1.1) on the whole line with G ≡ 0, the
boundedness is one of the crucial keys to study the asymptotic behavior of the solutions.
Closely related with the present paper are the works of Matsumura and Nishida [4], and
Matsumura and Yanagi [5]. In [4] it is shown that the isothermal system on a finite interval
with a general bounded forcing term G has a unique global bounded solution for any smooth
initial data. In [5] a similar result was obtained for the isentropic system but on the
assumption of smallness of γ − 1 depending on the data. Both the results fail to mention
whether an unbounded solution exists or not for the isentropic system with a bounded
forcing term.

This paper handles the system (1.1) under the L-periodic condition:

(1.2) v(t, x+ L) = v(t, x), u(t, x+ L) = u(t, x)

with a rather special forcing term depending on the unknowns:

(1.3) G(t, x) = −4πG

v̄
∂x

∫ L

0

KL(x, y)(v(t, y)− v̄)dy,
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Abstract. B. Bongiorno, Di Piazza and Preiss gave a minimal constructive inte-
gration process of Riemann type, called the C-integral, which contains the Lebesgue
integral and the Newton integral. D. Bongiorno gave a minimal constructive inte-
gration process of Riemann type, called the C̃-integral, which contains the Lebesgue
integral and the improper Newton integral. On the other hand, Nakanishi gave cri-
teria for the restricted Denjoy integrability. Motivated by the results of Nakanishi,
Kawasaki and Suzuki gave criteria for the C-integrability, and Kawasaki gave criteria
for the C̃-integrability. In this paper, motivated by the results above, we give new
integrals between the Lebesgue integral and the restricted Denjoy integral. Moreover
we give criteria for the integrability of one of them in the style of Nakanishi.

1 Introduction Throughout this paper we denote by (L)(S), (L∗)(S) and (D∗)(S) the
class of all Lebesgue integrable functions, the class of all improper Lebesgue integrable
functions and the class of all restricted Denjoy integrable functions from a measurable
set S ⊂ R into R, respectively, and we denote by |A| the measure of a measurable set
A. We recall that a gauge δ is a function from an interval [a, b] into (0,∞) and a δ-fine
McShane partition of an interval [a, b] ⊂ R is a collection {(Ik, xk) | k = 1, . . . , k0} of non-
overlapping intervals Ik ⊂ [a, b] and xk ∈ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk)) and∑k0

k=1 |Ik| = b − a. If
∑k0

k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine partial
McShane partition. Moreover, if xk ∈ Ik for any k = 1, . . . , k0, then a δ-fine McShane
partition and a δ-fine partial McShane partition are called a δ-fine Perron partition and
a δ-fine partial Perron partition, respectively. We say that a function f from an interval
[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
functions from [a, b] into R. The improper Lebesgue integral, the C-integral and the C̃-
integral are between the Lebesgue integral and the restricted Denjoy integral.

2010 Mathematics Subject Classification. Primary 26A36; Secondary 26A39.

Key words and phrases. C-integral, C̃-integral, Lebesgue integral, Improper Lebesgue integral, Denjoy
integral, McShane integral, Henstock-Kurzweil integral.

Scientiae Mathematicae Japonicae 80, No.3（2017）（269-293） 269



2 T. KAWASAKI

On the other hand, in [11, 14] Nakanishi gave criteria for the restricted Denjoy integra-
bility. Motivated by the results of Nakanishi, in [10] Kawasaki and Suzuki gave criteria for
the C-integrability, and in [9] Kawasaki gave criteria for the C̃-integrability.

In this paper, motivated by the results above, we give new integrals between the Lebesgue
integral and the restricted Denjoy integral. Moreover we give criteria for the integrability
of one of them in the style of Nakanishi.

2 Preliminaries We know that the Lebesgue integral and the restricted Denjoy integral
are equivalent to the McShane integral and the Henstock-Kurzweil integral, respectively.
The McShane integral and the Henstock-Kurzweil integral are Riemann type integrals and
these definitions are as follows.

Definition 2.1. A function f from an interval [a, b] into R is McShane integrable if there
exists a constant A such that for any positive number ε there exists a gauge δ such that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0}. The constant A is the value of
the McShane integral of f and we denote by

A = (MS)
∫

[a,b]

f(x)dx = (L)
∫

[a,b]

f(x)dx.

We denote by (MS)([a, b]) the class of all McShane integrable functions from [a, b] into R.

Definition 2.2. A function f from an interval [a, b] into R is Henstock-Kurzweil integrable
if there exists a constant A such that for any positive number ε there exists a gauge δ such
that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} with xk ∈ Ik, that is, δ-fine
Perron partition. The constant A is the value of the Henstock-Kurzweil integral of f and
we denote by

A = (HK)
∫

[a,b]

f(x)dx = (D∗)
∫

[a,b]

f(x)dx.

We denote by (HK)([a, b]) the class of all Henstock-Kurzweil integrable functions from [a, b]
into R.

In [5] D. Bongiorno showed a criterion for the improper Lebesgue integral as follows.

Theorem 2.1. A function f from an interval [a, b] into R is improper Lebesgue integrable if
and only if there exist a constant A and a finite subset N ⊂ [a, b] such that for any positive
number ε there exists a gauge δ such that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε
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1 Introduction Throughout this paper we denote by (L)(S), (L∗)(S) and (D∗)(S) the
class of all Lebesgue integrable functions, the class of all improper Lebesgue integrable
functions and the class of all restricted Denjoy integrable functions from a measurable
set S ⊂ R into R, respectively, and we denote by |A| the measure of a measurable set
A. We recall that a gauge δ is a function from an interval [a, b] into (0,∞) and a δ-fine
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overlapping intervals Ik ⊂ [a, b] and xk ∈ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk)) and∑k0

k=1 |Ik| = b − a. If
∑k0

k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine partial
McShane partition. Moreover, if xk ∈ Ik for any k = 1, . . . , k0, then a δ-fine McShane
partition and a δ-fine partial McShane partition are called a δ-fine Perron partition and
a δ-fine partial Perron partition, respectively. We say that a function f from an interval
[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
functions from [a, b] into R. The improper Lebesgue integral, the C-integral and the C̃-
integral are between the Lebesgue integral and the restricted Denjoy integral.
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for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik whenever
xk ∈ N . Moreover

A = (L∗)
∫

[a,b]

f(x)dx.

The theorem above gives a Riemann type definition for the improper Lebesgue integral.
In [1], see also [2,3], B. Bongiorno gave the C-integral, which is also a Riemann type integral,
as follows.

Definition 2.3. A function f from an interval [a, b] into R is C-integrable if there exists a
constant A such that for any positive number ε there exists a gauge δ such that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying
∑k0

k=1 d(Ik, xk) < 1
ε ,

where d(I, x) = infy∈I |y − x|. The constant A is the value of the C-integral of f and we
denote by

A = (C)
∫

[a,b]

f(x)dx.

We denote by (C)([a, b]) the class of all C-integrable functions from [a, b] into R.

In [4] D. Bongiorno gave the C̃-integral, which is also a Riemann type integral, as follows.

Definition 2.4. A function f from an interval [a, b] into R is C̃-integrable if there exist
a constant A and a countable subset N ⊂ [a, b] such that for any positive number ε there
exists a gauge δ such that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

The constant A is the value of the C̃-integral of f and we denote by

A = (C̃)
∫

[a,b]

f(x)dx.

We denote by (C̃)([a, b]) the class of all C̃-integrable functions from [a, b] into R.

Throughout this paper, we say that a function defined on the class of all intervals in
[a, b] is an interval function on [a, b]. If an interval function F on [a, b] satisfies F (I1 ∪ I2) =
F (I1) + F (I2) for any intervals I1, I2 ⊂ [a, b] with I1

i ∩ I2
i = ∅, where Ii is the interior

of I, then it is said to be additive. In [11, 14] Nakanishi gave the following criteria for the
restricted Denjoy integrability. Firstly Nakanishi considered the following four criteria for
the pair of a function f from [a, b] into R and an additive interval function F on [a, b].

3
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(A) For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3)

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Fn �= ∅.

(B) For any decreasing sequence {εn} tending to 0 there exist increasing sequences {Mn}
of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4)

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn for any n and for any finite family

{Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik ∩ Mn �= ∅.

(C) There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) for any n and for any positive number ε there exists a positive number η such
that

�����
k0∑

k=1

F (Ik)

����� < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying

(3.1) Ik ∩ Fn �= ∅ for any k;

(3.2)
∑k0

k=1 |Ik| < η.

(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D) There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;
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[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
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(4) for any n and for any positive number ε there exists a positive number η such
that

�����
k0∑

k=1

F (Ik)

����� < ε

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b]
satisfying

(4.1) Ik ∩ Mn �= ∅ for any k;

(4.2)
∑k0

k=1 |Ik| < η.

(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

Next Nakanishi gave the following theorem for the restricted Denjoy integrability.

Theorem 2.2. A function f from an interval [a, b] into R is restricted Denjoy integrable if
and only if there exists an additive interval function F on [a, b] such that the pair of f and
F satisfies one of (A), (B), (C) and (D). Moreover, if the pair of f and F satisfies one of
(A), (B), (C) and (D), then

F (I) = (D∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

Motivated by the results of Nakanishi, in [10] Kawasaki and Suzuki gave similar criteria
and theorems for the C-integrability, and in [9] Kawasaki give similar criteria and theorems
for the C̃-integrability.

3 Definitions of new integrals In this section firstly we define new integrals. By ob-
serving the definitions of the McShane, the improper Lebesgue in the sense of Theorem 2.1,
the Henstock-Kurzweil integrals, C-integral and C̃-integral, we become aware of the follow-
ing two integrals.

Definition 3.1. A function f from an interval [a, b] into R is C∗-integrable if there exist a
constant A and a finite subset N ⊂ [a, b] such that for any positive number ε there exists a
gauge δ such that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .
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The constant A is the value of the C∗-integral of f and we denote by

A = (C∗)
∫

[a,b]

f(x)dx.

We denote by (C∗)([a, b]) the class of all C∗-integrable functions from [a, b] into R.

Definition 3.2. A function f from an interval [a, b] into R is L̃-integrable if there exist
a constant A and a countable subset N ⊂ [a, b] such that for any positive number ε there
exists a gauge δ such that

�����
k0∑

k=1

f(xk)|Ik| − A

����� < ε

for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik whenever
xk ∈ N . The constant A is the value of the L̃-integral of f and we denote by

A = (L̃)
∫

[a,b]

f(x)dx.

We denote by (L̃)([a, b]) the class of all L̃-integrable functions from [a, b] into R.

By the definitions of these integrals we obtain the following relations.

(N) ⊂ (N∗) (D∗)⊂ ⊂

(C) ⊂ (C∗) ⊂ (C̃) =

⊂ ⊂
(MS) ⊂ ⊂ (HK)

=

(L) ⊂ (L∗) ⊂ (L̃)

The above relations of inclusion are proper. We give some examples to check these. To
show these, we provide the Saks-Henstock type lemmas. The following is the Saks-Henstock
type lemma for the C∗-integral.

Theorem 3.1. If f ∈ (C∗)([a, b]), then there exists a finite subset N ⊂ [a, b] such that for
any positive number ε there exists a gauge δ such that

k0∑
k=1

����f(xk)|Ik| − (C∗)
∫

Ik

f(x)dx

���� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

Proof. Since f ∈ (C∗)([a, b]), there exists a finite subset N ⊂ [a, b] such that for any positive
number ε there exists a gauge δ such that

�����
k1∑

k=1

f(xk)|Ik| − (C∗)
∫

[a,b]

f(x)dx

����� <
ε

4
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for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k1} satisfying

k1∑
k=1

d(Ik, xk) <
2
ε

and xk ∈ Ik whenever xk ∈ N . Let {(Ik, xk) | k = 1, . . . , k0} be a δ-fine partial McShane
partition satisfying

k0∑
k=1

d(Ik, xk) <
1
ε

and xk ∈ Ik whenever xk ∈ N , and let {Ik | k = k0 + 1, . . . , k1} be the sequence of intervals
satisfying

k1∪
k=1

Ik = [a, b]

and Ii
k2

∩ Ii
k3

= ∅ if k2 �= k3. Since f is C∗-integrable on each Ik (k = k0 + 1, . . . , k1), there
exists a gauge δk such that

������

�(k)∑
�=1

(
f(xk,�)|Ik,�| − (C∗)

∫

Ik,�

f(x)dx

)������
<

ε

4(k1 − k0)

for any δk-fine McShane partition {(Ik,�, xk,�) | � = 1, . . . , �(k)} satisfying

�(k)∑
�=1

d(Ik,�, xk,�) <
1

ε(k1 − k0)

and xk,� ∈ Ik,� whenever xk,� ∈ N . Without loss of generality, it may be assumed that
δk ≤ δ for any k = k0 + 1, . . . , k1. Note that

k0∑
k=1

d(Ik, xk) +
k1∑

k=k0+1

�(k)∑
�=1

d(Ik,�, xk,�) <
1
ε

+
k1∑

k=k0+1

1
ε(k1 − k0)

=
2
ε
.

Therefore we obtain
�����

k0∑
k=1

(
f(xk)|Ik| − (C∗)

∫

Ik

f(x)dx

)�����

≤

�����
k1∑

k=1

f(xk)|Ik| − (C∗)
∫

[a,b]

f(x)dx

�����

+
k1∑

k=k0+1

������

�(k)∑
�=1

(
f(xk,�)|Ik,�| − (C∗)

∫

Ik,�

f(x)dx

)������

<
ε

4
+

k1∑
k=k0+1

ε

4(k1 − k0)
=

ε

2
.
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Moreover we obtain

k0∑
k=1

����f(xk)|Ik| − (C∗)
∫

Ik

f(x)dx

����

=

�������
∑

f(xk)|Ik|−(C∗)
R

Ik
f(x)dx>0

(
f(xk)|Ik| − (C∗)

∫

Ik

f(x)dx

)
�������

+

�������
∑

f(xk)|Ik|−(C∗)
R

Ik
f(x)dx<0

(
f(xk)|Ik| − (C∗)

∫

Ik

f(x)dx

)
�������

<
ε

2
+

ε

2
= ε.

The following is the Saks-Henstock type lemma for the L̃-integral. The proof is similar
to Theorem 3.1.

Theorem 3.2. If f ∈ (L̃)([a, b]), then there exists a countable subset N ⊂ [a, b] such that
for any positive number ε there exists a gauge δ such that

k0∑
k=1

����f(xk)|Ik| − (L̃)
∫

Ik

f(x)dx

���� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik when-
ever xk ∈ N .

The Saks-Henstock type lemma for the improper Lebesgue integral also holds, see [5].

Theorem 3.3. If f ∈ (L∗)([a, b]), then there exists a finite subset N ⊂ [a, b] such that for
any positive number ε there exists a gauge δ such that

k0∑
k=1

����f(xk)|Ik| − (L∗)
∫

Ik

f(x)dx

���� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik when-
ever xk ∈ N .

We show that the above relations of inclusion are proper.

Theorem 3.4. There exists a function f such that f ∈ (C∗)([0, 1]) but f �∈ (C)([0, 1]).

Proof. Let f1 be a function from [0, 1] into R defined by

f1(x) =

{
(1 − 2x)

(
sin 1

x(1−x) −
1

x(1−x) cos 1
x(1−x)

)
, if x ∈ (0, 1),

0, if x ∈ {0, 1},

and let F1 be a function defined by

F1(x) =
{

x(1 − x) sin 1
x(1−x) , if x ∈ (0, 1),

0, if x ∈ {0, 1}.

Scientiae Mathematicae Japonicae 1

SOME INTEGRALS BETWEEN THE LEBESGUE INTEGRAL
AND THE DENJOY INTEGRAL

Toshiharu Kawasaki

Received December 16, 2015 ; revised March 11, 2016

Abstract. B. Bongiorno, Di Piazza and Preiss gave a minimal constructive inte-
gration process of Riemann type, called the C-integral, which contains the Lebesgue
integral and the Newton integral. D. Bongiorno gave a minimal constructive inte-
gration process of Riemann type, called the C̃-integral, which contains the Lebesgue
integral and the improper Newton integral. On the other hand, Nakanishi gave cri-
teria for the restricted Denjoy integrability. Motivated by the results of Nakanishi,
Kawasaki and Suzuki gave criteria for the C-integrability, and Kawasaki gave criteria
for the C̃-integrability. In this paper, motivated by the results above, we give new
integrals between the Lebesgue integral and the restricted Denjoy integral. Moreover
we give criteria for the integrability of one of them in the style of Nakanishi.

1 Introduction Throughout this paper we denote by (L)(S), (L∗)(S) and (D∗)(S) the
class of all Lebesgue integrable functions, the class of all improper Lebesgue integrable
functions and the class of all restricted Denjoy integrable functions from a measurable
set S ⊂ R into R, respectively, and we denote by |A| the measure of a measurable set
A. We recall that a gauge δ is a function from an interval [a, b] into (0,∞) and a δ-fine
McShane partition of an interval [a, b] ⊂ R is a collection {(Ik, xk) | k = 1, . . . , k0} of non-
overlapping intervals Ik ⊂ [a, b] and xk ∈ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk)) and∑k0

k=1 |Ik| = b − a. If
∑k0

k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine partial
McShane partition. Moreover, if xk ∈ Ik for any k = 1, . . . , k0, then a δ-fine McShane
partition and a δ-fine partial McShane partition are called a δ-fine Perron partition and
a δ-fine partial Perron partition, respectively. We say that a function f from an interval
[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
functions from [a, b] into R. The improper Lebesgue integral, the C-integral and the C̃-
integral are between the Lebesgue integral and the restricted Denjoy integral.
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Since f1 is continuous on (0, 1) and

lim
α↓0,β↑1

(L)
∫

[α,β]

f1(x)dx = lim
α↓0,β↑1

(F1(β) − F1(α)) = 0,

we obtain f1 ∈ (L∗)([0, 1]) and hence f1 ∈ (C∗)([0, 1]). However f1 �∈ (C)([0, 1]). Indeed,
assume that f1 ∈ (C)([0, 1]). Then by [2, Lemma 6] for any positive number ε with ε < 1
there exists a gauge δ such that

k0∑
k=1

|f1(xk)(bk − ak) − (F1(bk) − F1(ak))| < ε

for any δ-fine partial McShane partition {([ak, bk], xk) | k = 1, . . . , k0} satisfying

k0∑
k=1

d([ak, bk], xk) <
1
ε
.

For any natural number n let

an =
1 −

√
1 − 4

3
2 π+2nπ

2
,

bn =
1 −

√
1 − 4

π
2 +2nπ

2
.

Note that {[an, bn]} is mutually disjoint and

F1(an) = −an(1 − an) = − 1
3
2π + 2nπ

,

F1(bn) = bn(1 − bn) =
1

π
2 + 2nπ

.

Since the sequence {bn(1−bn)+an(1−an) | n ∈ N} is a strictly decreasing sequence tending
to 0 and

0 < bn(1 − bn) + an(1 − an),
∞∑

n=1

(bn(1 − bn) + an(1 − an)) = ∞,

we can take a strictly increasing finite sequence {n(k) | k = 1, . . . , k0} satisfying bn(1) < δ(0)
and

ε <

k0∑
k=1

(bn(k)(1 − bn(k)) + an(k)(1 − an(k))) <
1
ε
.

Then {([an(k), bn(k)], 0) | k = 1, . . . , k0} is a δ-fine partial McShane partition and satisfies

k0∑
k=1

d([an(k), bn(k)], 0) =
k0∑

k=1

an(k) <

k0∑
k=1

(bn(k)(1 − bn(k)) + an(k)(1 − an(k))) <
1
ε
.

9
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However

k0∑
k=1

|f1(0)(bn(k) − an(k)) − (F1(bn(k)) − F1(an(k)))|

=
k0∑

k=1

|F1(bn(k)) − F1(an(k))|

=
k0∑

k=1

(bn(k)(1 − bn(k)) + an(k)(1 − an(k)))

> ε

and hence it is a contradiction.

Theorem 3.5. There exists a function f such that f ∈ (C̃)([0, 1]) but f �∈ (C∗)([0, 1]).

Proof. Let f2 be a function from [0, 1] into R defined by

f2(x) =

{
n(n + 1)f1(n(n + 1)x − n), if x ∈

(
1

n+1 , 1
n

)
, n ∈ N,

0, if x ∈
{

1
n

�� n ∈ N
}
∪ {0},

and let F2 be a function defined by

F2(x) =

{
F1(n(n + 1)x − n), if x ∈

(
1

n+1 , 1
n

)
, n ∈ N,

0, if x ∈
{

1
n

�� n ∈ N
}
∪ {0},

where f1 and F1 are the functions in Theorem 3.4. Since F ′
2(x) = f2(x) for any x ∈(

1
n+1 , 1

n

)
, n ∈ N, we obtain f2 ∈ (N∗)([0, 1]) and hence f2 ∈ (C̃)([0, 1]). However f2 �∈

(C∗)([0, 1]). Indeed, assume that f2 ∈ (C∗)([0, 1]). Then by Theorem 3.1 there exists a
finite subset N ⊂ [0, 1] such that for any positive number ε with ε < 1 there exists a gauge
δ such that

k0∑
k=1

|f2(xk)(bk − ak) − (F2(bk) − F2(ak))| < ε

for any δ-fine partial McShane partition {([ak, bk], xk) | k = 1, . . . , k0} satisfying

(1)
∑k0

k=1 d([ak, bk], xk) < 1
ε ;

(2) xk ∈ [ak, bk] whenever xk ∈ N .

Since N is finite, there exists a natural number p such that
[

1
p+1 , 1

p

]
∩ N = ∅. For any

natural number n let

an =
1

p + 1
+

1 −
√

1 − 4
3
2 π+2nπ

2p(p + 1)
,

bn =
1

p + 1
+

1 −
√

1 − 4
π
2 +2nπ

2p(p + 1)
.
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[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
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Note that {[an, bn]} is mutually disjoint and

F2(an) = −(p(p + 1)an − p)(p + 1 − p(p + 1)an)
= −p(p + 1)((p + 1)an − 1)(1 − pan)

= − 1
3
2π + 2nπ

,

F2(bn) = (p(p + 1)bn − p)(p + 1 − p(p + 1)bn)
= p(p + 1)((p + 1)bn − 1)(1 − pbn)

=
1

π
2 + 2nπ

.

Since the sequence {p(p + 1)(((p + 1)bn − 1)(1 − pbn) + ((p + 1)an − 1)(1 − pan)) | n ∈ N}
is a strictly decreasing sequence tending to 0 and

0 < p(p + 1)(((p + 1)bn − 1)(1 − pbn) + ((p + 1)an − 1)(1 − pan)),
∞∑

n=1

p(p + 1)(((p + 1)bn − 1)(1 − pbn) + ((p + 1)an − 1)(1 − pan)) = ∞,

we can take a strictly increasing finite sequence {n(k) | k = 1, . . . , k0} satisfying bn(1) <
1

p+1 + δ
(

1
p+1

)
and

ε <

k0∑
k=1

p(p + 1)(((p + 1)bn(k) − 1)(1 − pbn(k)) + ((p + 1)an(k) − 1)(1 − pan(k))) <
1
ε
.

Then
{(

[an(k), bn(k)], 1
p+1

) ��� k = 1, . . . , k0

}
is a δ-fine partial McShane partition and

k0∑
k=1

d

(
[an(k), bn(k)],

1
p + 1

)

=
k0∑

k=1

(
an(k) −

1
p + 1

)

<

k0∑
k=1

p(p + 1)(((p + 1)bn(k) − 1)(1 − pbn(k)) + ((p + 1)an(k) − 1)(1 − pan(k)))

<
1
ε
.

However
k0∑

k=1

����f2

(
1

p + 1

)
(bn(k) − an(k)) − (F2(bn(k)) − F2(an(k)))

����

=
k0∑

k=1

|F2(bn(k)) − F2(an(k))|

=
k0∑

k=1

p(p + 1)(((p + 1)bn(k) − 1)(1 − pbn(k)) + ((p + 1)an(k) − 1)(1 − pan(k)))

> ε

and hence it is a contradiction.

11
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Theorem 3.6. There exists a function f such that f ∈ (L̃)([0, 1]) but f �∈ (L∗)([0, 1]).

Proof. Let f3 be a function from [0, 1] into R defined by

f3(x) =

{
f1(n(n + 1)x − n), if x ∈

(
1

n+1 , 1
n

)
, n ∈ N,

0, if x ∈
{

1
n

�� n ∈ N
}
∪ {0},

and let F3 be a function defined by

F3(x) =

{
1

n(n+1)F1(n(n + 1)x − n), if x ∈
(

1
n+1 , 1

n

)
, n ∈ N,

0, if x ∈
{

1
n

�� n ∈ N
}
∪ {0},

where f1 and F1 are the functions in Theorem 3.4. Then f3 ∈ (L̃)([0, 1]) but f3 �∈
(L∗)([0, 1]). Indeed, since f3 is improper Lebesgue integrable on each

[
1

n+1 , 1
n

]
and

(L∗)
∫

[ 1
n+1 , 1

n ]
f3(x)dx = 0,

by Theorem 2.1 there exists a finite subset Nn ⊂
[

1
n+1 , 1

n

]
such that for any positive number

ε there exists a gauge δn such that

�����
kn∑

k=1

f3(xn,k)|In,k|

����� <
ε

2n+1

for any δn-fine McShane partition {(In,k, xn,k) | k = 1, . . . , kn} of
[

1
n+1 , 1

n

]
satisfying xn,k ∈

In,k whenever xn,k ∈ Nn. It is obvious that Nn =
{

1
n+1 , 1

n

}
. Let

Mn = max
{
|F3(x)|

���� x ∈
[

1
n + 1

,
1
n

]}
.

It holds that Mn = 2
n(n+1)M1. Without loss of generality, it may be assumed that

(x − δn(x), x + δn(x)) ⊂
(

1
n+1 , 1

n

)
for any x ∈

(
1

n+1 , 1
n

)
. Let N =

{
1
n

�� n ∈ N
}
∪ {0},

δ(x) = δn(x) for any x ∈
(

1
n+1 , 1

n

)
, δ

(
1
n

)
= min

{
δn

(
1
n

)
, δn−1

(
1
n

)}
for any n ∈ N

with n ≥ 2 and δ(0) < 1
p with Mp < ε

2 . Let {(Ik, xk) | k = 1, . . . , k0} be a δ-fine
McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying xk ∈ Ik whenever xk ∈ N . Let
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q = min
{

n
��� I1 ∩

[
1

n+1 , 1
n

)
�= ∅

}
. Then

�����
k0∑

k=1

f3(xk)|Ik|

�����

=

�������
f3(0)|I1| +

q∑
n=1

∑

Ik⊂[ 1
n+1 , 1

n ]
f3(xk)|Ik| +

q∑
n=2

∑
1
n∈Ik

f3

(
1
n

)
|Ik|

�������
≤ |f3(0)|I1||

+

�������
∑

Ik⊂[ 1
q+1 , 1

q ]
f3(xk)|Ik| +

∑
1
q ∈Ik

f3

(
1
q

) ����Ik ∩
[

1
q + 1

,
1
q

]����

�������

+
q−1∑
n=2

������
∑
1

n+1∈Ik

f3

(
1

n + 1

) ����Ik ∩
[

1
n + 1

,
1
n

]����

+
∑

Ik⊂[ 1
n+1 , 1

n ]
f3(xk)|Ik|

+
∑
1
n∈Ik

f3

(
1
n

) ����Ik ∩
[

1
n + 1

,
1
n

]����

������

+

�������
∑
1
2∈Ik

f3

(
1
2

) ����Ik ∩
[
1
2
, 1

]���� +
∑

Ik⊂[ 1
2 ,1]

f3(xk)|Ik|

�������

≤ 0 +

�������
∑

Ik⊂[ 1
q+1 , 1

q ]
f3(xk)|Ik| +

∑
1
q ∈Ik

f3

(
1
q

) ����Ik ∩
[

1
q + 1

,
1
q

]����

�������
+

q−1∑
n=2

ε

2n+1
+

ε

22
.

By Theorem 3.3 we obtain

�������
∑

Ik⊂[ 1
q+1 , 1

q ]
f3(xk)|Ik| +

∑
1
q ∈Ik

f3

(
1
q

) ����Ik ∩
[

1
q + 1

,
1
q

]����

�������

≤
∑

Ik⊂[ 1
q+1 , 1

q ]

����f3(xk)|Ik| − (L∗)
∫

Ik

f3(x)dx

����

+
∑
1
q ∈Ik

�����f3(xk)
����Ik ∩

[
1

q + 1
,
1
q

]���� − (L∗)
∫

Ik∩[ 1
q+1 , 1

q ]
f3(x)dx

�����

+

�������
(L∗)

∫
 

S

Ik⊂[ 1
q+1 , 1

q ] Ik

!

∪
„

S

1
q
∈Ik

Ik∩[ 1
q+1 , 1

q ]
« f3(x)dx

�������
<

ε

2q+1
+ Mq.
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Therefore

�����
k0∑

k=1

f3(xk)|Ik|

����� <
ε

2q+1
+ Mq +

q−1∑
n=2

ε

2n+1
+

ε

22

< Mp +
∞∑

n=1

ε

2n+1

< ε

and hence f3 ∈ (L̃)([0, 1]). However, since it can be shown similarly to Theorem 3.5 that
f3 �∈ (C∗)([0, 1]), we obtain f3 �∈ (L∗)([0, 1]).

Theorem 3.7. There exists a function f such that f ∈ (C∗)([0, 1]) but f �∈ (L∗)([0, 1]).

Proof. Let C be the Cantor set in [0, 1], let {(αp, βp) | p ∈ N} be the sequence of all
connected components of [0, 1] \ C, let f4 be a function from [0, 1] into R defined by

f4(x) =




2(αp+βp−2x)
(βp−αp)2

(
(x−αp)(βp−x)

(βp−αp)2 sin (βp−αp)2

(x−αp)(βp−x) − cos (βp−αp)2

(x−αp)(βp−x)

)
,

if x ∈ (αp, βp), p ∈ N,
0,

if x ∈ C,

and let F4 be a function defined by

F4(x) =

{
(x−αp)2(βp−x)2

(βp−αp)4 sin (βp−αp)2

(x−αp)(βp−x) , if x ∈ (αp, βp), p ∈ N,

0, if x ∈ C.

Since F ′
4(x) = f4(x) for any x ∈ [0, 1], we obtain f4 ∈ (N)([0, 1]) and hence f4 ∈ (C∗)([0, 1]).

However f4 �∈ (L̃)([0, 1]) and hence f4 �∈ (L∗)([0, 1]). We show f4 �∈ (L̃)([0, 1]). Assume
that f4 ∈ (L̃)([0, 1]). Then by Theorem 3.2 there exists a countable subset N ⊂ [0, 1] such
that for any positive number ε there exists a gauge δ such that

k0∑
k=1

|f4(xk)(bk − ak) − (F4(bk) − F4(ak))| < ε

for any δ-fine partial McShane partition {([ak, bk], xk) | k = 1, . . . , k0} satisfying xk ∈
[ak, bk] whenever xk ∈ N . Since N is countable and C is perfect, there exist z ∈ C and
{(αp(q), βp(q)) | q ∈ N} ⊂ {(αp, βp) | p ∈ N} such that z �∈ N and

(
αp(q),

αp(q)+βp(q)

2

)
⊂

[z, z + δ(z)) for any q. For any natural numbers q and n let

aq,n = αp(q) +
(βp(q) − αp(q))

(
1 −

√
1 − 4

3
2 π+2nπ

)

2
,

bq,n = αp(q) +
(βp(q) − αp(q))

(
1 −

√
1 − 4

π
2 +2nπ

)

2
.
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Note that {[aq,n, bq,n]} is mutually disjoint and

F4(aq,n) = −
(aq,n − αp(q))2(βp(q) − aq,n)2

(βp(q) − αp(q))4

= − 1(
3
2π + 2nπ

)2 ,

F4(bq,n) =
(bq,n − αp(q))2(βp(q) − bq,n)2

(βp(q) − αp(q))4

=
1(

π
2 + 2nπ

)2 .

Since {([aq,n, bq,n], z) | q, n ∈ N} is a δ-fine partial McShane partition and

∞∑
q=1

∞∑
n=1

|f4(z)(bq,n − aq,n) − (F4(bq,n) − F4(aq,n))| =
∞∑

q=1

∞∑
n=1

|F4(bq,n) − F4(aq,n)| = ∞,

there exists {([ak, bk], z) | k = 1, . . . , k0} ⊂ {([aq,n, bq,n], z) | q, n ∈ N} such that

k0∑
k=1

|f4(z)(bk − ak) − (F4(bk) − F4(ak))| > ε.

It is a contradiction.

Theorem 3.8. There exists a function f such that f ∈ (C̃)([0, 1]) but f �∈ (L̃)([0, 1]).

Proof. We show in the proof of Theorem 3.7 that f4 ∈ (N)([0, 1]) and hence f4 ∈ (C̃)([0, 1])
but f4 �∈ (L̃)([0, 1]).

Theorem 3.9. There exists a function f such that f ∈ (C∗)([0, 1]) but f �∈ (L̃)([0, 1]).

Proof. We show in the proof of Theorem 3.7 that f4 ∈ (N)([0, 1]) and hence f4 ∈ (C∗)([0, 1])
but f4 �∈ (L̃)([0, 1]).

Theorem 3.10. There exists a function f such that f ∈ (L̃)([0, 1]) but f �∈ (C∗)([0, 1]).

Proof. We show in the proof of Theorem 3.6 that f3 ∈ (L̃)([0, 1]) but f3 �∈ (C∗)([0, 1]).

4 Properties of the C∗-integral In this section we give a criterion for the C∗-integrability.

Definition 4.1. Let F be an interval function on [a, b] and let N be a finite subset of [a, b].
Then F is said to be C∗-absolutely continuous on E ⊂ [a, b] with respect to N if for any
positive number ε there exist a gauge δ and a positive number η such that

k0∑
k=1

|F (Ik)| < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;
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(3) xk ∈ Ik whenever xk ∈ N ;

(4)
∑k0

k=1 |Ik| < η.

We denote by ACC∗(E,N) the class of all C∗-absolutely continuous interval functions on
E with respect to N . Moreover F is said to be C∗-generalized absolutely continuous on
[a, b] if there exist a finite subset N and a sequence {Em} of measurable sets such that∪∞

m=1 Em = [a, b] and F ∈ ACC∗(Em, N) for any m. We denote by ACGC∗([a, b]) the
class of all C∗-generalized absolutely continuous interval functions on [a, b].

Lemma 4.1. If F ∈ ACGC∗([a, b]) and E ⊂ [a, b] with |E| = 0, then there exists a finite
subset N ⊂ [a, b] such that for any positive number ε there exists a gauge δ such that

k0∑
k=1

|F (Ik)| < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N .

Proof. Since F ∈ ACGC∗([a, b]), there exist a finite subset N ⊂ [a, b] and a sequence
{Em} of measurable sets such that

∪∞
m=1 Em = [a, b] and F ∈ ACC∗(Em, N) for any m.

Therefore for any positive number ε and for any natural number m there exist a gauge δm

and a positive number ηm such that

k0∑
k=1

|F (Ik)| <
ε

2m+1

for any δm-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying

(1) xk ∈ Em for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N ;

(4)
∑k0

k=1 |Ik| < ηm.

Since |E ∩ Em| = 0, there exists an open set Om ⊃ E ∩ Em such that |Om| < ηm. Define
δ∗m(x) = min{δm(x), d(Oc

m, x)}, where Oc
m is the complement of Om. Then we obtain

k0∑
k=1

|F (Ik)| <
ε

2m+1

for any δ∗m-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying (1), (2), (3)
and (4). Define δ(x) = δ∗m(x) for any x ∈ E ∩ Em (m ∈ N). Then we obtain

k0∑
k=1

|F (Ik)| =
∞∑

n=1

∑
xk∈Em

|F (Ik)| ≤
∞∑

m=1

ε

2m+1
=

ε

2
< ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying
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Abstract. B. Bongiorno, Di Piazza and Preiss gave a minimal constructive inte-
gration process of Riemann type, called the C-integral, which contains the Lebesgue
integral and the Newton integral. D. Bongiorno gave a minimal constructive inte-
gration process of Riemann type, called the C̃-integral, which contains the Lebesgue
integral and the improper Newton integral. On the other hand, Nakanishi gave cri-
teria for the restricted Denjoy integrability. Motivated by the results of Nakanishi,
Kawasaki and Suzuki gave criteria for the C-integrability, and Kawasaki gave criteria
for the C̃-integrability. In this paper, motivated by the results above, we give new
integrals between the Lebesgue integral and the restricted Denjoy integral. Moreover
we give criteria for the integrability of one of them in the style of Nakanishi.

1 Introduction Throughout this paper we denote by (L)(S), (L∗)(S) and (D∗)(S) the
class of all Lebesgue integrable functions, the class of all improper Lebesgue integrable
functions and the class of all restricted Denjoy integrable functions from a measurable
set S ⊂ R into R, respectively, and we denote by |A| the measure of a measurable set
A. We recall that a gauge δ is a function from an interval [a, b] into (0,∞) and a δ-fine
McShane partition of an interval [a, b] ⊂ R is a collection {(Ik, xk) | k = 1, . . . , k0} of non-
overlapping intervals Ik ⊂ [a, b] and xk ∈ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk)) and∑k0

k=1 |Ik| = b − a. If
∑k0

k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine partial
McShane partition. Moreover, if xk ∈ Ik for any k = 1, . . . , k0, then a δ-fine McShane
partition and a δ-fine partial McShane partition are called a δ-fine Perron partition and
a δ-fine partial Perron partition, respectively. We say that a function f from an interval
[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
functions from [a, b] into R. The improper Lebesgue integral, the C-integral and the C̃-
integral are between the Lebesgue integral and the restricted Denjoy integral.
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(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N .

Lemma 4.2. If F is differentiable at x ∈ [a, b], then for any positive number ε there exists
a positive number δ such that

|F (t) − F (s) − F ′(x)(t − s)| < ε(2d([s, t], x) + t − s)

for any interval [s, t] ⊂ (x − δ, x + δ) ∩ [a, b].

Proof. Since F is differentiable at x ∈ [a, b], there exists a positive number δ such that

|F (ξ) − F (x) − F ′(x)(ξ − x)|| < ε|ξ − x|

for any ξ ∈ (x − δ, x + δ) ∩ [a, b]. Therefore for any interval [s, t] ⊂ (x − δ, x + δ) ∩ [a, b] we
obtain

|F (t) − F (s) − F ′(x)(t − s)|
≤ |F (t) − F (x) − F ′(x)(t − x)| + |F (x) − F (s) − F ′(x)(x − s)|
< ε|t − x| + ε|s − x|
= ε(2d([s, t], x) + t − s).

Theorem 4.1. For any F ∈ ACGC∗([a, b]) there exists d
dxF ([a, x]) for almost every x ∈

[a, b], and there exists f ∈ (C∗)([a, b]) such that f(x) = d
dxF ([a, x]) for almost every x ∈

[a, b] and

F (I) = (C∗)
∫

I

f(x)dx

for any interval I ⊂ [a, b].
Conversely the interval function F defined above for any f ∈ (C∗)([a, b]) satisfies F ∈

ACGC∗([a, b]).

Proof. Note that, if F ∈ ACGC∗([a, b]), then F ∈ ACGδ([a, b]), see [7, Definition 9.14].
By [7, Theorem 9.17] there exists d

dxF ([a, x]) for almost every x ∈ [a, b]. Let

E =
{

x

����
d

dx
F ([a, x]) does not exist at x ∈ [a, b]

}
.

Then |E| = 0, and by Lemma 4.1 there exists a finite subset N ⊂ [a, b] such that for any
positive number ε with ε < 4

b−a there exists a gauge δ1 such that

k0∑
k=1

|F (Ik)| <
ε

4

for any δ1-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying
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(1) xk ∈ E for any k;

(2)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(3) xk ∈ Ik whenever xk ∈ N .

If x �∈ E, then by Lemma 4.2 there exists a positive number δ2(x) such that
����F (t) − F (s) − d

dx
F ([a, x])(t − s)

���� <
ε2

8
(2d([s, t], x) + t − s)

for any interval [s, t] ⊂ (x − δ2(x), x + δ2(x)) ∩ [a, b]. Let

δ(x) =
{

δ1(x), if x ∈ E,
δ2(x), if x �∈ E,

and let

f(x) =
{

0, if x ∈ E,
d
dxF ([a, x]), if x �∈ E.

Then we obtain
�����

k0∑
k=1

f(xk)|Ik| − F (I)

����� ≤

�����
∑

xk∈E

F (Ik)

����� +

������
∑

xk �∈E

f(xk)|Ik| − F (Ik)

������
≤

∑
xk∈E

|F (Ik)| +
∑

xk �∈E

|f(xk)|Ik| − F (Ik)|

<
ε

4
+

∑
xk �∈E

ε2

8
(2d(Ik, xk) + |Ik|)

<
ε

4
+

ε2

8
· 2 · 1

ε
+

ε2

8
(b − a)

<
ε

4
+

ε

4
+

ε

2
= ε

for any interval I ⊂ [a, b] and for any δ-fine McShane partition {(Ik, xk) | k = 1, . . . , k0} of
I satisfying

(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

Conversely let f ∈ (C∗)([a, b]) and let

F (I) = (C∗)
∫

I

f(x)dx

for any interval I ⊂ [a, b]. For any natural number m let Em = {x | x ∈ [a, b], |f(x)| ≤ m}.
Then

∪∞
m=1 Em = [a, b]. We show that F ∈ ACC∗(Em, N), where N is an excepting finite

subset of [a, b] in the definition of the C∗-integral of f . Let ε be a positive number. By
Theorem 3.1 there exists a gauge δ such that

k0∑
k=1

|f(xk)|Ik| − F (Ik)| <
ε

2

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} satisfying
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(1)
∑k0

k=1 d(Ik, xk) < 1
ε ;

(2) xk ∈ Ik whenever xk ∈ N .

Let η = ε
2m . If xk ∈ Em for any k and

∑k0
k=1 |Ik| < η, then we obtain

k0∑
k=1

|F (Ik)| ≤
k0∑

k=1

|f(xk)||Ik| +
k0∑

k=1

|f(xk)|Ik| − F (Ik)|

< m

k0∑
k=1

|Ik| +
ε

2

< ε.

5 Criteria for the C∗-integrability We consider the following four criteria for the pair
of a function f from [a, b] into R and an additive interval function F on [a, b].

(A)C∗ For any decreasing sequence {εn} tending to 0 there exists an increasing sequence
{Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) there exists a finite subset N ⊂ [a, b] independent of {εn} such that for any n
there exists a gauge δ such that

�����
k1∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩ Fn �= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying

(3.1) xk ∈ Fn for any k = k0 + 1, . . . , k1;

(3.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(3.3) xk ∈ Ik whenever xk ∈ N .

(B)C∗ For any decreasing sequence {εn} tending to 0 there exist increasing sequences
{Mn} of non-empty measurable sets and {Fn} of closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) there exists a finite subset N ⊂ [a, b] independent of {εn} such that for any n
there exists a gauge δ such that

�����
k1∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� < εn
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for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of
non-overlapping intervals in [a, b] which consists of a finite family {Ik | k =
1, . . . , k0} with Ik ∩Mn �= ∅ and a δ-fine partial McShane partition {(Ik, xk) |
k = k0 + 1, . . . , k1} satisfying

(4.1) xk ∈ Mn for any k = k0 + 1, . . . , k1;

(4.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(4.3) xk ∈ Ik whenever xk ∈ N .

(C)C∗ There exists an increasing sequence {Fn} of closed sets such that

(1)
∪∞

n=1 Fn = [a, b];

(2) f ∈ (L)(Fn) for any n;

(3) there exists a finite subset N ⊂ [a, b] such that for any n and for any positive
number ε there exist a positive number η and a gauge δ such that

�����
k0∑

k=1

F (Ik)

����� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying

(3.1) xk ∈ Fn for any k;

(3.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(3.3) xk ∈ Ik whenever xk ∈ N ;

(3.4)
∑k0

k=1 |Ik| < η.

(4) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

(D)C∗ There exist increasing sequences {Mn} of non-empty measurable sets and {Fn} of
closed sets such that

(1)
∪∞

n=1 Mn = [a, b];

(2) Fn ⊂ Mn for any n and |[a, b] \
∪∞

n=1 Fn| = 0;

(3) f ∈ (L)(Fn) for any n;

(4) there exists a finite subset N ⊂ [a, b] such that for any n and for any positive
number ε there exist a positive number η and a gauge δ such that

�����
k0∑

k=1

F (Ik)

����� < ε

for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b]
satisfying

(4.1) xk ∈ Mn for any k;
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class of all Lebesgue integrable functions, the class of all improper Lebesgue integrable
functions and the class of all restricted Denjoy integrable functions from a measurable
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McShane partition. Moreover, if xk ∈ Ik for any k = 1, . . . , k0, then a δ-fine McShane
partition and a δ-fine partial McShane partition are called a δ-fine Perron partition and
a δ-fine partial Perron partition, respectively. We say that a function f from an interval
[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
functions from [a, b] into R. The improper Lebesgue integral, the C-integral and the C̃-
integral are between the Lebesgue integral and the restricted Denjoy integral.
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(4.2)
∑k1

k=k0+1 d(Ik, xk) < 1
εn

;
(4.3) xk ∈ Ik whenever xk ∈ N ;
(4.4)

∑k0
k=1 |Ik| < η.

(5) for any n and for any interval I ⊂ [a, b]

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where Ii is the interior of I, {Jp | p ∈ N} is the sequence of all connected
components of Ii \ Fn and Jp is the closure of Jp.

It is clear that (A)C∗ implies (B)C∗ and (C)C∗ implies (D)C∗ . Now we give the following
theorems for the C∗-integral.

Theorem 5.1. Let f ∈ (C∗)([a, b]) and let F be an additive interval function on [a, b]
defined by

F (I) = (C∗)
∫

I

f(x)dx

for any interval I ⊂ [a, b]. Then the pair of f and F satisfies (A)C∗ .

Proof. Since f ∈ (C∗)([a, b]), we obtain f ∈ (D∗)([a, b]). Let {εn} be a decreasing sequence
tending to 0. Since by Theorem 2.2 the pair of f and F satisfies (A), for

{
εn

2

}
there exists

an increasing sequence {Fn} of closed sets such that (1) and (2) hold. Moreover
�����

k0∑
k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� <
εn

2

for any finite family {Ik | k = 1, . . . , k0} of non-overlapping intervals in [a, b] with Ik∩Fn �= ∅.
By Theorem 3.1 there exists a finite subset N ⊂ [a, b] independent of {εn} such that for
any n there exists a gauge δ such that

�����
k1∑

k=k0+1

(f(xk)|Ik| − F (Ik))

����� <
εn

4

for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b] satisfying
(3.2) and (3.3). Since fχFn ∈ (L)([a, b]), where χFn means the characteristic function of
Fn, by the Saks-Henstock lemma for the McShane integral, for instance see [7, Lemma 10.6],
for any n there exists a gauge δ such that

�����
k1∑

k=k0+1

(
f(xk)χFn(xk)|Ik| − (L)

∫

Ik∩Fn

f(x)dx

)����� <
εn

4

for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b]. Since
f = fχFn on Fn, for any n there exists a gauge δ such that

�����
k1∑

k=k0+1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)�����

=

�����
k1∑

k=k0+1

(F (Ik) − f(xk)|Ik|)

����� +

�����
k1∑

k=k0+1

(
f(xk)χFn(xk)|Ik| − (L)

∫

Ik∩Fn

f(x)dx

)�����

<
εn

4
+

εn

4
=

εn

2
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R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
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for any δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} in [a, b] satisfying
(3.1), (3.2) and (3.3). Therefore

�����
k1∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)�����

≤

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)����� +

�����
k1∑

k=k0+1

(
F (Ik) − (L)

∫

Ik∩Fn

f(x)dx

)�����

<
εn

2
+

εn

2
= εn

for any finite family {Ik | k = 1, . . . , k0, k0 + 1, . . . , k1, 0 ≤ k0 ≤ k1} of non-overlapping
intervals in [a, b] which consists of a finite family {Ik | k = 1, . . . , k0} with Ik ∩ Fn �= ∅ and
a δ-fine partial McShane partition {(Ik, xk) | k = k0 + 1, . . . , k1} satisfying (3.1), (3.2) and
(3.3), that is, (3) holds.

Theorem 5.2. If the pair of a function f from an inteval [a, b] into R and an additive inter-
val function F on [a, b] satisfies (A)C∗ , then the pair of f and F satisfies (C)C∗ . Similarly,
if the pair of a function f from an inteval [a, b] into R and an additive interval function F
on [a, b] satisfies (B)C∗ , then the pair of f and F satisfies (D)C∗ .

Proof. Let {εn} be a decreasing sequence tending to 0. Then there exists an increasing
sequence {Fn} of closed sets such that (1) and (2) of (C)C∗ hold. We show (3) of (C)C∗ .
Let n be a natural number and let ε be a positive number. Since f ∈ (L)(Fn), there exists
a positive number ρ(n, ε) such that, if |E| < ρ(n, ε), then

����(L)
∫

E∩Fn

f(x)dx

���� <
ε

2
.

Take a natural number m(n, ε) such that εm(n,ε) < ε
2 and m(n, ε) ≥ n, and put η =

ρ(m(n, ε), ε). By (3) of (A)C∗ there exists a subset N ⊂ [a, b] independent of {εn} such
that for m(n, ε) there exists a gauge δm(n,ε). Let {(Ik, xk) | k = 1, . . . , k0} be a δm(n,ε)-fine
partial McShane partition in [a, b] satisfying (3.1), (3.2), (3.3) and (3.4) of (C)C∗ . Then we
obtain

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fm(n,ε)

f(x)dx

)����� < εm(n,ε) <
ε

2
.

Moreover, since
∑k0

k=1 |Ik| < η = ρ(m(n, ε), ε), we obtain
�����

k0∑
k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

����� <
ε

2
.

Therefore
�����

k0∑
k=1

F (Ik)

����� ≤

�����
k0∑

k=1

(
F (Ik) − (L)

∫

Ik∩Fm(n,ε)

f(x)dx

)����� +

�����
k0∑

k=1

(L)
∫

Ik∩Fm(n,ε)

f(x)dx

�����
<

ε

2
+

ε

2
= ε.

Next we show (4) of (C)C∗ . Let I be a subinterval of [a, b]. In the case of I ∩ Fn = ∅ (4) of
(C)C̃ is clear. Consider the case of I ∩Fn �= ∅. Let {Jp | p = 1, 2, . . .} be the sequence of all
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connected components of Ii \ Fn. Since I ∩ Fm �= ∅ holds for any m ≥ n, by (3) of (A)C∗

we obtain
����F (I) − (L)

∫

I∩Fm

f(x)dx

���� < εm.

Since Jp ∩ Fm �= ∅ holds for any p, by (3) of (A)C̃ we obtain
�����
∞∑

p=1

(
F (Jp) − (L)

∫

Jp∩Fm

f(x)dx

)����� ≤ εm

for any m ≥ n. On the other hand, we obtain

(L)
∫

I∩Fm

f(x)dx = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

for any m ≥ n. Therefore we obtain
�����F (I) −

(
(L)

∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp)

)�����

≤
����F (I) − (L)

∫

I∩Fm

f(x)dx

����

+

�����(L)
∫

I∩Fm

f(x)dx −

(
(L)

∫

I∩Fn

f(x)dx +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

)�����

+

�����−
∞∑

p=1

F (Jp) +
∞∑

p=1

(L)
∫

Jp∩Fm

f(x)dx

�����
< εm + 0 + εm = 2εm

for any m ≥ n and hence

F (I) = (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp).

Similarly, we can prove that, if the pair of f and F satisfies (B)C∗ , then the pair of f
and F satisfies (D)C∗ .

Theorem 5.3. If the pair of a function f from an inteval [a, b] into R and an additive
interval function F on [a, b] satisfies (D)C∗ , then f ∈ (C∗)([a, b]) and

F (I) = (C∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].

Proof. By (1) and (4) there exist a finite subset N ⊂ [a, b] and a increasing sequence {Mn}
of non-empty measurable sets such that

∪∞
n=1 Mn = [a, b] and for any n and for any positive

number ε there exist a positive number η and a gauge δ such that
�����

k0∑
k=1

F (Ik)

����� <
ε

2

3
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for any δ-fine partial McShane partition {(Ik, xk) | k = 1, . . . , k0} in [a, b] satisfying (4.1),
(4.2), (4.3) and (4.4). Therefore we obtain

k0∑
k=1

|F (Ik)| =

������
∑

F (xk)>0

F (Ik)

������
+

������
∑

F (xk)<0

F (Ik)

������
<

ε

2
+

ε

2
= ε

and hence F ∈ ACGC∗([a, b]). By Theorem 4.1 there exists d
dxF ([a, x]) for almost every

x ∈ [a, b], and there exists g ∈ (C∗)([a, b]) such that

F (I) = (C∗)
∫

I

g(x)dx

for any interval I ⊂ [a, b]. We show that g = f almost everywhere. To show this, we
consider a function

gn(x) =
{

f(x), if x ∈ Fn,
g(x), if x �∈ Fn.

By [16, Theorem (5.1)] gn ∈ (D∗)(I) for any interval I ⊂ [a, b] and by (3)

(D∗)
∫

I

gn(x)dx = (D∗)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(D∗)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

(C∗)
∫

Jp

g(x)dx

= (L)
∫

I∩Fn

f(x)dx +
∞∑

p=1

F (Jp),

where {Jp | p = 1, 2, . . .} is the sequence of all connected components of Ii \ Fn. By
comparing the equation above with (5), we obtain

F (I) = (D∗)
∫

I

gn(x)dx.

Therefore we obtain d
dxF ([a, x]) = gn(x) = f(x) for almost every x ∈ Fn. By (2) we obtain

g(x) = d
dxF ([a, x]) = f(x) for almost every x ∈ [a, b].

By Theorems 5.1, 5.2 and 5.3 we obtain the following criteria for the C∗-integrability.

Theorem 5.4. A function f from an interval [a, b] into R is C∗-integrable if and only if
there exists an additive interval function F on [a, b] such that the pair of f and F satisfies
one of (A)C∗ , (B)C∗ , (C)C∗ and (D)C∗ . Moreover, if the pair of f and F satisfies one of
(A)C∗ , (B)C∗ , (C)C∗ and (D)C∗ , then

F (I) = (C∗)
∫

I

f(x)dx

holds for any interval I ⊂ [a, b].
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gration process of Riemann type, called the C-integral, which contains the Lebesgue
integral and the Newton integral. D. Bongiorno gave a minimal constructive inte-
gration process of Riemann type, called the C̃-integral, which contains the Lebesgue
integral and the improper Newton integral. On the other hand, Nakanishi gave cri-
teria for the restricted Denjoy integrability. Motivated by the results of Nakanishi,
Kawasaki and Suzuki gave criteria for the C-integrability, and Kawasaki gave criteria
for the C̃-integrability. In this paper, motivated by the results above, we give new
integrals between the Lebesgue integral and the restricted Denjoy integral. Moreover
we give criteria for the integrability of one of them in the style of Nakanishi.

1 Introduction Throughout this paper we denote by (L)(S), (L∗)(S) and (D∗)(S) the
class of all Lebesgue integrable functions, the class of all improper Lebesgue integrable
functions and the class of all restricted Denjoy integrable functions from a measurable
set S ⊂ R into R, respectively, and we denote by |A| the measure of a measurable set
A. We recall that a gauge δ is a function from an interval [a, b] into (0,∞) and a δ-fine
McShane partition of an interval [a, b] ⊂ R is a collection {(Ik, xk) | k = 1, . . . , k0} of non-
overlapping intervals Ik ⊂ [a, b] and xk ∈ [a, b] satisfying Ik ⊂ (xk − δ(xk), xk + δ(xk)) and∑k0

k=1 |Ik| = b − a. If
∑k0

k=1 |Ik| ≤ b − a, then we say that the collection is a δ-fine partial
McShane partition. Moreover, if xk ∈ Ik for any k = 1, . . . , k0, then a δ-fine McShane
partition and a δ-fine partial McShane partition are called a δ-fine Perron partition and
a δ-fine partial Perron partition, respectively. We say that a function f from an interval
[a, b] into R is Newton integrable if there exists a differentiable function F from [a, b] into
R such that F ′ = f on [a, b]. We denote by (N)([a, b]) the class of all Newton integrable
functions from [a, b] into R. In [3] B. Bongiorno, Di Piazza and Preiss gave a minimal
constructive integration process of Riemann type, called the C-integral, which contains the
Lebesgue integral and the Newton integral. Furthermore in [1–3] B. Bongiorno et al. gave
some criteria for the C-integrability. We denote by (C)([a, b]) the class of all C-integrable
functions from [a, b] into R. We say that a function f from an interval [a, b] into R is
improper Newton integrable if there exist a countable subset N ⊂ [a, b] and a function F
from [a, b] into R such that F ′ = f on [a, b] \ N . We denote by (N∗)([a, b]) the class of all
improper Newton integrable functions from [a, b] into R. In [4] D. Bongiorno gave a minimal
constructive integration process of Riemann type, called the C̃-integral, which contains the
Lebesgue integral and the improper Newton integral. Furthermore in [4] D. Bongiorno gave
some criteria for the C̃-integrability. We denote by (C̃)([a, b]) the class of all C̃-integrable
functions from [a, b] into R. The improper Lebesgue integral, the C-integral and the C̃-
integral are between the Lebesgue integral and the restricted Denjoy integral.
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Abstract

We prove that an ordered hypersemigroup H is left (resp. right) reg-
ular if and only if every left (resp. right) ideal of H is semiprime and it is
intra-regular if and only if every ideal of H is semiprime. Then we prove
that an ordered hypersemigroup H is left (resp. right) regular if and only
if every fuzzy left (resp. right) ideal of H is fuzzy semiprime and it is
intra-regular if and only if every fuzzy ideal of H is fuzzy semiprime.

1 Introduction and prerequisites

A semigroup (S, ·) is left (resp. right) regular if and only if every left (resp.
right) ideal of S is semiprime, it is intra-regular if and only if every ideal of S is
semiprime (cf. [1; Theorems 4.2, 4.4]). For an ordered semigroup (S, ·,≤) and
a subset A of S, we denote by (A] the subset of S defined by (A] = {t ∈ S | t ≤
a for some a ∈ A}. An ordered semigroup (S, ·,≤) is called left regular if for
every a ∈ S there exists x ∈ S such that a ≤ xa2. This is equivalent to saying
that a ∈ (Sa2] for every a ∈ S or A ⊆ (SA2] for every A ⊆ S. It is called right
regular if for every a ∈ S there exists x ∈ S such that a ≤ a2x, equivalently if
a ∈ (a2S] for every a ∈ S or A ⊆ (A2S] for every A ⊆ S. An ordered semigroup
(S, ·,≤) is called intra-regular if for every a ∈ S there exist x, y ∈ S such that
a ≤ xa2y. This is equivalent to saying that a ∈ (Sa2S] for every a ∈ S or
A ⊆ (SA2S] for every A ⊆ S. We have seen in [10] that an ordered semigroup
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S is left (resp. right) regular if and only if the left (resp. right) ideals of S are
semiprime and it is intra-regular if and only if the ideals of S are semiprime. We
have also seen that an ordered semigroup S is left (resp. right) regular if and
only if the fuzzy left (resp. fuzzy right) ideals of S are semiprime and it is intra-
regular if and only if the fuzzy ideals of S are semiprime. In the present paper
we examine these results for an hypersemigroup. For the sake of completeness,
let us first give some definitions-remarks already given in [7, 8].

An hypergroupoid is a nonempty set H with an hyperoperation

◦ : H × H → P∗(H) | (a, b) → a ◦ b

on H and an operation

∗ : P∗(H) ×P∗(H) → P∗(H) | (A,B) → A ∗ B

on P∗(H) (induced by the operation of H) such that

A ∗ B =
∪

(a,b)∈A×B

(a ◦ b)

for every A,B ∈ P∗(H) (P∗(H) is the set of nonempty subsets of H). As
the operation “∗” depends on the hyperoperation “◦”, an hypergroupoid can
be denoted by (H, ◦) (instead of (H, ◦, ∗)). If (H, ◦) is an hypergroupoid and
A,B,C,D ∈ P∗(H), then

A ⊆ B, implies A ∗ C ⊆ B ∗ C and C ∗ A ⊆ C ∗ B. Equivalently,
A ⊆ B and C ⊆ D implies A ∗ C ⊆ B ∗ D and C ∗ A ⊆ D ∗ B.

We also have H ∗ H ⊆ H.
If H is an hypergroupoid then, for every x, y ∈ H, we have

{x} ∗ {y} = x ◦ y.

Indeed, {x} ∗ {y} =
∪

u∈{x},v∈{y}
(u ◦ v) = x ◦ y.

The following proposition, though clear, plays an essential role in the theory
of hypergroupoids.

Proposition 1.1. Let (H, ◦) be an hypergroupoid, x ∈ H and A,B ∈ P∗(H).
Then we have the following:

1. x ∈ A ∗ B ⇐⇒ x ∈ a ◦ b for some a ∈ A, b ∈ B.

2. If a ∈ A and b ∈ B, then a ◦ b ⊆ A ∗ B.

Lemma 1.2. [7] Let (H, ◦) be an hypergroupoid and Ai, B ∈ P∗(H), i ∈ I.
Then we have the following:

(1) (
∪
i∈I

Ai) ∗ B =
∪
i∈I

(Ai ∗ B).

(2) B ∗ (
∪
i∈I

Ai) =
∪
i∈I

(B ∗ Ai).

2 NIOVI KEHAYOPULU
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An hypergroupoid H is called hypersemigroup if, for every x, y, z ∈ H, we
have

{x} ∗ (y ◦ z) = (x ◦ y) ∗ {z}

which is equivalent to saying that {x} ∗
(
{y} ∗ {z}

)
=

(
{x} ∗ {y}

)
∗ {z} for

every x, y, z ∈ H. If we like, we can identify the {x} by x and the {z} by z and
write x ∗ (y ◦ z) instead of {x} ∗ (y ◦ z) and (x ◦ y) ∗ z instead of (x ◦ y) ∗ {z}.
So the associativity relation of an hypergroupoid can be also given, for short,
as x ∗ (y ◦ z) = (x ◦ y) ∗ z.

Lemma 1.3 [7] If (H, ◦) is an hypersemigroup and A,B,C ∈ P∗(H), then we
have

(A ∗ B) ∗ C =
∪

(a,b,c)∈A×B×C

(
(a ◦ b) ∗ {c}

)

=
∪

(a,b,c)∈A×B×C

(
{a} ∗ (b ◦ c)

)
= A ∗ (B ∗ C)

=
∪

(a,b,c)∈A×B×C

(
{a} ∗ {b} ∗ {c}

)
.

Thus we can write (A ∗B) ∗C = A ∗ (B ∗C) = A ∗B ∗C. As a consequence, for
any product A1 ∗A2 ∗ .....∗An of elements of P∗(H) we can put the parentheses
in any place beginning with some Ai and ending in some Aj (1 ≤ i, j ≤ n).
In addition, using induction, we have the following which gives the form of the
elements of the set A1 ∗ A2 ∗ ..... ∗ An.

Lemma 1.4. For any finite family A1, A2, ..., An of elements of P∗(H), we have

A1 ∗ A2 ∗ ..... ∗ An =
∪

(a1,a2...an)∈A1×A2×...×An

(
{a1} ∗ {a2} ∗ ... ∗ {an}

)
.

For an hypergroupoid H, we denote by (A] the subset of H defined by

(A] := {t ∈ H | t ≤ a for some a ∈ A}.

Exactly as in ordered semigroups, we have (H] = H and ((A]] = (A] for any
nonempty subset A of H.
The results of the present paper hold not only for the elements but for the
subsets of H as well which shows the pointless character of the results.

2 A characterization of left regular (resp. intra-
regular) ordered hypersemigroups in terms of
semiprime left ideals (resp. ideals)

Notation 2.1. Let (H, ◦) be an hypergroupoid and “≤” an order relation on
H. Denote by “�” the relation on P∗(H) defined by

�:= {(A,B) | ∀ a ∈ A ∃ b ∈ B such that (a, b) ∈≤}.
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So, for A,B ∈ P∗(H), we write A � B if for every a ∈ A there exists b ∈ B
such that a ≤ b. This is a reflexive and transitive relation on P∗(H), that is, a
preorder on P∗(H).

A semigroup (S, ·) is called an ordered semigroup if there exists an order
relation “≤” on S such that (a, b) ∈≤ implies (ac, bc) ∈≤ and (ca, cb) ∈≤ for
every c ∈ S. Using the notation a ≤ b instead of (a, b) ∈≤, we write a ≤ b
implies ac ≤ bc and ca ≤ cb for every c ∈ S. The definition of the ordered
semigroup can be naturally transferred to hypersemigroups as follows:

Definition 2.2. (cf. also [13]) Let (H, ◦) be an hypergroupoid and “≤” an order
relation on H. Then H is called an ordered hypergroupoid, denoted by (H, ◦,≤),
if given an element (x, y) ∈≤, we have (x ◦ z, y ◦ z) ∈� and (z ◦ x, z ◦ y) ∈� for
every z ∈ H. In other words,

x ≤ y implies x ◦ z � y ◦ z and z ◦ x � z ◦ y for all z ∈ H.

The concept of right regular ordered semigroups introduced by Kehayopulu
in [4] is as follows: An ordered semigroup (S, ·,≤) is called right regular if
for every a ∈ S there exists x ∈ S such that a ≤ a2x. Later, in an analogous
manner she defined and studied the left regular ordered semigroups: An ordered
semigroup S is called left regular if for every a ∈ S there exists x ∈ S such that
a ≤ xa2. The concept of left regular ordered semigroups is naturally transferred
to an ordered hypersemigroup H as follows: for every a ∈ H, there exists x ∈ H
such that {a} � {x}∗(a◦a). (Clearly {x}∗(a◦a) = (x◦a)∗{a} = {x}∗{a}∗{a}).
This leads to the following definition.

Definition 2.3. An ordered hypersemigroup H is called left regular if for every
a ∈ H there exist x, t ∈ H such that t ∈ {x} ∗ (a ◦ a) and a ≤ t.
It is called right regular if for every a ∈ H there exist x, t ∈ H such that
t ∈ (a ◦ a) ∗ {x} and a ≤ t.

Proposition 2.4. Let H be an ordered hypersemigroup. The following are
equivalent:

1. H is left regular.

2. a ∈
(
H ∗ (a ◦ a)

]
for every a ∈ H.

3. A ⊆ (H ∗ A ∗ A] for every A ∈ P∗(H).
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a ≤ t ∈ {x} ∗ (a ◦ a) ⊆ H ∗ (a ◦ a),

so a ∈
(
H ∗ (a ◦ a)

]
.

(2) =⇒ (3). Let A ∈ P∗(H) and a ∈ A. Since a ∈ H, by (2), we have

a ∈
(
H ∗ (a ◦ a)

]
=

(
H ∗ {a} ∗ {a}

]
⊆ (H ∗ A ∗ A],
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thus we get a ∈ (H ∗ A ∗ A], and (3) holds.
(3) =⇒ (1). Let a ∈ H. Since {a} ∈ P∗(H), by (3), we have

a ∈ {a} ⊆
(
H ∗ {a} ∗ {a}

]
.

Then a ≤ t for some t ∈
(
H ∗ {a}

)
∗ {a}. By Proposition 1.1, there exists

y ∈ H ∗ {a} such that t ∈ y ◦ a. Since y ∈ H ∗ {a}, again by Proposition 1.1,
there exists x ∈ H such that y ∈ x ◦ a. We have

t ∈ y ◦ a ⊆ (x ◦ a) ∗ {a} = {x} ∗ (a ◦ a).

Since x, t ∈ H such that t ∈ {x} ∗ (a ◦ a) and a ≤ t, H is left regular. �
In a similar way we prove the following:

Proposition 2.5. Let H be an ordered hypersemigroup. The following are
equivalent:

1. H is right regular.

2. a ∈
(
(a ◦ a) ∗ H

]
for every a ∈ H.

3. A ⊆ (A ∗ A ∗ H] for every A ∈ P∗(H).

A subset A of a groupoid or an ordered groupoid S is called semiprime if
x2 ∈ A (x ∈ S) implies x ∈ A [1, 2, 5]. This concept is naturally transferred in
case of hypergroupoids in the definition below:

Definition 2.6. Let H be an hypergroupoid. A nonempty subset A of H is
called semiprime if for every t ∈ H such that t ◦ t ⊆ A, we have t ∈ A.

Proposition 2.7. Let (H, ◦) be an hypergroupoid and A ∈ P∗(H). The follow-
ing are equivalent:

1. A is semiprime.

2. For every T ∈ P∗(H) such that T ∗ T ⊆ A, we have T ⊆ A.

Proof. (1) =⇒ (2). Let T ∈ P∗(H), T ∗ T ⊆ A and t ∈ T . Since t ∈ H and
t ◦ t ⊆ T ∗ T ⊆ A, by (1), we have t ∈ A.
(2) =⇒ (1). Let t ∈ H such that t ◦ t ⊆ A. Since {t} ∈ P∗(H) and {t} ∗ {t} =
t ◦ t ⊆ A, by (2), we have {t} ⊆ A, so t ∈ A, and T is semiprime. �
Lemma 2.8. Let H be an ordered hypergroupoid and A,B ∈ P∗(H). Then we
have

(A] ∗ (B] ⊆ (A ∗ B].

Proof. Let t ∈ (A] ∗ (B]. Then t ∈ x ◦ y for some x ∈ (A], y ∈ (B]. Since
x ∈ (A], we have x ≤ a for some a ∈ A. Since y ∈ (B], we get y ≤ b for some
b ∈ B. Since x ≤ a and y ≤ b, we have t ∈ x ◦ y � a ◦ b. Then, there exists
z ∈ a ◦ b such that t ≤ z. We get t ≤ z ∈ a ◦ b, so t ∈ (a ◦ b]. On the other
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Abstract

We prove that an ordered hypersemigroup H is left (resp. right) reg-
ular if and only if every left (resp. right) ideal of H is semiprime and it is
intra-regular if and only if every ideal of H is semiprime. Then we prove
that an ordered hypersemigroup H is left (resp. right) regular if and only
if every fuzzy left (resp. right) ideal of H is fuzzy semiprime and it is
intra-regular if and only if every fuzzy ideal of H is fuzzy semiprime.

1 Introduction and prerequisites

A semigroup (S, ·) is left (resp. right) regular if and only if every left (resp.
right) ideal of S is semiprime, it is intra-regular if and only if every ideal of S is
semiprime (cf. [1; Theorems 4.2, 4.4]). For an ordered semigroup (S, ·,≤) and
a subset A of S, we denote by (A] the subset of S defined by (A] = {t ∈ S | t ≤
a for some a ∈ A}. An ordered semigroup (S, ·,≤) is called left regular if for
every a ∈ S there exists x ∈ S such that a ≤ xa2. This is equivalent to saying
that a ∈ (Sa2] for every a ∈ S or A ⊆ (SA2] for every A ⊆ S. It is called right
regular if for every a ∈ S there exists x ∈ S such that a ≤ a2x, equivalently if
a ∈ (a2S] for every a ∈ S or A ⊆ (A2S] for every A ⊆ S. An ordered semigroup
(S, ·,≤) is called intra-regular if for every a ∈ S there exist x, y ∈ S such that
a ≤ xa2y. This is equivalent to saying that a ∈ (Sa2S] for every a ∈ S or
A ⊆ (SA2S] for every A ⊆ S. We have seen in [10] that an ordered semigroup

02010 Mathematics Subject Classification. Primary: 06F99; 08A72.
Key words and Phrases. Hypergroupoid, ordered hypersemigroup, left (right) regular,

intra-regular, left (right) ideal, fuzzy left (right) ideal, semiprime, fuzzy semiprime.

Scientiae Mathematicae Japonicae Online 1

LEFT REGULAR AND INTRA-REGULAR ORDERED
HYPERSEMIGROUPS IN TERMS OF SEMIPRIME AND

FUZZY SEMIPRIME SUBSETS

NIOVI KEHAYOPULU

Received November 22, 2016 ; revised January 26, 2017

299



hand, since a ∈ A and b ∈ B, we have a ◦ b ⊆ A ∗ B. Then (a ◦ b] ⊆ (A ∗ B],
and t ∈ (A ∗ B]. �

The concepts of left and right ideals of ordered groupoids introduced by
Kehayopulu in [3] are naturally transferred in case of ordered hypergroupoids
as follows: A nonempty subset A of an ordered hypergroupoid H is called a left
(resp. right) ideal of H if

1. H ∗ A ⊆ A (resp. A ∗ H ⊆ A) and

2. if a ∈ A and H � b ≤ a, then b ∈ A, that is if (A] = A.

It is called an ideal of H if it is both a left and a right ideal of H.

Theorem 2.9. An ordered hypersemigroup H is left regular if and only if every
left ideal of H is semiprime.

Proof. =⇒. Let A be a left ideal of H and a ∈ H such that a ◦ a ⊆ A. Since
H is left regular and a ∈ H, there exist x, t ∈ H such that t ∈ {x} ∗ (a ◦ a) and
a ≤ t. We have t ∈ {x} ∗ (a ◦ a) ⊆ H ∗ A ⊆ A. Then a ≤ t ∈ A, and a ∈ A.
⇐=. Let a ∈ H. We have

(a ◦ a) ∗ (a ◦ a) ⊆ H ∗ (a ◦ a) ⊆
(
H ∗ (a ◦ a)

]
.

The set
(
H ∗ (a ◦ a)

]
is a left ideal of H. Indeed, it is a nonempty subset of H

and we have

H ∗
(
H ∗ (a ◦ a)

]
= (H] ∗

(
H ∗ (a ◦ a)

]
⊆

(
H ∗

(
H ∗ (a ◦ a)

)]

=
(
(H ∗ H) ∗ (a ◦ a)

]
⊆

(
H ∗ (a ◦ a)

]
,

and ((
H ∗ (a ◦ a)

]]
=

(
H ∗ (a ◦ a)

]

(as ((A]] = (A] for any subset A of S). Since
(
H ∗ (a◦a)

]
is semiprime, we have

(a ◦ a) ⊆
(
H ∗ (a ◦ a)

]
, and a ∈

(
H ∗ (a ◦ a)

]
. Then, by Proposition 2.4, H is

left regular.
Now we will give a second proof of the Theorem using only sets: =⇒. Let A be
a left ideal of H and T ∈ P∗(H) such that T ∗ T ⊆ A. Since H is left regular,
by Proposition 2.4, we have T ⊆ (H ∗ T ∗ T ] ⊆ (H ∗ A] ⊆ (A] = A. ⇐=. Let
A ∈ P∗(H). We have

(A ∗ A) ∗ (A ∗ A) ⊆ (H ∗ H) ∗ A ∗ A ⊆ H ∗ A ∗ A ⊆ (H ∗ A ∗ A].

Since (H∗A∗A] is a left ideal of H, it is semiprime, and we have A∗A ⊆ (H∗A∗A]
and A ⊆ (H ∗ A ∗ A]. Thus H is left regular. �
In a similar way we prove the following:
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Theorem 2.10. An ordered hypersemigroup H is right regular if and only if
every right ideal of H is semiprime.

Our aim now is to characterize the intra-regular ordered hypersemigroups in
terms of semiprime ideals. The concept of an intra-regular ordered semigroup
introduced by Kehayopulu in [6] is as follows: An ordered semigroup (S, ·,≤) is
called intra-regular if for every a ∈ S there exist x, y ∈ S such that a ≤ xa2y.
This concept is naturally transferred to an ordered hypersemigroup as follows:
For every a ∈ H, {a} � {x} ∗ (a ◦ a) ∗ {y}. This leads to the following definition

Definition 2.11. An ordered hypersemigroup (H, ◦,≤) is called intra-regular
if for every a ∈ H there exist x, y, t ∈ H such that t ∈ {x} ∗ (a ◦ a) ∗ {y} and
a ≤ t.
Clearly, {x} ∗ (a ◦ a) ∗ {y} = (x ◦ a) ∗ (a ◦ y) = {x} ∗ {a} ∗ {a} ∗ {y}.

Proposition 2.12. Let (H, ∗,≤) be an ordered hypersemigroup. The following
are equivalent:

1. H is intra-regular.

2. a ∈
(
H ∗ (a ◦ a) ∗ H

]
for every a ∈ H.

3. A ⊆ (H ∗ A ∗ A ∗ H] for every A ∈ P∗(H).

Proof. (1) =⇒ (2). Let a ∈ H. Since H is intra-regular, there exist x, y, t ∈ H
such that t ∈ {x} ∗ (a ◦ a) ∗ {y} and a ≤ t. We have

a ≤ t ∈ {x} ∗ (a ◦ a) ∗ {y} ⊆ H ∗ (a ◦ a) ∗ H,

so a ∈
(
H ∗ (a ◦ a) ∗ H

]
.

(2) =⇒ (3). Let A ∈ P∗(H) and a ∈ A. By (2), we have

a ∈
(
H ∗ (a ◦ a) ∗ H

]
=

(
H ∗ {a} ∗ {a} ∗ H

]
⊆ (H ∗ A ∗ A ∗ H],

so a ∈ (H ∗ A ∗ A ∗ H] and (3) is satisfied.
(3) =⇒ (1). Let a ∈ H. Since {a} ∈ P∗(H), by (3), we have

a ∈ {a} ⊆
(
H ∗ {a} ∗ {a} ∗ H

]
.

Then a ≤ t for some t ∈ H ∗ {a} ∗ {a} ∗H =
(
H ∗ (a ◦ a)

)
∗H. Then there exist

u ∈ H ∗ (a ◦ a) and y ∈ H such that t ∈ u ◦ y. Since u ∈ H ∗ (a ◦ a), there exist
x ∈ H and w ∈ (a ◦ a) such that u ∈ x ◦ w. We have

t ∈ u ◦ y ⊆ (x ◦ w) ∗ {y} = {x} ∗ {w} ∗ {y} ⊆ {x} ∗ (a ◦ a) ∗ {y}.

For the elements x, y, t ∈ H, we have t ∈ {x} ∗ (a ◦ a) ∗ {y} and a ≤ t, so H is
intra-regular. �
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Theorem 2.13. An ordered hypersemigroup H is intra-regular if and only if
every ideal of H is semiprime.

=⇒. Let A be an ideal of H and a ∈ H such that a ◦ a ⊆ A. Since a ∈ H and
H is intra-regular, there exist x, y, t ∈ H such that t ∈ H ∗ (a ◦ a) ∗ {y} and
a ≤ t. Then t ∈ H ∗ (a ◦ a) ∗ {y} ⊆ H ∗A ∗H ⊆ A. Since a ∈ H and a ≤ t ∈ A,
we have a ∈ A. Thus H is semiprime.
⇐=. Let a ∈ H. We have

(a ◦ a) ∗ (a ◦ a) ⊆ H ∗ {a} ∗ {a} ∗ H ⊆
(
H ∗ {a} ∗ {a} ∗ H

]
.

The set
(
H ∗ {a} ∗ {a} ∗H

]
is an ideal of H, so it is semiprime. Hence we have

a ◦ a ⊆
(
H ∗ {a} ∗ {a} ∗ H

]
, and a ∈

(
H ∗ {a} ∗ {a} ∗ H

]
=

(
H ∗ (a ◦ a) ∗ H

]
.

By Proposition 2.12, H is intra-regular.
A second proof of the theorem using only sets is as follows: =⇒. Let A be an
ideal of H and T ∈ P∗(H) such that T ∗ T ⊆ A. Since H is intra-regular, by
Proposition 2.12, we have

T ⊆ (H ∗ T ∗ T ∗ H] ⊆ (H ∗ A ∗ H] ⊆ (A] = A,

so A is semiprime. ⇐=. Let A be a nonempty subset of H. Since (A ∗A) ∗ (A ∗
A) ⊆ (H∗A∗A∗H] and (H∗A∗A∗H] is semiprime, we have A∗A ⊆ (H∗A∗A∗H],
and A ⊆ (H ∗ A ∗ A ∗ H]. �

3 A characterization of left regular and intra-
regular ordered hypersemigroups in terms of
fuzzy semiprime subsets

Following Zadeh, any mapping f : H → [0, 1] of a ordered hypergroupoid H
into the closed interval [0, 1] of real numbers is called a fuzzy subset of H (or a
fuzzy set in H) and fA (: the characteristic function of A) is the mapping

fA : H → {0, 1} | x → fA(x) =
{

1 if x ∈ A
0 if x /∈ A.

The concepts of fuzzy right and fuzzy left ideals of an ordered groupoid due to
Kehayopulu-Tsingelis [9] are naturally transferred to an ordered hypersemigroup
as follows:
Definition 3.1. Let H be an ordered hypergroupoid. A fuzzy subset f of H is
called a fuzzy left ideal of H if

1. f(x◦y) ≥ f(y) for all x, y ∈ H, in the sense that if x, y ∈ H and u ∈ x◦y,
then f(u) ≥ f(y) and

2. x ≤ y implies f(x) ≥ f(y).
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A fuzzy subset f of H is called a fuzzy right ideal of H if

1. f(x ◦ y) ≥ f(x) for all x, y ∈ H, meaning that if x, y ∈ H and u ∈ x ◦ y,
then f(u) ≥ f(x) and

2. x ≤ y implies f(x) ≥ f(y).

A fuzzy subset of H is called a fuzzy ideal of H it is both a fuzzy left and a
fuzzy right ideal of H. As one can easily see, a fuzzy subset f of H is a fuzzy
ideal of H if and only if

1. if f(x◦y) ≥ max{f(x), f(y)} for all x, y ∈ H, in the sense that if x, y ∈ H
and u ∈ x ◦ y, then f(u) ≥ max{f(x), f(y)} and

2. if x ≤ y, then f(x) ≥ f(y).

The concept of fuzzy semiprime subsets of groupoids introduced by Kuroki
in [12] is as follows: A fuzzy subset f of a groupoid S is called semiprime if
f(a) ≥ f(a2) for every a ∈ S, and remains the same in case of ordered groupoids
as well [11]. This concept is naturally transferred in case of an hypergroupoid
as follows:

Definition 3.2. Let (H, ◦) be an hypergroupoid. A fuzzy subset f of H is
called fuzzy semiprime if

f(a) ≥ f(a ◦ a) for every a ∈ H,

in the sense that if u ∈ a ◦ a, then f(a) ≥ f(u).

Remark 3.3. Let (H, ◦) be an hypergroupoid and f a semiprime fuzzy left ideal
(or fuzzy right ideal) of H. Then, for every a ∈ H, we have f(a) = f(a ◦ a),
meaning that if u ∈ a ◦ a, then f(a) = f(u). Indeed: Let u ∈ a ◦ a. Since f is
a fuzzy left (or right) ideal of H, we have f(a ◦ a) ≥ f(a), then f(u) ≥ f(a).
Since f is semiprime, we have f(a) ≥ f(a ◦ a), then f(a) ≥ f(u). Thus we have
f(a) = f(u).

Lemma 3.4. Let (H, ◦,≤) be an ordered hypergroupoid. If A is a left (resp.
right) ideal of H, then the characteristic function fA is a fuzzy left (resp. fuzzy
right) ideal of H. “Conversely”, if A is a nonempty subset of H such that fA is
a fuzzy left (resp. fuzzy right) ideal of H, then A is a left (resp. right) ideal of
H.

Proof. For the hypergroupoid (H, ◦) the lemma is satisfied (cf. [8; Proposition
7]). It remains to prove that the following are equivalent:

(1) y ∈ A and H � x ≤ y =⇒ x ∈ A and
(2) x ≤ y =⇒ fA(x) ≥ fA(y).

(1) =⇒ (2). Let x ≤ y. If y ∈ A then, by (1), we have x ∈ A. Then
fA(x) = 1 ≥ fA(y). If y /∈ A, then fA(y) = 0 ≤ fA(x).
(2) =⇒ (1). Let y ∈ A and H � x ≤ y. Since x ≤ y, by (2), we have
fA(x) ≥ fA(y) = 1. Then fA(x) = 1, and x ∈ A. �
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Abstract

We prove that an ordered hypersemigroup H is left (resp. right) reg-
ular if and only if every left (resp. right) ideal of H is semiprime and it is
intra-regular if and only if every ideal of H is semiprime. Then we prove
that an ordered hypersemigroup H is left (resp. right) regular if and only
if every fuzzy left (resp. right) ideal of H is fuzzy semiprime and it is
intra-regular if and only if every fuzzy ideal of H is fuzzy semiprime.

1 Introduction and prerequisites

A semigroup (S, ·) is left (resp. right) regular if and only if every left (resp.
right) ideal of S is semiprime, it is intra-regular if and only if every ideal of S is
semiprime (cf. [1; Theorems 4.2, 4.4]). For an ordered semigroup (S, ·,≤) and
a subset A of S, we denote by (A] the subset of S defined by (A] = {t ∈ S | t ≤
a for some a ∈ A}. An ordered semigroup (S, ·,≤) is called left regular if for
every a ∈ S there exists x ∈ S such that a ≤ xa2. This is equivalent to saying
that a ∈ (Sa2] for every a ∈ S or A ⊆ (SA2] for every A ⊆ S. It is called right
regular if for every a ∈ S there exists x ∈ S such that a ≤ a2x, equivalently if
a ∈ (a2S] for every a ∈ S or A ⊆ (A2S] for every A ⊆ S. An ordered semigroup
(S, ·,≤) is called intra-regular if for every a ∈ S there exist x, y ∈ S such that
a ≤ xa2y. This is equivalent to saying that a ∈ (Sa2S] for every a ∈ S or
A ⊆ (SA2S] for every A ⊆ S. We have seen in [10] that an ordered semigroup
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Lemma 3.5. Let H be an ordered hypergroupoid. A nonempty subset A of H is
an ideal of H if and only if the characteristic function fA is a fuzzy ideal of H.

Lemma 3.6. Let (H, ◦,≤) be an ordered hypergroupoid. If I is a subset of H
such that fI is fuzzy semiprime, then I is semiprime. “Conversely”, let I be a
subset of H such that, for every a ∈ H, either a ◦ a ⊆ I or (a ◦ a) ∩ I = ∅. If I
is semiprime, then fI is fuzzy semiprime.

Proof. =⇒. Let a ∈ H such that a◦a ⊆ I. Then a ∈ I. In fact: Since a◦a ⊆ I,
we have fI(a ◦ a) = 1. This is because if u ∈ a ◦ a, then u ∈ I, so fI(u) = 1.
Since fI is fuzzy semiprime, we have fI(a) ≥ fI(a ◦ a) = 1. Since fI is a fuzzy
subset of H, we have fI(a) ≤ 1. Thus we have fI(a) = 1, and a ∈ I, so I is
semiprime.

⇐=. Let I be semiprime. Then fI(a) ≥ fI(a ◦ a). Indeed: If a ◦ a ⊆ I then,
since I is semiprime, we have a ∈ I, then fI(a) = 1 ≥ fI(a ◦ a). If a ◦ a � I
then, by hypothesis, we have (a ◦ a)∩ I = ∅, then fI(a ◦ a) = 0. This is because
if u ∈ a ◦ a, then a /∈ I, so fI(a) = 0. Hence we obtain fI(a ◦ a) = 0 ≤ fI(a). �
Lemma 3.7. Let H be an ordered hypergroupoid. A nonempty subset A of
H is a semiprime subset of H if and only if the fuzzy subset fA of H is fuzzy
semiprime.

Theorem 3.8. An ordered hypersemigroup (H,≤) is left regular if and only if
the fuzzy left ideals of H are fuzzy semiprime.

Proof. =⇒. Let f be a fuzzy left ideal of H and a ∈ H. Then f(a) ≥ f(a ◦ a).
In fact: Let u ∈ a ◦ a. Then f(a) ≥ f(u). Indeed: Since u ∈ H and H is
left regular, there exist x, t ∈ H such that t ∈ (x ◦ u) ∗ {u} and a ≤ t. Since
t ∈ (x ◦ u) ∗ {u}, we have t ∈ w ◦ u for some w ∈ x ◦ u. Since f is a fuzzy left
ideal of H, we have f(w ◦u) ≥ f(u). Since t ∈ w ◦u, we have f(t) ≥ f(u). Since
a ≤ t, we have f(a) ≥ f(t). Thus we have f(a) ≥ f(u).
⇐=. By Theorem 2.9, it is enough to prove that every left ideal of H is
semiprime. Let now A be a left ideal of H. By Lemma 3.4, fA is a fuzzy
left ideal of H. By hypothesis, fA is semiprime. Then, by Lemma 3.6, A is
semiprime. �
The right analogue of the above theorem also holds, and we have

Theorem 3.9. An ordered hypersemigroup H is right regular if and only if
every fuzzy right ideal of H is fuzzy semiprime.

Theorem 3.10. An ordered hypersemigroup (H, ◦,≤) is intra-regular if and
only if every fuzzy ideal of H is fuzzy semiprime.

Proof. =⇒. Let f be a fuzzy ideal of H and a ∈ H. Then f(a) ≥ f(a ◦ a).
In fact: Let u ∈ a ◦ a. Then f(a) ≥ f(u). Indeed: Since u ∈ H and H is
intra-regular, there exist x, y, t ∈ H such that t ∈ {x} ∗ (u ◦ u) ∗ {y} and a ≤ t.
Since t ∈ (x ◦ u) ∗ (u ◦ y), there exist v ∈ x ◦ u and w ∈ u ◦ y such that t ∈ v ◦w.
Since f is a fuzzy left ideal of H, we have f(v ◦ w) ≥ f(w). Since t ∈ v ◦ w, we
have f(t) ≥ f(w). Since f is a fuzzy right ideal of H, we have f(u ◦ y) ≥ f(u).
Since w ∈ u ◦ y, we have f(w) ≥ f(u). Since a ≤ t, we have f(a) ≥ f(t). Thus
we get f(a) ≥ f(u).
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We prove that an ordered hypersemigroup H is left (resp. right) reg-
ular if and only if every left (resp. right) ideal of H is semiprime and it is
intra-regular if and only if every ideal of H is semiprime. Then we prove
that an ordered hypersemigroup H is left (resp. right) regular if and only
if every fuzzy left (resp. right) ideal of H is fuzzy semiprime and it is
intra-regular if and only if every fuzzy ideal of H is fuzzy semiprime.

1 Introduction and prerequisites

A semigroup (S, ·) is left (resp. right) regular if and only if every left (resp.
right) ideal of S is semiprime, it is intra-regular if and only if every ideal of S is
semiprime (cf. [1; Theorems 4.2, 4.4]). For an ordered semigroup (S, ·,≤) and
a subset A of S, we denote by (A] the subset of S defined by (A] = {t ∈ S | t ≤
a for some a ∈ A}. An ordered semigroup (S, ·,≤) is called left regular if for
every a ∈ S there exists x ∈ S such that a ≤ xa2. This is equivalent to saying
that a ∈ (Sa2] for every a ∈ S or A ⊆ (SA2] for every A ⊆ S. It is called right
regular if for every a ∈ S there exists x ∈ S such that a ≤ a2x, equivalently if
a ∈ (a2S] for every a ∈ S or A ⊆ (A2S] for every A ⊆ S. An ordered semigroup
(S, ·,≤) is called intra-regular if for every a ∈ S there exist x, y ∈ S such that
a ≤ xa2y. This is equivalent to saying that a ∈ (Sa2S] for every a ∈ S or
A ⊆ (SA2S] for every A ⊆ S. We have seen in [10] that an ordered semigroup
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⇐=. By Theorem 2.13, it is enough to prove that every ideal of H is semiprime.
Let now A be an ideal of H. By Lemma 3.5, the characteristic function fA is a
fuzzy ideal of H. By hypothesis, fA is fuzzy semiprime. Then, by Lemma 3.6,
A is semiprime. �
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Abstract

We prove that an ordered hypersemigroup H is left (resp. right) reg-
ular if and only if every left (resp. right) ideal of H is semiprime and it is
intra-regular if and only if every ideal of H is semiprime. Then we prove
that an ordered hypersemigroup H is left (resp. right) regular if and only
if every fuzzy left (resp. right) ideal of H is fuzzy semiprime and it is
intra-regular if and only if every fuzzy ideal of H is fuzzy semiprime.

1 Introduction and prerequisites

A semigroup (S, ·) is left (resp. right) regular if and only if every left (resp.
right) ideal of S is semiprime, it is intra-regular if and only if every ideal of S is
semiprime (cf. [1; Theorems 4.2, 4.4]). For an ordered semigroup (S, ·,≤) and
a subset A of S, we denote by (A] the subset of S defined by (A] = {t ∈ S | t ≤
a for some a ∈ A}. An ordered semigroup (S, ·,≤) is called left regular if for
every a ∈ S there exists x ∈ S such that a ≤ xa2. This is equivalent to saying
that a ∈ (Sa2] for every a ∈ S or A ⊆ (SA2] for every A ⊆ S. It is called right
regular if for every a ∈ S there exists x ∈ S such that a ≤ a2x, equivalently if
a ∈ (a2S] for every a ∈ S or A ⊆ (A2S] for every A ⊆ S. An ordered semigroup
(S, ·,≤) is called intra-regular if for every a ∈ S there exist x, y ∈ S such that
a ≤ xa2y. This is equivalent to saying that a ∈ (Sa2S] for every a ∈ S or
A ⊆ (SA2S] for every A ⊆ S. We have seen in [10] that an ordered semigroup
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To the memory of Professor Kiyoshi Iséki

Abstract

This paper serves as an example to show the way we pass from ordered
groupoids (ordered semigroups) to ordered hypergroupoids (ordered hy-
persemigroups), from groupoids (semigroups) to hypergroupoids (hyper-
semigroups). The results on semigroups (or on ordered semigroups) can
be transferred to hypersemigroups (or to ordered hypersemigroups) in the
way indicated in the present paper.

1 Introduction and prerequisites

An ordered groupoid (: po-groupoid) is a nonempty set S endowed with an
order “≤” and a multiplication “·” such that a ≤ b implies ca ≤ cb and ac ≤ bc
for every c ∈ S. Given a set S, a fuzzy subset of S (or a fuzzy set in S) is,
by definition, an arbitrary mapping of S into the closed interval [0, 1] of real
numbers (Zadeh). Fuzzy sets in ordered groupoids have been first considered in
2002 in Semigroup Forum [7], where the following concepts have been introduced
and studied: A fuzzy subset f of an ordered groupoid (S, ·,≤) is called a fuzzy
left (resp. fuzzy right) ideal of S if (1) x ≤ y implies f(x) ≥ f(y) and (2) if
f(xy) ≥ f(y) (resp. f(xy) ≥ f(x)) for every x, y ∈ S. It is called a fuzzy ideal
of S if it is both a fuzzy left ideal and a fuzzy right ideal of S. A fuzzy subset
f of a groupoid (or an ordered groupoid) S is called a fuzzy subgroupoid of S
if f(xy) ≥ min{f(x), f(y)} for all x, y ∈ S. A fuzzy subset f of an ordered
groupoid S is called a fuzzy filter of S if (1) x ≤ y implies f(x) ≤ f(y) and
(2) if f(xy) = min{f(x), f(y)} for all x, y ∈ S. A fuzzy subset f of a groupoid
S is called fuzzy prime if f(xy) ≤ max{f(x), f(y)} for all x, y ∈ S. For a
groupoid S and a fuzzy subset f of S, the complement of f is the fuzzy subset
f ′ : S → [0, 1] of S defined by f ′(x) = 1 − f(x) for all x ∈ S. We have seen in
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[7] that a nonempty subset A of an ordered groupoid S is a left (resp. right)
ideal of S if and only if its characteristic function fA is a fuzzy left (resp. fuzzy
right) ideal of S. A nonempty subset F of an ordered groupoid S is a filter of
S if and only if the fuzzy subset fF is a fuzzy filter of S. A fuzzy subset f of an
ordered groupoid S is a fuzzy filter of S if and only if the complement f ′ of f
is a fuzzy prime ideal of S. Later, fuzzy ordered semigroups have been widely
studied by many authors.

In the present paper we examine the results of ordered groupoids given in
[7] in case of some hypergroupoids. We deal with an hypergroupoid (H, ◦) en-
dowed with a relation “≤” (not order relation, and so not compatible with the
hyperoperation “◦” in general). Though we could call σ that relation and σ–
hypergroupoid the hypergroupoid endowed with the relation σ, we will show
by “≤” the relation and use the term ≤–hypergroupoid, to emphasize the fact
that our results hold for ordered hypergroupoids as well. As a consequence,
the results in [7] also hold in groupoids endowed with a relation “≤” which is
not an order in general and so no compatible with the multiplication in gen-
eral. Our aim is to show the way we pass from ordered groupoids to ordered
hypergroupoids.

For a groupoid (S, ·) we have one operation corresponding to each (a, b) ∈
S × S the unique element ab of S. For an hypergroupoid H we have two
“operations”. One of them is the “operation” between the elements of H which
is called “hyperoperation” as it maps the set H × H into the set of nonempty
subsets of H and the other is the operation between the nonempty subsets of
H. We use the terms left (right) ideal, bi-ideal, quasi-ideal instead of left (right)
hyperideal, bi-hyperideal, quasi-hyperideal and so on, and this is because in this
structure there are no two kind of left ideals, for example, to distinguish them
as left ideal and left hyperideal. The left ideal in this structure is that one which
corresponds to the left ideal of groupoids.

2 Main results

An hypergroupoid is a nonempty set H with an hyperoperation
◦ : H × H → P∗(H) | (a, b) → a ◦ b on H

and an operation
∗ : P∗(H) × P∗(H) → P∗(H) | (A,B) → A ∗ B on P∗(H)

(induced by the operation of H) such that
A ∗ B =

∪
(a,b)∈A×B

(a ◦ b)

for every A, B ∈ P∗(H), P∗(H) being the set of (all) nonempty subsets of H.
As the operation “∗” depends on the hyperoperation “◦”, an hypergroupoid can
be also denoted by (H, ◦) (instead of (H, ◦, ∗)). If H is an hypergroupoid then,
for every x, y ∈ H, we have {x} ∗ {y} = x ◦ y.

By the definition of the hypergroupoid we have the following proposition
which, though clear, plays an essential role in the theory of hypersemigroups.
Proposition 1. [4, 5] Let (H, ◦) be an hypergroupoid, x ∈ H and A,B ∈ P∗(H).
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This paper serves as an example to show the way we pass from ordered
groupoids (ordered semigroups) to ordered hypergroupoids (ordered hy-
persemigroups), from groupoids (semigroups) to hypergroupoids (hyper-
semigroups). The results on semigroups (or on ordered semigroups) can
be transferred to hypersemigroups (or to ordered hypersemigroups) in the
way indicated in the present paper.

1 Introduction and prerequisites

An ordered groupoid (: po-groupoid) is a nonempty set S endowed with an
order “≤” and a multiplication “·” such that a ≤ b implies ca ≤ cb and ac ≤ bc
for every c ∈ S. Given a set S, a fuzzy subset of S (or a fuzzy set in S) is,
by definition, an arbitrary mapping of S into the closed interval [0, 1] of real
numbers (Zadeh). Fuzzy sets in ordered groupoids have been first considered in
2002 in Semigroup Forum [7], where the following concepts have been introduced
and studied: A fuzzy subset f of an ordered groupoid (S, ·,≤) is called a fuzzy
left (resp. fuzzy right) ideal of S if (1) x ≤ y implies f(x) ≥ f(y) and (2) if
f(xy) ≥ f(y) (resp. f(xy) ≥ f(x)) for every x, y ∈ S. It is called a fuzzy ideal
of S if it is both a fuzzy left ideal and a fuzzy right ideal of S. A fuzzy subset
f of a groupoid (or an ordered groupoid) S is called a fuzzy subgroupoid of S
if f(xy) ≥ min{f(x), f(y)} for all x, y ∈ S. A fuzzy subset f of an ordered
groupoid S is called a fuzzy filter of S if (1) x ≤ y implies f(x) ≤ f(y) and
(2) if f(xy) = min{f(x), f(y)} for all x, y ∈ S. A fuzzy subset f of a groupoid
S is called fuzzy prime if f(xy) ≤ max{f(x), f(y)} for all x, y ∈ S. For a
groupoid S and a fuzzy subset f of S, the complement of f is the fuzzy subset
f ′ : S → [0, 1] of S defined by f ′(x) = 1 − f(x) for all x ∈ S. We have seen in
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Then we have the following:
(1) x ∈ A ∗ B ⇐⇒ x ∈ a ◦ b for some a ∈ A, b ∈ B.
(2) If a ∈ A and b ∈ B, then a ◦ b ⊆ A ∗ B.
It is well known that a nonempty subset A of a groupoid (S, ·) is called a

left (right) ideal of S if SA ⊆ A (resp. AS ⊆ A). It is called a subgroupoid of
S if A2 ⊆ A (cf., for example [1]). These concepts are naturally transferred in
case of hypergroupoids as follows: A nonempty subset A of an hypergroupoid
(H, ◦) is called a left (resp. right) ideal of H if H ∗ A ⊆ A (resp. A ∗ H ⊆ A).
A subset of H which is both a left ideal and a right ideal of H is called an ideal
of H. A nonempty subset A of H is called a subgroupoid of H if A ∗ A ⊆ A.
Clearly, every left ideal, right ideal or ideal of H is a subgroupoid of H.
Lemma 2. [5] Let (H, ◦) be an hypergroupoid. If A is a left (resp. right)
ideal of H then, for every h ∈ H and every a ∈ A, we have h ◦ a ⊆ A (resp.
a ◦ h ⊆ A). “Conversely”, if A is a nonempty subset of H such that h ◦ a ⊆ A
(resp. a ◦ h ⊆ A) for every h ∈ H and every a ∈ A, then the set A is a left
(resp. right) ideal of H.
Lemma 3. Let (H, ◦) be an hypergroupoid. If A is a subgroupoid of H then, for
every a, b ∈ A, we have a ◦ b ⊆ A. “Conversely”, if A is a nonempty subset of
H such that a ◦ b ⊆ A for every a, b ∈ A, then A is a subgroupoid of H.
Definition 4. By a ≤–hypergroupoid we mean an hypergroupoid H endowed
with a relation denoted by “≤”.
We write b ≥ a if a ≤ b (i.e. if (a, b) belongs to the relation ≤).

The concepts of fuzzy left (right) ideals of ordered groupoids introduced by
Kehayopulu and Tsingelis in [7] are naturally transferred to ≤–hypergroupoids
in the following definition:
Definition 5. (cf. also [5]) Let H be a ≤–hypergroupoid. A fuzzy subset f of
H is called a fuzzy left ideal of H if

1. x ≤ y ⇒ f(x) ≥ f(y) and

2. if f(x ◦ y) ≥ f(y) for all x, y ∈ H, meaning that x, y ∈ H and u ∈ x ◦ y
implies f(u) ≥ f(y).

A fuzzy subset f of H is called a fuzzy right ideal of H if

1. x ≤ y ⇒ f(x) ≥ f(y) and

2. if f(x ◦ y) ≥ f(x) for all x, y ∈ H, in the sense that if x, y ∈ H and
u ∈ x ◦ y, then f(u) ≥ f(x).

A fuzzy subset f of H is called a fuzzy ideal of H it is both a fuzzy left and a
fuzzy right ideal of H. As one can easily see, a fuzzy subset f of H is a fuzzy
ideal of H if and only if

1. x ≤ y implies f(x) ≥ f(y) and

2. if f(x ◦ y) ≥ max{f(x), f(y)} for all x, y ∈ H, in the sense that x, y ∈
H and u ∈ x ◦ y implies f(u) ≥ max{f(x), f(y)}.
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Following Zadeh, any mapping f : H → [0, 1] of a ≤–hypergroupoid H into
the closed interval [0, 1] of real numbers is called a fuzzy subset of H (or a fuzzy
set in H) and fA (: the characteristic function of A) is the mapping

fA : H → {0, 1} | x → fA(x) =
{

1 if x ∈ A
0 if x /∈ A.

The concepts of left and right ideals of ordered groupoids introduced by
Kehayopulu in [3] are as follows: If (S, ·,≤) is an ordered groupoid, a nonempty
subset A of S is called a left (resp. right) ideal of S if (1) SA ⊆ A (resp.
AS ⊆ A) (that is, if A is a left (resp. right) ideal of the groupoid (S, ·)) and
(2) if a ∈ A and S � b ≤ a, then b ∈ A. If A is both a left and right ideal of
(S, ·,≤), then it is called an ideal of S. These concepts are naturally transferred
in case of an ≤–hypergroupoid as follows:
Definition 6. [5] Let H be a ≤–hypergroupoid. A nonempty subset A of H is
called a left (resp. right) ideal of H if

(1) H ∗ A ⊆ A (resp. A ∗ H ⊆ A) and
(2) if a ∈ A and H � b ≤ a, then b ∈ A.

Proposition 7. (cf. also [5]) Let H be a ≤–hypergroupoid. If L is a left ideal of
H, then fL is a fuzzy left ideal of H. “Conversely”, if L is a nonempty subset
of H such that fL is a fuzzy left ideal of H, then L is a left ideal of H.
Proof. =⇒. Let L be a left ideal of H. By definition, fL is a fuzzy subset
of H. Let x ≤ y. If y �∈ L, then fL(y) = 0, so fL(x) ≥ fL(y). If y ∈ L,
then H � x ≤ y ∈ L and, since L is a left ideal of H, we have x ∈ L. Then
fL(x) = fL(y) = 1, so fL(x) ≥ fL(y). Let now x, y ∈ H and u ∈ x ◦ y.
Then fL(u) ≥ fL(y). Indeed: If y ∈ L then, by by Proposition 1, we have
x ◦ y ⊆ H ∗ L ⊆ L, so u ∈ L, then fL(y) = fL(u) = 1, so fL(u) ≥ fL(y). If
y /∈ L, then fL(y) = 0 ≤ fL(u).
⇐=. Let x ∈ H and y ∈ L. Then x ◦ y ⊆ L. Indeed: Let x ◦ y �⊆ L. Then
there exists u ∈ x ◦ y such that u /∈ L. Since u ∈ x ◦ y, by hypothesis, we
have fL(u) ≥ fL(y). Since u /∈ L, we have fL(u) = 0. Since y ∈ L, we have
fL(y) = 1, then 0 ≥ 1 which is impossible. Let now x ∈ L and H � y ≤ x.
Then y ∈ L. Indeed: Since fL is a fuzzy left ideal of H and y ≤ x, we have
fL(y) ≥ fL(x). Since x ∈ L, we have fL(x) = 1. Then we have fL(y) ≥ 1. On
the other hand, fL(y) ≤ 1, so we have fL(y) = 1, then y ∈ L, and the proof is
complete. �
In a similar way we prove the following:
Proposition 8. Let H be a ≤–hypergroupoid. If R is a right ideal of H, then
fR is a fuzzy right ideal of H. “Conversely”, if R is a nonempty subset of H
such that fR is a fuzzy right ideal of H, then R is a right ideal of H.
Proposition 9. If H is a ≤–hypergroupoid, a nonempty subset I of H is an
ideal of H if and only if fI is a fuzzy ideal of H.

The concept of a filter of an ordered groupoid introduced by Kehayopulu in
1987 [2] is as follows: If (S, ·,≤) is an ordered groupoid, a nonempty subset F
of S is called a filter of S if (1) if a, b ∈ F , then ab ∈ F . (2) if a, b ∈ F such that
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ab ∈ F , then a ∈ F and b ∈ F . (3) if a ∈ F and S � b ≥ a, then b ∈ F (that
is, if F is a subgroupoid of the groupoid (S, ·) satisfying the properties (2) and
(3)). This concept is naturally transferred to ≤–hypergroupoids in Definition
10 below. It might be noted that the properties (1) and (2) of Definition 10
correspond to the properties (1) and (2) of filters of ordered groupoids but, in
contrast to the case of ordered groupoids, they are not enough to prove basic
results on ordered hypergroupoids. To overcome this difficulty, the property (3)
in Definition 10 has been added. Our aim now is to characterize the filters of
≤–hypergroupoids in terms of fuzzy filters.
Definition 10. Let H be a ≤–hypergroupoid. A nonempty subset F of H is
called a filter of H if

(1) if x, y ∈ F , then x ◦ y ⊆ F .
(2) if x, y ∈ H and x ◦ y ⊆ F , then x ∈ F and y ∈ F .
(3) if x, y ∈ H, then x ◦ y ⊆ F or (x ◦ y) ∩ F = ∅.
(4) if x ∈ F and H � y ≥ x, then y ∈ F .

So a filter of H is a subgroupoid of H satisfying the conditions (2)–(4).
Remark 11. Let H be a ≤–hypergroupoid, F a filter of H and x, y ∈ H. The
following are equivalent:

(1) x ◦ y ⊆ F or (x ◦ y) ∩ F = ∅.
(2) if x /∈ F or y /∈ F , then (x ◦ y) ∩ F = ∅.

Indeed: (1) =⇒ (2). Let x /∈ F or y /∈ F . If x ◦ y ⊆ F then, since F is a filter
of H, we have x ∈ F and y ∈ F which is impossible. Thus we have x ◦ y � F .
Then, by (1), we get (x ◦ y) ∩ F = ∅ and (2) is satisfied.
(2) =⇒ (1). Let x ◦ y � F . If x, y ∈ F then, since F is a filter of H, we have
x ◦ y ⊆ F which is impossible. Thus we have x /∈ F or y /∈ F . Then, by (2), we
have (x ◦ y) ∩ F = ∅, and (1) holds true.

The concept of a fuzzy filter of an ordered groupoid introduced by Kehay-
opulu and Tsingelis in [7] is naturally transferred to a ≤–hypergroupoid in the
following definition:
Definition 12. Let H be a ≤–hypergroupoid. A fuzzy subset f of H is called
a fuzzy filter of H if

1. if x ≤ y implies f(x) ≤ f(y) and

2. if f(x ◦ y) = min{f(x), f(y)} for every x, y ∈ H, in the sense that if
x, y ∈ H and u ∈ x ◦ y, then f(u) = min{f(x), f(y)}.

Proposition 13. Let H be a ≤–hypergroupoid. If F is a filter of H, then the
fuzzy subset fF is a fuzzy filter of H. “Conversely”, if F is a nonempty subset
of H such that fF is a fuzzy filter of H, then F is a filter of H.
Proof. =⇒. Let x ≤ y. If x /∈ F , then fF (x) = 0, so fF (x) ≤ fF (y). If
x ∈ F , then fF (x) = 1. Since y ∈ H and y ≥ x ∈ F , we have y ∈ F . Then
fF (y) = 1, and fF (x) ≤ fF (y). Let now x, y ∈ H and u ∈ x ◦ y. Then
fF (u) = min{fF (x), fF (y)}. Indeed: (a) If x ◦ y ⊆ F , then x ∈ F and y ∈ F .
Also u ∈ F . Then fF (x) = fF (y) = fF (u) = 1, so fF (u) = min{fF (x), fF (y)}.

FUZZY SETS IN ≤–HYPERGROUPOIDS 5

To the memory of Professor Kiyoshi Iséki
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(b) Let x ◦ y � F . Then x /∈ F or y /∈ F (since x, y ∈ F implies x ◦ y ⊆ F
which is impossible), then fF (x) = 0 or fF (y) = 0, and min{fF (x), fF (y)} = 0.
On the other hand, since x ◦ y �⊆ F , we have (x ◦ y) ∩ F = ∅. Since u ∈ x ◦ y,
we have u /∈ F . Then fF (u) = 0, so fF (u) = min{fF (x), fF (y)}.
⇐=. Let x, y ∈ F . Then x ◦ y ⊆ F . Indeed: Let u ∈ x ◦ y. By hypothesis, we
have fF (u) = min{fF (x), fF (y)}. Since x, y ∈ F , we have fF (x) = fF (y) = 1.
Then fF (u) = 1, and u ∈ F , so F is a subgroupoid of H. Let x, y ∈ H such
that x ◦ y ⊆ F . Then x ∈ F and y ∈ F . Indeed: Let x /∈ F or y /∈ F . Then
fF (x) = 0 or fF (y) = 0, hence min{fF (x), fF (y)} = 0. Since x ◦ y ∈ P∗(H),
the set x ◦ y is nonempty. Take an element u ∈ x ◦ y. Since fF is a fuzzy filter
of H, we have fF (u) = min{fF (x), fF (y)}, so fF (u) = 0. On the other hand,
since u ∈ x ◦ y ⊆ F , we have fF (u) = 1. We get a contradiction. Let x, y ∈ H
such that x ◦ y �⊆ F . Then (x ◦ y) ∩ F = ∅. Indeed: Let u ∈ (x ◦ y) ∩ F . Since
u ∈ x ◦ y, by hypothesis, we have fF (u) = min{fF (x), fF (y)}. If x /∈ F , then
fF (x) = 0, thus fF (u) = 0. On the other site, since u ∈ F , we have fF (u) = 1.
We get a contadiction, so we have x ∈ F . In a similar way we prove that y ∈ F
and, since F is a subgroupoid of H, we have x ◦ y ⊆ F , which is impossible.
Finally, let x ∈ F and H � y ≥ x. Since fF is a fuzzy filter of H, we have
1 ≥ fF (y) ≥ fF (x) = 1, then fF (y) = 1, so y ∈ F . Thus F is a filter of H. �

In what follows, for a fuzzy subset f of an ≤–hypergroupoid H we introduce
the concept of the complement f ′ of f (which again is analogous to that one
defined for ordered groupoids in [6]) and we prove that a fuzzy subset f of a
≤–hypergroupoid H is a fuzzy filter of H if and only if the complement f ′ of H
is a fuzzy prime ideal of H.
Definition 14. Let H be an hypergroupoid or ≤–hypergoupoid and f a fuzzy
subset of H. The fuzzy subset

f ′ : S → [0, 1] defined by f ′(x) = 1 − f(x)

is called the complement of f in H.
We remark the following:
(a) If x ∈ H, then (f ′)′(x) = 1−f ′(x) = f(x). Thus we have f ′′ := (f ′)′ = f .
(b) f(x) ≤ f(y) ⇐⇒ f ′(x) ≥ f ′(y) (x, y ∈ H).
(c) f(x) = f(y) ⇐⇒ f ′(x) = f ′(y) (x, y ∈ H).

Lemma 15. (cf. also [6]) Let H be an hypergroupoid, f a fuzzy subset of H and
x, y ∈ H. Then we have

1 − min{f(x), f(y)} = max{f ′(x), f ′(y)} (∗)

Proof. Let f(x) ≤ f(y). Then min{f(x), f(y)} = f(x), thus 1−min{f(x), f(y)} =
1 − f(x) = f ′(x). On the other hand, f(x) ≤ f(y) implies f ′(x) ≥ f ′(y), so
we have max{f ′(x), f ′(y)} = f ′(x) and (∗) is satisfied. If f(y) ≤ f(x), by
symmetry, the relation (∗) also holds. �
Lemma 16. Let H be an hypergroupoid, f a fuzzy subset of H and x, y ∈ H.
The following are equivalent:
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(1) f(x ◦ y) = min{f(x), f(y)}.
(2) f ′(x ◦ y) = max{f ′(x), f ′(y)}.

Proof. (1) =⇒ (2). Let u ∈ x ◦ y. By (1), we have f(u) = min{f(x), f(y)}.
Then, by Lemma 15, we have

f ′(u) = 1 − f(u) = 1 − min{f(x), f(y)} = max{f ′(x), f ′(y)},

and (2) holds true.
(2) =⇒ (1). Let u ∈ x ◦ y. By (2) and Lemma 15, we have

f ′(u) = max{f ′(x), f ′(y)} = 1 − min{f(x), f(y)}.

Then f(u) = 1 − f ′(u) = min{f(x), f(y)}, and (1) is satisfied. �
The concept of fuzzy prime subsets of groupoids or of ordered groupoids [7]

is naturally transferred to hypergroupoids and to ordered hypergroupoids in the
following definition.
Definition 17. [5] A fuzzy subset f of a groupoid (or a ≤–hypergroupoid) H is
called a fuzzy prime subset of H if f(x ◦ y) ≤ max{f(x), f(y)} for all x, y ∈ H.
That is, if x, y ∈ H and u ∈ x ◦ y, then f(u) ≤ max{f(x), f(y)}.

If H is a ≤–hypergroupoid, by a fuzzy prime ideal of H we clearly mean a
fuzzy prime subset of H which is at the same time a fuzzy ideal of S. So a fuzzy
subset of H is a fuzzy prime ideal of H if and only if the following assertions
are satisfied:

1. x ≤ y ⇒ f(x) ≥ f(y) and

2. if f(x◦y) = max{f(x), f(y)} for all x, y ∈ H, in the sense that if x, y ∈ H
and u ∈ x ◦ y, then f(u) = max{f(x), f(y)}.

Proposition 18. Let H be a ≤–hypergroupoid and f a fuzzy subset of H. Then f
is a fuzzy filter of H if and only if the complement f ′ of f is a fuzzy prime ideal
of H.
Proof. =⇒. Let x ≤ y. Since f is a fuzzy filter of H, we have f(x) ≤ f(y),
then f ′(x) ≥ f ′(y). Let now x, y ∈ H. Since f is a fuzzy filter of H, we have
f(x ◦ y) = min{f(x), f(y)}. Then, by Lemma 16, f ′(x ◦ y) = max{f ′(x), f ′(y)},
thus f ′ is a fuzzy prime ideal of H.
⇐=. Let x ≤ y. Since f ′ is a fuzzy ideal of H, we have f ′(x) ≥ f ′(y). Then
f(x) = f ′′(x) ≤ f ′′(y) = f(y). Let now x, y ∈ H. Since f ′ is a fuzzy prime ideal
of H, we have f ′(x ◦ y) = max{f ′(x), f ′(y)} then, by Lemma 16, f(x ◦ y) =
min{f(x), f(y)}, thus f is a fuzzy filter of H. �
Let us finish with an example.
Example. We consider the ≤–hypergroupoid H = {a, b, c, d, e} defined by the
hyperoperation given in the table and the relation “≤” below.

◦ a b c d e
a {a} {a} {a, b, c} {a, b, d} {a}
b {a} {a} {a, b, c} {a, b, d} {a, b}
c {a} {a} {a, b, c} {a, b, d} {a, b, c}
d {a} {a} {a, b, c} {a, b, d} {a, b, c}
e {a} {a, b} {a, b, c} {a, b, d} {a, b, e}
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≤:= {(a, a), (a, b), (b, b), (b, d)}.

One can easily check that the set A = {a, b, d} is a left ideal of (H, ◦,≤) and
that the characteristic function fA of A, that is, the mapping

fA : H → {0, 1} | x → fA(x) =
{

1 if x ∈ A
0 if x /∈ A

is a fuzzy left ideal of H (the latest being also a consequence of Proposition 7).

With my best thanks to Professor Klaus Denecke for editing and communi-
cating the paper and his useful comments.
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Abstract

This paper serves as an example to show the way we pass from ordered
groupoids (ordered semigroups) to ordered hypergroupoids (ordered hy-
persemigroups), from groupoids (semigroups) to hypergroupoids (hyper-
semigroups). The results on semigroups (or on ordered semigroups) can
be transferred to hypersemigroups (or to ordered hypersemigroups) in the
way indicated in the present paper.

1 Introduction and prerequisites

An ordered groupoid (: po-groupoid) is a nonempty set S endowed with an
order “≤” and a multiplication “·” such that a ≤ b implies ca ≤ cb and ac ≤ bc
for every c ∈ S. Given a set S, a fuzzy subset of S (or a fuzzy set in S) is,
by definition, an arbitrary mapping of S into the closed interval [0, 1] of real
numbers (Zadeh). Fuzzy sets in ordered groupoids have been first considered in
2002 in Semigroup Forum [7], where the following concepts have been introduced
and studied: A fuzzy subset f of an ordered groupoid (S, ·,≤) is called a fuzzy
left (resp. fuzzy right) ideal of S if (1) x ≤ y implies f(x) ≥ f(y) and (2) if
f(xy) ≥ f(y) (resp. f(xy) ≥ f(x)) for every x, y ∈ S. It is called a fuzzy ideal
of S if it is both a fuzzy left ideal and a fuzzy right ideal of S. A fuzzy subset
f of a groupoid (or an ordered groupoid) S is called a fuzzy subgroupoid of S
if f(xy) ≥ min{f(x), f(y)} for all x, y ∈ S. A fuzzy subset f of an ordered
groupoid S is called a fuzzy filter of S if (1) x ≤ y implies f(x) ≤ f(y) and
(2) if f(xy) = min{f(x), f(y)} for all x, y ∈ S. A fuzzy subset f of a groupoid
S is called fuzzy prime if f(xy) ≤ max{f(x), f(y)} for all x, y ∈ S. For a
groupoid S and a fuzzy subset f of S, the complement of f is the fuzzy subset
f ′ : S → [0, 1] of S defined by f ′(x) = 1 − f(x) for all x ∈ S. We have seen in
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