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1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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2 K. Ohtake, A. Yagi

shifts of manufacturing regions along S but there is growth or decline in manufacturing
population at each manufacturing region. In order to simplify the situations, we are here
led to introduce a modified racetrack model of a finite number of manufacturing regions.
We assume that the whole manufacturing population agglomerates only in a finite number
of fixed positions x1, · · · , xM ∈ S which will be called manufacturing regions of the model.
Then, (1.1) reduces to

(1.2)




wi(t)
σ = µ

M∑
j=1

λj(t)wjGj(t)
σ−1e−(σ−1)τ |xi−xj |

+ (1− µ)

∫

S

ϕ(y)G(t, y)σ−1e−(σ−1)τ |xi−y|dy,

t ∈ [0,∞), i = 1, 2, · · · ,M,

G(t, x)1−σ =
M∑
j=1

λj(t)wj(t)
1−σe−(σ−1)τ |xi−y|, t ∈ [0,∞), x ∈ S,

ωi = wi(t)Gi(t)
−µ, t ∈ [0,∞), i = 1, 2, · · · ,M,

d

dt
λi(t) =


ωi(t)−

M∑
j=1

λj(t)ωj(t)


λi(t), t ∈ [0,∞), i = 1, 2, · · · ,M,

λi(0) = λi,0, i = 1, 2, · · · ,M.

Here, wi(t), λi(t), and ωi(t) are, respectively, nominal wage, manufacturing population size,
and real wage, at time t ∈ [0,∞) and at manufacturing region xi ∈ S.

We begin with deriving (1.2) from (1.1) by putting λ(t, x) =
∑M

k=1 λk(t)δk(x), δi(x)
being the Dirac delta function with center xi. Then, after formulating (1.2) mathematically
in a suitable way, we construct a global solution as well its numerical computations. The
second part of the paper is devoted to studying stability of stationary solutions to (1.2). As
will been seen, (1.2) is finally reduced to anM dimensional ordinary differential equation but
including complex implicit functions. Anyway, we can use the usual linearization principle
for studying the stability. The linearization matrices at stationary solutions are calculated.
In the case of M = 2 or 3, the signs of their eigenvalues are known, provided that the
exponent α := τ(σ − 1) is sufficiently small or sufficiently large. More refined results are
obtained by numerical computations.

Generally speaking, increase of α provides existence of more stable stationary solutions
under the no black hole condition

σ − 1

σ
> µ.

This condition suppresses too strong centripetal forces in spatial economy, and thus pre-
vents the manufacturing workers from agglomerating to only single economic region (see [9,
p59]). On the other hand, as α decreases, stationary solutions lose their stability and only
stationary solutions with single manufacturing region remain stable (i.e., M = 1).

When M is fixed, say M = 3, the configuration of x1, x2, x3 on S also influences the
stability of its stationary solution. As will be seen, the symmetric configuration solution
has the highest degree of stability, that is, can remain stable as α decreases than any other
non-symmetric stationary solution.

Let us finally refer to some papers related to our paper. Actually, the racetrack model
(1.1) is one of the many models which may be divided into discrete space models and contin-
uous space models. The discrete space models have already been studied in many papers.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Stability of inhomogeneous stationary solutions to racetrack model in spatial economy 3

Especially, the bifurcation property of stationary solutions is well studied. We want to
quote Castro-Correia da Silva-Mossay [5], Ikeda-Akamatsu-Kono [10], Akamatsu-Takayama
[3], Akamatsu-Takayama-Ikeda [1], Akamatsu-Mori-Takayama [2]. Tabuchi-Thisse [13] con-
sider the racetrack model in which the agricultural sector is distributed continuously, and
the manufacturing sector is distributed discretely. This setting is similar to our model (1.2),
however due to their assumption on a utility function of consumers, their model is quite
different from (1.2). Most of the papers on stationary solutions to the racetrack model treat
only the symmetric stationary solutions except a few paper Fabinger [7]. Using a discrete
space model, Barbero-Zof́ıo [4] discussed the relation between stability and a configuration
(they call it space topology) of economic regions.

2 Modeling. In this section, we will sketch the derivation of (1.2) from (1.1). In what
follows, α stands for α = τ(σ − 1). The manufacturing regions x1, · · · , xM ∈ S are posi-
tions at which all the manufacturing workers accumulate, and λ1(t), · · · , λM (t) denote the
manufacturing population size at time t ∈ [0,∞) at each manufacturing region. Then, the
manufacturing population density λ(t, x) on S is written in the form

(2.1) λ(t, x) =

M∑
k=1

λk(t)δk(x), t ∈ [0,∞), x ∈ S,

where δk(x) is the Dirac delta function with center xk. From
∫
S
λ(t, x)dx = 1, it holds that∑M

k=1 λk(t) = 1 for any time t. By (2.1), the first equation of (1.1) becomes

(2.2)

w(t, x)σ = µ
M∑
j=1

λj(t)wjG(t, xj)
σ−1e−α|x−xj |

+ (1− µ)

∫

S

ϕ(y)G(t, y)σ−1e−α|x−y|dy, t ∈ [0,∞), x ∈ S.

So, the first equation of (1.2) is verified.
Let us write w(t, xi) = wi(t) for i = 1, · · · ,M . By (2.1), the second equation of (1.1)

becomes

(2.3) G(t, x)1−σ =
M∑
j=1

λj(t)wj(t)
1−σe−α|xi−x|, t ∈ [0,∞), x ∈ S,

hence the second equation of (1.2).
Let us write ω(t, xi) = ωi(t) and G(t, xi) = Gi(t) for i = 1, · · · ,M . Then, the real wage

at each manufacturing region is given by

(2.4) ωi(t) = wi(t)Gi(t)
−µ, t ∈ [0,∞), i = 1, · · · ,M.

Finally, the fourth equation of (1.1) reduces to

(2.5)
d

dt
λi(t) =

[
ωi(t)−

M∑
k=1

ωk(t)λk(t)

]
λi(t), i = 1, · · · ,M.

This is the fourth equation of (1.2).

3 Mathematical Formulation In this section, let us make mathematical formulation
for (1.2).

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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4 K. Ohtake, A. Yagi

3.1 Norms on RM . As seen, the unknown functions w(t) and λ(t) of (1.2) take both
their values in RM . It is however convenient to use different norms of RM for w(t) and λ(t).

We denote the space RM equipped with the maximum norm ∥ · ∥∞ as E∞, i.e.,

E∞ =
(
RM , ∥w∥∞ = max {|w1|, · · · , |wM |}

)
.

We further denote a positive subset of E∞ as

E∞
+ = {w ∈ E∞|wi > 0, i = 1, · · · ,M} .

It is reasonable to expect that w(t) ∈ E∞
+ for any t > 0.

On the other hand, we denote the space RM equipped with the summation norm ∥ · ∥1
as E1, i.e.,

E1 =
(
RM , ∥λ∥1 = |λ1|+ · · ·+ |λM |

)
.

We further consider a subset of E1 such that

M =
{
λ ∈ E1|λi ≥ 0, i = 1, · · · ,M, ∥λ∥1 = 1

}
.

It is reasonable to expect that λ(t) ∈ M for any t > 0.

3.2 Formation. We begin with formulating the first equation of (1.2) as a fixed point
problem in E∞. To do so, let us introduce the operator G which maps E∞

+ ×M into the
space of continuous functions C(S) defined by

(3.1) [G(f, λ)](x) =


∑

j

λjf
1
σ−1
j e−α|x−xj |




1
1−σ

, x ∈ S.

Put [G(f, λ)](xi) = G(f, λ)i for i = 1, · · · ,M . We also introduce the operator Φ : E∞
+ ×

M → E∞
+ by

(3.2) Φ(f, λ)i =
M∑
j=1

µλjf
1
σ
j e−α|xi−xj |

G(f, λ)1−σ
j

+ (1− µ)

∫

S

ϕ(y)e−α|xi−y|

[G(f, λ)](y)1−σ
dy, i = 1, · · · ,M.

Then, by putting f = wσ, it is observed that at each t the first and second equations of
(1.2) are confined into

(3.3) f = Φ(f, λ), f ∈ E∞
+ , λ ∈ M.

Next, we formulate the fourth equation of (1.2) as an ordinary differential equation in
E1. To do so, let us introduce the operator ω : E∞

+ ×M → E∞
+ given by

(3.4) ω(f, λ)i = f
1
σ
i [G(f, λ)i]

−µ
, i = 1, · · · ,M,

and the operator Ψ : E∞
+ ×M → E1 given by

(3.5) Ψ(f, λ)i =

[
ω(f, λ)i −

M∑
k=1

ω(f, λ)kλk

]
λi, i = 1, · · · ,M.

Then, the fourth equation of (1.2) becomes

dλ

dt
(t) = Ψ(w(t), λ(t)).

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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In this way, putting f(t) = w(t)σ, the problem (1.2) has been formulated as stationary
and evolution equations:

(3.6)




f(t) = Φ(f(t), λ(t)), 0 ≤ t < ∞,

dλ

dt
(t) = Ψ(f(t), λ(t)), 0 ≤ t < ∞,

λ(0) = λ0

in the product space

E∞ × E1 =
{
(f, λ)

��f ∈ E∞, λ ∈ E1
}
.

The initial value λ0 is taken in M.

4 Global solution. In this section, we construct a global solution for (3.6). This section
consists of two subsections. In Subsection 4.1, the fixed point problem (3.3) is handled for
each fixed λ ∈ M. Based on the results, a local solution is constructed in Subsection 4.2
and is extended to global one in Subsection 4.3.

4.1 Fixed Point Problem (3.3). For real numbers 0 < r1 < r2, we set a bounded closed
subset E∞

r1,r2 of E∞ by

E∞
r1,r2 := {u ∈ E∞|r1 ≤ ui ≤ r2, i = 1, · · · ,M} .

In addition, denote the maximal value of the distance between the manufacturing regions
as

d = max
i,j

|xi − xj |.

Theorem 4.1. Assume that σ > 1 and τ > 0 are sufficiently small so that

(4.1) eαπ < 1/µ.

And, put numbers a and b as

(4.2)

a =

[
(1− µ)e−απ

1− µe−αd

]σ
,

b =

[
(1− µ)eαπ

1− µeαd

]σ
,

respectively. Then, for any λ ∈ M, (3.3) has at least one solution f in E∞
a,b.

Proof. The proof is based on the Brouwer fixed point theorem.

The bounded closed subset E∞
a,b is convex. In fact, for any u, v ∈ E∞

a,b and θ ∈ (0, 1), we
have

[θu+ (1− θ)v]i = θui + (1− θ)vi

≤ θb+ (1− θ)b = b, i = 1, · · · ,M.

Similarly,

[θu+ (1− θ)v]i ≥ θa+ (1− θ)a = a, i = 1, · · · ,M.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)
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{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
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(t, x) ∈ [0,∞)× S,

G(t, x) =
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λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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The operator Φ(·, λ) defined by (3.2) maps E∞
a,b into itself. In fact, for i = 1, · · · ,M ,

Φ(f, λ)i ≤ µb
∑
j

λje
−α|xi−xj |

∑
k λke−α|xj−xk|

+ (1− µ)b1−
1
σ

∫

S

ϕ(y)e−α|xi−y|
∑

k λke−α|y−xk|
dy

≤ µbeαd + (1− µ)b1−
1
σ eαπ

= b

due to the definition of b. Similarly, for i = 1, · · · ,M ,

Φ(f, λ)i ≥ µa
∑
j

λje
−α|xi−xj |

∑
k λke−α|xj−xk|

+ (1− µ)a1−
1
σ

∫

S

ϕ(y)e−α|xi−y|
∑

k λke−α|y−xk|
dy

≥ µae−απ + (1− µ)a1−
1
σ e−απ

= a.

The operator Φ(·, λ) is continuous in E∞
a,b. More strongly, it is actually Lipschitz con-

tinuous. Indeed, for any f, g ∈ E∞
a,b,

|Φ(f, λ)i − Φ(g, λ)i|

≤ µ

������
M∑
j=1

λjf
1
σ
j e−α|xi−xj |

∑M
k=1 λkf

1
σ−1

k e−α|xj−xk|
−

M∑
j=1

λjg
1
σ
j e−α|xi−xj |

∑M
k=1 λkg

1
σ−1

k e−α|xj−xk|

������

+ (1− µ)

�����
∫

S

ϕ(y)e−α|xi−y|

∑M
k=1 λkf

1
σ−1

k e−α|y−xk|
dy −

∫

S

ϕ(y)e−α|xi−y|

∑M
k=1 λkg

1
σ−1

k e−α|y−xk|
dy

�����

≤ µ
∑
j

λjf
1
σ
j

∑
k λk

���g
1
σ−1

k − f
1
σ−1

k

��� e−α|xj−xk|

(∑
k λkf

1
σ−1

k e−α|xj−xk|
)(∑

k λkg
1
σ−1

k e−α|xj−xk|
)e−α|xi−xj |

+ µ
∑
s

∑
k λkf

1
σ−1

k e−α|xj−xk| · λs

���f
1
σ
s − g

1
σ
j

���
(∑

k λkf
1
σ−1

k e−α|xs−xk|
)(∑

k λkg
1
σ−1

k e−α|xj−xk|
)e−α|xi−xj |

+ (1− µ)

∫

S

ϕ(y)
∑

k λk

���g
1
σ−1

k − f
1
σ−1

k

��� e−α|y−xk|

(∑
k λkf

1
σ−1

k e−α|y−xk|
)(∑

k λkg
1
σ−1

k e−α|y−xk|
)dy

≤
{
µ

σ

(a
b

)2( 1
σ−1)

eαd +
µ(σ − 1)

σ

(a
b

) 1
σ−2

eαd

+
(1− µ)(σ − 1)

σ

a
1
σ−2

b2(
1
σ−1)

eαπ

}
∥f − g∥∞.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Therefore, Φ(·, λ) is Lipschitz continuous with the Lipschitz constant

(4.3)

L =
µ

σ

(a
b

)2( 1
σ−1)

eαd +
µ(σ − 1)

σ

(a
b

) 1
σ−2

eαd

+
(1− µ)(σ − 1)

σ

a
1
σ−2

b2(
1
σ−1)

eαπ.

As shown, Φ(·, λ) is a Lipschitz continuous operator from the bounded closed convex
subset E∞

a,b into itself. Then, by the Brouwer fixed point theorem, (3.3) has at least one
solution f ∈ E∞

a,b.

Uniqueness of the solution is obtained by the following theorem.

Theorem 4.2. In addition to (4.1), assume that

(4.4)

µ

σ

(a
b

)2(1/σ−1)

eαd +
µ(σ − 1)

σ

(a
b

)1/σ−2

eαd

+
(1− µ)(σ − 1)

σ

a1/σ−2

b2(1/σ−1)
eαπ < 1.

Then, for any λ ∈ M, the solution f ∈ E∞
a,b to (3.3) is unique.

Proof. Since (4.4) means that L < 1, (4.4) implies that Φ(·, λ) is a contraction on E∞
a,b.

Because of the following theorem, the solution f constructed in Theorem 4.2 is unique
in the whole space E∞

+ .

Theorem 4.3. Under (4.1), any solution to (3.3) in E∞
+ actually lies in E∞

a,b.

Proof. Let f ∈ E∞
+ be a solution to (3.3). Then, an upper estimate such as

fi = Φ(f, λ)i

≤ µmax
i

|fi|eαd + (1− µ)
(
max

i
|fi|

)1− 1
σ

eαπ

holds. By solving this inequality for maxi |fi|, we see that maxi |fi| ≤ b.
On the other hand, a lower estimate such as

fi = Φ(f, λ)i

≥ µmin
i

|fi|e−αd + (1− µ)
(
min
i

|fi|
)1− 1

σ

e−απ

holds, too. By solving this inequality for mini |fi|, we see that mini |fi| ≥ a.

The following proposition gives upper and lower bounds for G(f, λ) and ω(f, λ) when
(f, λ) varies in E∞

a,b ×M.

Proposition 4.1. For i = 1, · · · ,M , we have the estimates

a
1
σ ≤ G(f, λ)i ≤ b

1
σ eτd, (f, λ) ∈ E∞

a,b ×M,(4.5)

a
1
σ b−

µ
σ e−µτd ≤ ω(f, λ)i ≤ b

1
σ a−

µ
σ , (f, λ) ∈ E∞

a,b ×M.(4.6)

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.
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]
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Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
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The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
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Proof. These estimates are verified by direct calculations in view of the definitions of G(f, λ)
and ω(f, λ) and the range condition a ≤ fi ≤ b, i = 1, · · · ,M . For example, the upper
bound for G(f, λ) is verified by

G(f, λ)i =




M∑
j=1

λjf
1
σ−1
j e−α|xi−xj |




1
1−σ

≤
[
b

1
σ−1e−αd

] 1
1−σ

= b
1
σ eτd.

In the case when the fixed point problem (3.3) admits a unique solution f ∈ E∞
+ for

λ ∈ M, we denote it by f = Φf(λ). Then, (3.6) ultimately reduces to the Cauchy problem

(4.7)




dλ

dt
(t) = Ψ(Φf(λ(t)), λ(t)), 0 ≤ t < ∞,

λ(0) = λ0

in E1 with an initial value λ0 ∈ M.

4.2 Local Solution. We construct a local solution to (4.7) using the Banach fixed point
theorem. The following proposition plays an important role.

Proposition 4.2. Under (4.1) and (4.4), the estimates

∥Φf(λ)− Φf(κ)∥∞ ≤ β1∥λ− κ∥1, λ, κ ∈ M(S),(4.8)

∥G(Φf(λ), λ)−G(Φf(κ), κ)∥∞ ≤ β2∥λ− κ∥1, λ, κ ∈ M(S),(4.9)

∥ω(Φf(λ), λ)− ω(Φf(κ), κ)∥∞ ≤ β3∥λ− κ∥1, λ, κ ∈ M(S)(4.10)

hold true with some constants β1, β2, β3 > 0.

Proof. It suffices to prove (4.8), because (4.9) and (4.10) are easily verified from (4.8).
For λ, κ ∈ M, we write f = Φf(λ), g = Φf(κ), and we use the following notations

Aj =
∑
k

κkg
1
σ−1

k e−α|xj−xk|, j = 1, · · · ,M,

Bj =
∑
k

λkf
1
σ−1

k e−α|xj−xk|, j = 1, · · · ,M,

A(y) =
∑
k

κkg
1
σ−1

k e−α|y−xk|, y ∈ S,

B(y) =
∑
k

λkf
1
σ−1

k e−α|y−xk|, y ∈ S.

Then,

(4.11)
|fi − gi| ≤ µ

∑
j

���λjf
1
σ
j Aj − κjg

1
σ
j Bj

���
AjBj

e−α|xi−xj |

+ (1− µ)

∫

S

|A(y)−B(y)|
A(y)B(y)

ϕ(y)e−α|xi−y|dy.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Furthermore, it follows that

(4.12)

���λjf
1
σ
j As − κjg

1
σ
j Bs

���
≤ λjf

1
σ
j

∑
k

���κkg
1
σ−1

k − λkf
1
σ−1

k

��� e−α|xj−xk| +Bs

���λjf
1
σ
j − κjg

1
σ
j

���

≤ λjf
1
σ
j

∑
k

{
κk|g

1
σ−1

k − f
1
σ−1

k |+ f
1
σ−1

k |κk − λk|
}
e−α|xj−xk|

+Bj

{
λj |f

1
σ
j − g

1
σ
j |+ g

1
σ
j |λj − κj |

}

≤
(
σ − 1

σ

)
a

1
σ−2b

1
σ λj∥f − g∥∞

∑
k

κke
−α|xj−xk|

+ a
1
σ−1b

1
σ λs∥κ− λ∥1

+
1

σ
a2(

1
σ−1)λj∥f − g∥∞

∑
k

λke
−α|xj−xk|

+ a
1
σ−1b

1
σ |λj − κj |

∑
k

λke
−α|xj−xk|.

It is also verified by the similar calculations that

(4.13)

|A(y)−B(y)| ≤(
σ − 1

σ

)
a

1
σ−2∥f − g∥∞

∑
k

κke
−α|y−xk| + a

1
σ−1∥λ− κ∥1.

In addition, the estimates

(4.14)

AjBj ≥ b2(
1
σ−1)

(∑
k

κke
−α|xj−xk|

)(∑
k

λke
−α|xj−xk|

)
,

A(y)B(y) ≥ b2(
1
σ−1)

(∑
k

κke
−α|y−xk|

)(∑
k

λke
−α|y−xk|

)

hold obviously. Using (4.12), (4.13), and (4.14), and noticing (4.4), we conclude from (4.11)
that

∥f − g∥∞ ≤ β1 ∥λ− κ∥1 ,

i.e., (4.8), where

β1 =

{
1− µ

σ

(a
b

)2(1/σ−1)

eαd − µ(σ − 1)

σ

(a
b

)1/σ−2

eαd

− (1− µ)(σ − 1)

σ

a1/σ−2

b2(1/σ−1)
eαπ

}−1

×

{
µ
a

1
σ−1

b
1
σ−2

(
e2αd + eαd

)
+ (1− µ)

a
1
σ−1

b2(
1
σ−1)

e2απ

}
.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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To construct a local solution to (4.7), we have to introduce an auxiliary problem for
(4.7). For a given λ̃ ∈ M, let Ψ̃ be an operator from E∞ ×M to E1 defined by

(4.15) Ψ̃(w, λ)i =

[
ω(w, λ̃)i −

M∑
k=1

ω(w, λ̃)kλk

]
λi, i = 1, · · · ,M.

For a given λ̃ ∈ C([0,∞);M), consider an auxiliary problem

(4.16)




dλ

dt
(t) = Ψ̃(Φf(λ̃(t)), λ(t)), 0 ≤ t < ∞,

λ(0) = λ0.

Proposition 4.3. Under (4.1) and (4.4), let λ̃ be given as above. Then, (4.16) possesses a
unique local solution λ ∈ C1([0, c];M), provided that (1 ≥) c > 0 is sufficiently small, but c
being independent of the given function λ̃ and the initial value λ0.

Proof. Set a closed subset of E1 given by

E1
1 :=


λ ∈ E1

������
M∑
j=1

λj = 1


 ,

and define an operator T̃ : C([0, c];E1
1) → C([0, c];E1) by

[
T̃ (λ)

]
(t) = λ0 +

∫ t

0

Ψ̃(Φf(λ̃(s)), λ(s))ds.

Using T̃ , we rewrite (4.16) into an equivalent problem

λ(t) = [T̃ (λ)](t), 0 ≤ t < ∞.

It is verified that Ψ̃(Φf(λ̃), λ) is Lipschitz continuous with respect to λ ∈ E1
1 . Indeed,

by (4.6) and (4.15), we see that

(4.17)
���Ψ̃(Φf(λ̃), λ)− Ψ̃(Φf(λ̃), κ)

���
1
≤ 3b

1
σ a−

µ
σ ∥λ− κ∥1, λ, κ ∈ E1

1 .

Meanwhile, T̃ maps C([0, c];E1
1) into itself. To verify this, it is sufficient to see that∑

j T̃ (λ)j = 1, because T̃ obviously maps C([0, c];E1
1) into C([0, c];E1). Then,

∑
j

[
T̃ (λ)

]
j
(t)−

∑
j

λ0,j =
∑
j

∫ t

0

Ψ̃(Φf(λ̃(s)), λ(s))jds

=

∫ t

0

∑
j

Ψ̃(Φf(λ̃(s)), λ(s))ds = 0

due to (4.15).
From (4.17),

���T̃ (λ)− T̃ (κ)
���
C([0,c];E1)

≤ max
t∈[0,c]

e−t

∫ t

0

���Ψ̃(Φf(λ̃), λ)− Ψ̃(Φf(λ̃), κ)
���
1
ds

≤ 3b
1
σ a−

µ
σ max

t∈[0,c]
e−t

∫ t

0

∥λ(s)− κ(s)∥1ds

≤ 3b
1
σ a−

µ
σ max

t∈[0,c]
e−t

∫ t

0

∥λ(s)− κ(s)∥1e−sesds

≤ 3b
1
σ a−

µ
σ (1− e−c)∥λ− κ∥C([0,c];E1).

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Therefore, if c is sufficiently small, then T̃ becomes a contraction mapping. Thus, (4.16)
has a unique fixed point λ ∈ C1([0, c];E1

1) for sufficiently small c > 0.
As a matter of fact, this λ ∈ C([0, c];E1

1) is in C([0, c];M). Indeed, it is sufficient to
verify λi(t) ≥ 0, ∀i = 1, · · · ,M for t ∈ [0, c]. Since the solution to (4.16) can be written as

λi(t) = λ0,i exp

[∫ t

0

{
ω(Φf(λ̃(s)), λ̃(s))i −

∑
k

ω(Φf(λ̃(s)), λ̃(s))kλk(s)

}
ds

]
,

λ0,i ≥ 0, i = 1, · · · ,M , imply that λi(t) ≥ 0 for all i = 1, · · · ,M .

As seen above, the time c > 0 was determined independently of λ̃ and λ0.

Now, we are ready to construct a local solution to (4.7).

Theorem 4.4. Under (4.1) and (4.4), for each λ0 ∈ M, there exists a unique local solution
λ ∈ C1([0, c];M) to (4.7), provided that (1 ≥) c > 0 is sufficiently small, but c being
independent of the initial value λ0.

Proof. By virtue of Proposition 4.3, for each λ0, we can define an operator Fλ0 which
corresponds λ̃ ∈ C1([0, c];M) to the local solution λ ∈ C1([0, c];M) of the auxiliary problem
(4.16). By the definition of Fλ0 , it immediately follows that

[
Fλ0(λ̃)

]
(t) = λ0 +

∫ t

0

Ψ̃
(
Φf(λ̃(s)), [Fλ0(λ̃)](s)

)
ds.

If there exists a fixed point of Fλ0 , then it is obviously a local solution to (4.7). So, we will
prove that Fλ0 is a contraction mapping from C1([0, c];M) into itself.

For λ̃, κ̃ ∈ C([0, c];M),

(4.18)

���[Fλ0(λ̃)
]
(t)−

[
Fλ0(κ̃)

]
(t)

���
1

≤
∫ t

0

���Ψ̃(Φf(λ̃), Fλ0(λ̃))− Ψ̃(Φf(κ̃), Fλ0(κ̃))
���
1
ds

≤
∫ t

0

���ω(Φf(λ̃), λ̃)Fλ0(λ̃)− ω(Φf(κ̃), κ̃)Fλ0(κ̃)
���
1
ds

+

∫ t

0

�����
∑
k

ω(Φf(κ̃), κ̃)kFλ0(κ̃)k · Fλ0(κ̃)

−
∑
k

ω(Φf(λ̃), λ̃)kFλ0(λ̃)k · Fλ0(λ̃)

�����
1

ds.

Note that
∑

i Fλ0(κ̃)i = 1, then it follows from (4.6) and (4.10) that
���ω(Φf(λ̃), λ̃)Fλ0(λ̃)− ω(Φf(κ̃), κ̃)Fλ0(κ̃)

���
1

≤ b
1
σ a−

µ
σ

���Fλ0(λ̃)(t)− Fλ0(κ̃)(t)
���
1
+ β3

���λ̃− κ̃
���
1

and �����
∑
k

ω(Φf(κ̃), κ̃)kFλ0(κ̃)k · Fλ0(κ̃)

−
∑
k

ω(Φf(λ̃), λ̃)kFλ0(λ̃)k · Fλ0(λ̃)

�����
1

≤ 2b
1
σ a−

µ
σ

���Fλ0(λ̃)− Fλ0(κ̃)
���
1
+ β3

���λ̃− κ̃
���
1
.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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By applying these estimates to (4.18), it follows that

���[Fλ0(λ̃)
]
(t)−

[
Fλ0(κ̃)

]
(t)

���
1
≤ 3b

1
σ a−

µ
σ

∫ t

0

���Fλ0(λ̃)(s)− Fλ0(κ̃)(s)
���
1
ds

+ 2β3

∫ t

0

���λ̃(s)− κ̃(s)
���
1
ds, 0 ≤ t ≤ c.

As a result, we obtain that
���Fλ0(λ̃)− Fλ0(κ̃)

���
C([0,c];E1)

≤ k
���λ̃− κ̃

���
C([0,c];E1)

,

with

k =
2β3(1− e−c)

1− 3b
1
σ a−

µ
σ (1− e−c)

.

Therefore, if c > 0 is sufficiently small, then k < 1, and Fλ0 is a contraction mapping in
C([0, c];M).

4.3 Global Solution. We can now easily extend the local solution of (4.7) to global one.

Theorem 4.5. Under (4.1) and (4.4), for each λ0 ∈ M, there exists a unique global solution
λ ∈ C1([0,∞);M) to (4.7).

Proof. Note that the interval [0, c] on which we construct a local solution is independent
of the initial value λ0. Then, the uniqueness of the local solution shows that the unique
local solution λ ∈ C1([0, 2c];M) is obtained by repeating the same argument but with the
initial value λ(c). By repeating this procedure, we finally obtain a unique global solution
to (4.7).

5 Numerical Results. In this section, some examples of numerical computations are
illustrated. In Subsection 5.1, the case of M = 2, and in Subsection 5.2, the case of
M = 3 is handled, respectively. Throughout this section, the parameters µ and σ are fixed
as µ = 0.5 and σ = 3. And τ > 0 is changed as a control parameter. The density of
agricultural workers is assumed to be constant, i.e., ϕ(x) ≡ 1

2π . The initial value for the
manufacturing population size λ = (λ1, · · · , λM ) is given by adding small perturbations to
the uniform population size λi = λ ≡ 1/M, i = 1, · · · ,M . The circumference S is identified
with the interval [−π, π]. In the following, we refer the manufacturing region as the region
and the manufacturing population as the population for simplicity.

5.1 Case of M = 2. We consider two kinds of configurations of two regions such that
|x1 − x2| = π and |x1 − x2| = π/4. Figures 1 and 2 illustrate the stationary solutions λ to
which the solutions λ(t) converge as t → ∞ for the cases π and π/4, respectively. Here,
the horizontal axis and the vertical axis denote the interval [−π, π] and the population size,
respectively.

Figure 1(a) shows when τ = 1.3 that the population is separated in the two regions
uniformly. However, Figure 1(b) shows when τ = 1.2 that the population is accumulated
into a single region. On the other hand, Figure 2(a) shows when τ = 1.5 that the population
is separated in the two regions equally, and Figure 2(b) shows when τ = 1.45 that the
population is accumulated into a single region. In any case, there exists a threshold τ̂ such
that, if τ > τ̂ the population is equally divided between the regions, and if τ < τ̂ the
population is concentrated in a single region. Moreover, it is observed that the threshold �τ
differs by configurations. In fact, Figures 1 and 2 show that 1.2 < �τ < 1.3 when |x1−x2| = π
and 1.45 < �τ < 1.5 when |x1 − x2| = π/4.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Fig. 1: λ when |x1 − x2| = π
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Fig. 2: λ when |x1 − x2| = π/4

5.2 Case of M = 3. Let us put nine points on S equidistantly. Then, we select three
manufacturing regions from them. By doing so, we consider the seven cases of configurations
of the regions as below.

Fig. 3: Equilateral triangle

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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(a) Isosceles 1 (b) Isosceles 2 (c) Isosceles 3

Fig. 4: Isosceles triangles

(a) Scalene 1 (b) Scalene 2 (c) Scalene 3

Fig. 5: Scalene triangles

Figures 6 - 12 illustrate the stationary solutions λ to which the solutions λ(t) converges
as t → ∞ for the seven cases. Here, the horizontal axis and the vertical axis denote the
interval [−π, π] and the population size, respectively.

Figure 6(a) shows under the equilateral configuration, when τ = 1.5 that the population
is separated in three regions equally. However, Figure 6(b) shows when τ = 1.45 that
the population is accumulated into two regions only. Under the isosceles configuration 1,
although the population is dispersed to the three regions when τ = 3, the population is
separated into two regions when τ = 2.9 as shown by Figures 7(a) and 7(b). The numerical
results illustrated in Figures 8 - 12 are similar, i.e., there exists a threshold τ̂ such that,
τ > τ̂ the population is equally divided among the three regions, and if τ < τ̂ the population
is concentrated in two regions. Moreover, it is observed that the threshold τ̂ differs by the
types of configurations. In fact, there is more than seven times difference in the value of τ̂
between the equilateral configuration and the isosceles configuration 2.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Fig. 6: λ for equilateral triangle
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Fig. 7: λ for isosceles 1
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Fig. 8: λ for isosceles 2

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Fig. 9: λ for isosceles 3
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Fig. 10: λ for scalene 1
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Fig. 11: λ for scalene 2

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Fig. 12: λ for scalene 3

6 Stability of Stationary Solutions. In this section, we want to investigate stability
of stationary solutions for (1.2). As in the previous section, the agricultural population
density is assumed to be constant, i.e., ϕ(x) ≡ ϕ. After discussing existence of stationary
solutions, we investigate their stability in the cases of M = 2 and 3.

6.1 Existence of Stationary Solutions. By (f, λ) we denote a stationary solution
to (3.6), where f = (f1, · · · , fM ) ∈ RM and λ = (λ1, · · · , λM ) ∈ RM . We also denote
w = (w1, · · · , wM ), where f i = wσ

i for i = 1, · · · ,M . Then, the price index and the real
wage of stationary state are given by G = G(x), x ∈ S and ω = (ω1, · · · , ωM ), respectively.

From (3.3), the stationary solution must satisfy

(6.1)

wσ
i =

M∑
j=1

λjwje
−α|xi−xj |

∑M
k=1 λkw

1−σ
k e−α|xj−xk|

+ (1− µ)ϕ

∫

S

e−α|xi−y|
∑M

k=1 λkw
1−σ
k e−α|y−xk|

dy, i = 1, 2, · · · ,M.

Moreover, by the fact that Ψ(f, λ) = 0 in (3.6), the following equations

(6.2)

wi

{
M∑
k=1

λkw
1−σ
k e−α|xi−xk|

} µ
σ−1

=
M∑
j=1

λj

{
M∑
k=1

λkw
1−σ
k e−α|xj−xk|

} µ
σ−1

, i = 1, 2, · · · ,M

must be satisfied. Thereby, the number of unknowns λ1, · · · , λM and w1, · · · , wM is equal
to the number of equations. This fact suggests that there may exist a stationary solution
to (3.6) under any location of M manufacturing regions on S. But it is very difficult to
demonstrate this assertion. We consider only the symmetric solutions.

Definition 6.1. A stationary solution satisfying the conditions:

1. all the distances between adjacent manufacturing regions are equal,

2. the population size and the nominal wages are uniform for the regions,

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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is called a symmetric stationary solution.

When M = 2 or 3, the symmetric stationary solution is obtained analytically.

Theorem 6.1. When M = 2, for any configuration of x1 and x2, (3.6) has a symmetric
stationary solution such that

(6.3)
wi ≡ w̄ = 1, i = 1, 2,

λi ≡ λ̄ = 1/2, i = 1, 2.

Proof. It is easy to verify that (6.3) is a stationary solution of (3.6) in view of

∫

S

e−α|xi−y|

e−α|x1−y| + e−α|x2−y| dy = π, i = 1, 2.

Theorem 6.2. When M = 3, let |x2 −x1|, |x3 −x2| and |x1 −x3| be equal to 2π/3. Then,
(1.2) has a symmetric stationary solution such that

(6.4)
wi = w = 1, i = 1, 2, 3,

λi = λ = 1/3, i = 1, 2, 3.

Proof. It is easy to verify that (6.4) is a stationary solution of (3.6) due to the fact that

∫

S

e−α|xi−y|
∑3

k=1 e
−α|xk−y|

dy =
2π

3
, i = 1, 2, 3.

6.2 Linearization Matrix. Let a stationary solution (λ,w) be given. We want to lin-
earize (3.6) around it. Let ∆w, ∆λ ∈ RM be small perturbations added to w and λ,

respectively, but satisfying the restriction
∑M

i=1 ∆λi = 0. The linearized equations are
given by

(6.5)




(I −A)∆w = B∆λ,

d

dt
∆λ = L

[
I − Λ

][
(E + FC)∆w +

(
FD −R

)
∆λ

]
,

where I stands for the identity matrix. Here, the M ×M matrices A, B, C, D, E, and F
are given by

(6.6)

Aij =
µ

σ
w1−σ

i

λje
−α|xi−xj |

∑
k λkw

1−σ
k e−α|xj−xk|

+
µ(σ − 1)

σ
w1−σ

i λjw
−σ
j

∑
s

λswse
−α|xs−xj |e−α|xi−xs|

[∑
k λkw

1−σ
k e−α|xs−xk|

]2

+
(1− µ)(σ − 1)

2πσ
w1−σ

i λjw
−σ
j

∫

S

e−α|y−xi|e−α|y−xj |

[∑
k λkw

1−σ
k e−α|y−xk|

]2 dy,
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∂t
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[
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ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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(6.7)

Bij =
µ

σ
w1−σ

i

wje
−α|xi−xj |

∑
k λkw

1−σ
k e−α|xj−xk|

− µ

σ
w1−σ

i

∑
s

λswsw
1−σ
j e−α|xs−xj |e−α|xi−xs|

[∑
k λkw

1−σ
k e−α|xs−xk|

]2

− 1− µ

2πσ
w1−σ

i w1−σ
j

∫

S

e−α|y−xi|e−α|y−xj |

[∑
k λkw

1−σ
k e−α|y−xk|

]2 dy,

(6.8)

Cij = G
σ

i λjw
−σ
j e−α|xi−xj |,

Dij = − G
σ

i

σ − 1
w1−σ

j e−α|xi−xj |,

(6.9)
E = diag(G

−µ

1 , · · · , G−µ

M ),

F = diag(−µw1G
−µ−1

1 , · · · ,−µwMG
−µ−1

M )

respectively. The matrix Λ denotes

Λ =




λ1 · · · λM

λ1 · · · λM

...
...

...

λ1 · · · λM


 ,

and the matrix L is L := diag(λ1, · · · , λM ). Finally,

R = ω




1 · · · 1
1 · · · 1
...

...
...

1 · · · 1


 .

As a matter of fact, by using the matrix

Ω :=
[
E(I −A)−1B + F

{
C(I −A)−1B +D

}]
,

the linearized equations (6.5) is reduced to

(6.10)
d

dt
∆λ = J∆λ,

where J = L
[
(I − Λ)Ω−R

]
.

Since
∑M

i=1 λi = 1, it is natural to impose the condition that
∑M

i=1 ∆λi = 0; therefore,
∆λM = − (∆λ1 + · · ·+∆λM−1). The M -dimensional ordinary equation (6.10) is actually

reduced to an ordinary differential equation for ∆λ′ = (∆λ1, · · · ,∆λM−1)
T
. Introduce an

(M − 1)×M matrix P1 and an M × (M − 1) matrix P2 as

P1 =




1 0 · · · 0 0
0 1 0 0 0
...

. . .
...

0 0 · · · 1 0




1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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and

P2 =




1 0 · · · 0 0
0 1 0 · · · 0
...

. . .

0 0 · · · 0 1
−1 −1 · · · −1 −1




,

respectively. Then, (6.10) is reduced to

d

dt
∆λ′ = P1JP2∆λ′.

Hence, stability of the stationary solution is determined by the eigenvalues of the matrix
J ′ := P1JP2. In general, it is very complicate to calculate exactly the eigenvalues of J ′, and
we have to rely on numerical computations. However, in the case of symmetric stationary
solutions with M = 2 or 3, we can compute J ′ analytically.

Define the M ×M matrices X and Y by

Xij = e−α|xi−xj |,(6.11)

Yij =

∫

S

e−α|y−xi|e−α|y−xj |
∑M

k=1 e
−α|y−xk|

dy,(6.12)

respectively. Then, from (6.6) and (6.7), A and B are described as

(6.13)
A =

µ(σ − 1)

σ
λ
2
w2−2σG

2σ−2
X2 +

µ

σ
λw1−σG

σ−1
X

+
(1− µ)(σ − 1)

2πσ
λ
−1

w−1Y,

(6.14) B = −µ

σ
λw3−2σG

2σ−2
X2 +

µ

σ
w2−σG

σ−1
X − 1− µ

2πσ
λ
−2

Y.

Similarly, from (6.8) and (6.9), C, D, E and F are described as

C = G
σ
λw−σX,

D = −G
σ
w1−σ

σ − 1
X,

E = G
−µ

I,

F = wG
−µ−1

I,

respectively. Thereby, Ω is given by

(6.15)
Ω = G

−µ
(I −A)−1B − µλw1−σG

σ−µ−1
X(I −A)−1B

+
µ

σ − 1
w2−σG

σ−µ−1
X.

Note that all the diagonal components of Ω are equal each other, and all the non-diagonal
components are also equal, i.e., Ω takes the form:

when M = 2, Ω =

(
Ω1 Ω2

Ω2 Ω1

)
;

when M = 3, Ω =




Ω1 Ω2 Ω2

Ω2 Ω1 Ω2

Ω2 Ω2 Ω1


 .

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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We call such a matrix as “a strong diagonal matrix”. It is easy to see that sum, product, or
linear combination of strong diagonal matrices is also a strong diagonal matrix. Moreover,
the inverse of a strong diagonal matrix is also a strongly diagonal. By these facts, Ω is seen
to be strongly diagonal, because X and Y are strongly diagonal (See (6.11), (6.12)). As a
result, the matrix J ′ is simply given by

(6.16)

when M = 2, J ′ =
1

2
(Ω1 − Ω2) ,

when M = 3, J ′ =
1

3
(Ω1 − Ω2)

(
1 0
0 1

)
,

in the symmetric stationary solution.

6.3 Case of M = 2. When M = 2, we have the following theorem.

Theorem 6.3. Let the no black hole condition (σ−1)/σ > µ be satisfied. If τ > 0 or σ > 1
is sufficiently small, then the stationary solution given by (6.3) is unstable. On the other
hand, if τ > 0 or σ > 1 is sufficiently large, then the stationary solution given by (6.3) is
stable.

Proof. In this proof, the circumference S is identified with the interval [−π, π] and two
regions x1, x2 are set as x1 = 0, x2 = d ∈ (0, π].

First, for sufficiently small τ > 0 or σ > 1, i.e., for sufficiently small α, we consider the
Taylor expansion for J ′. Since J ′ is composed of the matrices X,Y,A,B, we calculate the
Taylor expansion for them. As M = 2, X is given by

X =

(
1 e−αd

e−αd 1

)
,

thereby

(6.17) X =

(
1 1
1 1

)
− d

(
0 1
1 0

)
α+O(α2).

The matrix Y is given by

Y11 = Y22 = d+
1− eαd

α(1 + eαd)
+ (π − d)

1 + e2αd

(1 + eαd)2
,

Y12 = Y21 =
eαd − 1

α(1 + eαd)
+ (π − d)

2eαd

(1 + eαd)2

thereby

(6.18) Y =
π

2

(
1 1
1 1

)
+O(α2).

In addition, G
1−σ

is expanded as

(6.19) G
1−σ

= 1− d

2
α+O(α2).

Hence, A is expanded as
A = A1 +A2α+O(α2),

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by
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S
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] 1
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] 1
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ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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where

A1 =
σ + µ− 1

2σ

(
1 1
1 1

)
,

A2 = −µd

4σ

(
−1 1
1 −1

)
.

Since ∥A∥ < 1, we have

(I −A)−1 = I +A+A2 +A3 + · · · .

Note that A1A2 = A2A1 is the null matrix. It then follows that

An = An
1 +O(α2), for n = 2, 3, · · · .

So,
(I −A)−1 = I +A+A2 +A3 + · · ·

= I + (A1 +A2
1 +A3

1 + · · · ) +A2α+O(α2).

Moreover,

A1 +A2
1 +A3

1 + · · · =
∞∑

n=1

(
σ − 1 + µ

2σ

)n

2n−1

(
1 1
1 1

)

=
µ+ σ − 1

2(1− µ)

(
1 1
1 1

)
.

Hence, we obtain that

(6.20) (I −A)−1 = I +
µ+ σ − 1

2(1− µ)

(
1 1
1 1

)
− µd

4σ

(
−1 1
1 −1

)
α+O(α2).

Meanwhile, B is expanded as

(6.21) B = −1− µ

σ

(
1 1
1 1

)
− µd

2σ

(
−1 1
1 −1

)
α+O(α2).

By (6.17), (6.18), (6.19), (6.20), and (6.21), it is observed from (6.15) that

Ω =
1 + µσ − σ

σ − 1

(
1 1
1 1

)

+

[
−µd(2σ − 1)

2σ(σ − 1)

(
−1 1
1 −1

)
+

µd(1 + µσ − σ)

2(σ − 1)

(
1 1
1 1

)]
α+O(α2).

Thus, J ′ is given by

J ′ =
µd(2σ − 1)

σ(σ − 1)
α+O(α2).

The first order term obviously takes positive value for α > 0. Therefore, the symmetric
stationary solution (6.3) is unstable for sufficiently small α > 0.

Next, let us verify that when τ or σ is sufficiently large, i.e., when α is sufficiently large,
J ′ is negative. From (6.3), (6.11) and (6.12), it follows that

lim
α→∞

G
1−σ

= 1/2,

lim
α→∞

X = I,

lim
α→∞

Y = πI.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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It follows from these results and (6.13), (6.14) that

lim
α→∞

A =
σ − 1 + µ

σ
I,

lim
α→∞

(I −A)−1 =
σ

1− µ
I,

lim
α→∞

B = −2(1− µ)

σ
I.

Therefore, we obtain from (6.15) that

lim
α→∞

Ω = 2
µ

1−σ
−σ + 1 + µσ

σ − 1
I.

Then,

lim
α→∞

J ′ = 2
µ

1−σ
−σ + 1 + µσ

σ − 1
.

Obviously, this value is negative under the assumption of no black hole (σ − 1)/σ > µ.

Figure 13 illustrates the value of J ′ as a function of α obtained numerically. Here, the
horizontal axis and the vertical axis are taken as α > 0 and the value of J ′, respectively.
The red line indicates the case when d = 1; similarly, the green line d = 2, the blue line
d = π. This shows that there exists a threshold α = α∗ where the sign of J ′ changes.
Then, smaller α∗ means higher degree of stability. Since the longer d results in smaller
α∗ according to this figure, it follows that the longer distance between two regions is, the
higher degree of stability is.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8 9 10

𝛼𝛼

d=1

d=2

d=π

Fig. 13: Value of J ′

6.4 Case of M = 3. In this subsection we consider the case of M = 3.

Theorem 6.4. Assume the no black hole condition (σ − 1)/σ > µ. If τ > 0 or σ > 1 is
sufficiently small, then the stationary solution given by (6.4) is unstable. On the other hand
for sufficiently large τ or σ, the stationary solution given by (6.4) is stable.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Proof. In this proof, S is identified with the interval [−π, π] and three manufacturing regions
x1, x2 and x3 are set as x1 = − 2π

3 , x2 = 0, x3 = 2π
3 .

First, for sufficiently small τ > 0 or σ > 1, i.e., for sufficiently small α, we consider the
Taylor expansion for the matrix J as in the proof of Theorem 6.3. Since the matrix J is
composed of the matrices X,Y,A,B, the Taylor expansions for them should be calculated.
The matrix X is given by

X =




1 e−α 2π
3 e−α 2π

3

e−α 2π
3 1 e−α 2π

3

e−α 2π
3 e−α 2π

3 1


 ,

and its Taylor expansion is

(6.22) X =




1 1 1
1 1 1
1 1 1


− 2π

3




0 1 1
1 0 1
1 1 0


α+O(α2).

In general, the function given by

F (α) =

∫ π

−π

f(α, x)dx

can be expanded as

F (α) = F (0) + F ′(0)α+O(α2)

=

∫ π

−π

f(0, x)dx+

∫ π

−π

∂f

∂α
(0, x)dx · α+O(α2).

We then set

f(α, x) =
e−2α|x−x1|

[
e−α|x−x1| + e−α|x−x2| + e−α|x−x3|

]2 .

It is easy to see that

f(0, x) =
1

9
,

and
∂f

∂α
(0, x) =

−4|x− x1|+ 2|x− x2|+ 2|x− x3|
27

.

Hence, Y11 is expanded as

Y11 =
1

9

∫ π

−π

dy +
1

27

∫ π

−π

[−4|y − x1|+ 2|y − x2|+ 2|y − x3|] dx · α+O(α2)

=
2π

9
+O(α2).

Other diagonal elements are also expanded as

Y22 =
2π

9
+O(α2),

Y33 =
2π

9
+O(α2).

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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As a non-diagonal element, let us consider Y12. If we set

f(α, x) =
e−α|x−x1|e−α|x−x2|

[
e−α|x−x1| + e−α|x−x2| + e−α|x−x3|

]2 ,

then it is easy to see that

f(0, x) =
1

9
,

and
∂f

∂α
(0, x) =

−|x− x1| − |x− x2|+ 2|x− x3|
27

.

Hence, Y12 is expanded as

Y12 =
1

9

∫ π

−π

dx+
1

27

∫ π

−π

[−|x− x1| − |x− x2|+ 2|x− x3|] dx · α+O(α2)

=
2π

9
+O(α2).

Other non-diagonal elements are also expanded as

Y13 =
2π

9
+O(α2),

Y23 =
2π

9
+O(α2).

After all, Y is expanded as

(6.23) Y =
2π

9




1 1 1
1 1 1
1 1 1


+O(α2).

In addition, G
1−σ

is expanded as

(6.24) G
1−σ

= 1− 4π

9
α+O(α2).

Hence, A is expanded as

(6.25) A =
σ + µ− 1

3σ




1 1 1
1 1 1
1 1 1


− 2πµ

27σ




−2 1 1
1 −2 1
1 1 −2


α+O(α2).

Since ∥A∥ < 1, we have

(I −A)−1 = I +A+A2 +A3 + · · · .

Repeating the same argument as for the case of M = 2, we obtain that

(6.26)

(I −A)−1 = I +
σ + µ− 1

3(1− µ)




1 1 1
1 1 1
1 1 1




− 2πµ

27σ




−2 1 1
1 −2 1
1 1 −2


α+O(α2).

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Moreover, the matrix B is expanded as

(6.27) B = −1− µ

σ




1 1 1
1 1 1
1 1 1


− 2πµ

9σ




−2 1 1
1 −2 1
1 1 −2


α+O(α2).

By (6.22), (6.23), (6.24), (6.26), (6.27), (6.15) provides that

Ω =
1 + µσ − σ

σ − 1




1 1 1
1 1 1
1 1 1




−


2πµ(2σ − 1)

9σ(σ − 1)




−2 1 1
1 −2 1
1 1 −2


− 4πµ(1 + µσ − σ)

9(σ − 1)2




1 1 1
1 1 1
1 1 1




α

+O(α2).

By this and (6.16), it is easy to see that the eigenvalue of J ′ is expanded as

1

3
(Ω1 − Ω2) =

2π(2σ − 1)µ

3σ(σ − 1)
α+O(α2).

The first order term obviously takes positive value for α > 0. Therefore, the symmetric
stationary solution (6.3) is proved to be unstable for sufficiently small α > 0.

Next, let us verify that when τ → ∞ or σ → ∞, i.e., when α → ∞, the eigenvalue of J ′

is negative. From (6.4), (6.11) and (6.12), it follows that

lim
α→∞

G
1−σ

= 1/3,

lim
α→∞

X = I,

lim
α→∞

Y =
2π

3
I.

It follows from these and (6.13), (6.14) that

lim
α→∞

A =
σ − 1 + µ

σ
I,

lim
α→∞

(I −A)−1 =
σ

1− µ
I,

lim
α→∞

B = −3(1− µ)

σ
I.

By these results, (6.15) provides that

lim
α→∞

Ω = 3
µ

1−σ
(−σ + 1 + µσ)

σ − 1
I.

Then, as α → ∞, the eigenvalue of J ′ converges to the limit

3
µ

1−σ
(−σ + 1 + µσ)

σ − 1

which is obviously negative under the of no black hole condition.

1

Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)





w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
σ

(t, x) ∈ [0,∞)× S,

G(t, x) =

[∫

S

λ(t, y)w(t, y)1−σe−(σ−1)τ |x−y|dy

] 1
1−σ

(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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In fact, Figure 14 illustrates a graph of the eigenvalue of J ′ as a function of α obtained
numerically. Here, the horizontal axis and the vertical axis are taken as α > 0 and the
eigenvalue of J ′, respectively. It is observed that the sign of the eigenvalue changes at some
threshold α = α∗.
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Fig. 14: Eigenvalue of J ′ when M = 3

Even for non-symmetric stationary solutions, we can compute the eigenvalue of J ′ and
investigate its sign. These results show good agreement to the numerical computations
performed in Subsection 5.2. But we will omit the details.
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Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)




w(t, x) =

[∫

S

{µλ(t, y)w(y, t) + (1− µ)ϕ(y)}G(t, y)σ−1e−(σ−1)τ |x−y|dy

] 1
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(t, x) ∈ [0,∞)× S,

ω(t, x) = w(t, x)G(t, x)−µ (t, x) ∈ [0,∞)× S,

∂λ

∂t
(t, x) = γ

[
ω(t, x)−

∫

S

ω(t, y)λ(t, y)dy

]
λ(t, x) (t, x) ∈ [0,∞)× S,

λ(0, x) = λ0(x) x ∈ S.

Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Abstract. We continue our study on the racetrack model. In the previous paper, we
have shown that the global solution has an ω-limit which is a stationary solution. In
this paper, we introduce a simplified racetrack model and study stability and instability
of stationary solutions by using the linearization principle.

1 Introduction. We continue our study on the racetrack model which has been presented
in [9] by M. Fujita, P. Krugman, A. Venables in order to describe the dynamics of a tutorial
economic system on a circumference driven by economic incentives. The model is written
by

(1.1)
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]
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Here, S is a circumference on which economic regions exist continuously and x is a spatial
variable varying on S. The unknown function λ(t, x) is a function such that µλ(t, x) denotes
population density of manufacturing workers at time t ∈ [0,∞) at a position x ∈ S. The
other unknown function w(t, x) denotes nominal wage at (t, x) ∈ [0,∞)× S. The function
G(t, x) and ω(t, x) denote respectively, price index and real wage at (t, x) ∈ [0,∞) × S.
The function ϕ is a given function such that (1−µ)ϕ(x) denotes the density of agricultural
workers on S. It is assumed that 0 ≤ ϕ ∈ L1(S) and

∫
S
ϕ(x)dx = 1. The function |x − y|

denotes a symmetric distance between x, y ∈ S along S. The exponent 0 < µ ≤ 1 denotes
a ratio of the manufacturing workers on S to the total number of (manufacturing and
agricultural) workers. Meanwhile σ > 1 stands for an index of preference for manufacturing
goods, and τ > 0 stands for a parameter concerning the transportation cost.

In the previous paper [11], we have studied (1.1) mathematically and numerically. In
fact, we have shown, after discussing the global existence, that the global solution has an
ω-limit which is a stationary solution of (1.1) and that any stationary solution to (1.1) is
either the homogeneous solution on S or an inhomogeneous solution whose manufacturing
density is a sum of Dirac delta functions.

We are then interested in investigating stability of stationary solutions to (1.1). As men-
tioned in [9] (and indeed reviewed in [11]), the homogeneous stationary solution is always
unstable. So, in this paper, our interest is addressed to considering inhomogeneous station-
ary solutions. Meanwhile, our numerical computations suggest that there are no continuous
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Abstract. Recently the geometric operator mean is extended to the multi-variable
one; the Karcher mean. Including these multivarible means, we discuss a construction
method by the Moore-Penrose inverse. The key concept is the orthogonality of operator
means.

1 Introduction. Let m be an operator mean in the sense of Kubo-Ando [12] which
is defined by a positive operator monotone function fm on the half interval (0,∞) with
fm(1) = 1;

Am B = A
1
2 fm

(
A− 1

2 BA− 1
2

)
A

1
2

for positive invertible operators A and B on a Hilbert space. Thus every operator mean
can be constructed by a numerical function fm(x) = 1m x which is called the representing
function of m. Among common properties for operator means, we pay attention to the
orthogonality:

(A1 ⊕ A2)m (B1 ⊕ B2) = (A1 m B1) ⊕ (A2 m B2)

and the transformer inequality:

T ∗(A m B)T ≤ (T ∗AT )m (T ∗BT ).

Recall that the Karcher mean X = G(ωj ; Aj) for invertible Aj ≥ 0 with a weight {ωj} is
defined as a unique solution of the Karcher equation [11, 13, 14]:

∑
j

ωjS(X|Aj) =
∑

j

ωjX
1
2 log

(
X− 1

2 AjX
− 1

2

)
X

1
2 = 0.

We extend it to non-invertible case in [11], which is an extension of the weighted geo-
metric mean. Moreover in [11], we extended such multi-variable operator mean M(Aj) =
M(ωj ; A1, ...., An) including the Karcher mean: Define an (n-variable) general operator mean
M(ωj ; Aj) as an n-ary operation on positive invertible operators on H satisfying the follow-
ing properties where each weight ωj is assumed to be positive here:

(M1) transformer equality: T ∗ M(ωj ; Aj)T = M(ωj ; T ∗AjT ) for all invertible T .

(M1’) homogeneity: M(ωj ; tAj) = t M(ωj ;Aj) for t > 0.

(M2) normalization: M(ωj ; A) = A.

(M3) monotonicity: Aj ≤ Bj implies M(ωj ;Aj) ≤ M(ωj ; Bj).
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(M4) sub-additivity: M(ωj ; Aj + Bj) ≥ M(ωj ; Aj) + M(ωj ;Bj).
(M5) adjoint sub-additivity: M(ωj ;Aj : Bj) ≤ M(ωj ; Aj) : M(ωj ; Bj).

(M6) orthogonality: M(ωj ;
⊕

m A
(m)
j ) =

⊕
m M(ωj ;A

(m)
j ).

Here : stands for the parallel sum defined by

A : B =
(
A−1 + B−1

)−1
.

In addition, we can define

M(ωj ; Aj) = s-lim
ε→0

M(ωj ; (Aj + ε))

for (non-invertible) positive operators Aj where the above properties preserve, which in-
cludes our extended Karcher mean. Also for t ∈ [0, 1], note that

(M7) joint concavity: M(ωj ; (1 − t)Aj + tBj) ≤ (1 − t)M(ωj ; Aj) + t M(ωj ; Bj)

follows from the sub-additivity and homogeneity. Here we pay attention to the orthogonality
for operator means as in the below.

On the other hand, for the parallel sum (the half of the harmonic mean), rephrasing
them into the harmonic mean, we have

Ah B = A

(
A + B

2

)†

B

if A + B has the generalized inverse [1]. Incidentally the Moore-Penrose generalized inverse
† for operators was discussed in [9, 15]: It is known that if ran X is closed, then ran X∗,
ranXX∗ and ranX∗X are also closed, and (X∗X)† =

(
X∗X

��
ran X∗

)−1 ⊕ 0(ran X∗)⊥ and
X† = (X∗X)†X∗ = X∗(XX∗)†.

In this note, we observe operator means from the viewpoint of the generalized inverse,
which includes our extended version of the Karcher mean. We discuss the constructing
formulae for operator means using the Moore-Penrose inverses if they exist:

A
1
2 (I m A†

1
2 BA†

1
2 )A

1
2 or B

1
2 (B†

1
2 AB†

1
2 m I)B

1
2 .

Our equality condition [6] for the transformer iequality shows that it represents the operator
mean A m B if kerA ⊂ ker B or kerA ⊃ ker B respectively. We also show that they are not
less than the original one if the kernel of the mean Am B includes those for A and B.

2 Transformer equality. In [6], we gave an equality condition for transformer inequal-
ity for certain means:

Theorem F . If ker T ∗ ⊂ kerA ∩ kerB, then T ∗(A m B)T = (T ∗AT )m (T ∗BT ) for an
operator mean m.

This assures the Izumino construction of operator means: Let R = (A + B)
1
2 , then,

there exist the derivatives D and E with A
1
2 = RD and B

1
2 = RE by the range inclusion

theorem in [3, 4]. So we have D∗D + E∗E = Iran R and an operator mean is reduced into
the commutative case [6]:

A m B = R(D∗D m E∗E)R,

which is a space-free version of the Pusz-Woronowics means [16, 17].
But the original proof of the above was based on the integral representation of operator

means, so that we cannot extend the equality in Theorem F to multi-variable means. Under
the closedness of the ranges for operators, we show the equality for our extended (multi-
variable) operator means including the Karcher operator mean:

Scientiae. Mathematicae. Japonicae, 1

MOORE-PENROSE INVERSE AND OPERATOR MEAN

Jun Ichi Fujii

Dedicated to the memory of the late professor Takayuki Furuta

Received June 27, 2017 ; revised July 16, 2017

Abstract. Recently the geometric operator mean is extended to the multi-variable
one; the Karcher mean. Including these multivarible means, we discuss a construction
method by the Moore-Penrose inverse. The key concept is the orthogonality of operator
means.

1 Introduction. Let m be an operator mean in the sense of Kubo-Ando [12] which
is defined by a positive operator monotone function fm on the half interval (0,∞) with
fm(1) = 1;

Am B = A
1
2 fm

(
A− 1

2 BA− 1
2

)
A

1
2

for positive invertible operators A and B on a Hilbert space. Thus every operator mean
can be constructed by a numerical function fm(x) = 1m x which is called the representing
function of m. Among common properties for operator means, we pay attention to the
orthogonality:

(A1 ⊕ A2)m (B1 ⊕ B2) = (A1 m B1) ⊕ (A2 m B2)

and the transformer inequality:

T ∗(A m B)T ≤ (T ∗AT )m (T ∗BT ).

Recall that the Karcher mean X = G(ωj ; Aj) for invertible Aj ≥ 0 with a weight {ωj} is
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(M4) sub-additivity: M(ωj ; Aj + Bj) ≥ M(ωj ; Aj) + M(ωj ;Bj).
(M5) adjoint sub-additivity: M(ωj ;Aj : Bj) ≤ M(ωj ; Aj) : M(ωj ; Bj).

(M6) orthogonality: M(ωj ;
⊕

m A
(m)
j ) =
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m M(ωj ;A

(m)
j ).

Here : stands for the parallel sum defined by

A : B =
(
A−1 + B−1

)−1
.

In addition, we can define

M(ωj ; Aj) = s-lim
ε→0

M(ωj ; (Aj + ε))

for (non-invertible) positive operators Aj where the above properties preserve, which in-
cludes our extended Karcher mean. Also for t ∈ [0, 1], note that

(M7) joint concavity: M(ωj ; (1 − t)Aj + tBj) ≤ (1 − t)M(ωj ; Aj) + t M(ωj ; Bj)

follows from the sub-additivity and homogeneity. Here we pay attention to the orthogonality
for operator means as in the below.

On the other hand, for the parallel sum (the half of the harmonic mean), rephrasing
them into the harmonic mean, we have

Ah B = A

(
A + B

2

)†

B

if A + B has the generalized inverse [1]. Incidentally the Moore-Penrose generalized inverse
† for operators was discussed in [9, 15]: It is known that if ran X is closed, then ran X∗,
ranXX∗ and ranX∗X are also closed, and (X∗X)† =

(
X∗X

��
ran X∗

)−1 ⊕ 0(ran X∗)⊥ and
X† = (X∗X)†X∗ = X∗(XX∗)†.

In this note, we observe operator means from the viewpoint of the generalized inverse,
which includes our extended version of the Karcher mean. We discuss the constructing
formulae for operator means using the Moore-Penrose inverses if they exist:
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1
2 (I m A†

1
2 BA†

1
2 )A

1
2 or B

1
2 (B†

1
2 AB†

1
2 m I)B

1
2 .

Our equality condition [6] for the transformer iequality shows that it represents the operator
mean A m B if kerA ⊂ ker B or kerA ⊃ ker B respectively. We also show that they are not
less than the original one if the kernel of the mean Am B includes those for A and B.

2 Transformer equality. In [6], we gave an equality condition for transformer inequal-
ity for certain means:

Theorem F . If ker T ∗ ⊂ kerA ∩ kerB, then T ∗(A m B)T = (T ∗AT )m (T ∗BT ) for an
operator mean m.

This assures the Izumino construction of operator means: Let R = (A + B)
1
2 , then,

there exist the derivatives D and E with A
1
2 = RD and B

1
2 = RE by the range inclusion

theorem in [3, 4]. So we have D∗D + E∗E = Iran R and an operator mean is reduced into
the commutative case [6]:

A m B = R(D∗D m E∗E)R,

which is a space-free version of the Pusz-Woronowics means [16, 17].
But the original proof of the above was based on the integral representation of operator

means, so that we cannot extend the equality in Theorem F to multi-variable means. Under
the closedness of the ranges for operators, we show the equality for our extended (multi-
variable) operator means including the Karcher operator mean:

Moore-Penrose inverse and operator mean 3

Theorem 1. Let M(Aj) = M(ωj ; A1, .., An) be an operator mean (satisfying the orthogonality).
If an operator T on H satisfies ker T ∗ ⊂

∩
j kerAj and ranT is closed, then the transformer

equality holds:
T ∗ M(Aj)T = M(T ∗AjT ).

Proof. Note that ranT ∗ is also closed. Recall that P = TT † and Q = T †T are projections
onto ranT and ranT ∗ respectively, see e.g. [9, 15]. By the assumption ran T⊥ = kerT ∗ ⊂
ker Aj , we have PAjP = Aj for all j. Also QT ∗AjTQ = T ∗AjT implies QM(T ∗AjT )Q =
M(T ∗AjT ) for all j by the orthogonality. Then we have

T ∗ M(Aj)T ≤ M(T ∗AjT ) = Q M(TAjT )Q = T ∗T †∗ M(T ∗AjT )T †T

≤ T ∗ M
(
T †∗T ∗AjTT †)T = T ∗ M(PAjP )T = T ∗ M(Aj)T,

which shows the required equality.

Remark. The assumption ker T ∗ ⊂
∩

j ker Aj in the above is equivalent to ranT ⊃
∨

j ranAj

under the closedness of operators.

Corollary 2. Let m be an (2-variable) operator mean. If kerA ⊂ kerB and ranA is
closed, then

Am B = A
1
2 (I m A†

1
2 BA†

1
2 )A

1
2 = A

1
2 fm(A†

1
2 BA†

1
2 )A

1
2 .

Remark. Contrastively we have

A m B = B
1
2 (B†

1
2 AB†

1
2 m I)B

1
2

if kerB ⊂ kerA and ranB is closed.

3 Means satisfying the kernel condition. Initiated by [5], we observe the kernel
conditions for operator means, see also [7, 8]:

kerA m B ⊃ kerA ∨ kerB (1)

if and only if 1m0 = 0m1 = 0. The geometric or harmonic mean satisfies this, while the
arithmetic mean does not. In [11], we showed kerA#B = kerA ∨ ker B. Moreover, based
on this property, we introduced the Karcher mean X = G(ωj ; Aj) for non-invertible positive
operators Aj under this kernel condition: kerX = ∨j ker Aj .

For invertible operators, we have two expressions:

Am B = A
1
2 (I m A− 1

2 BA− 1
2 )A

1
2 = B

1
2 (B− 1

2 AB− 1
2 m I)B

1
2 . (2)

Then we discuss the means where the inverses in (2) are exchanged into the Moore-Penrose
inverse:

Theorem 3. Let m be an operator mean satisfying the above kernel condition (1). If ranA
(resp. ranB) is closed, then

Am B ≤ A
1
2 (I m A†

1
2 BA†

1
2 )A

1
2

(
resp. ≤ B

1
2 (B†

1
2 AB†

1
2 m I)B

1
2

)
.
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We extend it to non-invertible case in [11], which is an extension of the weighted geo-
metric mean. Moreover in [11], we extended such multi-variable operator mean M(Aj) =
M(ωj ; A1, ...., An) including the Karcher mean: Define an (n-variable) general operator mean
M(ωj ; Aj) as an n-ary operation on positive invertible operators on H satisfying the follow-
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while

X
1
2

√
X† 1

2 Y X† 1
2 X

1
2 =

√
1 + a2P ⊕ 1 − b2

√
1 + b2

P ≥ M1 and

Y
1
2

√
Y † 1

2 XY † 1
2 Y

1
2 =

1 − a2

√
1 + a2

P ⊕
√

1 + b2P ≥ M2.

Acknowledgement. This study is partially supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), JSPS KAKENHI
Grant Number JP 16K05253.

References

[1] W.N.Anderson and R.J.Duffin, Series of parallel addition of matrices, J. Math. Anal. Appl.,
26(1969), 576–594.

[2] T.Ando, “Topics on operator inequalities”, Hokkaido Univ. Lecture Note, 1978.

[3] R.G.Douglas, On majorization, factorization and range inclusion of operators in Hilbert space,
Proc. Amer. Math. Soc., 17(1966), 413-416.

[4] P.A.Fillmore and J.P.Williams, On operator ranges, Adv. in Math., 7(1971), 254–281.

[5] J.I.Fujii, Initial conditions on operator monotone functions, Math. Japon., 23(1979), 667–669.

[6] J.I.Fujii, Izumino’s view of operator means, Math. Japon., 33(1988), 671–675.

[7] J.I.Fujii, Operator means and the relative operator entropy. Operator theory and complex
analysis (Sapporo, 1991), 161–172, Oper. Theory Adv. Appl., 59, Birkhäuser, Basel, 1992.
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Abstract. Let a0, a1, ..., aN be complex numbers. We consider the
Toeplitz matrix TN , where the (i, j)-th component is ai−j if i ≥ j and
aj−i if i < j. If TN is positive and |a0| = |a1| �= 0, then a2, a3, ..., aN can
be represented in terms of a0 and a1 and there exists a unique positive
definite sequence f such that f(i) = ai for any i = 0, 1, 2, ..., N. In
particular, it holds |f(n)| = |a0| for any n. We also provides some
applications related to this fact.

1 Introduction

Let N = {0, 1, 2, ...} and f is a complex-valued function on N. An n×n matrix
A = (aij) with complex entries is said to be positive and it is denoted by A ≥ 0
if

n∑
i,j=1

αiαjaij ≥ 0 for all α1, α2, ..., αn ∈ C.

It is well-known that A ≥ 0 if and only if there exists a k × n matrix B in
which A = B∗B for some k ∈ N \ {0}. We call that f is a positive definite
sequence if, for any positive integer N, the following (N+1)×(N+1) Toeplitz
matrix

TN =




f(0) f(1) · · · f(N)

f(1) f(0)
. . .

...
...

. . . . . . f(1)
f(N) · · · f(1) f(0)




is positive, where the (i, j)-th component of TN is f(i−j) if i ≥ j and f(j − i)
if i < j. We remark that the positivity of TN implies |f(i)| ≤ f(0) for any
i = 1, 2, ..., N.
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For any n ∈ N and θ ∈ R, the function f given by f(n) = enθ
√
−1 is a

positive definite sequence. In fact, for any positive integer N, TN is positive
since

TN =




1 e−θ
√
−1 · · · e−Nθ

√
−1

eθ
√
−1 1

. . .
...

...
. . . . . . e−θ

√
−1

eNθ
√
−1 · · · eθ

√
−1 1




=




1

eθ
√
−1

...

eNθ
√
−1




(
1 e−θ

√
−1 · · · e−Nθ

√
−1
)
≥ 0.

This function is a typical example of positive definite sequence.
Our result is as follows:

Theorem 1. Let N ≥ 1. If |a0| = |a1| �= 0 and

T =




a0 a1 · · · aN

a1 a0
. . .

...
...

. . . . . . a1
aN · · · a1 a0


 ≥ 0,

then there exists a unique positive definite sequence f such that

f(i) = ai for any i = 0, 1, ..., N.

Moreover, it holds

f(n) = f(0)

(
f(1)

f(0)

)n

(in particular, |f(n)| = f(0)) for any n ∈ N \ {0}.

2 Proof of Theorem and Application

Let T =



1 α γ

α 1 β
γ β 1


 where α, β, γ are complex numbers and |α| = 1. The

following fact is known and is used in this paper.

(†) T ≥ 0 if and only if |β| ≤ 1 and γ = αβ.

The statement (†) for operators had been considered in [6], and we extend
as follows:
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Lemma 2. Let u, v, w be bounded linear operators on a Hilbert space H and
u isometric (that is, u∗u = 1). Then

T =



1 u∗ w∗

u 1 v∗

w v 1


 ≥ 0 if and only if ‖v‖ ≤ 1 and w = vu.

Proof. Assume ‖v‖ ≤ 1 and w = vu. Since (1− uu∗)2 = 1− uu∗, we have

T =




1
u
vu


(

1 u∗ u∗v∗
)
+




0
1− uu∗

v(1− uu∗)


(

0 1− uu∗ (1− uu∗)v∗
)

+



0 0 0
0 0 0
0 0 1− vv∗


 ≥ 0.

Conversely, Assume T ≥ 0. Since

(
1 v∗

v 1

)
is positive, we have ‖v‖ ≤ 1.

For any vectors x, y ∈ H, we have

0 ≤

〈
T




x
−ux
y


 ,




x
−ux
y



〉

=

〈


w∗y
v∗y

wx− vux+ y


 ,




x
−ux
y



〉

= 〈w∗y, x〉+ 〈v∗y,−ux〉+ 〈wx− vux+ y, y〉
= 〈y, wx− vux〉+ 〈wx− vux+ y, y〉.

Set y = −(wx− vux), then −‖wx− vux‖2 ≥ 0. This implies w = vu.

Proof of Theorem 1. By the assumption, we have a0 > 0. We want to
show that ai = a0(ai/a0)

i for any i = 1, 2, ..., N.
For each i = 2, 3, ..., N, the matrix




1 (a1/a0) (ai/a0)

a1/a0 1 (ai−1/a0)
ai/a0 ai−1/a0 1


 =

1

a0
E3,iTE

∗
3,i ≥ 0,

where E3,i is a 3× (N + 1) matrix and its (a, b)-th component is

ea,b =

{
1 ; if (a, b) = (1, 1), (2, 2), (3, i+ 1)

0 ; otherwise
.

Since |a1/a0| = 1, we have ai/a0 = (a1/a0)(ai−1a0) for any i = 2, 3, ..., N
by (†). This implies ai = a0(a1/a0)

i for all i = 1, 2, ..., N. By setting f(n) =
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a0(a1/a0)
n for any n ∈ N and continuing the above argument to the larger

number than N, then f is a positive definite sequence with f(i) = ai for any
i = 0, 1, ..., N and

f(n) = f(0)

(
f(1)

f(0)

)n

for any n ∈ N \ {0}.

We assume that there exists another positive definite sequence g with
g(i) = ai for any i = 0, 1, ..., N. For M > N, we then have




g(0) g(1) · · · g(M)

g(1) g(0)
. . .

...
...

. . . . . . g(1)
g(M) · · · g(1) g(0)


 ≥ 0.

Since f(0) = g(0), f(1) = g(1) and |g(0)| = |g(1)|, we have

g(M) = g(0)

(
g(1)

g(0)

)M

= f(0)

(
f(1)

f(0)

)M

= f(M)

by the above argument. So, f = g.

Corollary 3. Let f be a positive definite sequence. If there exists a positive
integer K in which f(0) = |f(K)|, then

f(nK) = f(0)

(
f(K)

f(0)

)n

for any n = 1, 2, ... .

Proof. We may assume that f(0) > 0. Define the (n + 1) × (nK + 1) matrix
Fn,K whose (a, b)-th component is

fa,b =

{
1 ; if (a, b) = (i+ 1, iK + 1) for i = 0, 1, ..., n

0 ; otherwise
.

Then we have

Fn,K




f(0) f(1) · · · f(nK)

f(1) f(0)
. . .

...
...

. . . . . . f(1)
f(nK) · · · f(1) f(0)


F ∗

n,K ≥ 0
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and this matrix is equal to




f(0) f(K) · · · f(nK)

f(K) f(0)
. . .

...
...

. . . . . . f(K)
f(nK) · · · f(K) f(0)


 .

Hence, by Theorem 1 we have

f(nK) = f(0)

(
f(K)

f(0)

)n

.

In the setting of Corollary 3 we have f(0) = |f(nK)| for all n ∈ N.
In general, the sequence {|f(n)|} is not necessarily constant. For instance,

consider the function f(n) = e
2
3
πn

√
−1. It is clear that f and f are positive

definite sequences. Then, so is

g(n) =
f(n) + f(n)

2
= cos

(
2nπ

3

)
,

here we have

g(n) =

{
1 ; if n = 0, 3, 6, 9, ...

−1
2

; if n = 1, 2, 4, 5, 7, 8, ...
.

Let G be a group and e the unit of G. We say a complex-valued function ϕ
on G is positive definite if for any positive integer N and for any g1, g2, ..., gN ∈
G, the following N ×N matrix




ϕ(g−1
1 g1) ϕ(g−1

2 g1) · · · ϕ(g−1
N g1)

ϕ(g−1
1 g2) ϕ(g−1

2 g2) · · · ϕ(g−1
N g2)

...
...

. . .
...

ϕ(g−1
1 gN) ϕ(g−1

2 gN) · · · ϕ(g−1
N gN)


 ≥ 0.

By definition, ϕ(e) ≥ 0, ϕ(g−1) = ϕ(g), and |ϕ(g)| ≤ ϕ(e) and for any g ∈ G.

Corollary 4. Let ϕ be a positive definite function on G with ϕ(e) �= 0 and K
a subgroup of T = {z ∈ C | |z| = 1}. Then

H =

{
g ∈ G

∣∣∣∣∣
ϕ(g)

ϕ(e)
∈ K

}

is a subgroup of G and the function 1
ϕ(e)

ϕ is multiplicative on H.
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Proof. It is obvious that e ∈ H and if g ∈ H, then g−1 ∈ H. Given g, h ∈ H,
then by the assumption we have that the following matrix




ϕ(e) ϕ(g−1) ϕ((gh)−1)
ϕ(g) ϕ(g−1g) ϕ((gh)−1g)
ϕ(gh) ϕ(g−1(gh)) ϕ((gh)−1(gh))


 =




ϕ(e) ϕ(g) ϕ(gh)

ϕ(g) ϕ(e) ϕ(h)
ϕ(gh) ϕ(h) ϕ(e)


 ≥ 0.

By (†), we have
ϕ(gh)

ϕ(e)
=

ϕ(g)

ϕ(e)

ϕ(h)

ϕ(e)
.

It follows that ϕ(gh)/ϕ(e) ∈ K. That is, gh ∈ H.

Let ϕ be a positive definite sequence, that is, a positive definite function
on Z. By Bochner’s theorem (or Herglotz’s theorem [5]), there exists a positive
finite measure µ on T = {z ∈ C | |z| = 1} which is identified by [0, 1)(∼= R/Z)
such that

ϕ(n) =

∫ 1

0

e2π
√
−1nxdµ(x) for all n ∈ Z.

It is known that

µ({0}) = lim
N→∞

1

2N + 1

N∑
n=−N

ϕ(n).

To see this, it suffices to show that

µ({0}) = 0 ⇒ lim
N→∞

1

2N + 1

N∑
n=−N

ϕ(n) = 0

by considering µ − µ({0})δ0 instead of µ, where δ0 is a Dirac measure at 0.
Since | sin x| ≤ |x| and 2x

π
≤ sin x for x ∈

[
0, π

2

]
, we have

∣∣∣∣∣
1

2N + 1

N∑
n=−N

ϕ(n)

∣∣∣∣∣ =
∣∣∣∣∣

1

2N + 1

N∑
n=−N

∫ 1

0

e2π
√
−1nxdµ(x)

∣∣∣∣∣

=

∣∣∣∣
∫ 1

0

1

2N + 1

sin(2N + 1)πx

sin πx
dµ(x)

∣∣∣∣

≤
∫ δ

−δ

∣∣∣∣
1

2N + 1

sin(2N + 1)πx

sin πx

∣∣∣∣ dµ(x)

+

∫ 1−δ

δ

∣∣∣∣
1

2N + 1

sin(2N + 1)πx

sin πx

∣∣∣∣ dµ(x)

≤ π

2
µ((−δ, δ)) +

1

(2N + 1) sin πδ
µ(T).
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for any δ ∈
(
0, 1

2

)
. Hence, lim supN→∞

∣∣∣ 1
2N+1

∑N
n=−N ϕ(n)

∣∣∣ ≤ π
2
µ((−δ, δ)).

Since δ is arbitrary and µ({0}) = 0, then we have limN→∞
1

2N+1

∑N
n=−N ϕ(n) =

0.

Proposition 5. Let ϕ be a positive definite function on Z. If limn→∞ ϕ(n) =
ϕ(0), then ϕ(n) = ϕ(0) for all n ∈ Z.

Proof. Let ϕ(n) =
∫ 1

0
e2π

√
−1nxdµ(x) (n ∈ Z). Then, ϕ(0) = µ(T). Also, we

have µ({0}) = limN→∞
1

2N+1

∑N
n=−N ϕ(n) = ϕ(0). This means that µ is a non-

negative scalar multiple of Dirac measure at 0 and so we have ϕ(n) = ϕ(0)
for all n ∈ Z.

Corollary 6. Let ϕ be a positive definite function on a group G and G is
generated by {gi | i ∈ I}. If

lim
n→∞

ϕ(gni ) = ϕ(e) for all i ∈ I,

then ϕ(g) = ϕ(e) for all g ∈ G.

Proof. Wemay assume that ϕ(e) �= 0. By assumption and since limn→∞ ϕ(gni ) =
ϕ(e), we have ϕ(gni ) = ϕ(e) for all n by Proposition 5. In particular ϕ(gi) =
ϕ(e) for all i ∈ I. Set

H =

{
g ∈ G

∣∣∣∣∣
ϕ(g)

ϕ(e)
∈ {1}

}
.

Using Corollary 4, we conclude thatH is a subgroup of G. Since G is generated
by {gi | i ∈ I} and gi ∈ H for any i ∈ I, we have ϕ(g) = ϕ(e) for all g ∈ G.

Remark. Let ϕ be a positive definite function on the additive group R.
We assume that the sequence {ϕ(nx)}∞n=1 converges to ϕ(0) for any x ∈ R.
If ϕ is continuous, then there exists a finite positive measure µ on R such
that ϕ(x) =

∫
R e

√
−1txdµ(t) (x ∈ R) by Bochner’s theorem. We can prove

ϕ(x) = ϕ(0) by using the fact

µ({0}) = lim
T→∞

1

2T

∫ T

−T

ϕ(x)dµ(x)

(see [3]:Appendices A.4). Without the assumption of the continuity of ϕ, we
can also have ϕ(x) = ϕ(0) by Corollary 6.
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Abstract. This paper is devoted to studying a complete two-dimensional Daisyworld model
on a sphere. The Daisyworld model which has been originally introduced by Andrew Watson
and James Lovelock (1983) describes the process of planetary self-regulating homeostasis by a
biota and its environment. After formulating our two-dimensional model, we construct global
solutions, dynamical systems and exponential attractors. We also show some numerical results
suggesting pattern formation of stripe segregation.

1 Introduction We are concerned with the initial-boundary value problem for a reaction-diffusion
system

(1.1)




∂u

∂t
= d∆u+ [(1− u− v)Φ(u, v, w)− f ]u in S × (0,∞),

∂v

∂t
= d∆v + [(1− u− v)Ψ(u, v, w)− f ] v in S × (0,∞),

∂w

∂t
= D∆w + [1− g(u, v)]R(ω)− σw4 in S × (0,∞),

u(ω, 0) = u0(ω), v(ω, 0) = v0(ω), w(ω, 0) = w0(ω) in S,

on a sphere S ⊂ R3. This is a tutorial mathematical model originally introduced by Watson-
Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)

= (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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ab ≤ g(u, v) ≤ aw. Furthermore, Φ(u, v, w) and Ψ(u, v, w) denote a growth rate of white and black
daisy, respectively. According to [20], they are set as

Φ(u, v, w) = {1− δ(w − w − q[g(u, v)− aw])
2}+,

Ψ(u, v, w) = {1− δ(w − w − q[g(u, v)− ab])
2}+.

Here, w is a fixed optimal temperature for growing for both white daisy and black daisy. The term
q[g(u, v)−aw] (resp. q[g(u, v)−ab]) means some suitable adjustment on a local temperature to the
global one (i.e., w) at each position where white daisy (resp. black daisy) grows, q > 0 being some
coefficient. Since g(u, v) ≤ aw (resp. g(u, v) ≥ ab), we see that w is always adjusted negatively
(resp. positively) where white daisy (resp. black daisy) grows. The notation {w}+ = max{w, 0}
denotes a positive cutoff of the function w for −∞ < w < ∞; consequently, {1− δ(w − w)2}+ is a
positive cutoff of the square function 1− δ(w−w)2 for −∞ < w < ∞, δ > 0 being some coefficient.
Both white daisy and black daisy die at a rate f > 0. Finally, the term [1 − g(u, v)]R(x) denotes
an increasing rate of the global temperature which is determined by the averaged albedo g(u, v)
mentioned above and the incoming energy R(ω) from the sun which is a function of ω ∈ S hitting its
maximum on the equator and vanishing at the two poles. And, the term −σw4 denotes a decaying
rate of the temperature due to the Stefan-Boltzmann law, σ > 0 being the Stefan-Boltzmann
constant of the surface.

A planetary biota modifies its environment and its environment regulates a biota by natural
selection. Self-regulating homeostatic system is an idea that the feedback between a biota and its
environment keeps the planetary surface environment stable and habitable for a biota. Daisyworld
has been introduced by Lovelock [13] as a simple parable to verify a hypothesis that the Earth
maintain self-regulating homeostasis (see Lovelock-Margulis [14] and Lenton [12]). In the original
Daisyworld model due to Watson-Lovelock [20], the whole planet is regarded as a single point. The
model is governed by rather simple rules: black daisies absorb more incoming energy, while white
daisies reflect more. They showed that the competition of daisies controls the global albedo of the
planet and regulate the global temperature to be more suitable for daisies. Their results suggested
a possibility that the Daisyworld model is very valuable for understanding the mechanisms of self-
regulating homeostasis of the Earth. The Daisyworld model was analyzed by several authors (e.g.,
[7, 16]), on the other hand, that inspired many modifications and extensions. Adams-Carr [2] and
Adams-Carr-Lenton-White [3] extended the original model to one-dimensional one including varia-
tion of incoming solar energy and heat diffusion on the sphere. The one-dimensional model retains
the temperature regulation and shows a stripe pattern that shows two types of daisies segregate.
A two-dimensional extension of the Daisyworld model based on cellular automata was introduced
by von Bloh-Block-Schellnhuber [19]. In [19], the equation for heat transfer on Daisyworld is gov-
erned by a simple energy balance equation and the spatial distribution of daisies are determined
by discretized equations. Additional extensional models based on the two-dimensional one were
presented (e.g., [1, 23]).

In this paper, we want to consider a complete two-dimensional version of the Daisyworld model
adding diffusion terms of daisies on a sphere. After formulating our model as a reaction-diffusion
equations on the sphere, we will analytically construct local solutions, global solutions, dynami-
cal systems and exponential attractors. In the last section, we will show some numerical results
suggesting two-dimensional pattern formation of the Turing type.

We denote by S a sphere given by

S ≡ {ω = (x, y, z) ∈ R3; x2 + y2 + z2 = ℓ2}
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with radius ℓ > 0. And, ∆ denotes a Laplace operator on S, namely, ∆ is a Laplace-Beltrami
operator on S whose definition will be reviewed in the next section. Following [3], we assume that
the solar energy incident on the surface is parallel to the latitude lines. The incoming energy R(ω)
thus arrives symmetrically with respect to the equator, and it is given by

(1.2) R(ω) = R0

√
1− (z/ℓ)2, ω = (x, y, z) ∈ S,

with some coefficient R0 > 0.

2 Diffusion equations on S. The theory of diffusion equations on Riemannian manifolds is
already well known (see, e.g., [5]). It is however constructed in a very general context only using
Riemannian metrics and without using any information in which Euclidean spaces the manifolds
are embedded. On the other hand, in order to treat nonlinear diffusion equations like (1.1), the
functional analytical approach has a great advantage over other ones.

By this reason, we want to review in this section the theory of diffusion equations on S using
the fact that S is a special Riemannian manifold embedded in R3.

2.1 Local coordinates of S. We will use two polar coordinates in R3. First one is the usual
one. Let H1 = {(x, y, z) ∈ R3; y = 0, x ≥ 0}. For P = (x, y, z) ∈ R3 −H1, put

(2.1)




x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ,

where r =
√
x2 + y2 + z2, θ is the zenithal angle of OP and z-axis and ϕ is the azimuthal angle

of OQ and x-axis, Q = (x, y, 0) being the projected point of P on the xy-plane. Therefore (r, θ, ϕ)
varies in 0 < r < ∞, 0 < θ < π and 0 < ϕ < 2π.

Second one is defined in R3−H2, where H2 = {(x, y, z) ∈ R3; z = 0, x ≤ 0}. For P = (x, y, z) ∈
R3 −H2, put

(2.2)




x = r sinϑ cosφ,

z = r sinϑ sinφ,

y = r cosϑ,

where r =
√
x2 + y2 + z2, ϑ is the zenithal angle of OP and y-axis and φ is the azimuthal angle of

OQ and x-axis, Q = (x, 0, z) being the projected point of P on the xz-plane. Now (r, ϑ, φ) varies
in 0 < r < ∞, 0 < ϑ < π and −π < φ < π.

These polar coordinates immediately provide a local coordinate system for S. Let S1 = S −Γ1,
where Γ1 = S ∩ H1. Then, fixing r = ℓ, we get from (2.1) a homeomorphism Θ1 :S1 → D1 with
D1 = {(θ, ϕ); 0 < θ < π, 0 < ϕ < 2π}. Similarly, setting S2 = S − Γ2, where Γ2 = S ∩ H2, we
get from (2.2) a homeomorphism Θ2 :S2 → D2 with D2 = {(ϑ, φ); 0 < ϑ < π, −π < φ < π}. By
{(Si, Θi)}i=1,2, S becomes a differentiable manifold.

Let {ψi(ω)}i=1,2 be a partition of unity subordinate to {Si, Θi}, that is, ψi(ω) are smooth
functions on S such that 0 ≤ ψi(ω) ≤ 1, ψ1(ω) + ψ2(ω) ≡ 1 on S and supp ψi ⊂ Si. We need also
suitable rectangular domains Gi ⊂ Di. For i = 1, 2, let Gi be a rectangular domain such that

Θi(suppψi) ⊂ Gi ⊂ Gi ⊂ Di.
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We equip S with the surface measure dω. For 1 ≤ p ≤ ∞, Lp(S) is the space of all measurable
functions such that |f(ω)|p is integrable on S. By the usual Lp-norm, Lp(S) is a Banach space.
When p = 2, L2(S) is a Hilbert space with the usual inner product. Of course, f ∈ Lp(S) if and
only if ψif ∈ Lp(Si) for i = 1, 2; furthermore, ψif ∈ Lp(Si) if and only if (ψif) ◦ Θ−1

i ∈ Lp(Gi)
with norm equivalence of ∥ψif∥Lp(Si) and ∥(ψif) ◦Θ−1

i ∥Lp(Gi).

2.2 Laplace-Beltrami operator on S. Let us denote by ∇S the gradient operator acting to
the differentiable functions on S.

In S1, ∇Su is described by the polar coordinate (2.1) in the form

(2.3) ∇Su =
1

ℓ

(
cos θ cosϕ

∂u

∂θ
− sinϕ

sin θ

∂u

∂ϕ
, cos θ sinϕ

∂u

∂θ
+

cosϕ

sin θ

∂u

∂ϕ
, − sin θ

∂u

∂θ

)
.

If ω ∈ S1, then the normal vector for S at ω is given by nω = (sin θ cosϕ, sin θ sinϕ, cos θ). Thereby,
it is directly verified that ∇Su(ω) · nω = 0, i.e., ∇Su(ω) is a tangential vector of S at ω.

It is the same for the description of ∇S on S2.

We can then give a definition of the first order Sobolev space H1(S) on S using ∇S . In fact,
H1(S) is the space of all functions u ∈ L2(S) for which |∇Su| also belong to L2(S). It is easy to
see that u ∈ H1(S) if and only if ψiu ∈ H1(S) for i = 1, 2. Furthermore, in S1 it follows from (2.3)
that

|∇Su|2 =
1

ℓ2

[(
∂u

∂θ

)2

+
1

sin2 θ

(
∂u

∂ϕ

)2
]
.

Hence, ψ1u ∈ H1(S) if and only if (ψ1u) ◦ Θ−1
1 ∈ H1(G1). It is the same for ψ2u ∈ H1(S). We

equip H1(S) with the inner product

(u, v)H1 =

∫

S

(∇Su · ∇Sv + uv)dω, u, v ∈ H1(S).

Then, H1(S) becomes a Hilbert space. The norm ∥ψiu∥H1 is equivalent to ∥(ψiu) ◦Θ−1
i ∥H1(Gi) for

i = 1, 2.

We are now led to define the Laplace-Beltrami operator ∆S by

(2.4) ∆S = ∇S · ∇S .

In view of (2.3), in S1 we observe that

(2.5) ∆Su =
1

ℓ2

[
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂ϕ2

]
.

In S2, too, the similar description of ∆S by means of (2.2) is verified.

2.3 Realization of ∆S in L2(S). In order to formulate (1.1) in the space L2(S), we have to
define ∆S as a linear operator acting in L2(S). For this purpose, we consider the sesquilinear
form a(u, v) = (u, v)H1 , u, v ∈ H1(S). Trivially, a(u, v) is continuous and coercive on H1(S).
For each u ∈ H1(S), the mapping v �→ a(u, v) is an anti-linear continuous functional on H1(S).
Then, elements u ∈ H1(S) for which the mappings are continuous in the topology of L2(S) are
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picked up. By the Riesz theorem, for such a u, there exists a unique element f ∈ L2(S) such that
a(u, v) = (f, v)L2 for all v ∈ H1(S). We then set Λu = f , that is,

{
D(Λ) = {u ∈ H1(S); (u, v)H1 = (f, v)L2

for all v ∈ H1(S)},
Λu = f.

It is immediate to see that u �→ f = Λu is a linear operator from D(Λ) into L2(S). Moreover, the
theory of variation (see Dautray-Lions [6]) provides that D(Λ) is dense in L2(S) and Λ is a positive
definite self-adjoint operator of L2(S). Furthermore, D(Λ) is shown to coincide with the second
order Sobolev space H2(S) which consists of functions u ∈ L2(S) such that (ψiu) ◦Θ−1

i ∈ H2(Gi)
for i = 1, 2.

We here set A = Λ− 1 with D(A) = D(Λ) = H2(S). By definition, it holds for u ∈ D(A) that

(Au, v)L2
=

∫

S

∇Su · ∇Svdω for all v ∈ H1(S).

Therefore, A is a nonnegative self-adjoint operator of L2(S). And, Au = 0 implies |∇Su|2 ≡ 0
and hence u ≡ const. In the meantime, by integration by parts we verify that Au = −∆Su for
u ∈ D(A). Hence, A is a realization of −∆S in the space L2(S). Since D(A) is compactly embedded
in L2(Ω), A can be decomposed of the form

(2.6) Au =

∞∑
k=0

λk(u, ek)L2ek,

where λk are eigenvalues of A and ek(ω) are eigenfunctions of A corresponding to λk, respectively.
Clearly,

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → ∞.

Meanwhile, ek(ω) compose an orthonormal basis of L2(S). As noticed above, e0(ω) must be a
constant function on S, hence e0(ω) ≡ 1

2
√
πℓ
.

2.4 Semigroup generated by −A. Since A is a nonnegative self-adjoint operator, −A generates
an analytic and contraction semigroup e−tA, 0 ≤ t < ∞, on L2(S). As the minimal eigenvalue λ0

is zero, we have just

(2.7) ∥e−tA∥L(L2(S)) = 1 for any 0 ≤ t < ∞.

For any initial function u0 ∈ L2(S), e
−tA gives a unique solution to the Cauchy problem of diffusion

equation

(2.8)





∂u

∂t
= ∆Su in S × (0,∞),

u(ω, 0) = u0(ω) in S,

on S. Indeed, u(t) = e−tAu0 is a unique solution to (2.8) in the function space:

u ∈ C((0,∞);H2(S)) ∩ C([0,∞);L2(S)) ∩ C1((0,∞);L2(S)).
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From (2.6), e−tAu0 can be expressed by

(2.9) e−tAu0 =
∞∑
k=0

e−λkt(u0, ek)L2
ek, u0 ∈ L2(S).

The formula (2.9) immediately provides various properties of the solution u(t) to (2.8) as follows:

(1) If u0 ≥ 0, then e−tAu0 ≥ 0 for any 0 < t < ∞.

(2) It holds that
∫
S
e−tAu0dω =

∫
S
u0dω for any 0 < t < ∞.

(3) Let P0u0 = (u0, e0)L2e0 be the projection from L2(S) onto the eigenspace of λ0 = 0. Then,

(2.10) ∥e−tA − P0∥L(L2(S)) ≤ e−λ1t for any 0 ≤ t < ∞.

(4) As an operator from L2(S) into H1(S), e−tA satisfies

(2.11) ∥∇Se
−tA∥L(L2(S)) ≤

(
λ1 +

1

et

) 1
2

e−λ1t for any 0 < t < ∞.

(5) As an operator from L2(S) into H2(S), e−tA satisfies

(2.12) ∥∆Se
−tA∥L(L2(S)) ≤

(
λ1 +

1

et

)
e−λ1t for any 0 < t < ∞.

The estimate (2.10) follows from

∥e−tAu0 − P0u0∥L2
= e−λ1t

( ∞∑
k=1

e−2(λk−λ1)t|(u0, ek)L2
|2

) 1
2

≤ e−λ1t∥u0∥L2
.

Similarly, the estimate (2.12) follows from

∥∆Se
−tAu0∥L2 = ∥Ae−tAu0∥L2 =

�����
∞∑
k=1

λke
−λkt(u0, ek)L2ek

�����
L2

= e−λ1t

�����
∞∑
k=1

[t−1(λk − λ1)t+ λ1]e
−(λk−λ1)t(u0, ek)L2

ek

�����
L2

≤ e−λ1t[t−1e−1 + λ1]∥u0∥L2
.

Finally, the estimate (2.11) is observed by

∥∇Se
−tAu0∥2L2

= (Ae−tAu0, [e
−tA − P0]u0)L2 ≤ ∥Ae−tAu0∥L2∥[e−tA − P0]u0∥L2

≤ ∥Ae−tA∥L(L2(S))∥e−tA − P0∥L(L2(S))∥u0∥2L2
.

3 Construction of Solutions. In this section, we shall construct global solutions to the Cauchy
problem (1.1) and a dynamical system generated by them. We begin with formulating (1.1) in an
abstract form (cf. [11, 17, 24]).
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3.1 Abstract formulation. We consider (1.1) in the product L2-space

X =


U =



u
v
w


 ; u ∈ L2(S), v ∈ L2(S), w ∈ L2(S)


 ,

X being a complex Hilbert space by the usual inner product. Let A be a linear operator acting in
X which is given by

A =



dA 0 0
0 dA 0
0 0 DA


 ,

where A is the realization of −∆S in L2(S) introduced in Section 2. Then, A is a nonnega-
tive self-adjoint operator of X and generates an analytic semigroup e−tA which is expressed by
diag {e−tdA, e−tdA, e−tDA} on X. It then follows from (2.7) that

(3.1) ∥e−tA∥L(X) ≤ 1 for 0 ≤ t < ∞.

Moreover, it is seen from (2.11) that

∥∇Se
−tdA∥L(L2(S)) ≤

(
λ1 +

1

edt

) 1
2

e−dλ1t for 0 < t < ∞,

∥∇Se
−tDA∥L(L2(S)) ≤

(
λ1 +

1

eDt

) 1
2

e−Dλ1t for 0 < t < ∞.

As a consequence,

(3.2) ∥∇Se
−tA∥L(X) ≤

(
λ1 +

1

edt

) 1
2

e−dλ1t for 0 < t < ∞.

From the view point of modeling, we may expect that the solutions exist in the ranges of
u ≥ 0, v ≥ 0, u+ v ≤ 1 and 0 ≤ w ≤ (R0/σ)

1
4 . On account of these range conditions, we introduce

a nonlinear operator F of X by

F(U) =



[χ1(1− Reu− Re v)Φ(χ1(Reu), χ1(Re v), χ2(Rew))− f ]χ1(Reu)
[χ1(1− Reu− Re v)Ψ(χ1(Reu), χ1(Re v), χ2(Rew))− f ]χ1(Re v)

[1− g(χ1(Reu), χ1(Re v))]R(ω)− σχ2(Rew)
4


 .

Here, χ1(ξ) and χ2(ξ) are cutoff functions defined by

χ1(ξ) =




0, −∞ < ξ ≤ 0,

ξ, 0 < ξ ≤ 1,

1, 1 < ξ < ∞,

χ2(ξ) =




0, −∞ < ξ ≤ 0,

ξ 0 < ξ ≤ (R0/σ)
1
4 ,

(R0/σ)
1
4 , (R0/σ)

1
4 < ξ < ∞,

respectively.
The problem (1.1) is then formulated as the Cauchy problem

(3.3)




dU

dt
+AU = F(U), 0 < t < ∞,

U(0) = U0,
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in X, where U(t) = t(u(t), v(t), w(t)) is an unknown function and U0 is an initial value. As for the
space of initial values, we set

(3.4) K =


U0 =



u0

v0
w0


 ∈ X; u0 ≥ 0, v0 ≥ 0, u0 + v0 ≤ 1, 0 ≤ w0 ≤

(
R0

σ

) 1
4


 .

It is clear that χ1(ξ) and χ2(ξ) are uniformly bounded and globally Lipschitz continuous func-
tions for −∞ < ξ < ∞. Consequently, Φ(χ1(Reu), χ1(Re v), χ2(Rew)) and Ψ(χ1(Reu), χ1(Re v),
χ2(Rew)) are uniformly bounded and globally Lipschitz continuous functions for (u, v, w) ∈ C3.
Therefore, it is easily verified that F is a bounded operator and satisfies the Lipschitz condition,
i.e.,

∥F(U)∥X ≤ C1, U ∈ X,(3.5)

∥F(U)− F(V )∥X ≤ C2∥U − V ∥X , U, V ∈ X,(3.6)

with suitable constants Ci > 0 (i = 1, 2).
It is then possible to apply the general theory of abstract parabolic evolution equations, see [24,

Theorem 4.4], to (3.3) to obtain that, for any U0 ∈ K, there exists a unique local solution to (3.3)
in the function space:

U ∈ C((0, TU0 ];D(A)) ∩ C([0, TU0 ];X) ∩ C1((0, TU0 ];X).

Here, the time TU0 > 0 is determined by the norm ∥U0∥X alone.

3.2 Global solutions. We can verify that the local solution U(t) constructed above takes its
values in K.

Proposition 3.1. The condition U0 ∈ K implies that U(t) ∈ K for any 0 < t ≤ TU0
.

Proof. It is easy to verify that, if U(t) is a local solution of (3.3), then its complex conjugate U(t)
is also a local solution with the same initial condition. Therefore, U(t) = U(t) and U(t) is real
valued.

Firstly, let us see that u(t) ≥ 0. For this purpose, we use a C2-cutoff function H(u) given by

H(u) =




1
2u

2 + 1
2u+ 1

6 , −∞ < u ≤ −1,

−1
6u

3, −1 ≤ u < 0,

0, 0 ≤ u < ∞.

Put h(t) =
∫
S
H(u(ω, t))dω. Then, for 0 < t ≤ TU0

,

dh1

dt
(t) =

∫

S

H ′(u)
∂u

∂t
dω = d

∫

S

H ′(u)∆Su dω

+

∫

S

H ′(u)[χ1(1− u− v)Φ(χ1(u), χ1(v), χ2(w))− f ]χ1(u) dω.

Since ∫

S

H ′(u)∆Sudω = −
∫

S

∇SH
′(u) · ∇Sudω = −

∫

S

H ′′(u)|∇Su|2dω ≤ 0
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Abstract. This paper is devoted to studying a complete two-dimensional Daisyworld model
on a sphere. The Daisyworld model which has been originally introduced by Andrew Watson
and James Lovelock (1983) describes the process of planetary self-regulating homeostasis by a
biota and its environment. After formulating our two-dimensional model, we construct global
solutions, dynamical systems and exponential attractors. We also show some numerical results
suggesting pattern formation of stripe segregation.

1 Introduction We are concerned with the initial-boundary value problem for a reaction-diffusion
system

(1.1)




∂u

∂t
= d∆u+ [(1− u− v)Φ(u, v, w)− f ]u in S × (0,∞),

∂v

∂t
= d∆v + [(1− u− v)Ψ(u, v, w)− f ] v in S × (0,∞),

∂w

∂t
= D∆w + [1− g(u, v)]R(ω)− σw4 in S × (0,∞),

u(ω, 0) = u0(ω), v(ω, 0) = v0(ω), w(ω, 0) = w0(ω) in S,

on a sphere S ⊂ R3. This is a tutorial mathematical model originally introduced by Watson-
Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)

= (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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and since H ′(u)χ1(u) ≡ 0 for −∞ < u < ∞, it follows that dh
dt (t) ≤ 0, i.e., h(t) ≤ h(0) = 0 for any

0 < t ≤ TU0 .
The same arguments for v(t) conclude that v(t) ≥ 0 for any 0 < t ≤ TU0

.
Secondly, in order to see that u(t) + v(t) ≤ 1, we notice that z(t) = 1− u(t)− v(t) is regarded

as a solution to

∂z

∂t
= d∆Sz − [Φ(χ1(u), χ1(v), χ2(w)) + Ψ(χ1(u), χ1(v), χ2(w))]χ1(z) + f [χ1(u) + χ1(v)].

We can then repeat the same arguments as for u(t) and v(t) to conclude that z(t) ≥ 0 for any
0 < t ≤ TU0 .

Thirdly, let us observe that 0 ≤ w ≤ (R0/σ)
1
4 for any 0 < t ≤ TU0

. The verification that

w(t) ≥ 0 is the same as for u(t) and v(t). Putting w1(t) = (R0/σ)
1
4 − w(t), we notice due to (1.2)

that
∂w1

∂t
= D∆Sw1 − σ[R0/σ − χ2(w)

4] +R0

{
1 + [g(u, v)− 1]

√
1− (z/ℓ)2

}
.

Then, put h1(t) =
∫
S
H(w1(ω, t))dω. Since H

′((R0/σ)
1
4 −w)[R0/σ−χ2(w)

4] ≡ 0 for −∞ < w < ∞,

it follows that dh1

dt (t) ≤ 0, i.e., h1(t) ≤ h1(0) = 0. Hence, (R0/σ)
1
4 − w(t) ≥ 0 for any 0 < t ≤

TU0
.

This proposition shows that the norm ∥U(t)∥X remains uniformly bounded on the interval
[0, TU0

]. This then means that one can always extend any local solution with a uniform time
interval. Therefore, we obtain the following existence result.

Theorem 3.1. For any U0 ∈ K, (3.3) possesses a unique global solution U(t) in the function space:

U ∈ C((0,∞);D(A)) ∩ C([0,∞);X) ∩ C1((0,∞);X).

As verified by Proposition 3.1 U(t) takes its values in K for all 0 < t < ∞. Thereby, χ1(u(t)) =
u(t), χ1(v(t)) = v(t), χ1(1− u(t) − v(t)) = 1 − u(t) − v(t) and χ2(w(t)) = w(t) for all 0 < t < ∞.
This in turn shows that the global solution U(t) of (3.3) can be considered as a global solution to
the original problem (1.1), too.

Let us finally verify global norm estimate and continuous dependence of solutions on initial
values.

Theorem 3.2. Let U0 ∈ K and let U(t) be the global solution of (3.3). Then,

(3.7) ∥∇SU(t)∥X ≤ C3

[(
1 +

1

t

) 1
2

e−dλ1t∥U0∥X + 1

]
for 0 < t < ∞

with some constant C3.

Proof. By Duhamel’s formula, U(t) can be written as

U(t) = e−tAU0 +

∫ t

0

e−(t−s)AF(U(s))ds.

Thereby,

∇SU(t) = ∇Se
−tAU0 +

∫ t

0

∇Se
−(t−s)AF(U(s))ds.
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Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)

= (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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Due to (3.2) and (3.5), we have

∥∇SU(t)∥X ≤
(
λ1 +

1

edt

) 1
2

e−dλ1t∥U0∥X + C1

∫ t

0

(
λ1 +

1

ed(t− s)

) 1
2

e−dλ1(t−s)ds

≤
(
λ1 +

1

edt

) 1
2

e−dλ1t∥U0∥X + C1

∫ ∞

0

(
λ1 +

1

eds

) 1
2

e−dλ1sds.

Hence, (3.7) is verified.

Theorem 3.3. Let U0, V0 ∈ K and let U(t) and V (t) be the global solutions of (3.3) with initial
values U0 and V0, respectively. Then,

∥U(t)− V (t)∥X ≤ eC2t∥U0 − V0∥X for 0 ≤ t < ∞,(3.8)

∥∇S [U(t)− V (t)]∥X ≤ C4

[(
1 +

1

t

) 1
2

+ teC2t

]
∥U0 − V0∥X for 0 < t < ∞(3.9)

with some constant C4.

Proof. By Duhamel’s formula again, we have

U(t)− V (t) = e−tA[U0 − V0] +

∫ t

0

e−(t−s)A[F(U(s))− F(V (s))]ds.

In view of (3.1) and (3.6),

∥U(t)− V (t)∥X ≤ ∥U0 − V0∥X + C2

∫ t

0

∥U(s)− V (s)∥Xds.

Hence, (3.8) is obtained.

Similarly, from

∇S [U(t)− V (t)] = ∇Se
−tA[U0 − V0] +

∫ t

0

∇Se
−(t−s)A[F(U(s))− F(V (s))]ds,

it is estimated by (3.2), (3.6) and (3.8) that

∥∇S [U(t)− V (t)]∥X

≤

[(
λ1 +

1

edt

) 1
2

e−dλ1t + C2

∫ t

0

(
λ1 +

1

ed(t− s)

) 1
2

e−dλ1(t−s)+C2s

]
∥U0 − V0∥X

≤

[(
λ1 +

1

edt

) 1
2

+ C2e
C2t

∫ t

0

(
λ1 +

1

ed(t− s)

) 1
2

ds

]
∥U0 − V0∥X .

Hence, (3.9) has been verified.
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Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)

= (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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4 Dynamical Systems This section is devoted to constructing a dynamical system determined
by (3.3) and showing existence of attractor sets. For this purpose, however, it suffices to simply
follow the general procedure that is known for the Cauchy problems of semilinear abstract parabolic
evolution equations, see [24, Section 6.5].

For U0 ∈ K, let U(t;U0) denote the global solution of (3.3), and set

S(t)U0 = U(t;U0), 0 ≤ t < ∞.

Then, S(t) is a nonlinear semigroup acting on K, i.e., S(0) = I and S(t + s) = S(t)S(s) for
0 ≤ s, t < ∞. Furthermore, S(t) is seen to be continuous in the sense that (t, U0) �→ S(t)U0 is
continuous from [0,∞)×K into X. Indeed, fix (t, U0) ∈ [0,∞)×K. Due to (3.8),

∥S(t′)U ′
0 − S(t)U0∥X ≤ ∥S(t′)U ′

0 − S(t′)U0∥X + ∥S(t′)U0 − S(t)U0∥X
≤ eC2t

′
∥U ′

0 − U0∥X + ∥S(t′)U0 − S(t)U0∥X .

Then, (t′, U ′
0) → (t, U0) implies S(t′)U ′

0 → S(t)U0 in X. Hence, S(t) defines a dynamical system in
the space X which is denoted by (S(t),K,X) (cf. [4, 18]). The phase space K is a bounded, closed
subset of X.

As well known, the dissipative estimate (3.7) provides existence of the global attractor. Set a
subset B of K by

B = K ∩
{
U ∈ [H1(S)]3; ∥∇U∥X ≤ C3 + 1

}
.

Then, (3.7) means that there is a time T such that S(t)K ⊂ B for every t ≥ T , i.e., B is an
absorbing set. In addition, B is a compact set of X. Therefore, B is a compact absorbing set of
(S(t),K,X). It is clear that S(t)B ⊂ B for every t ≥ T . So, we set again a subset of K by

K =
∪

0≤t≤T

S(t)B.

Then, S(t)K ⊂ K for every t > 0, i.e., K is an invariant set. Therefore, K is not only compact and
absorbing but also invariant. This means that the asymptotic behavior of trajectories of (S(t),K,X)
can be reduced to a sub dynamical system (S(t),K, X) in which the phase space K is a compact
set of X.

By the usual arguments, it is seen that B =
∩

0≤t<∞ S(t)K becomes a global attractor of
(S(t),K, X).

Furthermore, thanks to the estimate (3.9), we can construct the exponential attractors. Re-
member that a subset M ⊂ K satisfying the following conditions is called an exponential attractor
of (S(t),K, X):

1. M is a compact subset of X with finite fractal dimension.

2. M includes the global attractor B.

3. M is an invariant set, i.e., S(t)M ⊂ M for every t > 0.

4. There exists an exponent k > 0 such that

h(S(t)K,M) ≤ C5e
−kt, 0 < t < ∞,

with a constant C5 > 0.

Sci. Math. Japonicae Vol. , No. (), – 1

Abstract. This paper is devoted to studying a complete two-dimensional Daisyworld model
on a sphere. The Daisyworld model which has been originally introduced by Andrew Watson
and James Lovelock (1983) describes the process of planetary self-regulating homeostasis by a
biota and its environment. After formulating our two-dimensional model, we construct global
solutions, dynamical systems and exponential attractors. We also show some numerical results
suggesting pattern formation of stripe segregation.

1 Introduction We are concerned with the initial-boundary value problem for a reaction-diffusion
system

(1.1)




∂u

∂t
= d∆u+ [(1− u− v)Φ(u, v, w)− f ]u in S × (0,∞),

∂v

∂t
= d∆v + [(1− u− v)Ψ(u, v, w)− f ] v in S × (0,∞),

∂w

∂t
= D∆w + [1− g(u, v)]R(ω)− σw4 in S × (0,∞),

u(ω, 0) = u0(ω), v(ω, 0) = v0(ω), w(ω, 0) = w0(ω) in S,

on a sphere S ⊂ R3. This is a tutorial mathematical model originally introduced by Watson-
Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)

= (aw − ag)u+ (ab − ag)v + ag,
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Here, h(K1,K2) = supF∈K1
infG∈K2 ∥F −G∥X is a semi-distance of two subsets K1 and K2 of K.

As explained in [24, Section 6.4], the compact smoothing property

∥S(t∗)U0 − S(t∗)V0∥H1(S) ≤ C6∥U0 − V0∥X , U0, V0 ∈ K,

of S(t∗) with any fixed time t∗ > 0 provides existence of exponential attractors. But, in the present
case, this property is nothing more than the estimates (3.8) and (3.9).

In this way, we have obtained the following theorem.

Theorem 4.1. The dynamical system (S(t),K,X) possesses exponential attractors.

Proof. As explained above, we already know that there exists an exponential attractor M for
(S(t),K, X). Then, as S(T )K ⊂ B ⊂ K, it is readily verified that M is an exponential attractor
for (S(t),K,X), too.

5 Some Numerical Results We shall conclude this paper with illustrating some numerical ex-
amples. Let us consider (1.1) in the sphere S with ℓ = 1. Numerical methods for partial differential
equations on the spheres have been widely developed in the field of geodynamo simulations. For
example, Yin-Yang grid by Kageyama-Sato [9], Cubed Sphere grid by Ronchi-Iacono-Paolucci [15],
Half-Step-Shifted grid (e.g., [8]) and a method of applying l’Hospital’s rule on the pole grids (e.g.,
[10]), see also the review of Williamson [21]. These numerical methods have in general a trade-off
between computational cost and their accuracy.

We use the explicit Half-Step-Shifted grid scheme. As surveyed below, this scheme is based on
the traditional finite difference methods with the spherical polar coordinate system. For spatial
discretization, the i-th colatitude grid point θi and the j-th longitude grid point ϕj are defined by

θi =

(
i− 1

2

)
∆θi, (i = 1, 2, · · · , N),

ϕj = j∆ϕ, (j = 0, 1, · · · ,M),

respectively, where N and M denote the numbers of grid points. And the n-th time step is defined
by tn = n∆t. We assume that ∆θi is a non-uniform grid spacing which is smaller near the poles,
while ∆ϕ is a uniform one (∆ϕ = 2π/M). This scheme is a simple idea which the horizontal grid
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biota and its environment. After formulating our two-dimensional model, we construct global
solutions, dynamical systems and exponential attractors. We also show some numerical results
suggesting pattern formation of stripe segregation.

1 Introduction We are concerned with the initial-boundary value problem for a reaction-diffusion
system

(1.1)
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∂v

∂t
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∂w
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= D∆w + [1− g(u, v)]R(ω)− σw4 in S × (0,∞),

u(ω, 0) = u0(ω), v(ω, 0) = v0(ω), w(ω, 0) = w0(ω) in S,

on a sphere S ⊂ R3. This is a tutorial mathematical model originally introduced by Watson-
Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)

= (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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Meanwhile, we set the parameters in (1.1) as: d = 10−6, D = 1.0, aw = 0.75, ag = 0.50, ab =
0.25, δ = 0.003265, f = 0.3, w = 295.5, q = 40 and σ = 5.67 × 10−8. The incoming energy R(θ) is
taken as

R(θ) =
4 · 917

π
L sin θ

where L = 0.85 is the same as in Watson-Lovelock [20]. Initial functions u0(θ, ϕ), v0(θ, ϕ), w0(θ, ϕ)
are constructed by slightly perturbing constant functions ū0(θ, ϕ) ≡ 0.321, v̄0(θ, ϕ) ≡ 0.291 and
w̄0(θ, ϕ) ≡ 290.96 for (θ, ϕ) ∈ (0, π) × [0, 2π). In numerical computations, we apply the periodic
boundary conditions at j = 0 and j = M and the latitudinal boundary conditions:

U0,j = U1,M2 +j , UN+1,j = UN,M2 +j , (j = 0, 1, ...,M/2) ,

U0,j = U1,−M
2 +j , UN+1,j = UN,−M

2 +j , (j = M/2 + 1, ..., J) ,

at i = 1 and i = N . It is the same for Vi,j and Wi,j .

The numerical solution to (1.1) stabilizes asymptotically. About t = 600, its evolution shows
down evidently. This may mean that the solution is attracted by the global attractor. Fig.1
illustrates the graphs of u(θ, ϕ, t), v(θ, ϕ, t), w(θ, ϕ, t) at t = 600.

Their graphs show a clear segregation strip pattern. The interface is given by zigzag curves
which are almost parallel with the equator.

Similar results are obtained by another numerical method.
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Fig. 1: (a) Graph of u(θ, ϕ), (b) Graph of v(θ, ϕ) and (c) Graph of w(θ, ϕ) at time t = 600.

Sci. Math. Japonicae Vol. , No. (), – 1

Abstract. This paper is devoted to studying a complete two-dimensional Daisyworld model
on a sphere. The Daisyworld model which has been originally introduced by Andrew Watson
and James Lovelock (1983) describes the process of planetary self-regulating homeostasis by a
biota and its environment. After formulating our two-dimensional model, we construct global
solutions, dynamical systems and exponential attractors. We also show some numerical results
suggesting pattern formation of stripe segregation.

1 Introduction We are concerned with the initial-boundary value problem for a reaction-diffusion
system

(1.1)




∂u

∂t
= d∆u+ [(1− u− v)Φ(u, v, w)− f ]u in S × (0,∞),

∂v

∂t
= d∆v + [(1− u− v)Ψ(u, v, w)− f ] v in S × (0,∞),

∂w

∂t
= D∆w + [1− g(u, v)]R(ω)− σw4 in S × (0,∞),

u(ω, 0) = u0(ω), v(ω, 0) = v0(ω), w(ω, 0) = w0(ω) in S,

on a sphere S ⊂ R3. This is a tutorial mathematical model originally introduced by Watson-
Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
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Abstract. This paper is devoted to studying a complete two-dimensional Daisyworld model
on a sphere. The Daisyworld model which has been originally introduced by Andrew Watson
and James Lovelock (1983) describes the process of planetary self-regulating homeostasis by a
biota and its environment. After formulating our two-dimensional model, we construct global
solutions, dynamical systems and exponential attractors. We also show some numerical results
suggesting pattern formation of stripe segregation.

1 Introduction We are concerned with the initial-boundary value problem for a reaction-diffusion
system
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∂w

∂t
= D∆w + [1− g(u, v)]R(ω)− σw4 in S × (0,∞),

u(ω, 0) = u0(ω), v(ω, 0) = v0(ω), w(ω, 0) = w0(ω) in S,

on a sphere S ⊂ R3. This is a tutorial mathematical model originally introduced by Watson-
Lovelock [20] in order to investigate how the mechanism of global homeostasis works in Daisyworld
which was ideally set as a biological and climatological system. Daisyworld is an imaginary planet
that has only two types of daisies with contrasting brightness. They are expressly referred to as
white and black daisy. On the planet, there are enough water and nutrients to sustain daisies, and
thus the temperature is an only factor affecting the growth of daisies (for the details, see the review
of Wood-Ackland-Dyke-Williams-Lenton [22]).

Unknown functions u = u(ω, t) and v = v(ω, t) denote a coverage rate of white and black daisy,
respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)

= (aw − ag)u+ (ab − ag)v + ag,

where aw, ab and ag denote the proper albedo of white daisy, black daisy and bare ground, respec-
tively. In general, we have 0 < ab < ag < aw < 1; as a consequence, it is always the case that
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respectively, at position ω ∈ S and time t. Therefore, u ≥ 0, v ≥ 0 and u+ v ≤ 1 at any (ω, t), and
1− u− v denotes a rate of uncovered ground. The third unknown function w = w(ω, t) denotes a
surface temperature. We assume that u and v satisfy a diffusion equation on S with diffusion rate
d > 0. It is the same for w with diffusion rate D > 0. So, ∆ denotes a Laplace operator on the
sphere S. It is natural to assume that 0 < d < D. The function g(u, v) stands for an averaged
albedo of the surface that is given at each point as a function of u, v in the form

g(u, v) = awu+ abv + ag(1− u− v)
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1

BIFURCATIONS WITH MULTI-DIMENSIONAL KERNEL IN A
CHEMOTAXIS-GROWTH SYSTEM

Taka-akiAoki andKoichiOsaki

Abstract. We study the bifurcation problem for a chemotaxis-growth system with lo-
gistic growth in a two-dimensional rectangular domain. We apply the local bifurcation
theorem by Ambrosetti and Prodi that does not require one-dimensional degeneration
of the linearized operator around trivial solutions. We then obtain bifurcation solu-
tions with two- and three-dimensional degeneration indicating spatially regular nesting
patterns.

1 Introduction.
Budrene and Berg [2, 3] found that the chemotactic bacteria E. coli form remarkable macro-
scopic regular patterns in their colony, resulting from the interplay between diffusion, chemo-
taxis and growth. Mimura and Tsujikawa [12] studied the following chemotaxis-growth
system to elucidate the mechanisms for pattern formation processes:

(E)




∂u

∂t
= d∆u− χ∇ · (u∇ρ) + f(u) in Ω× (0,∞),

∂ρ

∂t
= ∆ρ− bρ+ cu in Ω× (0,∞),

∂u

∂n
=

∂ρ

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω.

Here, Ω ⊂ R2 is a bounded domain with boundary ∂Ω, and ∂/∂n denotes the derivative
with respect to the outer normal of ∂Ω. The function u(x, t) is the population density of the
chemotactic bacteria at position x ∈ Ω and time t ∈ [0,∞), and ρ(x, t) is the concentration
of chemical substance that is produced by the individuals. The function f(u) denotes the
growth of u, and several different forms have been proposed for f(u) [7, 16]. We assume in
this paper that f(u) is a logistic saturating growth function,

f(u) = au(1− µu),

where a and µ are positive constants. The other coefficients b, c, d and χ are also positive
constants. The advection term −χ∇· (u∇ρ) corresponds to chemotaxis of bacteria, and the
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∗, 0) ∈ L(X;Y ), should degenerate,
that is, L is not invertible, and then V := K(L) ̸= {0}. Let us denote R := R(L). Assume
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also that V has a topological complement W in X, and R is closed and also has a topological
complement Z in Y :

X = V ⊕W, Y = R⊕ Z.

The Taylor expansion of F (λ, u) around (λ, u) = (λ∗, 0) is expressed as

(2.2) F (λ∗ + µ, u) = Lu+ µMu+
1

2
B[u, u] + ψ(µ, u),

where M := Fuλ(λ
∗, 0), B := Fuu(λ

∗, 0), and ψ(µ, u) is a smooth function such that
ψ(µ, 0) ≡ 0, ψu(0, 0) = 0, ψuu(0, 0) = 0, and ψλu(0, 0) = 0.

By denoting the solution as u = µ(v+w), Ambrosetti and Prodi [1] derived a bifurcation
equation with conjugate projections

P : Y → Z, Q : Y → R.

By substituting u = µ(v + w) into the equation, we have

PM(v + w) +
1

2
PB[v + w, v + w] + µPψ̃(µ, v, w) = 0,(2.3)

Φ̃(µ, v, w) := Lw + µQM(v + w) +
1

2
µQB[v + w, v + w] + µ2Qψ̃(µ, v, w) = 0.(2.4)

Here, ψ(µ, µ(v + w)) = µ3ψ̃(µ, v, w) for a smooth function ψ̃(µ, v, w). Since Φ̃(0, v, 0) = 0
for any v ∈ V and Φ̃w(0, v, 0) = L ̸= 0, the nonlinear equation Φ̃(µ, v, w) = 0 (which
generally has an infinite number of dimensions) can be uniquely solved in w around the
neighborhood Λ × V × W of (µ, v, w) = (0, v∗, 0), where v∗ ∈ V is arbitrarily fixed in V .
Then, the component w can be expressed uniquely as w = µγ(µ, v) ∈ W, (µ, v) ∈ Λ × V,
with a smooth function γ depending on v∗. Substituting this into the equation (2.3) (which
is finite dimensional in a favorable case, e.g. L is a Fredholm operator), we obtain the
bifurcation equation for Λ× V:

(2.5) N(µ, v) := PM(v + µγ(µ, v)) +
1

2
PB[v + µγ(µ, v), v + µγ(µ, v)]

+ µPψ̃(µ, v, µγ(µ, v)) = 0 ∈ Z,

where N(µ, v) is smooth. We here note again that when the dimension of the subspace
Z ⊂ Y is finite, the bifurcation equation (2.5) consists of a finite number of equations.

The multi-dimensional bifurcation theorem introduced by Ambrosetti and Prodi [1] is
as follows:

Theorem 2.1. [1, Theorem 5.1, p.102] Assume that two Banach spaces X and Y satisfy
the conditions that V = K(L) has a topological complement in X, and R = R(L) is closed
and has a topological complement in Y . Assume also that: for the nonlinear problem (2.5),
there exists v∗ ∈ V , v∗ ̸= 0, such that

(a) N(0, v∗) = PMv∗ + 1
2PB[v∗, v∗] = 0;

(b) the linear operator Nv(0, v
∗) = S : V → Z, Sv = PMv + PB[v∗, v], is invertible.

Then, there exists a local branch of nontrivial solutions (λ, u(λ)) to (2.1) which bifurcates
from (λ∗, 0) such that

λ = λ∗ + µ, u = µ [v∗ + µṽ(µ)],

where ṽ(µ) is a smooth function of µ. �
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around U = U∗ is calculated as

(3.3) L

[
h
k

]
=

[
d∆h− χ∗

µ ∆k − ah

∆k + ch− bk

]
=

[
d∆− a −χ∗

µ ∆

c ∆− b

] [
h
k

]
,

[
h
k

]
∈ X;

and we also obtain the second order derivatives of F (χ,U) as follows:

M

[
h
k

]
= FU,χ(χ

∗, U∗)

[
h
k

]
=

[
− 1

µ∆k

0

]
,

B

([
h
k

]
,

[
h̃

k̃

])
= FU,U (χ

∗, U∗)

([
h
k

]
,

[
h̃

k̃

])
=

[
−χ∗[∇ · (h∇k̃) +∇ · (h̃∇k)]− 2aµhh̃

0

]

for T [h k], T [h̃ k̃] ∈ X. From the above we can set the bifurcation equation N(λ, U) = 0
for (SE) in the neighborhood of (0, U∗) ∈ (−ε, ε)× V with χ = χ∗ + λ and small ε.

We introduce double cosine functions for the usual orthogonal basis of L2(Ω) under
homogeneous Neumann boundary conditions:

{ϕm(x)ψn(y) | m,n ≥ 0} , ϕm(x) = cos(lmx), ψn(y) = cos(
√
3lny).

Then, the orthogonal basis of Y is induced as:
{

T [hmn ϕm(x)ψn(y) kmn ϕm(x)ψn(y) ] | m,n ≥ 0
}
.

Proposition 3.1. The linearized operator L = FU (χ∗, U∗) degenerates at χ∗ = χ(m,n),
where χ(m,n) is defined as

(3.4) χ(m,n) :=
µ

c

[
dl2(m2 + 3n2) +

ab

l2(m2 + 3n2)
+ a+ bd

]
.

Proof. Consider the linearized equation L T [k h] = 0 with homogeneous Neumann bound-
ary condition ∂h

∂n = ∂k
∂n = 0 on ∂Ω. Substituting the two cosine Fourier series for h(x, y)

and k(x, y):

(3.5)

[
h
k

]
=

∞∑
m,n=0

[
hmn

kmn

]
ϕm(x)ψn(y)

to the linearized equation, we have an equivalent equation for each Fourier coefficient
T [hmn kmn] such that

(3.6)

[
−dl2(m2 + 3n2)− a χ

µ l
2(m2 + 3n2)

c −l2(m2 + 3n2)− b

][
hmn

kmn

]
=

[
0

0

]
, m, n ∈ N.

This indicates that there exists a nontrivial solution T [hmn kmn] to (3.6), if and only if the
following characteristic equation holds:

(3.7)

����
−dl2(m2 + 3n2)− a χ

µ l
2(m2 + 3n2)

c −l2(m2 + 3n2)− b

����
= [ dl2(m2 + 3n2) + a ][ l2(m2 + 3n2) + b ]− χ

c

µ
l2(m2 + 3n2) = 0.

Solving this for χ, we have (3.4). �
Let V be the kernel of the linearized operator L: V = K(L). Then, for the composition

of V we have:
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Proposition 3.2. The kernel V is the linear span of the cosine Fourier basis

Φmn :=

[
1

ηmn

]
ϕm(x)ψn(y)

of which modes (m,n) satisfy the characteristic equation (3.7), where

ηmn =
c

l2(m2 + 3n2) + b
.

Proof. The proof is given in Kuto et al. [11, Theorem 5.1]. �

4 Two-dimensional kernel bifurcation of chemotaxis-growth model.
Kuto et al. [11] studied the bifurcation with two-dimensional kernel for (SE) by restricting
the functional space to 2π/3-rotational symmetry. The multiplicity occurred in the lowest
Fourier modes (m,n) = (2, 0) and (1, 1), in the sense thatm2+3n2 = 22+3·02 = 12+3·12 =
4, and there are not multiple solutions of (m,n) for m2 + 3n2 ≤ 3.

In this section, we study the two-dimensional kernel bifurcation under the multiplicity
of Fourier modes (m,n) = (2, 0) and (1, 1) without a one-dimensional kernel restriction.
The kernel V is actually the linear span of the two Fourier bases:

V = span {Φ20, Φ11} ,

and hence dimV = 2. Since R and W are isomorphic on L|W , Z is the same linear span:

Z = span {Φ20, Φ11} .

The projection P : Y → Z is naturally introduced as:

(4.1) P Φ =
⟨Φ,Φ20⟩Y
∥Φ20∥2Y

Φ20 +
⟨Φ,Φ11⟩Y
∥Φ11∥2Y

Φ11 ∈ Z, Φ ∈ Y,

Where ∥Φ20∥2Y = (1+π2)π2

2
√
3l2

and ∥Φ11∥2Y = (1+π2)π2

4
√
3l2

.

We extract v∗ ∈ V satisfying the sufficient conditions (a) and (b) in Theorem 2.1. By
denoting

(4.2) v∗ = αΦ20 + β Φ11 :=

[
v∗1
v∗2

]
∈ V ; α, β ∈ R,

we first determine α and β, as v∗ satisfies the condition (a). The values Mv∗ and B[v∗, v∗]
are calculated as:

(4.3) Mv∗ =

[
− 1

µ∆v∗2
0

]
=

[
4l2η20

µ [αϕ2(x) + βϕ1(x)ψ1(y)]

0

]
,

(4.4) B[v∗, v∗] =

[
−2

[
χ∗ (∇ · (v∗1∇v∗2)) + aµ(v∗1)

2
]

0

]
=

[
−η20χ

∗∆(v∗1)
2 − 2aµ(v∗1)

2

0

]
.

By straightforward calculation we have

⟨Mv∗,Φ20⟩Y
∥Φ20∥2Y

=
4l2η20

µ(1 + η220)
α,

⟨Mv∗,Φ11⟩Y
∥Φ11∥2Y

=
4l2η20

µ(1 + η220)
β.
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chemotactic bacteria at position x ∈ Ω and time t ∈ [0,∞), and ρ(x, t) is the concentration
of chemical substance that is produced by the individuals. The function f(u) denotes the
growth of u, and several different forms have been proposed for f(u) [7, 16]. We assume in
this paper that f(u) is a logistic saturating growth function,

f(u) = au(1− µu),

where a and µ are positive constants. The other coefficients b, c, d and χ are also positive
constants. The advection term −χ∇· (u∇ρ) corresponds to chemotaxis of bacteria, and the
coefficient χ indicates the intensity of chemotaxis.

In this article, we consider a bifurcation problem for the stationary state of (E). In a
two-dimensional rectangular domain, Kuto et al. [11] proved that one-mode bifurcations
occurred for the uniform state (u, ρ) = (1/µ, c/(µb)), that is, stripe and rectangle patterns
occurred along destabilized x and y-directional double Fourier modes. Kuto et al. [11] also
showed solutions for a hybrid mode bifurcation that formed hexagonal patterns. In the
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We then obtain

(4.5) PMv∗ =
4l2η20

µ(1 + η220)
(αΦ20 + βΦ11) .

Similarly, since

⟨B[v∗, v∗],Φ20⟩Y
∥Φ20∥2Y

=
2χ∗l2η20 − aµ

2(1 + η220)
β2,

⟨B[v∗, v∗],Φ11⟩Y
∥Φ11∥2Y

=
2(2χ∗l2η20 − aµ)

1 + η220
αβ,

we have

(4.6) PB[v∗, v∗] =
2χ∗l2η20 − aµ

2(1 + η220)

(
β2Φ20 + 4αβΦ11

)
.

From the above, the condition (a) of Theorem 2.1 results in

(4.7) PMv∗ +
1

2
PB[v∗, v∗] =

1

4(1 + η220)µ

[
16l2η20α+ µ(2χ∗l2η20 − aµ)β2

]
Φ20

+
β

(1 + η220)µ

[
4l2η20 + µ(2χ∗l2η20 − aµ)α

]
Φ11 = 0.

As Φ20 and Φ11 are linearly independent in Y , we obtain the coefficients (α, β) ̸= (0, 0) under

the condition 2χ∗l2η20−aµ ̸= 0 where (α, β) = (A,−2A), (A, 2A) with A = − 4l2η20

µ(2χ∗l2η20−aµ) .

This shows that the v∗ satisfying condition (a) are the following two candidates:

(4.8) v∗ = A (Φ20 − 2Φ11), A (Φ20 + 2Φ11), where A = − 4l2η20
µ(2χ∗l2η20 − aµ)

.

We display the profiles of these functions in Figure 1.
We here note that the latter result was first demonstrated in [11], and the former is newly

derived in this paper, indeed, the former result does not have 2π/3-rotational symmetry
(see Figure 2).

Next, we consider the condition (b), that is, the invertibility of the operator S : V → Z,
Sv = PMv + PB[v∗, v], v ∈ V , with v∗ ∈ V fixed as in (4.8). Let us denote v ∈ V as

(4.9) v = ηΦ20 + ζ Φ11 :=

[
v1
v2

]
; η, ζ ∈ R.

Then, we have

(4.10) Mv =

[
− 1

µ∆v2
0

]
=

[
4l2η20

µ [ηϕ2(x) + ζϕ1(x)ψ1(y)]

0

]
,

(4.11) B[v∗, v] =

[
−χ∗ [∇ · (v∗1∇v2) +∇ · (v1∇v∗2)]− 2aµv∗1v1

0

]

=

[
−η20χ

∗∆(v∗1v1)− 2aµv∗1 v1
0

]
.

Since
⟨Mv,Φ20⟩Y
∥Φ20∥2Y

=
4l2η20

µ(1 + η220)
η,

⟨Mv,Φ20⟩Y
∥Φ11∥2Y

=
4l2η20

µ(1 + η220)
ζ,

1

BIFURCATIONS WITH MULTI-DIMENSIONAL KERNEL IN A
CHEMOTAXIS-GROWTH SYSTEM

Taka-akiAoki andKoichiOsaki

Abstract. We study the bifurcation problem for a chemotaxis-growth system with lo-
gistic growth in a two-dimensional rectangular domain. We apply the local bifurcation
theorem by Ambrosetti and Prodi that does not require one-dimensional degeneration
of the linearized operator around trivial solutions. We then obtain bifurcation solu-
tions with two- and three-dimensional degeneration indicating spatially regular nesting
patterns.

1 Introduction.
Budrene and Berg [2, 3] found that the chemotactic bacteria E. coli form remarkable macro-
scopic regular patterns in their colony, resulting from the interplay between diffusion, chemo-
taxis and growth. Mimura and Tsujikawa [12] studied the following chemotaxis-growth
system to elucidate the mechanisms for pattern formation processes:

(E)




∂u

∂t
= d∆u− χ∇ · (u∇ρ) + f(u) in Ω× (0,∞),

∂ρ

∂t
= ∆ρ− bρ+ cu in Ω× (0,∞),

∂u

∂n
=

∂ρ

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω.

Here, Ω ⊂ R2 is a bounded domain with boundary ∂Ω, and ∂/∂n denotes the derivative
with respect to the outer normal of ∂Ω. The function u(x, t) is the population density of the
chemotactic bacteria at position x ∈ Ω and time t ∈ [0,∞), and ρ(x, t) is the concentration
of chemical substance that is produced by the individuals. The function f(u) denotes the
growth of u, and several different forms have been proposed for f(u) [7, 16]. We assume in
this paper that f(u) is a logistic saturating growth function,

f(u) = au(1− µu),

where a and µ are positive constants. The other coefficients b, c, d and χ are also positive
constants. The advection term −χ∇· (u∇ρ) corresponds to chemotaxis of bacteria, and the
coefficient χ indicates the intensity of chemotaxis.

In this article, we consider a bifurcation problem for the stationary state of (E). In a
two-dimensional rectangular domain, Kuto et al. [11] proved that one-mode bifurcations
occurred for the uniform state (u, ρ) = (1/µ, c/(µb)), that is, stripe and rectangle patterns
occurred along destabilized x and y-directional double Fourier modes. Kuto et al. [11] also
showed solutions for a hybrid mode bifurcation that formed hexagonal patterns. In the
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Figure 1: Plots of the functions belonging to the two-dimensional kernel V =
span{Φ20,Φ11}. The spatial domain is Ω = (0, 4π) × (0, 4

√
3π). (a1) v∗ = A(Φ20 − 2Φ11)

with A = 1 > 0. (a2) v∗ = A(Φ20 − 2Φ11) with A = −1 < 0. (b1) v∗ = A(Φ20 +2Φ11) with
A = 1 > 0. (b2) v∗ = A(Φ20 + 2Φ11) with A = −1 < 0.

Figure 2: The spanning v∗ in the spatial domain (−4π, 4π) × (−4
√
3π, 4

√
3π). The white

horizontal and vertical lines represent the x and y axes, respectively. The black lines
are auxiliary axes in the directions of π/6, 5π/6, 3π/2. (a) v∗ = A(Φ20 − 2Φ11) with
A = −1 < 0, which does not have 2π/3-rotational symmetry. And, (b) v∗ = A(Φ20 +2Φ11)
with A = −1 < 0, which have 2π/3-rotational symmetry.

1

BIFURCATIONS WITH MULTI-DIMENSIONAL KERNEL IN A
CHEMOTAXIS-GROWTH SYSTEM

Taka-akiAoki andKoichiOsaki

Abstract. We study the bifurcation problem for a chemotaxis-growth system with lo-
gistic growth in a two-dimensional rectangular domain. We apply the local bifurcation
theorem by Ambrosetti and Prodi that does not require one-dimensional degeneration
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tions with two- and three-dimensional degeneration indicating spatially regular nesting
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Budrene and Berg [2, 3] found that the chemotactic bacteria E. coli form remarkable macro-
scopic regular patterns in their colony, resulting from the interplay between diffusion, chemo-
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= d∆u− χ∇ · (u∇ρ) + f(u) in Ω× (0,∞),
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∂t
= ∆ρ− bρ+ cu in Ω× (0,∞),

∂u

∂n
=

∂ρ

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω.

Here, Ω ⊂ R2 is a bounded domain with boundary ∂Ω, and ∂/∂n denotes the derivative
with respect to the outer normal of ∂Ω. The function u(x, t) is the population density of the
chemotactic bacteria at position x ∈ Ω and time t ∈ [0,∞), and ρ(x, t) is the concentration
of chemical substance that is produced by the individuals. The function f(u) denotes the
growth of u, and several different forms have been proposed for f(u) [7, 16]. We assume in
this paper that f(u) is a logistic saturating growth function,

f(u) = au(1− µu),

where a and µ are positive constants. The other coefficients b, c, d and χ are also positive
constants. The advection term −χ∇· (u∇ρ) corresponds to chemotaxis of bacteria, and the
coefficient χ indicates the intensity of chemotaxis.

In this article, we consider a bifurcation problem for the stationary state of (E). In a
two-dimensional rectangular domain, Kuto et al. [11] proved that one-mode bifurcations
occurred for the uniform state (u, ρ) = (1/µ, c/(µb)), that is, stripe and rectangle patterns
occurred along destabilized x and y-directional double Fourier modes. Kuto et al. [11] also
showed solutions for a hybrid mode bifurcation that formed hexagonal patterns. In the
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we then obtain

PMv =
4l2η20

µ(1 + η220)
(ηΦ20 + ζΦ11) .

Similarly, since

⟨B[v∗, v],Φ20⟩Y
∥Φ20∥2Y

=
2l2η20

µ(1 + η220)
ζ,

⟨B[v∗, v],Φ11⟩Y
∥Φ11∥2Y

=
4l2η20

µ(1 + η220)
(η − ζ),

we have

PB[v∗, v] =
2l2η20

µ(1 + η220)
[ζΦ20 + 2(η − ζ)Φ11] .

From this, it follows that

Sv =

(
4l2η20

µ(1 + η220)
η +

2l2η20
µ(1 + η220)

ζ

)
Φ20 +

4l2η20
µ(1 + η220)

ηΦ11 := [Φ20 Φ11] �S
[
η
ζ

]
.

Here, �S is the representation matrix of S:

�S =
2l2η20

µ(1 + η220)

[
2 1

2 0

]
.

Since

det �S = − 8l4η220
µ2(1 + η220)

2
̸= 0,

the operator S is isomorphic.

We finally arrive at the main result of this section.

Theorem 4.1. Let v∗ ∈ V be the functions defined in (4.8), and χ∗ = χ(m,n). Then,
under the conditions

2χ∗l2η20 − aµ ̸= 0,

there exists a local branch of nontrivial solutions (χ(λ), U(λ)) ∈ (0,∞) ×X to (SE), with
small parameter λ ∈ (−ε, ε), which bifurcate from (χ∗, U∗) such that

χ(λ) = χ∗ + λ, U(λ) = U∗ + λ[ v∗ + λṽ(λ) ],

where ṽ(λ) is a smooth function of λ.

5 Three-dimensional kernel bifurcation of chemotaxis-growth model.
In this section, we study the lowest dimension-three bifurcation along the Fourier modes
(m,n) = (1, 3), (4, 2), (5, 1). Indeed, these are the triple solutions for m2 + 3n2 = 28, and
there are no triple solutions for the case m2 + 3n2 ≤ 27. Three-dimensional bifurcation is
not analyzed in [11].

The kernel V is the linear span of the three Fourier bases:

V = span {Φ13, Φ42, Φ51} ,

and hence dimV = 3. Since R and W are isomorphic on L|W , Z is the same linear span:

Z = span {Φ13, Φ42, Φ51} .
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system to elucidate the mechanisms for pattern formation processes:
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∂t
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=

∂ρ

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω.

Here, Ω ⊂ R2 is a bounded domain with boundary ∂Ω, and ∂/∂n denotes the derivative
with respect to the outer normal of ∂Ω. The function u(x, t) is the population density of the
chemotactic bacteria at position x ∈ Ω and time t ∈ [0,∞), and ρ(x, t) is the concentration
of chemical substance that is produced by the individuals. The function f(u) denotes the
growth of u, and several different forms have been proposed for f(u) [7, 16]. We assume in
this paper that f(u) is a logistic saturating growth function,

f(u) = au(1− µu),

where a and µ are positive constants. The other coefficients b, c, d and χ are also positive
constants. The advection term −χ∇· (u∇ρ) corresponds to chemotaxis of bacteria, and the
coefficient χ indicates the intensity of chemotaxis.

In this article, we consider a bifurcation problem for the stationary state of (E). In a
two-dimensional rectangular domain, Kuto et al. [11] proved that one-mode bifurcations
occurred for the uniform state (u, ρ) = (1/µ, c/(µb)), that is, stripe and rectangle patterns
occurred along destabilized x and y-directional double Fourier modes. Kuto et al. [11] also
showed solutions for a hybrid mode bifurcation that formed hexagonal patterns. In the
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The projection P : Y → Z is naturally introduced as:

(5.1) P Φ =
⟨Φ,Φ13⟩Y
∥Φ13∥2Y

Φ13 +
⟨Φ,Φ42⟩Y
∥Φ42∥2Y

Φ42 +
⟨Φ,Φ51⟩Y
∥Φ51∥2Y

Φ51 ∈ Z, Φ ∈ Y,

where ∥Φ13∥2Y =
(1+η2

13)π
2

4
√
3l2

, ∥Φ42∥2Y =
(1+η2

13)π
2

4
√
3l2

and ∥Φ51∥2Y =
(1+η2

13)π
2

4
√
3l2

.

We set v∗ ∈ V so as to satisfy the sufficient conditions (a) and (b) in Theorem 2.1. By
denoting

(5.2) v∗ = αΦ13 + β Φ42 + γ Φ51 :=

[
v∗1
v∗2

]
∈ V ; α, β, γ ∈ R,

we first determine α, β and γ, as v∗ satisfies the condition (a). The values Mv∗ and
B[v∗, v∗] are calculated as:

(5.3) Mv∗ =

[
− 1

µ∆v∗2
0

]
=

[
28l2η13

µ [αϕ1(x)ψ3(y) + βϕ4(x)ψ2(y) + γϕ5(x)ψ1(y)]

0

]
,

(5.4) B[v∗, v∗] =

[
−2

[
χ∗ (∇ · (v∗1∇v∗2)) + aµ(v∗1)

2
]

0

]
=

[
−η13χ

∗∆(v∗1)
2 − 2aµ(v∗1)

2

0

]
.

By straightforward calculation we have

⟨Mv∗,Φ13⟩Y
∥Φ13∥2Y

=
28l2η13

µ(1 + η213)
α,

⟨Mv∗,Φ42⟩Y
∥Φ42∥2Y

=
28l2η13

µ(1 + η213)
β,

⟨Mv∗,Φ51⟩Y
∥Φ51∥2Y

=
28l2η13

µ(1 + η213)
γ.

We then obtain

(5.5) PMv∗ =
28l2η13

µ(1 + η213)
(αΦ13 + β Φ42 + γ Φ51) .

Similarly, since

⟨B[v∗, v∗],Φ13⟩Y
∥Φ13∥2Y

=
14χ∗l2η13 − aµ

1 + η213
βγ,

⟨B[v∗, v∗],Φ42⟩Y
∥Φ42∥2Y

=
14χ∗l2η13 − aµ

1 + η213
γα,

⟨B[v∗, v∗],Φ51⟩Y
∥Φ51∥2Y

=
14χ∗l2η13 − aµ

1 + η213
αβ,

we have

(5.6) PB[v∗, v∗] =
14χ∗l2η13 − aµ

1 + η213
(βγ Φ13 + γαΦ42 + αβ Φ51) .

From the above, the condition (a) of Theorem 2.1 gives

(5.7) PMv∗ +
1

2
PB[v∗, v∗] =

1

2µ(1 + η213)

([
56l2η13α+ µ(14χ∗l2η13 − aµ)βγ

]
Φ13

+
[
56l2η13β + µ(14χ∗l2η13 − aµ)γα

]
Φ42

+
[
56l2η13γ + µ(14χ∗l2η13 − aµ)αβ

]
Φ51

)
= 0.
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theorem by Ambrosetti and Prodi that does not require one-dimensional degeneration
of the linearized operator around trivial solutions. We then obtain bifurcation solu-
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1 Introduction.
Budrene and Berg [2, 3] found that the chemotactic bacteria E. coli form remarkable macro-
scopic regular patterns in their colony, resulting from the interplay between diffusion, chemo-
taxis and growth. Mimura and Tsujikawa [12] studied the following chemotaxis-growth
system to elucidate the mechanisms for pattern formation processes:
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= d∆u− χ∇ · (u∇ρ) + f(u) in Ω× (0,∞),
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∂t
= ∆ρ− bρ+ cu in Ω× (0,∞),
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∂n
=

∂ρ

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω.

Here, Ω ⊂ R2 is a bounded domain with boundary ∂Ω, and ∂/∂n denotes the derivative
with respect to the outer normal of ∂Ω. The function u(x, t) is the population density of the
chemotactic bacteria at position x ∈ Ω and time t ∈ [0,∞), and ρ(x, t) is the concentration
of chemical substance that is produced by the individuals. The function f(u) denotes the
growth of u, and several different forms have been proposed for f(u) [7, 16]. We assume in
this paper that f(u) is a logistic saturating growth function,

f(u) = au(1− µu),

where a and µ are positive constants. The other coefficients b, c, d and χ are also positive
constants. The advection term −χ∇· (u∇ρ) corresponds to chemotaxis of bacteria, and the
coefficient χ indicates the intensity of chemotaxis.

In this article, we consider a bifurcation problem for the stationary state of (E). In a
two-dimensional rectangular domain, Kuto et al. [11] proved that one-mode bifurcations
occurred for the uniform state (u, ρ) = (1/µ, c/(µb)), that is, stripe and rectangle patterns
occurred along destabilized x and y-directional double Fourier modes. Kuto et al. [11] also
showed solutions for a hybrid mode bifurcation that formed hexagonal patterns. In the
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As Φ13, Φ42 and Φ51 are linearly independent in Y , we obtain the coefficients (α, β, γ) ̸=
(0, 0, 0) under the condition 14χ∗l2η13 − aµ ̸= 0 that (α, β, γ) = ( �A, �A, �A), ( �A,− �A,− �A),

(− �A, �A,− �A), (− �A,− �A, �A) with �A = − 56l2η13

µ(14χ∗l2η13−aµ) . This shows that the v∗ satisfying

the condition (a) are the following four candidates:

(5.8) v∗ = �A (Φ13 +Φ42 +Φ51), �A (Φ13 − Φ42 − Φ51),

�A (−Φ13 +Φ42 − Φ51), �A (−Φ13 − Φ42 +Φ51), where �A = − 56l2η13
µ(14χ∗l2η13 − aµ)

.

We display the profiles of these functions in Figure 3. We here note that only the first
v∗ = �A (Φ13 +Φ42 +Φ51) has 2π/3-rotational symmetry (see Figure 4).

Next, we consider the condition (b), that is, the invertibility of the operator S : V → Z,
Sv = PMv + PB[v∗, v], v ∈ V , with v∗ ∈ V fixed as in (5.8). Let us denote v ∈ V as

(5.9) v = ηΦ13 + ζ Φ42 + ξΦ51 :=

[
v1
v2

]
; η, ζ, ξ ∈ R.

Then, we have

(5.10) Mv =

[
− 1

µ∆v2
0

]
=

[
28l2η13

µ [η ϕ1(x)ψ3(y) + ζ ϕ4(x)ψ2(y) + ξ ϕ5(x)ψ1(y)]

0

]
,

(5.11) B[v∗, v] =

[
−χ∗ [∇ · (v∗1∇v2) +∇ · (v1∇v∗2)]− 2aµv∗1v1

0

]

=

[
−η13χ

∗∆(v∗1v1)− 2aµv∗1v1
0

]
.

Since

⟨Mv,Φ13⟩Y
∥Φ13∥2Y

=
28l2η13

µ(1 + η213)
η,

⟨Mv,Φ42⟩Y
∥Φ42∥2Y

=
28l2η13

µ(1 + η213)
ζ,

⟨Mv,Φ51⟩Y
∥Φ51∥2Y

=
28l2η13

µ(1 + η213)
ξ,

we then obtain

PMv =
28l2η13

µ(1 + η213)
(ηΦ13 + ζΦ42 + ξΦ51) .

Similarly, since

⟨B[v∗, v],Φ13⟩Y
∥Φ13∥2Y

= − 28l2η13
µ(1 + η213)

(ζ + ξ) ,

⟨B[v∗, v],Φ42⟩Y
∥Φ42∥2Y

= − 28l2η13
µ(1 + η213)

(ξ + η) ,

⟨B[v∗, v],Φ51⟩Y
∥Φ51∥2Y

= − 28l2η13
µ(1 + η213)

(η + ζ) ,

we have

PB[v∗, v] = − 28l2η13
µ(1 + η213)

[(ζ + ξ)Φ13 + (ξ + η)Φ42 + (η + ζ)Φ51].
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coefficient χ indicates the intensity of chemotaxis.
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two-dimensional rectangular domain, Kuto et al. [11] proved that one-mode bifurcations
occurred for the uniform state (u, ρ) = (1/µ, c/(µb)), that is, stripe and rectangle patterns
occurred along destabilized x and y-directional double Fourier modes. Kuto et al. [11] also
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Figure 3: Plots of the functions for the three-dimensional kernel V = span{Φ13,Φ42,Φ51}.
The spatial domain is Ω = (0, 4π)×(0, 4

√
3π). (c1) v∗ = Ã(Φ13+Φ42+Φ51) with Ã = 1 > 0.

(c2) v∗ = Ã(Φ13+Φ42+Φ51) with Ã = −1 < 0. (d1) v∗ = Ã(Φ13−Φ42−Φ51) with Ã = 1 > 0.

(d2) v∗ = Ã(Φ13 − Φ42 − Φ51) with Ã = −1 < 0. (e1) v∗ = Ã(−Φ13 + Φ42 − Φ51) with

Ã = 1 > 0. (e2) v∗ = Ã(−Φ13+Φ42−Φ51) with Ã = −1 < 0. (f1) v∗ = Ã(−Φ13−Φ42+Φ51)

with Ã = 1 > 0. (f2) v∗ = Ã(−Φ13 − Φ42 +Φ51) with Ã = −1 < 0.
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Figure 4: The spanning v∗ for the spatial domain (−4π, 4π)× (−4
√
3π, 4

√
3π). The white

horizontal and vertical lines represent the x and y axes, respectively. The black lines are
the auxiliary axes in the directions of π/6, 5π/6, 3π/2. (c) v∗ = �A(Φ13 + Φ42 + Φ51) with
�A = 1 > 0, which has 2π/3-rotational symmetry.

From this, it follows that

Sv = �S ([η − ζ − ξ] Φ13 + [−η + ζ − ξ] Φ42 + [−η − ζ + ξ] Φ51)

:= [Φ13 Φ42 Φ51] �S


η
ζ
ξ


 , �S =

28l2η13
µ(1 + η213)

.

Here, �S is the representation matrix of S:

�S =




�S −�S −�S
−�S �S −�S
−�S −�S �S


 .

Because of

det �S = −4�S 3 = −4

(
28l2η13

µ(1 + η213)

)3

̸= 0,

the operator S is isomorphic.

We finally arrive at the main result of this section.

Theorem 5.1. Let v∗ ∈ V be the functions defined in (5.8). Then, under the conditions

14χ∗l2η13 − aµ ̸= 0,
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there exists a local branch of nontrivial solutions (χ(λ), U(λ)) ∈ (0,∞) ×X to (SE), with
small parameter λ ∈ (−ε, ε), which bifurcates from (χ∗, U∗) such that

χ(λ) = χ∗ + λ, U(λ) = U∗ + λ[ v∗ + λṽ(λ) ],

where ṽ(λ) is a smooth function of λ.
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theorem by Ambrosetti and Prodi that does not require one-dimensional degeneration
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system to elucidate the mechanisms for pattern formation processes:
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u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω.

Here, Ω ⊂ R2 is a bounded domain with boundary ∂Ω, and ∂/∂n denotes the derivative
with respect to the outer normal of ∂Ω. The function u(x, t) is the population density of the
chemotactic bacteria at position x ∈ Ω and time t ∈ [0,∞), and ρ(x, t) is the concentration
of chemical substance that is produced by the individuals. The function f(u) denotes the
growth of u, and several different forms have been proposed for f(u) [7, 16]. We assume in
this paper that f(u) is a logistic saturating growth function,

f(u) = au(1− µu),

where a and µ are positive constants. The other coefficients b, c, d and χ are also positive
constants. The advection term −χ∇· (u∇ρ) corresponds to chemotaxis of bacteria, and the
coefficient χ indicates the intensity of chemotaxis.

In this article, we consider a bifurcation problem for the stationary state of (E). In a
two-dimensional rectangular domain, Kuto et al. [11] proved that one-mode bifurcations
occurred for the uniform state (u, ρ) = (1/µ, c/(µb)), that is, stripe and rectangle patterns
occurred along destabilized x and y-directional double Fourier modes. Kuto et al. [11] also
showed solutions for a hybrid mode bifurcation that formed hexagonal patterns. In the
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Abstract. In [1], the authors introduced and studied the notion of almost contra-b-
continuity in topological spaces. In this paper, we investigate some more properties
of this type of continuity.

1 Introduction Generalized open sets play a very important role in General Topology
and they are now the research topics of many topologists worldwide. Indeed a significant
theme in General Topology and Real analysis concerns the various modified forms of con-
tinuity, seperation axioms etc. by utilizing generalized open sets. One of the most well
known notions and also an inspiration source is the notion of b-open [2] sets introduced
by Andrijevic in 1996. This class is a subset of the class of semi-preopen sets [3], that
is a subset of a topological space which is contained in the closure of the interior of its
closure. Also, a class of b-open sets is a superset of the class of semi-open sets [17], that
is a set which is contained in the closure of its interior, and the class of preopen sets [19],
that is a set which is contained in the interior of its closure. Andrijevic studied several
fundamental and interesting properties of b-open sets. In [1], the authors introduced and
studied the notion of almost contra-b-continuity in topological spaces. In this paper, we
investigate some more properties of this type of continuity.

2 Preliminaries Throughout the paper (X, τ) and (Y, σ) (or simply X and Y ) rep-
resent topological spaces on which no separation axioms are assumed unless otherwise
mentioned. For a subset A of a space (X, τ), Cl(A), Int(A) and Ac denote the closure of
A, the interior of A and the complement of A in X, respectively. A subset A of X is said to
be regular open [26] (resp. semi-open [17], preopen [19], α-open [21], b-open [2](= γ-open
[13])) if A = Int(Cl(A)) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)), A ⊂ Int(Cl(Int(A))),
A ⊂ Int(Cl(A))∪Cl(Int(A))). The family of all α-open (resp. regular open, b-open) sub-
sets of X is denoted by αO(X) (resp. RO(X), BO(X)). The complement of semi-open
(resp. regular open, preopen, b-open) is called semi-closed [7] (resp. regular closed, pre-
closed [19], b-closed [2]). The family of all regular closed sets (resp. b-closed sets) of (X, τ)
is denoted by RC(X) (resp. BC(X)). The intersection of all regular open sets containing
A is called the r-kernal [9] of A and is denoted by rKer(A). The intersection of all semi-
closed (resp. preclosed, b-closed) sets containing A is called the semi-closure [6] (resp.
pre-closure [19], b-closure [2]) of A and is denoted by sCl(A) (resp. pCl(A), bCl(A)). A
subset A is b-closed if and only if A= bCl(A). For each x ∈ X, the family of all b-open
(resp. b-closed, semi-open, regular open, regular closed) sets containing x is denoted by
BO(X, x) (resp. BC(X, x), SO(X, x), RO(X, x), RC(X, x)). The θ-semi-closure [16] of
A, denoted by θ-sCl(A), is defined to be the set of all x ∈ X such that A∩Cl(U) �= ∅ for
every U ∈ SO(X, x). A subset A is called θ-semi-closed [16] if and only if A = θ-sCl(A).

∗2010 Math. Subject classification. 54C10.
Key words and phrases. Topological spaces, b-open sets, b-closed sets, almost contra-b-continuous func-
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The complement of θ-semi-closed set is called θ-semi-open [16]. For a subset A of X,
sCl(A)=A∪Int(Cl(A)) [3], pCl(A) = A∪Cl(Int(A)) [3] and bCl(A) = sCl(A)∩pCl(A)
[2]. If A is open in a space X, then sCl(A) = Int(Cl(A)) [3]. It follows that, if A is
open in a space X, then bCl(A) = Int(Cl(A)). A function f : (X, τ) → (Y, σ) is said to
be b-continuous [13] (resp. contra-b-continuous [20]) if f−1(V ) is b-open (resp. b-closed)
set in X for each open set V of Y . A function f : (X, τ) → (Y, σ) is said to be weakly
b-continuous [24] (or almost weakly b-continuous [1]) if for every x ∈ X and every open
set V of Y containing f(x), there exists U ∈ BO(X, x) such that f(U) ⊂ Cl(V ).

3 Almost contra-b-continuous functions

Definition 3.1 [1] A function f : (X, τ) → (Y, σ) is said to be almost contra-b-continuous
if f−1(V ) ∈ BC(X) for each V ∈ RO(Y ) (cf. Remark 3.4 below).

It is clear that every contra-b-continuous function is almost contra-b-continuous but the
converse is not true in general.

Example 3.2 Let X = {a, b, c} and τ = {∅, {a}, X}. Then the identity function f :
(X, τ) → (X, τ) is almost contra-b-continuous but not contra-b-continuous.

Theorem 3.3 For a function f : (X, τ) → (Y, σ), the following statements are equiva-
lent:

(i) f is almost contra-b-continuous;
(ii) f−1(F ) ∈ BO(X) for every F ∈ RC(Y );
(iii) for each x ∈ X and each F ∈ RC(Y, f(x)), there exists U ∈ BO(X, x) such that

f(U) ⊂ F ;
(iv) f−1(Int(Cl(G))) ∈ BC(X) for every open subset G of (Y, σ);
(v) f−1(Cl(Int(F ))) ∈ BO(X) for every closed subset F of (Y, σ);
(vi) f(bCl(A)) ⊂ rKer(f(A)) for every subset A of (X, τ);
(vii) bCl(f−1(B)) ⊂ f−1(rKer(B)) for every subset B of (Y, σ).

Proof (i)⇔(ii): Let F ∈ RC(Y ). Then Y \F ∈ RO(Y ). By (i), f−1(Y \F ) = X\f−1(F ) ∈
BC(X). We have f−1(F ) ∈ BO(X). The proof of the reverse in similar.
(ii)⇒(iii): Let F ∈ RC(Y, f(x)). By (ii), f−1(F ) ∈ BO(X) and x ∈ f−1(F ). Take
U = f−1(F ), then f(U) ⊂ F .
(iii)⇒(ii): Let F ∈ RC(Y ) and x ∈ f−1(F ). From (iii), there exists a b-open set Ux in
X containing x such that Ux ⊂ f−1(F ). We have f−1(F ) =

⋃{Ux|x ∈ f−1(F )}. Since
any union of b-open sets is b-open, f−1(F ) is b-open in X.
(i) ⇔(iv): Let G be an open subset of Y . Since Int(Cl(G)) is regular open, then by (i),
it follows that, f−1(Int(Cl(G))) ∈ BC(X). The converse can be shown similarly.
(iii)⇒(vi): Let A ⊂ X and let x ∈ bCl(A) and F ∈ RC(Y, f(x)). By (iii), there exists
U ∈ BO(X, x) such that f(U) ⊂ F . Since x ∈ bCl(A), we have U ∩ A �= ∅. Hence,
f(U)∩f(A) �= ∅ and therefore F ∩f(A) �= ∅. It follows from Proposition 24(i) of [9] that
f(x) ∈ rKer(f(A)) and hence f(bCl(A)) ⊂ rKer(f(A)).
(vi)⇒(vii): Let B ⊂ Y . By (vii), f(bCl(f−1(B))) ⊂ rKer(f(f−1(B))) ⊂ rKer(B).
Hence bCl(f−1(B)) ⊂ f−1(rKer(B)).
(vii)⇒(i): Let V ∈ RO(Y ). Then by (vii), bCl(f−1(V )) ⊂ f−1(rKer(V )). Since V ∈
RO(Y ), rKer(V ) = V and hence bCl(f−1(V )) ⊂ f−1(V ), which shows that f−1(V ) is
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Remark 3.4 (i) A function f : (X, τ) → (Y, σ) is called: almost contra-b-continuous at
a point x ∈ X, if for each regular closed subset V of (Y, σ) containing f(x), there exists
a b-open subset U of (X, τ) containing x such that f(U) ⊂ V .

(ii) By Theorem 3.3 and definitions, it is shown that a function f : (X, τ) → (Y, σ)
is almost contra-b-continuous if and only if f is almost contra-b-continuous at each point
of X.

Theorem 3.5 (i) If f : (X, τ) → (Y, σ) is weakly-b-continuous and (Y, σ) is regular,
then f is b-continuous.

(ii) If f : (X, τ) → (Y, σ) is almost contra-b-continuous and (Y, σ) is regular, then f
is b-continuous.

(iii) If f : (X, τ) → (Y, σ) is contra-b-continuous and (Y, σ) is regular, then f is
b-continuous.

Proof. Clear. �

Sometimes, the concept of a b-open set (resp. b-closed set) of a topological space (X, τ)
is called a γ-open set (resp. γ-closed set); and so the family BO(X) (resp. BC(X)) is
denoted by γO(X) (resp. γC(X)).

Lemma 3.6 [13] Let A and B be subsets of a topological space (X, τ).
(i) If A ∈ γO(X) and B ∈ αO(X), then A ∩ B ∈ γO(B).
(ii) Let A ⊂ B ⊂ X, A ∈ γO(B) and B ∈ αO(X), then A ∈ γO(X).

Theorem 3.7 If f : (X, τ) → (Y, σ) is almost contra-b-continuous and U ∈ αO(X),
then f |U : (U, τ |U) → (Y, σ) is almost contra-b-continuous.

Proof. Let V be a regular closed subset of Y . We have (f |U)−1(V ) = f−1(V )∩U . Since
f−1(V ) is b-open and U is α-open, it follows from the Lemma 3.6 (i) that (f |U)−1(V ) is
b-open in the relative topology of U . Thus, f |U is almost contra-b-continuous. �

Theorem 3.8 Let f : (X, τ) → (Y, σ) be a function and x ∈ X. If there exists U ∈
BO(X, x) and f |U : (U, τ |U) → (Y, σ) is almost contra-b-continuous at x, then f is
almost contra-b-continuous at x.

Proof. Suppose that F ∈ RC(Y, f(x)). Since f |U is almost contra-b-continuous at x,
there exists V ∈ BO(U, x) such that f(V ) = (f |U)(V ) ⊂ F . Since U ∈ αO(X, x), it
follows from Lemma 3.6 (ii) that V ∈ BO(X, x). This shows that f is almost contra-b-
continuous at x. �

Theorem 3.9 Let f : (X, τ) → (Y, σ) be a function and Σ = {Ui : i ∈ I} be a cover
of X by α-open sets of (X, τ). If for each i ∈ I, f |Ui : (Ui, τ |Ui) → (Y, σ) is almost
contra-b-continuous, then f : (X, τ) → (Y, σ) is almost contra-b-continuous.

Proof. Let V ∈ RC(Y ). Since f |Ui is almost contra-b-continuous for each i ∈ I,
(f |Ui)−1(V ) ∈ BO(Ui), since Ui ∈ αO(X), by Lemma 3.6 (2), (f |Ui)−1(V ) ∈ BO(X)
for each i ∈ U . Then f−1(V ) =

⋃{(f |Ui)−1(V ) ∈ BO(X)|i ∈ I}. This gives f is almost
contra-b-continuous. �

Theorem 3.10 Let f : (X, τ) → (Y, σ) be a function and let g : (X, τ) → (X ×Y, τ ×σ)
be the graph function of f , defined by g(x) = (x, f(x)) for every x ∈ X. If g is almost
contra-b-continuous, then f is almost contra-b-continuous.
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Proof. Let V ∈ RC(Y ), then X × V = X × Cl(Int(V )) = Cl(Int(X)) × Cl(Int(V )) =
Cl(Int(X×V )). Then X×V ∈ RC(X×Y ). Since g is almost contra-b-continuous, then
f−1(V ) = g−1(X × V ) ∈ BO(X). Thus, f is almost contra-b-continuous. �

Definition 3.11 A function f : (X, τ) → (Y, σ) is said to be
(i) pre-b-open if f(U) ∈ BO(Y ) for each U ∈ BO(X),
(ii) b-irresolute [13] if for each x ∈ X and each V ∈ BO(Y, f(x)), there exists U ∈

BO(X, x) such that f(U) ⊂ V ,
(iii) θ-irresolute [13] if for each x ∈ X and each V ∈ SO(Y, f(x)), there exists U ∈

SO(X, x) such that f(Cl(U)) ⊂ Cl(V ).

Theorem 3.12 If f : (X, τ) → (Y, σ) is a surjective pre-b-open and g : (Y, σ) → (Z, γ)
is a function such that g ◦ f : (X, τ) → (Z, γ) is almost contra-b-continuous, then g is
almost contra-b-continuous.

Proof. Let V be any regular closed set in Z. Since g ◦ f is almost contra-b-continuous,
(g ◦ f)−1(V ) = f−1(g−1(V )) is b-open. Since f is surjective pre-b-open, f(f−1(g−1(V )))
= g−1(V ) is b-open. Therefore, g is almost contra-b-continuous. �

Theorem 3.13 (i) If f : (X, τ) → (Y, σ) is b-irresolute and g : (Y, σ) → (Z, γ) is almost
contra-b-continuous, then g ◦ f : (X, τ) → (Z, γ) is almost contra-b-continuous.

(ii) If f : (X, τ) → (Y, σ) is almost contra-b-continuous and g : (Y, σ) → (Z, γ) is
θ-irresolute, then g ◦ f : (X, τ) → (Z, γ) is almost contra-b-continuous.

Proof. (i) Let x ∈ X and W ∈ SO(Z). Then there exists a set U ∈ BO(X, x) such that
(g ◦ f)(U) ⊂ Cl(W ). Therefore, g ◦ f is almost contra-b-continuous.
(ii) Similar to (i). �

Definition 3.14 A filter base Λ is said to be b-convergent (resp. rc-convergent [12]) to
a point x ∈ X if for any U ∈ BO(X, x) (resp. U ∈ RC(X, x)), there exists B ∈ Λ such
that B ⊂ U .

Theorem 3.15 If f : (X, τ) → (Y, σ) is an almost contra-b-continuous function, then
for each point x ∈ X and each filter base Λ in X b-converging to x, the filter base f(Λ)
is rc-convergent to f(x).

Proof. Let x ∈ X and Λ be any filter base in X b-converging to x. Since f is almost
contra-b-continuous, then for any V ∈ RC(Y, f(x)), there exists U ∈ BO(X, x) such that
f(U) ⊂ V . Since Λ is b-converging to x, there exists a B ∈ Λ such that B ⊂ U . This
means that f(B) ⊂ V and therefore the filter base f(Λ) is rc-convergent to f(x). �

4 Separation axioms and covering properties

Definition 4.1 A topological space (X, τ) is said to be
(i) PP [30] if for any open set V of (X, τ) and each x ∈ V , there exists F ∈ RC(X, x)

such that x ∈ F ⊂ V ,
(ii) weakly PP [22] if for any V ∈ RO(X, x), there exists F ∈ RC(X, x) such that

x ∈ F ⊂ V .

Theorem 4.2 If f : (X, τ) → (Y, σ) is an almost contra-b-continuous function and
(Y, σ) is PP, then f is b-continuous.
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Proof. Let V be any open set in Y . Since Y is PP, there exists a subfamily A of RC(Y )
such that V = ∪{F : F ∈ A}. Since f is almost contra-b-continuous, f−1(F ) is b-open
in X for each F ∈ A and f−1(V ) is b-open in X. Therefore, f is b-continuous. �

Theorem 4.3 If f : (X, τ) → (Y, σ) is an almost contra-b-continuous function and
(Y, σ) is weakly PP, then f is almost b-continuous.

Proof. Similar to the proof of Theorem 4.2. �

Definition 4.4 A topological space (X, τ) is said to be
(i) weakly Hausdorff [28] if each element of X is an intersection of regular closed sets,
(ii) b-T0 [5] if for each pair of distinct points in X, there exists a b-open set of (X, τ)

containing one point but not the other,
(iii) b-T1 [5] if for each pair of distinct points x and y of X, there exist b-open sets U

and V of (X, τ) containing x and y, respectively such that y /∈ U and x /∈ V ,
(iv) b-T2 [10] if for each pair of distinct points x and y of X, there exist b-open sets

U and V such that x ∈ U , y ∈ V and U ∩ V = ∅.

Theorem 4.5 If f : (X, τ) → (Y, σ) is an almost contra-b-continuous injection and
(Y, σ) is weakly Hausdorff, then (X, τ) is b-T1.

Proof. Suppose that Y is weakly Hausdorff. For any two distinct points x and y in
X, there exist V, W ∈ RC(Y ) such that f(x) ∈ V , f(y) /∈ V , f(x) /∈ W and f(y) ∈ W .
Since f is almost contra-b-continuous, f−1(V ) and f−1(W ) are b-open subsets of X such
that x ∈ f−1(V ), y /∈ f−1(V ), x /∈ f−1(W ) and y ∈ f−1(W ). This shows that X is b-T1.
�

Definition 4.6 A topological space (X, τ) is said to be
(i) hyperconnected [27] if every open set is dense,
(ii) ultra b-connected if every two non-void b-closed subsets of (X, τ) intersect,
(iii) b-connected [13] provided that X is not the union of two disjoint nonempty b-open

sets.

Theorem 4.7 If (X, τ) is ultra b-connected and f : (X, τ) → (Y, σ) is an almost contra-
b-continuous surjection, then (Y, σ) is hyperconnected.

Proof. Assume that Y is not hyperconnected. Then there exists an open set V such
that V is not dense in Y . Then there exist disjoint nonempty regular open subsets B1

and B2 in Y , namely Int(Cl(V )) and Y \ Cl(V ). Since f is almost contra-b-continuous
surjection, A1 = f−1(B1) and A2 = f−1(B2) are disjoint nonempty b-closed subsets of X.
By assumption, the ultra-b-connectedness of X implies that A1 and A2 must intersect.
By contradiction, Y is hyperconnected. �

Theorem 4.8 (i) [24] If f : (X, τ) → (Y, σ) is weakly b-continuous surjection and (X, τ)
is b-connected, then (Y, σ) is connected.

(ii) If f : (X, τ) → (Y, σ) is a almost contra-b-continuous surjection and (X, τ) is
b-connected, then (Y, σ) is connected.

(iii) [20] If f : (X, τ) → (Y, σ) is a contra-b-continuous surjection and (X, τ) is b-
connected, then (Y, σ) is connected.
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Theorem 4.9 (i) [24] If f : (X, τ) → (Y, σ) is a weakly b-continuous injection and (Y, σ)
is Urysohn, then (X, τ) is b-T2.

(ii) If f : (X, τ) → (Y, σ) is an almost contra-b-continuous injection and (Y, σ) is
Urysohn, then (X, τ) is b-T2.

(iii) [20] If f : (X, τ) → (Y, σ) is a contra-b-continuous injection and (Y, σ) is
Urysohn, then (X, τ) is b-T2.

Definition 4.10 [15] A topological space (X, τ) is said to be θ-irreducible if every pair
of nonempty regular closed sets of (X, τ) has a nonempty intersection.

Theorem 4.11 If (X, τ) is b-connected and f : (X, τ) → (Y, σ) is an almost contra-b-
continuous surjection, then (Y, σ) is θ-irreducible.

Proof. Similar to that proof of Theorem 4.7. �

Definition 4.12 [13] A topological space (X, τ) is said to be b-normal provided that
every pair of nonempty disjoint closed sets can be separated by disjoint b-open sets.

Theorem 4.13 (i) If (Y, σ) is normal and f : (X, τ) → (Y, σ) is an almost contra-b-
continuous closed injection, then (X, τ) is b-normal.

(ii) [20] If (Y, σ) is normal and f : (X, τ) → (Y, σ) is a contra-b-continuous closed
injection, then (X, τ) is b-normal.

Proof. (i) Let F1 and F2 be disjoint nonempty closed sets of X. Since f is in-
jective and closed, f(F1) and f(F1) are disjoint closed sets of Y . Since Y is nor-
mal, there exist open sets V1 and V2 of Y such that f(F1) ⊂ V1, f(F2) ⊂ V2 and
Cl(V1) ∩ Cl(V2) = ∅. Then, since Cl(V1), Cl(V2) ∈ RC(Y ) and f is almost contra-b-
continuous, f−1(Cl(V1)), f−1(Cl(V2)) ∈ BO(X). Since F1 ⊂ f−1(V1), F2 ⊂ f−1(V2)
and f−1(Cl(V1)) and f−1(Cl(V2)) are disjoint, X is b-normal. �
Definition 4.14 A cover

∑
= {Ui : i ∈ I} of subsets of X is called a b-cover if Ui is

b-open in (X, τ) for each i ∈ I.

Definition 4.15 A topological space (X, τ) is said to be
(i) b-compact [23] (resp. S-closed [29]) if every b-open (resp. regular closed) cover of

X has a finite subcover,
(ii) countably b-compact [11] (resp. countably S-closed [8]) if every countable cover of

X by b-open (resp. regular closed) sets has a finite subcover,
(iii) b-Lindelöf [11] (resp. S-Lindelöf [18]) if every b-open (resp. regular closed) cover

of X has a countable subcover.

Definition 4.16 A topological space (X, τ) is said to be
(i) b-closed compact [11] (resp. nearly compact [25]) if every b-closed (resp. regular

open) cover of X has a finite subcover,
(ii) countably b-closed compact [11] (resp. nearly countably compact [14]) if every count-

able cover of X by b-closed (resp. regular open) sets has a finite subcover,
(iii) b-closed Lindelöf [11] (resp. nearly Lindelöf [14]) if every b-closed (resp. regular

open) cover of X has a countable subcover.

Theorem 4.17 Let f : (X, τ) → (Y, σ) be an almost contra-b-continuous surjection.
Then the following statements hold.

(i) If (X, τ) is b-closed compact, then Y is nearly compact.
(ii) If (X, τ) is b-closed Lindelöf, then Y is nearly Lindelof.
(iii) If (X, τ) is countably b-closed compact, then Y is nearly countably compact.
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Abstract. In [1], the authors introduced and studied the notion of almost contra-b-
continuity in topological spaces. In this paper, we investigate some more properties
of this type of continuity.

1 Introduction Generalized open sets play a very important role in General Topology
and they are now the research topics of many topologists worldwide. Indeed a significant
theme in General Topology and Real analysis concerns the various modified forms of con-
tinuity, seperation axioms etc. by utilizing generalized open sets. One of the most well
known notions and also an inspiration source is the notion of b-open [2] sets introduced
by Andrijevic in 1996. This class is a subset of the class of semi-preopen sets [3], that
is a subset of a topological space which is contained in the closure of the interior of its
closure. Also, a class of b-open sets is a superset of the class of semi-open sets [17], that
is a set which is contained in the closure of its interior, and the class of preopen sets [19],
that is a set which is contained in the interior of its closure. Andrijevic studied several
fundamental and interesting properties of b-open sets. In [1], the authors introduced and
studied the notion of almost contra-b-continuity in topological spaces. In this paper, we
investigate some more properties of this type of continuity.

2 Preliminaries Throughout the paper (X, τ) and (Y, σ) (or simply X and Y ) rep-
resent topological spaces on which no separation axioms are assumed unless otherwise
mentioned. For a subset A of a space (X, τ), Cl(A), Int(A) and Ac denote the closure of
A, the interior of A and the complement of A in X, respectively. A subset A of X is said to
be regular open [26] (resp. semi-open [17], preopen [19], α-open [21], b-open [2](= γ-open
[13])) if A = Int(Cl(A)) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)), A ⊂ Int(Cl(Int(A))),
A ⊂ Int(Cl(A))∪Cl(Int(A))). The family of all α-open (resp. regular open, b-open) sub-
sets of X is denoted by αO(X) (resp. RO(X), BO(X)). The complement of semi-open
(resp. regular open, preopen, b-open) is called semi-closed [7] (resp. regular closed, pre-
closed [19], b-closed [2]). The family of all regular closed sets (resp. b-closed sets) of (X, τ)
is denoted by RC(X) (resp. BC(X)). The intersection of all regular open sets containing
A is called the r-kernal [9] of A and is denoted by rKer(A). The intersection of all semi-
closed (resp. preclosed, b-closed) sets containing A is called the semi-closure [6] (resp.
pre-closure [19], b-closure [2]) of A and is denoted by sCl(A) (resp. pCl(A), bCl(A)). A
subset A is b-closed if and only if A= bCl(A). For each x ∈ X, the family of all b-open
(resp. b-closed, semi-open, regular open, regular closed) sets containing x is denoted by
BO(X, x) (resp. BC(X, x), SO(X, x), RO(X, x), RC(X, x)). The θ-semi-closure [16] of
A, denoted by θ-sCl(A), is defined to be the set of all x ∈ X such that A∩Cl(U) �= ∅ for
every U ∈ SO(X, x). A subset A is called θ-semi-closed [16] if and only if A = θ-sCl(A).
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Proof. We prove only (i), the proofs of (ii) and (iii) being entirely analogous.
Let {Vi : i ∈ I} be any regular open cover of Y . Since f is almost contra-b-continuous,
{f−1(Vi): i ∈ I} is a b-closed cover of X. Since X is b-closed compact, there exists
a a finite subset I0 of I such that X = ∪{f−1(Vi) : i ∈ I0}. Therefore, we have
Y = ∪{Vi : i ∈ I0} and Y is S-closed. �

Definition 4.18 [26] A topological space (X, τ) is said to be mildly compact (resp. mildly
contably compact, mildly Lindelöf ) if every clopen (resp. countable clopen, clopen) cover
of X has a finite (resp. finite, countable) subcover.

Theorem 4.19 If f : (X, τ) → (Y, σ) is an almost contra-b-continuous and almost con-
tinuous surjection and (X, τ) is mildly compact (resp. mildly countably compact, mildly
Lindelöf), then Y is nearly compact (resp. nearly countably compact, nearly Lindelöf)
and S-closed (resp. countably S-closed, S-Lindelöf).

Proof. Let V ∈ RC(Y ). Then since f is almost contra-b-continuous and almost
continuous, f−1(V ) is b-open and closed in X and hence f−1(V ) is clopen (resp. open).
Let {Vi : i ∈ I} be any regular closed (resp. regular open) cover of Y . Then {f−1(Vi) : i ∈
I} is a clopen cover of X and since X is mildly compact, there exists a finite subset I0 of
I such that X = ∪{f−1(Vi) : i ∈ I0}. Since f is surjective, we obtain Y = ∪{Vi : i ∈ I0}.
This shows that Y is S-closed (resp. nearly compact).
The other proofs can be obtained similarly. �

Definition 4.20 A topological space (X, τ) is said to be s-Urysohn [4] if for each pair
of distinct points x and y in X, there exist U ∈ SO(X, x) and V ∈ SO(X, y) such that
Cl(U) ∩ Cl(V ) = ∅.
Theorem 4.21 If (Y, σ) is s-Urysohn and f : (X, τ) → (Y, σ) is an almost contra-b-
continuous injection, then (X, τ) is b-T2.

Proof. It is similar to Proof of Theorem 4.5. �

Recall that for a function f : (X, τ) → (Y, σ), the subset {(x, f(x));x ∈ X} ⊂ X × Y
is called the graph of f and is denoted by G(f).

Definition 4.22 A graph G(f) of a function f : (X, τ) → (Y, σ) is said to be regular
b-closed if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ BC(X, x) and V ∈ RO(Y, y)
such that (U × V ) ∩ G(f) = ∅.
Theorem 4.23 A graph G(f) of a function f : (X, τ) → (Y, σ) is regular b-closed if and
only if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ BC(X, x) and V ∈ RO(Y, y)
such that f(U) ∩ V = ∅.

Proof. This is an immediate consequence of Definition 4.22. �

Theorem 4.24 Let f : (X, τ) → (Y, σ) have a regular b-closed graph G(f). If f is
injective, then (X, τ) is b-T1.

Proof. Let x and y be any two distinct points of X. Then, we have (x, f(y)) ∈
(X × Y )\G(f). By definition of regular b-closed graph, there exist U ∈ BC(X) and V ∈
RO(Y ) such that (x, f(y)) ∈ U ×V and f(U)∩V = ∅; hence U ∩f−1(V ) = ∅. Therefore,
we have y �∈ U . Thus, y ∈ X\U and x �∈ X\U . We obtain that X\U ∈ BO(X). This
implies that X is b-T1. �
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Theorem 4.25 If f : (X, τ) → (Y, σ) is almost contra-b-continuous and (Y, σ) is T2,
then the graph G(f) is regular b-closed.

Proof. Let (x, y) ∈ (X × Y )\G(f). Then f(x) �= y. Snce Y is T2, there exist
open sets V and W containing f(x) and y, respectively, such that V ∩ W = ∅; hence
Int(Cl(V ))∩Int(Cl(W )) = ∅. Since f is almost contra-b-continuous, f−1(Int(Cl(V ))) is
b-closed containing x. Take U = f−1(Int(Cl(V ))). Then f(U) ⊂ Int(Cl(V )). Therefore,
f(U) ∩ Int(Cl(W )) = ∅ and hence the graph G(f) is regular b-closed. �

Theorem 4.26 Let f : (X, τ) → (Y, σ) have a regular b-closed graph G(f). If f is
surjective, then (Y, σ) is weakly Hausdorff.

Proof. Let y ∈ Y . Since f is surjective, f(x) = y for some x ∈ X and (x, a) ∈
(X ×Y )\G(f) for any point a ∈ Y such that a �= y. For the points y and a, by definition
of regular b-closed graph G(f), there exists a b-closed set Ua of X and F (a) ∈ RO(Y )
such that (x, a) ∈ Ua × F (a) and f(Ua) ∩ F (a) = ∅; hence y /∈ F (a). Then, {y} ⊂ A,
where A = ∩{Y \F (z) : z �= y}. In order to prove {y} ⊃ A, let w ∈ A and suppose that
w /∈ {y}. The, for any point z with z �= y, we have that w ∈ Y \F (z). Since w �= y, we
can take z = w and so w ∈ F (w). This is a contradicition. Hence we show that {y} = A;
and so {y} is an intersection of regular closed sets Y \F (z), where z �= y, that is (Y, σ) is
weakly Hausdorff. �

5 Additional Properties

Theorem 5.1 For a function f : (X, τ) → (Y, σ), the following statements are equiva-
lent:

(i) f is almost contra-b-continuous;
(ii) f−1(V ) ∈ BO(X) for each θ-semi-open set V of (Y, σ);
(iii) f−1(F ) ∈ BC(X) for each θ-semi-closed set F of (Y, σ);
(iv) for each x ∈ X and each U ∈ SO(Y, f(x)), there exists V ∈ BO(X, x) such that

f(V ) ⊂ Cl(U);
(v) f−1(U) ⊂ bInt(f−1(Cl(U))) for every U ∈ SO(Y );
(vi) f(bCl(A)) ⊂ θ-sCl(f(A)) for every subset A of (X, τ);
(vii) bCl(f−1(B)) ⊂ f−1(θ-sCl(B)) for every subset B of (Y.σ);
(viii) bCl(f−1(V )) ⊂ f−1(θ-sCl(V )) for every open subset V of (Y, σ);
(ix) bCl(f−1(V )) ⊂ f−1(sCl(V )) for every open subset V of (Y, σ);
(x) bCl(f−1(V )) ⊂ f−1(Int(Cl(V )) for every open subset V of (Y, σ).

Proof. (i)⇒(ii): This follows from the fact that every θ-semi-open set is the union of
regular closed sets.
(ii)⇔(iii): This is obvious.
(ii)⇒(iv): Let x ∈ X and U ∈ SO(Y, f(x)). Since Cl(U) is θ-semi-open in Y , there
exists V ∈ BO(X, x) such that x ∈ V ⊂ f−1(Cl(U)) and hence f(V ) ⊂ Cl(U).
(iv)⇒(v): Let U ∈ SO(Y ) and x ∈ f−1(U). Then f(x) ∈ U . By (iv), there exists
V ∈ BO(X, x) such that f(V ) ⊂ Cl(U). It follows that x ∈ V ⊂ f−1(Cl(U)). Hence,
x ∈ bInt(f−1(Cl(U))).
(v)⇒(i): Let F ∈ RC(Y ). Since F ∈ SO(Y ), then by (v), f−1(F ) ⊂ bInt(f−1(Cl(F )))
and consequently, f−1(F ) ∈ BO(X). Hence, by Theorem 3.3, (i) holds.
(iv)⇒(vi): Let A be any subset of X. Suppose that x ∈ bCl(A) and G ∈ SO(Y, f(x)).
By (v), there exists V ∈ BO(X, x) such that f(V ) ⊂ Cl(G). Since x ∈ bCl(A), V ∩A �= ∅
and hence ∅ �= f(V ) ∩ f(A) ⊂ Cl(G) ∩ f(A). Therefore, we obtain f(x) ∈ θ-sCl(f(A))
and hence f(bCl(A)) ⊂ θ-sCl(f(A)).
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(vi)⇒(vii): Let B be any subset of Y . Then f(bCl(f−1(B))) ⊂ (θ-sCl(f(f−1(B))) ⊂ θ-
sCl(B) and hence bCl(f−1(B)) ⊂ f−1(θ-sCl(B)).
(vii)⇒(viii): Obvious.
(viii)⇒(ix): Follows from the fact that θ-sCl(V ) = sCl(V ) for every open subset V of
Y .
(ix)⇒(x): Obvious.
(x)⇒(i): Let V ∈ RO(Y ). By (x), bCl(f−1(V )) ⊂ f−1(Int(Cl(V ))) = f−1(V ) and hence
f−1(V ) ∈ BC(X), which proves that f is almost contra-b-continuous. �

Theorem 5.2 For a function f : (X, τ) → (Y, σ), the following properties are equivalent:
(i) f is almost contra-b-continuous;
(ii) f−1(Cl(V )) ∈ BO(X) for every V ∈ SPO(Y );
(iii) f−1(Cl(V )) ∈ BO(X) for every V ∈ SO(Y );
(iv) f−1(Int(Cl(V ))) ∈ BC(X) for every V ∈ PO(Y ).

Proof. (i)⇒(ii): Let V be any semi-preopen set of Y . It follows from Theorem 2.4 of
[3] that Cl(V ) is regular closed. Then by Theorem 3.3 f−1(Cl(V )) ∈ BO(X).
(ii)⇒(iii): This is obvious since SO(Y ) ⊂ SPO(Y ).
(iii)⇒(iv): Let V ∈ PO(Y ). Then Y \ Int(Cl(V )) is regular closed and hence it is semi-
open. Then X \ f−1(Int(Cl(V )))=f−1(Y \ Int(Cl(V ))) = f−1(Cl(Y \ Int(Cl(V )))) ∈
BO(X). Hence f−1(Int(Cl(V ))) ∈ BC(X).
(iv)⇒(i): Let V be any regular open set of Y . Then V ∈ PO(Y ) and hence f−1(V ) =
f−1(Int(Cl(V ))) is b-closed in X. �

Definition 5.3 [11] The b-frontier of a subset A of a topological space (X, τ), bFr(A),
is defined by bFr(A) = bCl(A) ∩ bCl(X \ A) = bCl(A) ∩ (X \ bInt(A)).

Theorem 5.4 For a function f : (X, τ) → (Y, σ), we introduce the following notations
relating to f :

Af := {x ∈ X : f is not almost contra-b-continuous at x},
Bf (x) := ∪{bFr(f−1(Fx)) : Fx ∈ RC(Y, f(x))}, where x ∈ Af , and
Bf :=

⋃{Bf (x)|x ∈ Af}.
Then, we have the following properties:

If z ∈ Af , then z ∈ Bf (z); and so Af ⊂ Bf holds in (X, τ).

Proof. Let z ∈ Af . Namely, we suppose that f is not almost contra-b-continuous
at z ∈ X. By Theorem 3.3, there exists a subset Fz ∈ RC(Y, f(z)) such that f(U) ∩
(Y \Fz) �= ∅ for every U ∈ BO(X, z). By the property (5) in Proposition 5 of [10],
z ∈ bCl(f−1(Y \ Fz)) holds: and so z ∈ bCl(X \ f−1(Fz)). On the other hand, we
obtain z ∈ f−1(Fz) ⊂ bCl(f−1(Fz)); and hence z ∈ bFr(f−1(Fz)), Fz ∈ RC(Y, f(z))
and z ∈ Af . Namely, if z ∈ Af , then z ∈ Bf (z) holds; and so we have Af ⊂ ⋃{Bf (z)|z ∈
Af} = Bf holds in (X, τ).

�
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Abstract

We introduce the concept of interior ideal and the concept of fuzzy
interior ideal in hypersemigroups and we prove, among others, that in
regular also in intra-regular hypersemigroups the interior ideals and the
fuzzy interior ideals coincide. We also prove that an hypergroupoid H is
simple if and only if every fuzzy ideal of H is a constant function; and
that an hypersemigroup H is simple if and only if every fuzzy interior
ideal of H is a constant function, equivalently if, for every element a of
H, we have H = H ∗ {a} ∗H.

1 Introduction

This paper is based on our paper [5] and partly on [6]. We first introduce
the concept of an interior ideal and the concept of a fuzzy interior ideal of an
hypersemigroup and we prove that if H is an hypersemigroup and A an interior
ideal of H, then the characteristic mapping fA is a fuzzy interior ideal of H.
“Conversely”, if A is a nonempty subset of H and fA a fuzzy interior ideal of
H, then the set A is an interior ideal of H. Then we prove that any fuzzy
ideal of an hypersemigroup H is a fuzzy interior ideal of H and in regular,
also in intra-regular hypersemigroups the concepts of interior ideals and fuzzy
interior ideals coincide. We also prove that in a regular and in an intra-regular
hypersemigroupH the interior ideals are subsemigroups ofH. Following Kuroki,
we call an hypergroupoid H fuzzy simple if every fuzzy ideal of H is a constant
function. We prove that an hypergroupoid is simple if and only if it is fuzzy
simple, and an hypersemigroup H is simple if and only H = H∗{a}∗H for every
a ∈ H, equivalently, if every fuzzy interior ideal of H is a constant function. As
a consequence, for an hypersemigroup H, the following are equivalent: (1) H is
simple. (2) H = H ∗ {a} ∗H for every a ∈ H. (3) H is fuzzy simple. (4) every
fuzzy interior ideal of H is a constant function.
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2 Prerequisites

For the sake of completeness, we will give some definitions already given in [2].
An hypergroupoid is a nonempty set H with an hyperoperation

◦ : H ×H → P∗(H) | (a, b) → a ◦ b on H and an operation
∗ : P∗(H) × P∗(H) → P∗(H) | (A,B) → A ∗ B on P∗(H) (induced by the

operation of H) such that A ∗ B =
∪

(a,b)∈A×B

(a ◦ b) for every A,B ∈ P∗(H)

(P∗(H) being the set of nonempty subsets of H). As the operation “∗” depends
on the hyperoperation “◦”, an hypergroupoid can be denoted by (H, ◦) (instead
of (H, ◦, ∗)). If (H, ◦) is an hypergroupoid then, for every x, y ∈ H, we have
{x} ∗ {y} =

∪
a∈{x}, b∈{y}

(a ◦ b) = x ◦ y. The following proposition, though clear,

plays an essential role in the theory of hypergroupoids.

Proposition 2.1. Let (H, ◦) be an hypergroupoid, x ∈ H and A,B ∈ P∗(H).
Then we have the following:

(1) If x ∈ A ∗B, then x ∈ a ◦ b for some a ∈ A, b ∈ B and
(2) If a ∈ A and b ∈ B, then a ◦ b ⊆ A ∗B.

Proposition 2.2. If (H, ◦) is an hypergroupoid then, for every A,B,C,D ∈
P∗(H), we have

(1) A ⊆ B ⇒ A ∗ C ⊆ B ∗ C and C ∗A ⊆ C ∗B, equivalently,
A ⊆ B and C ⊆ D ⇒ A ∗ C ⊆ B ∗D.

(2) H ∗A ⊆ H and A ∗H ⊆ H.

Definition 2.3. Let (H, ◦) be an hypergroupoid. A nonempty subset A of H
is called a left (resp. right) ideal of H if H ∗ A ⊆ A (resp. A ∗H ⊆ A). If A is
both a left and a right ideal of H, then it is called an ideal of H. A nonempty
subset A of H is called a subgroupoid of H if A ∗A ⊆ A.
Clearly, every left (resp. right) ideal of H is a subgroupoid of H.

Definition 2.4. An hypergroupoid (H, ◦) is called hypersemigroup if

{x} ∗ (y ◦ z) = (x ◦ y) ∗ {z}

for every x, y, z ∈ H. Since {x}∗{y} = x◦y for every x, y ∈ H, this is equivalent

to saying that {x} ∗
(
{y} ∗ {z}

)
=

(
{x} ∗ {y}

)
∗ {z} for every x.y, z ∈ H.

Proposition 2.5. ([1,2]; for its proof we refer to [4]) If (H, ◦) be an hypersemi-
group, then (P∗(H), ∗) is a semigroup.

As a result, for any A,B,C ∈ P∗(H), we write A ∗ (B ∗C) = (A ∗B) ∗C :=
A ∗ B ∗ C; and in an expression of the form A1 ∗ A2 ∗ ..... ∗ An, where the
Ai (i = 1, 2, ..., n) are elements of P∗(H) we can put parentheses in any place
beginning with some Ai and ending in some Aj (1 ≤ i, j ≤ n).

Following Zadeh, any mapping f : H → [0, 1] of an hypergroupoid H into
the closed interval [0, 1] of real numbers is called a fuzzy subset of H (or a fuzzy
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set in H) and, for any nonempty subset A of H, the characteristic function fA
of A, is the fuzzy subset of H defined by

fA : H → {0, 1} | x → fA(x) =

{
1 if x ∈ A
0 if x /∈ A.

The concepts of fuzzy left ideals and fuzzy right ideals of semigroups due to
Kuroki [6], are the following: A fuzzy subset f of a semigroup S is called a fuzzy
left (resp. fuzzy right) ideal of S if, for every x, y ∈ S, we have f(xy) ≥ f(y)
(resp. f(xy) ≥ f(x)). It is called a fuzzy ideal of S if it is both a fuzzy left and
a fuzzy right ideal of S. These concepts can be transferred, in a natural way, to
an hypergroupoid as follows:

Definition 2.6. [3] Let (H, ◦) be an hypergroupoid. A fuzzy subset f of H is
called a fuzzy left ideal of H if

f(x ◦ y) ≥ f(y) for all x, y ∈ H,

in the sense that if x, y ∈ H and u ∈ x ◦ y, then f(u) ≥ f(y).
A fuzzy subset f of H is called a fuzzy right ideal of H if

f(x ◦ y) ≥ f(x) for all x, y ∈ H,

meaning that if x, y ∈ H and u ∈ x ◦ y, then f(u) ≥ f(x).
A fuzzy subset f of H is called a fuzzy ideal of H it is both a fuzzy left ideal
and a fuzzy right ideal of H. As one can easily see, a fuzzy subset f of H is a
fuzzy ideal of H if and only f(x ◦ y) ≥ max{f(x), f(y)} for all x, y ∈ H, in the
sense that x, y ∈ H and u ∈ x ◦ y implies f(u) ≥ max{f(x), f(y)}.

3 Main results

Definition 3.1. Let H be an hypersemigroup. A nonempty subset A of H is
called an interior ideal of H if

H ∗A ∗H ⊆ A.

By a subidempotent interior ideal of H we mean an interior ideal of H which is
at the same time a subsemigroup of H.

The concept of fuzzy interior ideal of semigroups is also due to Kuroki [6],
and it is the following: A fuzzy subset f of a semigroup S is called a fuzzy
interior ideal of S if, for any x, a, y ∈ S, we have f(xay) ≥ f(a). This concept
can be naturally transferred to an hypersemigroup as follows:

Definition 3.2. Let H be an hypersemigroup. A fuzzy subset f of H is called
a fuzzy interior ideal of H if

f
(
(x ◦ a) ∗ {y}

)
≥ f(a) for every x, a, y ∈ H,
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in the sense that if x, a, y ∈ H and u ∈ (x ◦ a) ∗ {y}, then f(u) ≥ f(a).
For an hypersemigroup, we clearly have

(x ◦ a) ∗ {y} = {x} ∗ (a ◦ y) = {x} ∗ {a} ∗ {y}.

Proposition 3.3. Let H be an hypersemigroup. If A is an interior ideal of H,
then the characteristic function fA is a fuzzy interior ideal of H. “Conversely”,
if A is a nonempty subset of H such that fA is a fuzzy interior ideal of H, then
A is an interior ideal of H.

Proof. =⇒. Let x, a, y ∈ H. Then fA

(
(x ◦ a) ∗ {y}

)
≥ fA(a). In fact: Let

u ∈ (x ◦ a) ∗ {y}. If a ∈ A, then fA(a) = 1. Since A is an interior ideal of H,
we have H ∗ A ∗ H ⊆ A. So we have u ∈ {x} ∗ {a} ∗ {y} ⊆ H ∗ A ∗ H ⊆ A.
Then u ∈ A, and fA(u) = 1. Thus we get fA(u) ≥ fA(a). Let now a /∈ A. Then
fA(a) = 0. Since fA is a fuzzy subset of H and u ∈ H, we have fA(u) ≥ 0.
Thus we have fA(u) ≥ fA(a).
⇐=. Let A be a nonempty subset of H and fA a fuzzy interior ideal of H. Then
H ∗A ∗H ⊆ A. Indeed: Let u ∈ H ∗A ∗H. Then u ∈ v ◦ y for some v ∈ H ∗A,
y ∈ H and v ∈ x ◦ a for some x ∈ H, a ∈ A. Since v ◦ y ⊆ (x ◦ a) ∗ {y}, we have
u ∈ (x ◦ a) ∗ {y}, where x, y ∈ H and a ∈ A. Since fA a fuzzy interior ideal of
H, we have fA(u) ≥ fA(a) = 1. Since fA is a fuzzy subset of H and u ∈ H, we
have fA(u) ≤ 1. So we have fA(u) = 1, and u ∈ A. �
Proposition 3.4. Let H be an hypersemigroup. If f is a fuzzy ideal of H, then
f is a fuzzy interior ideal of H.

Proof. Let x, a, y ∈ H. Then f
(
(x ◦ a) ∗ {y}

)
≥ f(a). In fact:

Let u ∈ (x◦a)∗{y}. By Proposition 2.1, there exists v ∈ x◦a such that u ∈ v◦y.
Since v ∈ x ◦ a and f is a fuzzy left ideal of H, we have f(v) ≥ f(a). Since
u ∈ v ◦ y and f is a fuzzy right ideal of H, we have f(u) ≥ f(v). Then we have
f(u) ≥ f(a), and the proof is complete. �
Definition 3.5. (cf. also [3]) An hypersemigroup H is called regular if for every
a ∈ H there exists x ∈ H such that a ∈ {a} ∗ (x ◦ a).

Lemma 3.6. [3; Lemma 1.2] Let H be an hypersemigroup. The following are
equivalent:

(1) H is regular.
(2) a ∈ {a} ∗ {x} ∗ {a} for every a ∈ H.
(3) A ⊆ A ∗H ∗A for every nonempty subset A of H.

Proposition 3.7. Let H be a regular hypersemigroup and A an interior ideal
of H. Then A is a subsemigroup of H.

Proof. Since A is an interior ideal of H, we have H ∗ A ∗H ⊆ A. Since H is
regular, we have A ⊆ A ∗H ∗A. Then we have

A ∗A ⊆ (A ∗H ∗A) ∗A = (A ∗H) ∗A ∗A ⊆ H ∗A ∗H ⊆ A,

so A is a subsemigroup of H. �
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Proposition 3.8. Let H be a regular hypersemigroup and f a fuzzy interior
ideal of H. Then f is a fuzzy ideal of H.

Proof. Let a, b ∈ H. Then f(a ◦ b) ≥ f(a) and f(a ◦ b) ≥ f(b). In fact:
Let u ∈ a ◦ b. Then f(u) ≥ f(a). Indeed: Since a ∈ H and H is regular, there
exists x ∈ H such that a ∈ {a} ∗ {x} ∗ {a}. Then

a ◦ b ⊆ {a} ∗ {x} ∗ {a} ∗ {b} = (a ◦ x) ∗ (a ◦ b),

from which u ∈ v◦w for some v ∈ a◦x, w ∈ a◦b. We have u ∈ v◦w ⊆ {v}∗(a◦b)
and f

(
{v} ∗ (a ◦ b)

)
≥ f(a), thus we have f(u) ≥ f(a), and f is a fuzzy right

ideal of H. We also have f(u) ≥ f(b). Indeed: Since b ∈ H and H is regular,
there exists y ∈ H such that b ∈ {b} ∗ {y} ∗ {b}. Then we have

u ∈ a ◦ b ⊆ {a} ∗ {b} ∗ {y} ∗ {b} = (a ◦ b) ∗ (y ◦ b).

Then u ∈ s ◦ t for some s ∈ a ◦ b, t ∈ y ◦ b. Then we have

u ∈ s ◦ t ⊆ (a ◦ b) ∗ {t} = {a} ∗ (b ◦ t).

Since f
(
{a} ∗ (b ◦ t)

)
≥ f(b), we obtain f(u) ≥ f(b), and f is a fuzzy left ideal

of H. Therefore f is a fuzzy ideal of H. �
From Propositions 3.4 and 3.8 we have the following

Theorem 3.9. In regular hypersemigroups the concepts of fuzzy ideals and fuzzy
interior ideals coincide.

Definition 3.10. (cf. also [3]) An hypersemigroup H is called intra-regular if
for every a ∈ H there exist x, y ∈ H such that a ∈ (x ◦ a) ∗ (a ◦ y).

Lemma 3.11. Let H be an hypersemigroup. The following are equivalent:
(1) H is intra-regular.
(2) a ∈ H ∗ {a} ∗ {a} ∗H for every a ∈ H.
(3) A ⊆ H ∗A ∗A ∗H for every nonempty subset of H.

Proof. The implication (1) ⇒ (2) and the equivalence (2) ⇔ (3) are obvious.
Let us prove the implication (2) ⇒ (1). Let a ∈ H. By (2), we have a ∈(
H ∗ {a}

)
∗

(
{a} ∗ H

)
. By Proposition 2.1, a ∈ u ◦ v for some u ∈ H ∗ {a},

v ∈ {a} ∗ H , u ∈ x ◦ a and v ∈ a ◦ y for some x, y ∈ H. Then we have
a ∈ u ◦ v ⊆ (x ◦ a) ∗ (a ◦ y), then a ∈ (x ◦ a) ∗ (a ◦ y), where x, y ∈ H and so H
is intra-regular. �
Proposition 3.12. Let H be an intra-regular hypersemigroup and A an interior
ideal of H. Then A is a subsemigroup of H.

Proof. Since A is an interior ideal of H, we have H ∗ A ∗H ⊆ A. Since H is
intra-regular, we have A ⊆ H ∗A ∗A ∗H. Then we have

A ∗A ⊆ (H ∗A ∗A ∗H) ∗A = (H ∗A) ∗A ∗ (H ∗A)

⊆ H ∗A ∗H ⊆ A,
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so A is a subsemigroup of H. �
By Propositions 3.7 and 3.12, we have the following

Corollary 3.13. In regular and in intra-regular hypersemigroups the interior
ideals and the subidempotent interior ideals coincide.

Proposition 3.14. Let H be an intra-regular hypersemigroup and f is a fuzzy
interior ideal of H. Then f is a fuzzy ideal of H.

Proof. Let a, b ∈ H and u ∈ a ◦ b. Since a ∈ H and H is intra-regular, there
exist x, y ∈ H such that a ∈ {x} ∗ {a} ∗ {a} ∗ {y}. Then

a ◦ b ⊆ {x} ∗ {a} ∗ {a} ∗ {y} ∗ {b} = (x ◦ a) ∗
(
(a ◦ y) ∗ {b}

)
.

Then u ∈ v ◦ w for some v ∈ x ◦ a, w ∈ (a ◦ y) ∗ {b}. We have

u ∈ v ◦ w ⊆ (x ◦ a) ∗ {w}

and, since f is a fuzzy interior ideal of H, f
(
(x ◦ a) ∗ {w}

)
≥ f(a). Thus we

get f(u) ≥ f(a), and f is a fuzzy right ideal of H. Since b ∈ H and H is
intra-regular, there exist z, t ∈ H such that b ∈ {z} ∗ {b} ∗ {b} ∗ {t}, then we
have

a ◦ b ⊆ {a} ∗ {z} ∗ {b} ∗ {b} ∗ {t} =
(
(a ◦ z) ∗ {b}

)
∗ (b ◦ t).

Then u ∈ c ◦ d for some c ∈ (a ◦ z) ∗ {b}, d ∈ b ◦ t. Since u ∈ c ◦ d ⊆ {c} ∗ (b ◦ t)
and f

(
{c} ∗ (b ◦ t)

)
≥ f(b), we have f(u) ≥ f(b), and f is a fuzzy left ideal of

H. Hence f is a fuzzy ideal of H. �
By Propositions 3.4 and 3.14, we have the following theorem

Theorem 3.15. In intra-regular hypersemigroups the concepts of fuzzy ideals
and fuzzy interior ideals coincide.

An ideal A of an hypergroupoid H is called proper if A ̸= H.

Definition 3.16. An hypergroupoid H is called simple if does not contain
proper ideals, that is, for every ideal A of H, we have A = H.

The concept of fuzzy simple semigroups due to Kuroki [6] can be naturally
transferred to hypergroupoids as follows:

Definition 3.17. An hypergroupoid H is called fuzzy simple if every fuzzy
ideal of H is a constant function, that is, for every fuzzy ideal f of H and every
a, b ∈ H, we have f(a) = f(b).

Notation 3.18. Let H be an hypergroupoid and a ∈ H. We denote by Ia the
subset of H defined as follows:

Ia = {b ∈ H | f(b) ≥ f(a)}.

Lemma 3.19. Let H be an hypergroupoid and f a fuzzy right (resp. fuzzy left)

ideal of H. Then the set Ia is a right (resp. left) ideal of H for every a ∈ H.
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Proof. Let a ∈ H and f a fuzzy right ideal of H. The set Ia is a right ideal
of H. Indeed: Since a ∈ Ia, the set Ia is a nonempty subset of H. Moreover,
Ia ∗H ⊆ Ia. Indeed: Let x ∈ Ia ∗H. Then x ∈ u ◦ v for some u ∈ Ia, v ∈ H.
Since x ∈ u ◦ v and f is a fuzzy right ideal of H, we have f(x) ≥ f(u). Since
u ∈ Ia, we have f(u) ≥ f(a), thus we have f(x) ≥ f(a). Since u ∈ Ia, we have
u ∈ H. Since u, v ∈ H, we have u ◦ v ⊆ H ∗H ⊆ H, so x ∈ H. Since x ∈ H
and f(x) ≥ f(a), we have x ∈ Ia. Thus Ia is a right ideal of H. Similarly, if f
is a fuzzy left ideal of H, then the set Ia is a left ideal of H for every a ∈ H. �
Corollary 3.20. If H is an hypergroupoid and f a fuzzy ideal of H, then the set
Ia is an ideal of H for every a ∈ H.

Lemma 3.21. Let H be an hypergroupoid. If A a left (resp. right) ideal or an
ideal of H, then the characteristic function fA is a fuzzy left (resp. fuzzy right)
ideal or a fuzzy ideal of H. “Conversely”, if A is a nonempty subset of H and
fA a fuzzy left (resp. fuzzy right) ideal or a fuzzy ideal of H, then A is a left
(resp. right) ideal or an ideal of H.

Proof. Let A be a left ideal of H, x, y ∈ H and u ∈ x◦y. Then fA(u) ≥ fA(y).
Indeed: If y ∈ A, then x ◦ y ⊆ H ∗ A ⊆ A, then u ∈ A and fA(u) = 1 ≥ fA(y).
If y ̸∈ A, then fA(y) = 0 ≤ fA(u), so fA is a fuzzy left ideal of H. Let now fA
be a fuzzy left ideal of H. Then H ∗ A ⊆ A. Indeed: Let u ∈ H ∗ A. Then
u ∈ x ◦ y for some x ∈ H, y ∈ A. Since u ∈ x ◦ y, we have fA(u) ≥ fA(y) = 1.
Then fA(u) = 1, and u ∈ A. The “dual” (for right-fuzzy right ideals) can be
proved in a similar way, this completes the proof. �
Theorem 3.22. An hypergroupoid H is simple if and only if it is fuzzy simple.

Proof. =⇒. Let f be a fuzzy ideal of H and a, b ∈ H. Since f is a fuzzy ideal
of H and a ∈ H, by Corollary 3.20, the set Ia is an ideal of H. Since H is
simple, we have Ia = H. Then b ∈ Ia, so f(b) ≥ f(a). By symmetry, we get
f(a) ≥ f(b). Thus we have f(a) = f(b), and H is fuzzy simple.
⇐=. Let H be fuzzy simple and I an ideal of H. Then I = H. Indeed: Let
x ∈ H. Since I is an ideal of H, by Lemma 3.21, the characteristic function fI
is a fuzzy ideal of H. Since H is fuzzy simple, fI is a constant function, that is,
fI(y) = fI(z) for every y, z ∈ H. Take an element a ∈ I (I ̸= ∅). Then we have
fI(x) = fI(a) = 1, so x ∈ I. Thus H is simple. �
Theorem 3.23. If H is an hypersemigroup, then the following are equivalent:

(1) H is simple.
(2) H = H ∗ {a} ∗H for every a ∈ H.
(3) Every fuzzy interior ideal of H is a constant function.

Proof. (1) =⇒ (2). Let a ∈ H. The set H ∗ {a} ∗H is an ideal of H. Indeed,
it is a nonempty subset of H, and we have

H ∗ (H ∗ {a} ∗H) = (H ∗H) ∗ {a} ∗H ⊆ H ∗ {a} ∗H and
(H ∗ {a} ∗H) ∗H = H ∗ {a} ∗ (H ∗H) ⊆ H ∗ {a} ∗H.

Since H is simple, we have H ∗ {a} ∗H = H.
(2) =⇒ (3). Let f be a fuzzy interior ideal of H and a, b ∈ H. Then f(a) = f(b).
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Indeed: Since b ∈ H, by hypothesis, we have b ∈ (x ◦a) ∗ {y} for some x, y ∈ H.
Since f is a fuzzy interior ideal of H, we have f(b) ≥ f(a). By symmetry, we
get f(a) ≥ f(b), so f(a) = f(b).
(3) =⇒ (1). Let f is a fuzzy ideal of H. By Proposition 3.4, f is a fuzzy interior
ideal of H. By hypothesis, f is a constant function. Thus H is fuzzy simple.
Then, by Theorem 3.22, H is simple. �

Summarizing, in case of an hypersemigroup the following are equivalent: (1)
H is simple; (2) H = H ∗ {a} ∗ H for every a ∈ H; (3) H = H ∗ A ∗ H for
every A ∈ P∗(H); (4) H is fuzzy simple; (5) every fuzzy interior ideal of H is
a constant function. Clearly H = H ∗ {a} ∗H for every a ∈ H is equivalent to
H = H ∗A ∗H for every nonempty subset A of H.

With my best thanks to Prof. Klaus Denecke for his interest in my work
and his prompt reply.
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simple, and an hypersemigroup H is simple if and only H = H∗{a}∗H for every
a ∈ H, equivalently, if every fuzzy interior ideal of H is a constant function. As
a consequence, for an hypersemigroup H, the following are equivalent: (1) H is
simple. (2) H = H ∗ {a} ∗H for every a ∈ H. (3) H is fuzzy simple. (4) every
fuzzy interior ideal of H is a constant function.

02010 Mathematics Subject Classification. Primary: 20M99, 08A72.
Key words and Phrases. Hypersemigroup, interior ideal, fuzzy interior ideal, right (left)

ideal, ideal, fuzzy right (left) ideal, fuzzy ideal, regular, intra-regular, simple, fuzzy simple.
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Submission to the SCMJ 
 
In September 2012, the way of submission to Scientiae Mathematicae Japonicae 
(SCMJ) was changed.  Submissions should be sent electronically (in PDF file) to the 
editorial office of International Society for Mathematical Sciences (ISMS).  
 
(1) Preparation of files and Submission 

a. Authors who would like to submit their papers to the SCMJ should make 
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty) 
Submissions should be in PDF file compiled from the source files.  Send the 
PDF file to s1bmt@jams.jp . 

b. Prepare a Submission Form and send it to the ISMS.  The required items to 
be contained in the form are:  

  1. Editor’s name whom the author chooses from the Editorial Board 
(http://www.jams.or.jp/hp/submission_f.html )and would like to take in 
charge of the paper for refereeing.  

2. Title of the paper.   
3. Authors’ names.   
4. Corresponding author’s name, e-mail address and postal address (affiliation).  
5. Membership number in case the author is an ISMS member.   
 
Japanese authors should write 3 and 4 both in English and in Japanese.  
 
At http://www.jams.or.jp/hp/submission_f.html, the author can find the 
Submission Form. Fulfill the Form and sent it to the editorial office by pushing 
the button “transmission”.  Or, without using the Form, the author may send 
an e-mail containing the items 1-5 to s1bmt@jams.jp 

 
(2) Registration of Papers 

When the editorial office receives both a PDF file of a submitted paper and a 
Submission Form, we register the paper.  We inform the author of the 
registration number and the received date.  At the same time, we send the PDF 
file to the editor whom the author chooses in the Submission Form and request 
him/her to begin the process of refereeing. (Authors need not send their papers to 
the editor they choose.) 
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(3) Reviewing Process 
a. The editor who receives, from the editorial office, the PDF file and the request 

of starting the reviewing process, he/she will find an appropriate referee for 
the paper.   

b. The referee sends a report to the editor.  When revision of the paper is 
necessary, the editor informs the author of the referee’s opinion. 

c. Based on the referee report, the editor sends his/her decision (acceptance of 
rejection) to the editorial office. 

 
(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the  

editor’s decision, and informs it to the author. 
b. When the paper is accepted, we ask the author to send us a source file and 

a PDF file of the final manuscript.  
c. The publication charges for the ISMS members are free if the membership dues 

have been paid without delay. If the authors of the accepted papers are not the 
ISMS members, they should become ISMS members and pay ¥6,000 (US$75, 
Euro55) as the membership dues for a year, or should just pay the same 
amount without becoming the members. 

 
 
 
 

Items required in Submission Form 
1. Editor’s name who the authors wish will take in charge of the paper 
2. Title of the paper 
3. Authors’ names 
3’.  3. in Japanese for Japanese authors 
4. Corresponding author’s name and postal address (affiliation) 
4’.  4. in Japanese for Japanese authors 
5. ISMS membership number 
6. E-mail address   
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Call for ISMS Members 
 

Call for Academic and Institutional Members 
 

Discounted subscription price: When organizations become the Academic and Institutional 
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the 
yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    

 
Invitation of two associate members: We would like to invite two persons from the 

organizations to the associate members with no membership fees. The two persons will enjoy 
almost the same privileges as the individual members.  Although the associate members 
cannot have their own ID Name and Password to read the online version of SCMJ, they can 
read the online version of SCMJ at their organization. 

 
To apply for the Academic and Institutional Member of the ISMS, please use the following 

application form. 
 
----------------------------------------------------------------------------------------------------------- 
 

Application for Academic and Institutional Member of ISMS 
Subscription of SCMJ 

Check one of the two. 

 

□Print               □Print ＋ Online 

(US$225)                 (US$225) 

University (Institution) 

 

 

Department 

 

 

Postal Address 

where SCMJ should be 

sent 

 

E-mail address 

 

 

Person in charge 

Name: 

Signature: 

 

Payment 

Check one of the two. 
□Bank transfer        □Credit Card (Visa, Master) 

Name of Associate Membership 

1.  

 

2.  
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Call for Individual Members 

 
We call for individual members.  The privileges to them and the membership dues are shown 

in “Join ISMS !” on the inside of the back cover. 
 

 
 Items required in Membership Application Form 
   

1. Name 
2. Birth date 
3. Academic background 
4. Affiliation 
5. 4’s address 
6. Doctorate 
7. Contact address 
8. E-mail address 
9. Special fields 
10. Membership category (See Table 1 in “Join ISMS !”) 
 

Individual Membership Application Form 
 
1. Name 
 

 

 
2. Birth date 
 

 

3. 
Academic background 
 

 

 
4. Affiliation 
 

 

 
5. 4’s address 
 
 

 

 
6. Doctorate 
 

 

 
7. Contact address 
 
 

 

  
8.  E-mail address 
 

 

 
9.  Special fields 
 

 

10.  
Membership 

    category 
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Contributions (Gift to the ISMS) 
We deeply appreciate your generous contributions to support the activities of our 

society. 
The donation are used (1) to make medals for the new prizes (Kitagawa Prize, 
Kunugi Prize, and ISMS Prize),  (2) to support the IVMS at Osaka University 
Nakanoshima Center, and (3) for a special fund designated by the contributors. 
 
Your remittance to the following accounts of ours will be very much appreciated. 

 
(1)  Through a post office, remit to our giro account ( in Yen only ): 

         No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS ) 
   or send International Postal Money Order (in US Dollar or in Yen) to our 

address: 
       International Society for Mathematical Sciences 

         2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan 
 
(2)   A/C 94103518, ISMS 

CITIBANK, Japan Ltd., Shinsaibashi Branch 
           Midosuji Diamond Building 
           2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan 
 

 
 

******************************************************************************** 
Payment Instructions: 

Payment can be made through a post office or a bank, or by credit card. Members may 
choose the most convenient way of remittance. Please note that we do not accept payment by 
bank drafts (checks). For more information, please refer to an invoice. 
 

Methods of Overseas Payment: 
Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4) 
UNESCO Coupons.  

Authors or members may choose the most convenient way of remittance as are shown below. 
Please note that we do not accept payment by bank drafts (checks). 
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send 
International Postal Money Order to our postal address (2) Remittance through a 
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment 
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO 
Coupons. 
 

Methods of Domestic Payment: 
Make remittance to: 

(1) Post Office Transfer Account - 00930-3-73982 or  
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING 
CORPORATION, Sakai, Osaka, Japan. 
All of the correspondences concerning subscriptions, back numbers, individual and 
institutional memberships, should be addressed to the Publications Department, 
International Society for Mathematical Sciences. 
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Join ISMS ! 
ISMS Publications: We published Mathematica Japonica (M.J.) in print, 

which was first published in 1948 and has gained an international reputation in 
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online 
and in print. In January 2001, the two publications were unified and changed to 
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New 
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and 
published both online and in print.  Ahead of this, the online version of SCMJ 
was first published in September 2000.  The whole number of SCMJ exceeds 270, 
which is the largest amount in the publications of mathematical sciences in 
Japan. The features of SCMJ are: 
1) About 80 eminent professors and researchers of not only Japan but also 20 

foreign countries join the Editorial Board. The accepted papers are 
published both online and in print. SCMJ is reviewed by Mathematical 
Review and Zentralblatt from cover to cover. 

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ 
are introduced to the relevant research groups for the positive exchanges 
between researchers. 

3) ISMS Annual Meeting: Many researchers of ISMS members and 
non-members gather and take time to make presentations and discussions 
in their research groups every year. 

 
The privileges to the individual ISMS Members:  
(1) No publication charges 
(2) Free access (including printing out) to the online version of SCMJ 

 (3) Free copy of each printed issue  
 
The privileges to the Institutional Members:  
Two associate members can be registered, free of charge, from an institution.  

 
 
Table 1: Membership Dues for 2013 
Categories Domestic Overseas Developing 

countries 
1-year Regular 
member 

     ￥6,000  US$75 ,  €55 US$45,  €33 
 

1-year Student 
member 

     ￥4,000 US$50,  €37 US$30,  €22 
Life member* Calculated  

as below* 
       NA    NA 

 
Honorary member     Free        Free    Free 

 
 
* Regular member between 63 - 73 years old can apply the category. 
   (73－age ) × ¥3,000 
Regular member over 73 years old can maintain the qualification and the 
privileges of the ISMS members, if they wish. 
 
Categories of 3-year members were abolished. 
  
 

INTERNATIONAL SOCIETY FOR MATHEMATICAL SCIENCES
Scientiae Mathematicae Japonicae, Notices from the ISMS

The International Society for Mathematical Sciences (ISMS) is an international soci-
ety consisting of mathematical scientists throughout the world.

The main activities of the ISMS are to publish (1) the (print and online) journal
Scientiae Mathematicae Japonicae (SCMJ) and (2) Notices from the ISMS and to
hold assembly meeetings in Japan and international internet meetings (distance
symposium) of mathematical sciences (IVMS) accessible from all over the world.

SCMJ is the 21st Century New Unified Series of Mathematica Japonica (MJ) and
Scientiae Mathematicae (SCM). MJ was first published in 1948 and was one of the
oldest mathematical journals in Japan. SCM was an online and print journal started in
1998 in celebration of the semi-centurial anniversary and received 26000 visits per month
from 50 countries in the world. SCMJ contains original papers in mathematical sciences
submitted from all over the world and receives 38000 visits per month now. Not only
papers in pure and applied mathematics but those devoted to mathematical statistics,
operations research, informatics, computer science, biomathematics, mathematical eco-
nomics and other mathematical sciences are also welcome. The journal is published in
January, March, May, July, September, and November in each calendar year.

The ISMS has enhanced the journal, begining from July 1995, by including excel-
lent Research-Expository papers in the section “International Plaza for Mathematical
Sciences ” as well as original research papers. The section provides papers dealing with
broad overviews of contemporary mathmatical sciences, written by experts mainly at
our invitation. Papers shedding lights on open problems or new directions or new break-
throughs for future research are especially welcome.

As is shown in the Editorial Board of SCMJ, we have invited many distin-
guished professors of 20 countries as editors, who will receive and referee the papers
of their special fields with their high standard.

Beginning from 2007, we make the online version of SCMJ more readable and conve-
nient to the readers by adding the specialized contents. By this, the readers can access
to the online version, in which the papers appear in the order of acceptance, from (i)
the contents of the printed version, and (ii) the specialized contents of a volume. From
2007, the subscription fee of the printed version plus the online version of SCMJ becomes
lower and the same of the printed version only. Therefore, the subscribers of the printed
version can read the online version without no additional cost.

For benefit of the ISMS members, we publish ”Notices from the ISMS” 6 times a year.
We are enhancing it by adding interesting articles, including book reviewing, written by
eminent professors.

The ISMS has set up a videoconferencing system (IVMS) which can connect up
to twenty sites of a reserch group in the same or different countries in the world.
Using this system, speakers of the session can write on a white board or an OHP sheet
or use PowerPoint. On the other hand participants can ask questions or make comments
from any connected site in the world. All these are performed similarly to the traditional
meetings.

To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).

Copyright Transfer Agreement

A copyright transfer agreement is required before a paper is published in this journal.
By submitting a paper to this journal, authors are regarded to certify that the manuscript
has not been submitted to nor is it under consideration for publication by another journal,
conference proceedings or similar publication.

For more information, please visit http://www.jams.or.jp.

Copyright Copyright c©2014 by International Society for Mathematical Sciences.
All rights reserved.

Categories Domestic Overseas Developing 
countries

1-year� Regular
member ￥8,000 �US$80�，Euro75 �US$50，�Euro47

1-year� Students�
member ￥4,000 �US$50�，Euro47 �US$30�，Euro28

Life�member* Calculated
as�below* �US$750�，Euro710 �US$440，�Euro416

Honorary�member Free Free Free

Membership Dues for ２０１9

　(Regarding submitted papers,we apply above presented new fee after April 15 in 
2015 on registoration date.) * Regular member between 63 - 73 years old can apply 
the category.
(73－age ) × ￥3,000
Regular member over 73 years old can maintain the qualification and the privileges 
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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