We discuss monotone properties of Furuta type inequalities: Let $A \ge B \ge 0$ and $0 \le t \le p$. Then for each $t \in [0,\ 1],\ A^t\ \sharp_{\frac{1-t}{p-t}}\ B^p$ is increasing for $p \ge 1$, and if $A^p \ge B^p$ for some fixed $p > 0$, then $A^t\ \sharp_{\frac{1-t}{p-t}}\ B^p$ is increasing for $t \in [0,1]$. Moreover, if $A^t \ge B^t$ for some fixed $t > 0$, then the following inequalities hold;\\ $$for\ \ t \le \beta \le p,\ \ (A^t\ \natural_{\frac{\beta-t}{p-t}}\ B^p)^{\frac{\delta}{\beta}} \le B^{\delta} \le A^t\ \sharp_{\frac{\delta-t}{p-t}}\ B^p,$$ $$for\ \ p \le \delta \le \beta,\ \ (A^t\ \natural_{\frac{\beta-t}{p-t}}\ B^p)^{\frac{\delta}{\beta}} \le A^t\ \natural_{\frac{\delta-t}{p-t}}\ B^p.$$ Consequently, it improves a recent result of Yang and Zuo.