We show a satellite theorem of chaotic Furuta inequality. For positive invertible operators $A$ and $B$, if $\log A \ge \log B$, then $$(A^{\frac{r}{2}}B^pA^{\frac{r}{2}})^{\frac{1+r}{p+r}} \le A^{\frac{r}{2}}BA^{\frac{r}{2}}\ \ \ \ and\ \ \ \ (B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1+r}{p+r}} \ge B^{\frac{r}{2}}AB^{\frac{r}{2}} $$ for $p \ge 1$ and $r \ge 0.$