In the discussion of the equivalence between Furuta inequality and Ando-Hiai inequality, the key is the inequality that if $A \ge B > 0$, then $$ A^{-r}\ \sharp_{\frac{ r}{p+r }}\ B^p \le I \quad {\rm for} \quad p, r \ge 1. $$ Here $\sharp_\alpha$ is the $\alpha$-geometric mean in the sense of Kubo-Ando. In this note, we assume that $A^{-r}\ \sharp_{\frac{ r}{p+r }}\ B^p \le I$ for some $p, r \ge 1$ instead of $A \ge B > 0$. Then we show that $$ A^{-r}\ \sharp_{\frac{\delta+r}{p+r}}\ B^p \le A^{-r}\ \sharp_{\frac{\delta+r}{\mu+r}}\ B^{\mu} %\leqno{\rm (i)} \quad for \ \ 0 \le \delta \le \mu \le p,$$ and for each $t \in [0,r]$ $$A^{-r}\ \sharp_{\frac{\delta+r}{p+r}}\ B^p \le A^{-t}\ \sharp_{\frac{\delta+t}{p+t}}\ B^p \quad for \ -t \le \delta \le p.$$ % \left\{ %\begin{array}{rl} %A^{\delta} & \mbox{$-t \le \delta \le 0$}\\ %B^{\delta} & \mbox{$0 \le \delta \le p$.} %\end{array}\right. % \leqno{\rm (ii)}$$ As an application, we discuss recent development of grand Furuta inequality due to Furuta himself.