On some matrix mean inequalities with Kantorovich constant

Dinh Trung Hoa, Du Thi Hoa Binh AND Toan Minh Ho

Received December 18, 2014 ; revised September 7, 2015

Abstract. Let A and B be positive definite matrices with $0<m \leq A, B \leq M$ for some scalar $0<m \leq M$, and σ, τ two arbitrary means between the harmonic and the arithmetic means. Put $h=\frac{M}{m}$. Then for every unital positive linear map Φ,

$$
\begin{aligned}
\Phi^{2}(A \sigma B) & \leq K^{2}(h) \Phi^{2}(A \tau B), \\
\Phi^{2}(A \sigma B) & \leq K^{2}(h)(\Phi(A) \tau \Phi(B))^{2}, \\
(\Phi(A) \sigma \Phi(B))^{2} & \leq K^{2}(h) \Phi^{2}(A \tau B), \\
(\Phi(A) \sigma \Phi(B))^{2} & \leq K^{2}(h)(\Phi(A) \tau \Phi(B))^{2},
\end{aligned}
$$

where $K(h)=\frac{(h+1)^{2}}{4 h}$ is the Kantorovich constant.
We also give a new characterization of the trace property and operator monotonicity by the squared Cauchy inequality.

