ON RELATIONS BETWEEN OPERATOR VALUED α -DIVERGENCE AND RELATIVE OPERATOR ENTROPIES

Hiroshi Isa $^{(1)}$, Masatoshi Ito $^{(2)}$, Eizaburo Kamei $^{(3)}$, Hiroaki Tohyama $^{(4)}$ and Masayuki Watanabe $^{(5)}$

Received March 5, 2014; revised June 20, 2014

ABSTRACT. Let A and B be two strictly positive operators, and $\alpha \in (0, 1)$. The operator valued α -divergence is defined by

$$D_{\alpha}(A|B) \equiv \frac{1}{\alpha(1-\alpha)} \left(A \nabla_{\alpha} B - A \sharp_{\alpha} B \right),$$

where $A \nabla_{\alpha} B = (1 - \alpha)A + \alpha B$ and $A \sharp_{\alpha} B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\alpha} A^{\frac{1}{2}}$. In this paper, firstly, we show some fundamental relations between operator valued α -divergence and relative operator entropy (relative operator entropy, Tsallis relative operator entropy etc.). Next, we introduce noncommutative ratio $(A \natural_{u+v} B)(A \natural_u B)^{-1}$ on the path $A \natural_w B$, and we discuss noncommutative ratio translation. Moreover, we discuss α -divergence for operator distributions.

Key words and phrases. operator divergence, operator valued α -divergence, relative operator entropy, Tsallis relative operator entropy, operator mean.