SOME OPERATOR DIVERGENCES BASED ON PETZ-BREGMAN DIVERGENCE

HIROSHI ISA⁽¹⁾, MASATOSHI ITO⁽²⁾, EIZABURO KAMEI⁽³⁾, HIROAKI TOHYAMA⁽⁴⁾ AND MASAYUKI WATANABE⁽⁵⁾

Received October 9, 2015; revised November 16, 2015

ABSTRACT. Let A and B be strictly positive operators on a Hilbert space. For relative operator entropies $S(A|B) \equiv A^{\frac{1}{2}} \log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}}, T_{\alpha}(A|B) \equiv \frac{1}{\alpha}(A \sharp_{\alpha} B - A)$ and $S_{\alpha}(A|B) \equiv A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\alpha} \log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}}$, we showed

$$(*) \quad S_1(A|B) \ge -T_{1-\alpha}(B|A) \ge S_{\alpha}(A|B) \ge T_{\alpha}(A|B) \ge S(A|B) \text{ for } \alpha \in (0,1).$$

Petz gave an operator divergence $D_0(A|B) = B - A - S(A|B)$ which we call Petz-Bregman divergence. Petz also defined Bregman divergence $D_{\Psi}(X, Y)$ for an operator valued smooth function $\Psi : \mathbf{C} \to B(H)$ and $X, Y \in \mathbf{C}$, where **C** is a convex set in a Banach space.

In this paper, firstly, we define new operator divergences as the differences between two terms in (*) and represent them by using $D_0(A|B)$. Secondly, we let $\mathbf{C} = \mathbb{R}$ and show $D_{\Psi}(x, y) = D_0(A \natural_y B | A \natural_x B)$ for $\Psi(t) = A \natural_t B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^t A^{\frac{1}{2}}$ and $x, y \in \mathbb{R}$. Then we have $D_{\Psi}(1, 0) = D_0(A|B)$ in particular. Based on this interpretation, we discuss Bregman divergences $D_{\Psi}(1, 0)$ for several functions Ψ which relate to the operator divergences defined above.

Key words and phrases. operator divergence, operator valued α -divergence, relative operator entropy, Tsallis relative operator entropy, Petz-Bregman divergence.