VELOCITY AND ACCELERATION ON THE PATHS A arrow t B and A arrow t, r B

DEDICATED TO THE MEMORY OF PROFESSOR TAKAYUKI FURUTA

HIROSHI ISA⁽¹⁾, MASATOSHI ITO⁽²⁾, EIZABURO KAMEI⁽³⁾, HIROAKI TOHYAMA⁽⁴⁾ AND MASAYUKI WATANABE⁽⁵⁾ Received February 1, 2017; revised April 24, 2017

ABSTRACT. Let A and B be strictly positive linear operators on a Hilbert space. The derivative of the path A
arrow to the B be strictly positive linear operators on a Hilbert space. The derivative of the path A
arrow to the B be strictly provide the relative operator entropy, that is, $\frac{d}{dt}A
arrow to the B = S_t(A|B)$, which we can regard as the velocity function along A
arrow to the B. The derivative of velocity function is the acceleration function, so we define the acceleration by $\mathcal{A}_t(A|B) = \frac{d}{dt}S_t(A|B)$. In this paper, we discuss properties of $S_t(A|B)$ and $\mathcal{A}_t(A|B)$. Firstly, we interpret some properties of $S_t(A|B)$ concerning interpolational property and the noncommutative ratio from the viewpoint of velocity. Secondly, we show the properties of $\mathcal{A}_t(A|B)$ similar to those of $S_t(A|B)$.

Key words and phrases. velocity, acceleration, path, relative operator entropy.