TRANSFORMS ON OPERATOR MONOTONE FUNCTIONS

Masaru Nagisa

Received August 31, 2017 ; revised December 7, 2017

Abstract. Let f be an operator monotone function on $[0, \infty)$ with $f(t) \geq 0$ and $f(1)=1$. If $f(t)$ is neither the constant function 1 nor the identity function t, then

$$
h(t)=\frac{(t-a)(t-b)}{(f(t)-f(a))\left(f^{\sharp}(t)-f^{\sharp}(b)\right)} \quad t \geq 0
$$

is also operator monotone on $[0, \infty)$, where $a, b \geq 0$ and

$$
f^{\sharp}(t)=\frac{t}{f(t)} \quad t \geq 0 .
$$

Moreover, we show some extensions of this statement.

Key words and phrases. operator monotone functions, Pick functions, Petz-Hasegawa's functions.

