NORM INEQUALITIES RELATED TO THE MATRIX GEOMETRIC MEAN OF NEGATIVE POWER

Mohsen Kian* and Yuki Seo**

Received February 12, 2018; revised March 27, 2018

Abstract. In this paper, we show norm inequalities related to the matrix geometric mean of negative power for positive definite matrices: For positive definite matrices A and B,

$$
\left\|\mid e^{(1-\beta) \log A+\beta \log B}\right\|\|\leq\| A \natural_{\beta} B\|\leq\| A^{1-\beta} B^{\beta} \|
$$

for every unitarily invariant norm and $-1 \leq \beta \leq-\frac{1}{2}$, where the β-quasi geometric mean $A \natural_{\beta} B$ is defined by $A \natural_{\beta} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\beta} A^{\frac{1}{2}}$. For our purposes, we show the Ando-Hiai log-majorization of negative power

Key words and phrases. Ando-Hiai inequality, matrix geometric mean, unitarily invariant norm, positive definite matrix.

