POSITIVITY OF OPERATORS DERIVED FROM OPERATOR MONOTONE FUNCTIONS

Masatoshi Fujii and Ritsuo Nakamoto

Received July 4, 2022 ; revised July 18, 2022

Abstract

We pose an extension of the arithmetic-geometric mean inequality: For invertible positive operators A and B, if $A B^{-1}+B A^{-1}$ is selfadjoint, then $A B^{-1}+B A^{-1} \geq 2 I$. As an application, we show that if $A(B+s)^{-1}+$ $B(A+s)^{-1}$ is selfadjoint for all $s \geq 0$, then $(B-A)\{f(B)-f(A)\} \geq 0$ holds for all operator monotone function f on $(0, \infty)$. Next we prove that for $A, B \geq 0, A B+B A \geq 0$ if and only if $f(A)+f(B) \geq f(A+B)+f(0) I$ holds for operator monotone functions f on $[0, \infty)$. It is an extension of a theorem due to Moslehian and Najafi.

