POSITIVITY OF OPERATORS DERIVED FROM OPERATOR MONOTONE FUNCTIONS

Masatoshi Fujii and Ritsuo Nakamoto

Received July 4, 2022; revised July 18, 2022

ABSTRACT. We pose an extension of the arithmetic-geometric mean inequality: For invertible positive operators A and B, if $AB^{-1} + BA^{-1}$ is selfadjoint, then $AB^{-1} + BA^{-1} \ge 2I$. As an application, we show that if $A(B + s)^{-1} + B(A + s)^{-1}$ is selfadjoint for all $s \ge 0$, then $(B - A)\{f(B) - f(A)\} \ge 0$ holds for all operator monotone function f on $(0, \infty)$. Next we prove that for $A, B \ge 0, AB + BA \ge 0$ if and only if $f(A) + f(B) \ge f(A + B) + f(0)I$ holds for operator monotone functions f on $[0, \infty)$. It is an extension of a theorem due to Moslehian and Najafi.