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EFFICIENT SOLUTIONS FOR MULTICRITERIA LOCATION

PROBLEMS UNDER THE BLOCK NORM II:

APPLICATION TO THE DEVELOPMENT OF NEW PRODUCTS
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Abstract. In this article, the development of new products is considered an application

of a location problem. First, principal components analysis is used for a multivariate

data. Then, a multicriteria location problem under the block norm is considered for

scores of principal components.

1. Introduction. On a plane, demand points yi; i = 1; 2; � � � ; n and the block norm
are given. The block norm is the approximation to the road distance. Let Y be a set of
all demand points. If a new facility x 2 R2 should be located as near as possible for all

demand points, then the problem is formulated as

(1) min
x2R

2

(kx� y
1
k; kx � y

2
k; � � � ; kx � ynk):

The above location problem (1) is known as a multicriteria problem(MCP). MCP is a

problem to �nd an e�cient or quasie�cient point. A point x 2 R
2 is e�cient if there

is no y 2 R2 such that ky � yik � kx � yik for all i and ky � yjk < kx � yjk for

some j. An e�cient point x is alternately e�cient if there exists y 6= x such that ky �
yik = kx � yik for all i. An e�cient point x is strictly e�cient if x is not alternately
e�cient. A point x 2 R2 is quasie�cient if there is no y 2 R2 such that ky � yik <

kx� yik for all i. Let E(Y ); AE(Y ); SE(Y ) and QE(Y ) be sets of all e�cient, alternately
e�cient, strictly e�cient and quasie�cient points, respectively. By these de�nitions, Y �
SE(Y ) � E(Y ) � QE(Y ). The Stairs algorithm and the Wrapping algorithm to �nd all
e�cient and quasie�cient points, both of which are optimal in the sense of the order for

the computational time, are given in Kon[2].

On the other hand, various distances or norms are used in multicriteria problems[1,2,4,6,8].
For example, `1 distance (the rectilinear distance) in [1,8], `p distances in [8], the one-in�nity
norm in [6] and the block norm in [2,4]. However most of them are applied to a facility

location.

In this article, the development of new products for the market of ready-made clothes
is considered and a multicriteria location problem under the block norm is used in it. The

original data is a multivariate data. The data consists of candidates for new products and
consumers with scores of some variates, which are measured in a common scale. Scores of

products represent their characters, and those of consumers represent their tastes. Principal
components analysis from the covariance matrix is applied for this data, and two principal
components are considered. In R2 which consists of these principal components, MCP

under the block norm is considered. Demand points are scores of principal components
for consumers. The block norm is determined by using regression coe�cients of principal

components on variates. In this sense, the block norm makes up for the lost information by
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principal components analysis. We consider e�cient points. The e�cient set E(Y ) is given

by the Stairs Algorithm in [2]. If a product x =2 E(Y ), then it means that there is another
product y 2 E(Y ) better than x. Perhaps consumers might buy products near their tastes.
So, an e�cient product y is more salable than a product x which is not e�cient. Therefore

e�cient set can be regarded as a set of salable products. Candidates for new products which
are not e�cient are modi�ed to be e�cient and minimize the cost to modify. An iterative

algorithm to determine them is proposed.

In section 2, some properties of the block norm are given. In section 3, the Stairs
Algorithm in [2] is given. Finally, the development of new products for the market of ready-
made clothes is considered an application of MCP under the block norm in section 4.

2. The block norm. In this section, some notations are prepared and the de�nition of

the block norm and its fundamental properties are given.

Let B � R2 be a bounded polyhedral set such that it is symmetric around the origin
and its interior contains the origin. Let

aj = (a1j ; a
2

j ); j = 1; 2; � � � ; 2m

be extreme points of B. Especially, we set a2m+j = aj ; j = 1; 2. For each aj , let �j be an
angle such that

aj = kajk2(cos�j ; sin�j)

where k � k2 is the Euclidean norm. We assume that 0 � �1 < �2 < � � � < �m < �, �m+j =

� + �j , j = 1; 2; � � � ;m and �2m+j = 2� + �j , j = 1; 2. We set Qj(x) = x + Cfaj ;aj+1g,
j = 1; 2; � � � ; 2m, where Cfaj ;aj+1g = f�aj + �aj+1 : �; � � 0g, and Q2m+j(x) = Qj(x),
j = 1; 2; � � � ; 2m � 2(Figure 1). For x 2 R2, we say a cone Q(x) with a vertex at x is

type r if Q(x) =
Sj0+r�1

j=j0 Qj(x) for some j0 (r = 1; 2; � � � ; 2m). Q(x) is a half plane if it

is type m, and is R2 if it is type 2m. We set Q�(x) = 2x � Q(x) and Q0(x) = intQ(x)
where intQ(x) is the interior of Q(x). Then we set R(x) = fQ(x) � R2 : Q(x) is type r,
r = 1; 2; � � � ; 2m:g.
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Figure 1.

The block norm of x 2 R
2, kxk, is de�ned as

(2) kxk = inff� > 0 : x 2 �Bg:

From the above de�nition, B is an unit ball and k � k : R2 �! R is a convex function. kxk
can be represented as follows[5,7].

(3) kxk = min

8<
:

mX
j=1

jj j : x =

mX
j=1

jaj

9=
; :
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By the above representation, kxk can be regarded as the shortest path from the origin to

x using orientations aj ; j = 1; 2; � � � ; 2m. From (3), the following lemma is given[2].

Lemma 1. For x = (x1; x2) 2 Qj(0),

kxk =
x1(a2j+1 � a2j ) + x2(a1j � a1j+1)

a1ja
2

j+1 � a1j+1a
2

j

:

By Lemma 1, k � k is linear on each Qj(0), and we have the following lemma.

Lemma 2. For x = (x1; x2);y = (y1; y2) and z = (z1; z2) such that x 2 Qj(y) and

z 2 Qm+j(y),

kx� zk = kx � yk+ ky � zk:

Proof. Without loss of generality, we set y = (0; 0). By Lemma 1,

kxk =
x1(a2j+1 � a2j ) + x2(a1j � a1j+1)

a1ja
2

j+1 � a1j+1a
2

j

and

kzk =
z1(a2m+j+1 � a2m+j) + z2(a1m+j � a1m+j+1)

a1m+ja
2

m+j+1 � a1m+j+1a
2

m+j

:

Since am+j = �aj and x� z 2 Qj(0),

kxk+ kzk =
(x1 � z1)(a2j+1 � a2j ) + (x2 � z2)(a1j � a1j+1)

a1ja
2

j+1 � a1j+1a
2

j

= kx� zk:

by Lemma 1. �

3. The Stairs Algorithm. In this section, the Stairs Algorithm in [2] is given.

In e�ciency, two following propositions are given in [4].

Proposition 1. x =2 QE(Y ) if and only if R(x) contains at least one cone Q(x) such that

it is type m and Q(x)
T
Y = ;.

Proposition 2. For x 2 QE(Y ),

(i) x 2 QE(Y )nE(Y ) if and only if R(x) contains one cone Q(x) such that it is type

m� 1 and Q(x)
T
Y = ; and (Q�)0(x)

T
Y 6= ;.

(ii) x 2 AE(Y ) if and only if R(x) contains one cone Q(x) such that it is type m� 1 and

Q(x)
T
Y = ; and (Q�)0(x)

T
Y = ;.

(iii) x 2 SE(Y ) if and only if R(x) does not contain a cone Q(x) such that it is type

m� 1 and Q(x)
T
Y = ;.

Without loss of generality, we assume that �j 6= �=2 for all j. If �j = �=2 for some j,

then rotate a plane counterclockwise for su�ciently small " > 0 and reset �j = �j+" for all
j. For each yi and aj , we set Lij = fyi + aj :  2 Rg. For each �j , we set �j = �j + �=2

and bj = (cos�j ; sin �j). For each �j , we assume that n(j) lines are di�erent among Lij's,
and we sort those lines according to y-intercepts in ascending order. For the simplicity of
the notation, we write the above sorted lines as

`
j
1
; `
j
2
; � � � ; `j

n(j)

for each �j . A line `jk is the kth line among aj-oriented lines which are sorted. For each

Lij , if Lij = `
j

k, then we set s(i; j) = k. For each `
j

k, if yi is a demand point with
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maximum(minimum) x-coordinate among demand points on `jk, then we set (k; j)max =

i((k; j)min = i). In the following algorithm, we set

p(c) =

�
1 if 0 < �c < �=2 or 3�=2 < �c < 5�=2;
n(c) if �=2 < �c < 3�=2 or 5�=2 < �c < 3�

for c = 2; 3; � � � ; 2m+ 1,

q(c) =

�
+1 if 0 � �c < �=2 or 3�=2 < �c < 2�;

�1 if �=2 < �c < 3�=2

for c = 1; 2; � � � ; 2m, and

�(c) =

�
max if 0 � �c < �=2 or 3�=2 < �c < 2�;
min if �=2 < �c < 3�=2

for c = 1; 2; � � � ; 2m.

The Stairs Algorithm([2])

Step 0.: Determine `
j

k's, s(i; j)'s, (k; j)max's, and (k; j)min's.
Step 1.: If 0 � �1 < �=2, then set z� = y

(1;1)min
; r = (1; 1)max and d = 1,

otherwise set z� = y(n(1);1)max
; r = (n(1); 1)min and d = n(1). Store the route

from z� to yr. Set z = yr and c = 1.

Step 2.: If s(r; c+1) = p(c+ 1), then set d = p(c+ 1); c = c+ 1 and go to Step 2.
Step 3.: If hy(d+q(c);c)�(c) �z; bc+1i � 0, then set z0 = y(d+q(c);c)�(c) and go to Step

4, otherwise set d = d + q(c) and go to Step 3.
Step 4.: Let z00 be an intersection point of `c+1

s(r;c+1)
and `c

d+q(c)
. Store the routes

from z to z00 and from z00 to z0, i.e. z �! z00 �! z0. If z0 = z�, then stop,
otherwise set

z = z0(= y
(d+q(c);c)�(c)

); r = (d+ q(c); c)�(c); d = d+ q(c)

and go to Step 2.

The stored route lines determine the boundary of E(Y ). If there exists a region S such
that its boundary is a part of the boundary of E(Y ) and, for its interior point x, Y �
Qj0(x)

S
Qm+j0 (x) for some j0, then S = Qj0(x1)

T
Qm+j0(x2) for opposite vertices x1;x2

which are strictly e�cient points. Any point in Snfx1;x2g is an alternately e�cient point.
Other points are strictly e�cient points. The Stairs Algorithm requires O(n logn) compu-

tational time and it is optimal in the sense of the order for the computational time[2].

4. Application to the development of new products. In this section, the develop-
ment of new products for the market of ready-made clothes is considered an application of
MCP under the block norm.

Consider the market of ready-made clothes. It is assumed that manufactured products
are characterized by some variates. Some enterprise wants to develop new products and

there are candidates for new productsA,B,C,D(Table 1). Are there any products better than
these new products? Then six consumers are gathered information by questionnaires for
taste of products. In this case, characters of products and tastes of consumersare measured

in a common scale for common variates. Table 1 shows the result.
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Table 1. Characters of products and the result of questionnaires for taste.

x1 x2 x3 x4 x5 x6
IndividualsnVariates Simple Young Feminine Lighthearted Manly Gay

Product A 7 8 4 4 8 6
Product B 1 1 7 2 5 9

Product C 2 7 9 3 8 4
Product D 3 5 5 4 8 5
Consumer 1 9 9 6 9 9 2

Consumer 2 1 7 1 5 8 7
Consumer 3 8 5 5 7 6 3

Consumer 4 2 3 5 1 7 8
Consumer 5 1 4 8 4 3 5

Consumer 6 3 8 9 6 3 1

For this data, Table 2 shows the result of principal components analysis from the covariance
matrix.

Table 2. Scores of principal components.

Individuals ( z1:First, z2:Second )

Product A (7:99;�5:35) = yA
Product B (�1:53;�1:68) = yB
Product C (4:98; 0:02) = yC
Product D (4:73;�3:32) = yD
Consumer 1 (13:90;�2:89) = y

1

Consumer 2 (4:11;�6:56) = y2
Consumer 3 (9:65;�2:28) = y3
Consumer 4 (0:30;�4:01) = y

4

Consumer 5 (2:29; 1:85) = y5
Consumer 6 (8:03; 3:88) = y

6

Points y1;y2; � � � ;y6 are demand points in MCP, i.e. Y = fy1;y2; � � � ;y6g. A demand
point yi represents a taste of consumer i and yA;yB ;yC ;yD represent, respectively, prod-
ucts A,B,C,D (Figure 3). Cumulative rate of contribution up to second component is 0:80.

Table 3 shows correlation coe�cient for each xj and zk.

Table 3. Correlation coe�cients.

z1 z2
x1 0:86 �0:21
x2 0:83 �0:03
x3 �0:04 0:91
x4 0:90 0:08

x5 0:32 �0:77
x6 �0:82 �0:53

Form this result, it can be regarded that z1 means design and z2 means appeal to the male
and female.

Next, an unit ball B which de�nes the block norm is determined. Table 4 shows regres-

sion coe�cient of zk on xj for each xj and zk.
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Table 4. Regression coe�cients.

( z1 , z2 )

x1 (1:28;�0:22) = a1
x2 (1:50;�0:03) = a2
x3 (�0:07; 1:18) = a3
x4 (1:75; 0:11) = a4
x5 (0:68;�1:14) = a5
x6 (�1:45;�0:66) = a6

Then we set B = Kf�a1;�a2; � � � ;�a6g, where KS is a convex hull spanned by S � R2

(Figure 2). Let x 2 R2 be a point which represents a product. Distance between x and

yi, kx � yik, is a degree of di�erence between products x and taste yi measured in only
vectors aj such that they inuence principal components much. The block norm de�ned

in this way can be regarded to make up for the lost information by principal components
analysis.

Figure 2. Unit ball B.

Figure 3. E(Y ).

Figure 3 shows the result of MCP.
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From the above result, products C and D are e�cient, but products A and B are not

e�cient. Hence products A and B should be modi�ed. Here, it is assumed that the cost
to modify a product y 2 R2 to x 2 R2 is c = c(kx� yk), where c is strictly increasing in
kx � yk. If a product yA is modi�ed, then modi�ed product xA 2 E(Y ) is determined to

minimize the cost to modify. It is similar for a product yB . By the translation, without
loss of generality, we set yA = 0. Generally, for Y and the block norm in previous sections,

the problem is as follows;

(4)
min c(kxk)
s.t. x 2 E(Y ):

Since c is strictly increasing in kxk, the problem (4) is equivalent to the problem

(5)
min kxk
s.t. x 2 E(Y ):

Since E(Y ) is bounded closed set, there exists an optimal solutin for the problem (5).

Theorem 1. Let x� be an optimal solution of the problem (5). If 0 =2 E(Y ), then

x� =2 intE(Y ).

Proof. Assume that x� 2 intE(Y ). Then, for su�ciently small " > 0,

(6) fy 2 R
2 : ky � x�k � "g � E(Y ):

For some j, 0 2 Qj(x
�). Consider

(7) x 2 Qj(x
�)
\

Q�

j (0)
\
fy 2 R2 : ky � x�k = "g:

Then x 2 E(Y ) by (6), 0 2 Qj(x) and x
� 2 Q�

j (x) by (7). By Lemma 2,

kx�k = kx� � xk+ k � xk = "+ kxk > kxk:

This contradicts the optimality of x�. �

We can check 0 2 E(Y ) or not by Proposition 2. By the Stairs Algorithm, E(Y ) is given by
a sequence of points which represents the polygonal boundary of E(Y ). Hence, if 0 =2 E(Y ),

then the problem (5) is reduced to the following problem by Theorem 1.

For x1;x2 2 R
2 such that x1 6= x2 and 0 =2 [x1;x2] = f(1� �)x1 + �x2 : 0 � � � 1g,

(8)
min kxk
s.t. x 2 [x1;x2]:

Next, an algorithm to solve the problem (8) is considered. For each aj , let `j be aj -
oriented line passing through the origin. Let x1;x2 and intersection points of `j 's and
[x1;x2] be p1;p2; � � � ;pq0 from x1 to x2. We set f(�) = k(1 � �)x1 + �x2k; 0 � � � 1

and pi = (1� �i)x1 + �ix2; i = 1; 2; � � � ; q0 � 1. The right di�erential coe�cient of f at �i
is denoted by @+f(�i). Note that kxk is linear on each [pi;pi+1] and piecewise linear and

convex on [x1;x2] by Lemma 1. In this case, the problem (8) can be solved by the following
algorithm.

The Algorithm

Step 1.: Set r = 1.

Step 2.: If @+f(�r) > 0, then stop. pr is optimal. If @+f(�r) = 0, then stop. Any
x 2 [pr;pr+1] is optimal. If r = q0�1, then stop. pq0 = x2 is optimal. Otherwise,

set r = r + 1 and go to Step 2.
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From the above algorithm, we have xA = (7:72;�4:90) and xB = (2:49;�1:44) as modi�ed

products (Figure 3).
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