METRIZABILITY OF k-SPACES

Yun Ziqiu*

Received February May 27 2003; revised October 14, 2003

ABSTRACT. In this note, we answer a question about metrizability posted in [YYG].

The following result was given in [YYG]:

Theorem 1 ([YYG] Theorem 4) A regular Fréchet space X is a metrizable space if and only if there is a strongly decreasing g-function on X such that $\{g(n,x) : x \in X\}$ is a CF-family for each $n \in N$ and the following condition (1) is satisfied:

(1) If $x_n \to p \in X$ and $x_n \in g(n, y_n)$ for each $n \in N$, then $y_n \to p$.

After proving the above theorem, a question was posted :

([YYG] Question 1). Can the condition "a regular Fréchet space X" in Theorem 1 be changed into "a regular k-space X"?

In this paper, we answer the above question positively by proving the following theorem:

Theorem 2 A regular k-space X is a Fréchet space if there is a strongly decreasing g-function on X such that $\{g(n,x) : x \in X\}$ is a CF-family for each $n \in N$ and condition (1) is satisfied.

In this paper, all spaces are at least T_1 and \mathbf{N} denotes the set of all natural numbers. Recall that a function $g: \mathbf{N} \times X \to 2^X$ is called a *g*-function if g(n, x) is an open neighborhood of x for each $n \in \mathbf{N}$ and $x \in X$. A *g*-function on X is called a *strongly decreasing g*-function if $\operatorname{Cl}g(n+1, x) \subseteq g(n, x)$ for each $n \in \mathbf{N}$ and $x \in X$. Let \mathcal{F} be a family of subsets in a space X. \mathcal{F} is called a *CF*-family if for each compact subset K in X, $|\{K \cap F : F \in \mathcal{F}\}| < \omega$. The Arens' space is the set $S_2 = \{y_{k,i} : i, k \in \mathbf{N}\} \cup \{y_k : k \in \mathbf{N}\} \cup \{y\}$ with the topology as follows: Each $y_{k,i}$ is isolated in S_2 . For each $k \in \mathbf{N}$, $\{\{y_{k,i} : j < i \in \mathbf{N}\} \cup \{y_k\} : j \in \mathbf{N}\}$ is an open neighborhood base of y_k , and a subset U of S_2 is a neighborhood of y if and only if y and almost all the y_k , together with a neighborhood of y_k , are contained in U.

Lemma 1 There is no strongly decreasing g-function on S_2 such that $\{g(n, x) : x \in S_2\}$ is a CF-family for each $n \in \mathbb{N}$ and condition (1) is satisfied.

Proof: Assume that there is a strongly decreasing g-function on S_2 such that condition (1) is satisfied. We prove $\{g(n, x) : x \in S_2\}$ is not a CF-family for some $n \in \mathbb{N}$.

Claim 1. There exists an $N \in \mathbf{N}$, such that, $y_k \notin g(n, y_{k,i})$ for each $i \in \mathbf{N}$ whenever $k, n \geq N$.

Otherwise, for some $i_0 \in \mathbf{N}$, there are sequences $\{n_j\}, \{k_j\}$ with $n_j, k_j \to \infty$ when $j \to \infty$, such that $y_{k_j} \in g(n_j, y_{k_j, i_0})$ for each j. Since $y_{k_j} \to y$, by condition (1), $y_{k_j, i_0} \to y$, which is impossible.

²⁰⁰⁰ Mathematics Subject Classification. 54E35.

Key words and phrases. g-function, Aren's space, CF-family.

^{*}Supported by the NSFC(Project 10271026) and the Education Department of Jiangsu Province (Project 02KJB110001).

YUN ZIQIU

Claim 2. For the N in Claim 1 and each $i \in \mathbf{N}$, there is a $j(i) \in \mathbf{N}$, such that $y_{N,j} \notin g(N+1, y_{N,i})$ when j > j(i).

Otherwise, there is a sequence $\{i_j\}$ with $i_j \to \infty$ when $j \to \infty$, such that $y_{N,i_j} \in g(N+1, y_{N,i})$, and hence $y_N \in \operatorname{Clg}(N+1, y_{N,i})$. Since $\{g(n, x) : x \in S_2\}$ is a strongly decreasing g-function on S_2 , we have $y_N \in g(N, y_{N,i})$. Which contradicts Claim 1.

Denote $C_N = \{y_{N,i} : i \in \mathbf{N}\} \cup \{y_N\}$. Then C_N is compact in S_2 . Take $j_1 = j(1), j_{k+1} = j(k) + 1$ for each $k \in \mathbf{N}$, where the j(k) are in the Claim 2. It follows from the fact $y_{N,j_{k_2}} \notin g(N+1, y_{N,j_{k_1}}) \cap C_N$ whenever $k_1 < k_2$, we can get

$$|\{g(N+1,x) \cap C_N : x \in C_N\}| = \omega,$$

and hence $\{g(N+1, x) : x \in S_2\}$ is not a CF-family.

Proof of Theorem 2:

Assume that X is a k-space with a strongly decreasing g-function such that $\{g(n, x) : x \in X\}$ is a CF-family for each $n \in \mathbb{N}$ and condition (1) is satisfied. Then X contains no closed copy of S_2 . Otherwise, $\{g(n, x) \cap S_2 : x \in S_2, n \in \mathbb{N}\}$ will be a strongly decreasing g-function on S_2 such that $\{g(n, x) : x \in S_2\}$ is a CF-family for each $n \in \mathbb{N}$ and condition (1) is satisfied, which contradicts Lemma 1. On the other hand, by Theorem 4.11 of [Gru], a space with a g-function satisfying condition (1) is a σ -space, since condition (1) is stronger than condition (v)(b) of that Theorem. It is well-known that a σ -space is a space with point G_{δ} property. By [Ta] Proposition 1.5, a k-space with point G_{δ} property is a sequential space, and by [Ta] Proposition 1.20, it is a Fréchet space if it contains no closed copy of S_2 .

References

- [Gru] G. Gruenhage, Generalized metric spaces, Handbook of Set-Theoretic topology, North-Holland, 1984, 423-501
- [Ta] Y. Tanaka, Metrization II, Topics in General Topology, Amsterdam:North-Holland, 1989, 275-314
- [YYG] Z. Yun, X. Yang and Y. Ge,Metrizable, ℵ-, Lašnev spaces and g-functions, Math. Japonica, 52(2000), 225-229

Department of Mathematics, Suzhou University, 215006 P. R. China *E-mail address:* yunziqiu@public1.sz.js.cn