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Abstract. In this paper, we focus on multiobjective integer programming problems
with random variable coefficients in objective functions and/or constraints. For such
multiobjective problems, after reformulation of them on the basis of an expectation
optimization model and a variance minimization model for the chance constrained pro-
gramming, incorporating fuzzy goals of the decision maker for the objective functions,
we propose an interactive fuzzy satisficing method to derive a satisficing solution for
the decision maker as a fusion of the stochastic programming and the fuzzy one.

1 Introduction In the real world, we often encounter the situation that we have to
make a decision under uncertainty because it is difficult to get all the information needed
for decision making. For such decision making problems involving uncertainty, stochastic
programming and fuzzy programming are two typical approaches.

Stochastic programming techniques have been developed in various ways as an optimiza-
tion method based on the probability theory (e.g., two stage problem by G.B. Dantzig [2],
chance constrained programming by A. Charnes and W.W. Cooper [1]). In particular, for
multiobjective linear programming problems involving random variable coefficients, Stancu-
Minasian [6] handled the minimum risk approach, while Teghem et al. [12] presented an
interactive method.

On the other hand, fuzzy mathematical programming representing the ambiguity in a
decision making situation by fuzzy concepts has attracted attention of many researchers.
Fuzzy multiobjective linear programming have been developed by numerous researchers,
and a lot of successful applications have been appearing [7].

As a hybrid of the stochastic approach and fuzzy approach, in particular, Sakawa et al.
[11] proposed an interactive fuzzy satisficing method based on the expectation optimization
model for multiobjective stochastic linear programming problems. Furthermore, they have
extended it to the simple recourse model [10] and the variance minimization model [9].
However, in these literatures, they dealt with only the case that decision variables are
continuous.

In this paper, focusing on multiobjective stochastic integer programming problems, we
present an interactive fuzzy satisficing method based on an expectation optimization model
and a variance minimization model. In order to consider the nonlinearity of problems solved
in the interactive fuzzy satisficing method and to cope with large-scale problems, we adopt
genetic algorithms as a solution method.
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2 Multiobjective stochastic integer programming problems In this paper, we fo-
cus on the following multiobjective stochastic integer programming problem in which pa-
rameters in objective functions and the right-hand side of constraints are random variables.

minimize zl(x, ω) = cl(ω)x, l = 1, . . . , k
subject to Ax ≤ b(ω)

xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n


(1)

where x is an n dimensional integer decision variable column vector, and A is an m × n
coefficient matrix. cl(ω), l = 1, . . . , k are n dimensional random variable row vectors
with mean c̄l and covariance matrix Vl = (vl

jh) = (Cov{clj(ω), clh(ω)}), j = 1, . . . , n,
h = 1, . . . , n, and bi(ω), i = 1, . . . , m are random variables which are independent of each
other, and the distribution function of each of them are also assumed to be continuous and
strictly increasing.

For instance, there may exist a project selection problem to optimize not only gross
profits but total labor costs under constraints such as the usable amount of manpower is
limited, where profit coefficients of projects, labor cost coefficients of projects and maximal
usable amount of manpower depend on business conditions.

3 Chance constrained programming Since (1) contains random variable coefficients,
solution methods for ordinary mathematical programming problems cannot be directly ap-
plied. Consequently, we deal with the constraints in (1) as chance constrained conditions
which mean that the constraints need to be satisfied with a certain probability (satisficing
level) and over. Replacing the constraints in (1) by chance constrained conditions with
satisficing levels βi, the problem can can be converted as:

minimize zl(x, ω) = cl(ω)x, l = 1, . . . , k
subject to Pr{aix ≤ bi(ω)} ≥ βi, i = 1, . . . , m

xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n


(2)

where ai is the ith row vector of A and bi(ω) is the ith element of b(ω).
Using continuous and strictly increasing distribution functions Fi(r) = Pr{bi(ω) ≤ r} of

random variables bi(ω), i = 1, . . . , m, the i th constraint in (2) can be rewritten as:

Pr{aix ≤ bi(ω)} ≥ βi ⇔ 1 − Pr{bi(ω) ≤ aix} ≥ βi

⇔ 1 − Fi(aix) ≥ βi

⇔ Fi(aix) ≤ 1 − βi

⇔ aix ≤ F−1
i (1 − βi).(3)

Letting b̂i = F−1
i (1 − βi) in (3), (2) can be transformed into the following problem:

minimize zl(x, ω) = cl(ω)x, l = 1, . . . , k

subject to Ax ≤ b̂
xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n


(4)

where b̂ = (b̂1, . . . , b̂m)T , and we denote the feasible region of (4) by X .

4 Expectation optimization model Let us consider the expectation optimization model,
which is the simplest one in the chance constrained programming. In the model, we substi-
tute the minimization of expectations of objective functions for the minimization of objective
functions in (4). Then, the problem can be rewritten as:

minimize
x∈X

z̄l(x) = E{zl(x, ω)} = c̄lx, l = 1, . . . , k(5)
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Since the above problem is an ordinary multiobjective integer programming problem, an
interactive fuzzy satisficing method for multiobjective integer programming problems using
genetic algorithms [8] is directly applicable in order to obtain a satisficing solution for the
decision maker.

5 Variance minimization model Since objective functions regarded as random vari-
ables in (4) are reduced to their expectations in the expectation optimization model, the
requirement of the decision maker for risk is not reflected in the obtained solution. ¿From
this viewpoint, in this section, we consider the variance minimization model. In the model,
we substitute the minimization of variances of objective functions zl(x, ω), l = 1, . . . , k in
(4) for the minimization of them. Then, the problem can be rewritten as:

minimize
x∈X

z′l(x) = Var{zl(x, ω)} = xT Vlx, l = 1, . . . , k(6)

Since (6) is a multiobjective quadratic integer programming problem, a satisficing solu-
tion for the decision maker can be obtained through an interactive fuzzy satisficing method
for multiobjective integer programming problems using genetic algorithms [8] with some
modifications.

Using the variance minimization model, the obtained solution might be too bad in the
sense of the expectation of objective functions, while it accomplishes the minimization in the
sense of the variance. In order to take the requirement of the decision maker for expectations
of objective functions into account, we consider the following revised variance minimization
model incorporating constraints that the expectation of each objective function, z̄l(x) must
be less than or equal to a certain permissible level γl, l = 1, . . . , k.

minimize z′1(x) = Var{z1(x, ω)} = xT V1x, l = 1, . . . , k

subject to Ax ≤ b̂
C̄x ≤ γ
xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n




(7)

where C̄ = (c̄T
1 , . . . , c̄T

k )T and γ = (γ1, . . . , γk)T , and we denote the feasible region of (7)
by X ′.

Since the above problem is a multiobjective quadratic integer programming problem
like (6), we can apply an interactive fuzzy satisficing method for multiobjective integer
programming problems using genetic algorithms [8] with some modifications.

An interactive fuzzy satisficing method for the revised variation optimization
model

Step 1: Ask the decision maker to subjectively determine satisficing levels βi, i = 1, . . . , m
for constraints in (2).

Step 2: Calculate the minimum z̄min
l and the maximum z̄max

l of the expectation of each
objective function in (4), E[zl(x, ω)] = z̄l(x), l = 1, . . . , k by solving the following
problems

minimize
x∈X

z̄l(x) = c̄lx, l = 1, . . . , k,(8)

maximize
x∈X

z̄l(x) = c̄lx, l = 1, . . . , k.(9)

Then, ask the decision maker to subjectively specify permissible levels γl, l = 1, . . . , k
for objective functions in consideration of z̄min

l and z̄max
l . Note that problems (8)
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and (9) are ordinary single-objective linear integer programming problems, a genetic
algorithm with double strings based on using linear programming relaxation based on
reference solution updating (GADSLPRRSU) [8] is directly applicable.

Step 3: Calculate the individual minimum z′l,min of z′l(x), l = 1, . . . , k in (7) by solving
problems to minimize the variance of each objective function in (6) under chance
constraints corresponding to those satisficing levels by GADSLPRRSU [8] with some
modifications.

minimize
x∈X′

z′l(x) = xT Vlx, l = 1, . . . , k(10)

Step 4: Ask the decision maker to subjectively specify membership functions µl(z′l(x)),
l = 1, . . . , k which quantify fuzzy goals for objective functions based on minimal values
z̄l,min calculated in step 2.

Step 5: Ask the decision maker to set initial reference membership levels µ̄l, l = 1, . . . , k
(usually, µ̄l = 1, l = 1, . . . , k).

Step 6: Solve an augmented minimax problem (11) for current reference membership
levels µ̄l, l = 1, . . . , k by GADSLPRRSU [8] with some modifications.

minimize
x∈X′

max
l=1,... ,k

{(µ̄l − µl(z′l(x))) + ρ
k∑

i=1

(µ̄i − µi(z′i(x)))}(11)

Step 7: If the decision maker is satisfied with the solution to (11), the interactive process is
terminated. Otherwise, ask the decision maker to update reference membership levels
µ̄l, l = 1, . . . , k in consideration of current membership function values or objective
function values, and go to step 5.

6 Genetic Algorithm with Double Strings Using Linear Programming Relax-
ation Based on Reference Solution Updating (GADSLPRRSU) Since problems
(8), (9), (10), (11) solved in the interactive fuzzy satisficing method mentioned above are 0-1
programming problems, it is difficult to solve them for large-scale problems by enumeration-
based method. Thereby, some efficient approximate solution method is required for prac-
tical use. As approximate solution methods for discrete optimization problems, because
of versatility and ease of implementation, metaheuristics such as genetic algorithms, simu-
lated annealing and tabu search are thought to be dominant. Because there was reported
in [4] that genetic algorithms are applied to multiobjective programming problems most
frequently among metaheuristics, and M. Sakawa et al. showed the effectiveness of a ge-
netic algorithm with double strings based on using linear programming relaxation based on
reference solution updating (GADSLPRRSU) [8] for linear integer programming problems
defined as (12), we adopted GADSLPRRSU as a solution method in the interactive fuzzy
satisficing method.

minimize cx
subject to Ax ≤ b

xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n


(12)

where A = [p1, . . . , pn] is an m×n coefficient matrix, b = (b1, . . . , bm)T is an m dimensional
column vector and c = (c1, . . . , cn) is an n dimensional row vector.
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Individual S :
s(1) s(2) · · · s(n)
gs(1) gs(2) · · · gs(n)

Figure 1: Double string

6.1 Individual Representation An individual representation by double strings shown
in Fig. 1 is adopted in GADSLPRRSU. In the figure, each of s(j), j = 1, . . . , n is the index
of an element in a solution vector and each of gs(j) ∈ {0, 1, . . . , νs(j)}, j = 1, . . . , n is the
value of the element, respectively.

6.2 Decoding Algorithm In [8], a decoding algorithm of double strings for linear in-
teger programming problems, which generates a feasible solution from a double string. is
constructed as follows. In the algorithm, a feasible solution x∗, called a reference solution,
is used as the origin of decoding.

Decoding algorithm using a reference solution

In this algorithm, it is assumed that a feasible solution x∗ to (12) is obtained in advance.
Let n and N be the number of variables and the number of individuals in the population,
respectively. Also, b+ means a column vector of positive right-hand side constants, and the
corresponding coefficient matrix is denoted by A+ = (p+

1 , . . . , p+
n ).

Step 1: Let j := 1 and psum := 0.

Step 2: If gs(j) = 0, set qs(j) := 0 and j := j + 1, and go to step 4. If gs(j) �= 0, go to step
3.

Step 3: If psum + p+
s(j) · gs(j) ≤ b+, set qs(j) := gs(j), psum := psum + p+

s(j) · gs(j) and
j := j +1, and go to step 4. Otherwise, set qs(j) := 0 and j := j +1, and go to step 4.

Step 4: If j > n, go to step 5. If j ≤ n, go to step 2.

Step 5: Let j := 1, l := 0 and sum := 0.

Step 6: If gs(j) = 0, set j := j +1 and go to step 8. If gs(j) �= 0, set sum := sum+ps(j) ·
gs(j) and go to step 7.

Step 7: If sum ≤ b, set l := j, j := j + 1, and go to step 8. Otherwise, set j := j + 1 and
go to step 8.

Step 8: If j > n, go to step 9. If j ≤ n, go to step 6.

Step 9: If l > 0, go to step 10. If not, go to step 11.

Step 10: For xs(j) satisfying 1 ≤ j ≤ l, let xs(j) := gs(j). For xs(j) satisfying l +1 ≤ j ≤
n, let xs(j) := 0, and stop.

Step 11: Let sum :=
∑n

k=1 ps(k) · x∗
s(k) and j := 1.

Step 12: If gs(j) = x∗
s(j), let xs(j) := gs(j) and j := j + 1, and go to step 16. Otherwise,

go to step 13.

Step 13: If sum−ps(j) ·x∗
s(j)+ps(j) ·gs(j) ≤ b, set sum := sum−ps(j) ·x∗

s(j)+ps(j) ·gs(j)

and xs(j) := gs(j), and go to step 16. Otherwise, go to step 14.
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Step 14: Let ts(j) := �0.5 · (x∗
s(j) + gs(j))� and go to step 15.

Step 15: If sum−ps(j) ·x∗
s(j)+ps(j) ·ts(j) ≤ b, set sum := sum−ps(j) ·x∗

s(j) +ps(j) ·ts(j),
gs(j) := ts(j) and xs(j) := ts(j), and go to step 16. Otherwise, set xs(j) := x∗

s(j) and go
to step 16.

Step 16: If j > n, stop. Otherwise, return to step 12.

The proposed decoding algorithm can make the correspondence of any individual to
a feasible solution. Because solutions obtained the decoding algorithm using a reference
solution tend to concentrate around the reference solution, the reference solution updating
procedure is adopted.

6.3 Usage of Linear Programming Relaxation In order to find an approximate
optimal solution with high accuracy in reasonable time, we need some schemes such as the
restriction of the search space to a promising region, the generation of individuals near the
optimal solution and so forth. ¿From the point of view, the information about an optimal
solution to the corresponding linear programming relaxation problem

minimize cx
subject to Ax ≤ b

0 ≤ xj ≤ νj , j = 1, . . . , n


(13)

is used in the generation of the initial population and the mutation [8].

6.4 Computational procedures of GADSLPRRSU

Step 0: Determine values of the parameters used in the genetic algorithm.

Step 1: Generate the initial population consisting of N individuals based on the informa-
tion of a solution to the continuous relaxation problem (13).

Step 2: Decode each individual (genotype) in the current population and calculate its
fitness based on the corresponding solution (phenotype).

Step 3: If the termination condition is fulfilled, stop. Otherwise, let t := t + 1 and go to
step 4.

Step 4: Apply reproduction operator using elitist expected value selection after linear scal-
ing.

Step 5: Apply crossover operator, called PMX (Partially Matched Crossover) for double
string.

Step 6: Apply mutation based on the information of a solution to the continuous relaxation
problem (13).

Step 7: Apply inversion operator. Go to step 2.

Since most of procedures are the same as those of GADSLPRRSU [8] except relaxation
problems and fitness function, we omit the details of them.
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6.5 Some modifications With respect to relaxation problems in (10) and (11), since
those objective functions are not linear, we need to solve corresponding relaxation problems
by appropriate nonlinear programming techniques. In this paper, we use GENOCOPIII
proposed by Z. Michalewicz et al. [5].

Furthermore, fitness functions for problems (8), (9), (10), (11) are revised as follows.

Problem (8)

f(s) =
c̄lx − ∑

j∈J+
c̄l

c̄lj · νj

∑
j∈J−

c̄l

c̄lj · νj −
∑

j∈J+
c̄l

c̄lj · νj
(14)

Problem (9)

f(s) =
c̄lx − ∑

j∈J−
c̄l

c̄lj · νj

∑
j∈J+

c̄l

c̄lj · νj −
∑

j∈J−
c̄l

c̄lj · νj
(15)

Problem (10)

f(s) =
xT Vlx − ∑

i,j∈IJ+
Vl

vl
ij · νiνj

−∑
i,j∈IJ+

Vl

vij · νiνj
(16)

Problem (11)

f(s) = 1 − max
l=1,... ,k

{µ̄l − µl(z′l(x))}(17)

where J+
c̄l

i

= {j | c̄l
ij > 0, 1 ≤ j ≤ n}, J−

c̄l
i

= {j | c̄l
ij < 0, 1 ≤ j ≤ n}, IJ−

Vl
= {i, j | vl

ij <

0, 1 ≤ i, j ≤ n}, and vl
ij is the (i, j) element of Vl.

7 Numerical experiment To demonstrate the feasibility of the proposed method, con-
sider the following multiobjective linear programming problem involving random variable
coefficients (3 objectives, 100 variables, 10 constraints).

minimize zl(x, ω) = cl(ω)x, l = 1, 2, 3
subject to aix ≤ bi(ω), i = 1, . . . , 10

xj ∈ {0, 1, . . . , νj}, j = 1, . . . , 100


(18)

In this problem, each element of A in the numerical example was selected at random from
{−10, 10}. b1(ω), . . . , b10(ω) are Gaussian random variables N(1868, 402), N(1244, 302),
N(2292, 502), N(656, 202), N(2056, 102), N(1156, 402), N(632, 302), N(1968, 502), N(1260, 202),
N(516, 102), where N(m, s2) stands for a Gaussian random variable having mean m and
variance s2, and mean values are determined by the following equation

b̄i =
∑

j∈J−
ai

aij + δ ×




∑
j∈J+

ai

aij −
∑

j∈J−
ai

aij
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where the positive constant δ ∈ [0, 1] denotes the degree of looseness of constraints. To
be more specific, the constraints become looser as δ increases to 1, while the constraints
become tighter as it decreases to 0. In this paper, we set γ = 0.6. On the other hand, c1(ω),
c2(ω) and c3(ω) are vectors of Gaussian random variables with finite mean vectors elements
of which are determined randomly from {0, 16}, {−8, 8} and {−16, 0}, and positive definite
covariance matrices.

First, according to step 1 of the interactive fuzzy satisficing method, the decision
maker determines the satisficing levels βi, i = 1, . . . , 10 for each of the constraints in
(18). The hypothetical decision maker in this example specifies the satisficing levels as
(β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)T = (0.85, 0.95, 0.90, 0.85, 0.95, 0.90, 0.85, 0.90, 0.85, 0.95)T.

Second, according to step 2, the individual minimum z̄l,min and maximum z̄l,max of
objective functions E[zl(x, ω)], l = 1, . . . , 3, are calculated under the chance constrained
conditions corresponding to the satisficing levels. Each value is obtained by solving (8) and
(9) through GADSLPRRSU as z̄1,min = 0, z̄1,max = 16505, z̄2,min = −4209, z̄2,max = 4220,
z̄3,min = −14100, z̄3,max = 0. Based on these values, the decision maker subjectively
specifies permissible levels γ1 = 8000, γ2 = 0, γ3 = −7000.

Third, according to step 3, the individual minimum z′l,min of z′l(x), l = 1, . . . , 3 in (7)
are calculated by using the modified GADSLPRRSU as z′1,min = 12938.2, z′2,min = 460.2,
z′3,min = 6617.0.

In step 4, The decision maker subjectively determines membership functions to quan-
tify fuzzy goals for objective functions. Here, the following linear membership function is
adopted.

µ′
l(z

′
l(x)) =

z′l(x) − z′l,0
z′l,1 − z′l,0

According to step 5, the decision maker specifies the initial reference membership levels
(µ̄1, µ̄2, µ̄3) as (1.00, 1.00, 1.00).

Next, according to step 6, in order to find the optimal solution to the augmented minimax
problem (11) for (µ̄1, µ̄2, µ̄3) = (1.00, 1.00, 1.00), the modified GADSLPRRSU is used. The
obtained solution is shown at the second column in Table 1. According to step 7, the
hypothetical decision maker cannot be satisfied with this solution, particularly, he wants
to improve µ2(·), µ3(·) at the sacrifice of µ1(·). Thus, the decision maker updates the
reference membership levels to (0.90, 1.00, 1.00) and return to step 6. By repetition of such
interaction with the decision maker, in this example, a satisficing solution is obtained at
the third interaction.

8 Conclusion In this paper, we focused on multiobjective integer programming problems
involving random variable coefficients. After the formulation of the expectation optimization
model and the variance minimization model, we introduced fuzzy goals to consider the
ambiguous or fuzzy judgments of the decision maker and proposed an interactive fuzzy
satisficing method to derive a satisficing solution for the decision maker. An illustrative
numerical example demonstrated the feasibility of the proposed method. Extensions of the
proposed method to other chance constrained condition problems such as the probability
maximization model, the fractile criterion optimization model and so forth are now under
investigation and will be reported elsewhere.
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