MULTIPLE INTEGRALS ON THE SPACE $\Gamma_0(D) \bigoplus M_0(D)$

KEIKO NAKAGAMI

Received October 17, 2003; revised Novembrt 20, 2003

ABSTRACT. The space $\Gamma_0(D) \bigoplus M_0(D)$ of generalized functions on an interval D of **R** is extended to a subset D of \mathbf{R}^2 . We define a translation invariant integral over this space and give some fundamental properties.

1 Introduction The (E.R)-integral (Kunugi[1]) preserves the integrability by the translation. The functions with a divergence point of integer power order are not (E.R)-integrable. The (E.R)-integral was extend to the $(E.R.\nu)$ -integral by Okano ([2]), by using an absolutely continuous measure ν in place of Lebesgue measure.

Okano assumed the additional three conditions for a Cauchy sequence to define the $(E.R.\nu)$ -integral. One of the conditions asserts that the Cauchy sequence $(V(g_n, \epsilon_n, A_n))$ converges slowly in the sense that there exists an integer k with $k \nu(D \setminus A_{n+1}) \geq \nu(D \setminus A_n)$ for n = 1, 2, ... To remove this restriction, we introduced in [3] the $(E.R.\Lambda)$ -integral by using a sequence $\Lambda = (\lambda_n)$ of finite absolutely continuous measures. This integral was defined on the space $\Gamma_0(I) \bigoplus M_0(I)$ of generalized functions on an interval I of **R**. The set $\Gamma_0(I)$ is the singular part of $\Gamma_0(I) \bigoplus M_0(I)$ in the sense that it contains the δ -function and its higher derivatives, and the set $M_0(I)$ consists of all measurable functions on I, which is the regular part of $\Gamma_0(I) \bigoplus M_0(I)$. By a suitable choice of a measure ν (resp. a sequence Λ of measures), we can find many examples of integrable functions with strong singurality.

However, these integrals are not preserved by the translation. In our previous paper [11], we defined the (E.R.T)-integral which is traslationally invariant on the interval I.

In this paper, we define the space $\Gamma_0(D) \bigoplus M_0(D)$ of generalized functions on a subset D of \mathbb{R}^2 , and extend the (E.R.T)-integral to this space.

In Section 2, we define the space $\Gamma_0(D) \bigoplus M_0(D)$ on a subset D of \mathbb{R}^2 and define the $(E.R.\Lambda)$ -integral over this space.

In Section 3, we extend the (E.R.T)-integral to a subset D in \mathbb{R}^2 .

In Section 4, we introduce two examples of (E.R.T)-integrable functions defined on subsets in \mathbb{R}^2 .

2 The space of generalized functions on \mathbb{R}^2 and the integral In this section, let D be a closed subset of \mathbb{R}^2 . The details of the constructions of $\Gamma_0(D) \bigoplus M_0(D)$ on the set D and the integral over the space are omitted, for they are performed in the similar way as the constructions of the space of generalized functions on an interval of \mathbb{R} and the integral in [3].

2.1 The space $\Gamma_0(D) \bigoplus M_0(D)$ on a subset D of \mathbb{R}^2 Let $M_0(D)$ be the set of all real valued Lebesgue measurable functions defined on D. In what follows, we suppose that $M_0(D)$ is classified by the usual equivalence relation f(x) = g(x) a.e. We denote measurable functions by symbols $f(x), g(x), \dots$ and a class in $M_0(D)$ containing a measurable function

²⁰⁰⁰ Mathematics Subject Classification. 46Fxx.

Key words and phrases. distribution, generalized function.

q(x) by the same symbol q(x) or q. For each Lebesgue measurable subset A of D and $\epsilon > 0$, we define a pre-neighbourhood $V(f, \epsilon, A)$ as

$$V(f,\epsilon,A) = \{g \in M_0(D); \iint_A |f(x,y) - g(x,y)| dxdy \le \epsilon\}.$$

We denote $V(f, \epsilon, A)$ by V(f) if there is no fear of confusion.

A pre-neighbourhood $V(f, \epsilon, A)$ of f is said to be rank n if $m(A) \neq 0$ and $2^{-n} < 1$ $\epsilon \leq 2^{-n+1}$ for an integer n. The set of pre-neighbourhoods of rank n is denoted by \mathcal{B}_n . Moreover, we consider $V(f, \epsilon, A) (= M_0(D))$ with m(A) = 0 as a pre-neighbourhood of rank 0, and let $\mathcal{B}_0 = \{M_0(D)\}$. In this way, we are able to introduce a structure of a ranked space in $M_0(D)$.

Definition 1 ([2], p431) A sequence $(V(f_n))$ of pre-neighbourhoods is called a Cauchy sequence if $V(f_1) \supseteq V(f_2) \supseteq \dots$ and $V(f_n) \in \mathcal{B}_{\gamma(n)}$ for some monotone increasing sequence $(\gamma(n)) \in N$ with $\lim_{n \to \infty} \gamma(n) = \infty$.

We can prove the following lemma similarly as Okano's lemma ([2], p432).

Lemma 1 If $V(f_n) = V(f_n, \epsilon_n, A_n)$ for n = 1.2, ... and $V(f_1) \supseteq V(f_2) \supseteq ...$, then the following properties hold :

(1) $m(A_n \cap (D \setminus A_{n+1})) = 0$ for every n.¹

(2) $\iint_{A_n} |f_n(x,y) - f_{n+1}(x,y)| dx dy \leq \epsilon_n - \epsilon_{n+1} \text{ for every } n.$ (3) $\sum_{n=k}^{\infty} \iint_{A_k} |f_n(x,y) - f_{n+1}(x,y)| dx dy \leq \epsilon_k \text{ for every } k.$

The following theorem holds by Lemma 1.

Theorem 1 If a Cauchy sequence $(V(f_n, \epsilon_n, A_n))$ satisfies the condition such that

$$m((D \setminus A_n) \cap ([-1/\epsilon_n, 1/\epsilon_n] \times [-1/\epsilon_n, 1/\epsilon_n])) \le \epsilon_n \qquad (n = 1, 2, ...),$$

then there exists a function $f \in M_0(D)$ such that $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. in D and $\bigcap_{n=1}^{\infty} V(f_n, \epsilon_n, A_n) = \{f\}.$

For a Cauchy sequence $(V(f_n, \epsilon_n, A_n))$ on D, we consider the following two conditions: $(T_1) m((D \setminus A_n) \cap ([-1/\epsilon_n, 1/\epsilon_n] \times [-1/\epsilon_n, 1/\epsilon_n])) \le \epsilon_n.$

 (T_2) f_n is decomposed into a sum of measurable functions f_{1n} and f_{2n} on D, where $\operatorname{supp}(f_{1n}) \subseteq D \setminus A_n$ and

$$\iint_{D \setminus A_n} |f_{2n}(x,y)| dx dy \le \epsilon_n$$

If $(V(f_n)) = (V(f_n, \epsilon_n, A_n))$ is a Cauchy sequence which satisfies conditions (T_1) and (T_2) , the Cauchy sequence is called a G_0 -Cauchy sequence on D.

Let $\mathbf{H}_0(D)$ be the set of G_0 -Cauchy sequences on D, and let $G_0(D)$ be the set of sequences (f_n) in $L^1(D)$ such that there exists a G_0 -Cauchy sequence $(V(f_n))$ with $0 \in$ $\bigcap_{n=1}^{\infty} V(f_n)$.²

Definition 2 A decomposition $f_n = f_{1n} + f_{2n}$ in (T₂) is called on associated decomposition of f_n .

Proposition 1 If $(f_n), (g_n) \in G_0(D)$, then $(f_n + g_n) \in G_0(D)$. If $(f_n) \in G_0(D)$, then $(\lambda f_n) \in G_0(D)$ for any real number λ .

¹The symbol m is the Lebesgue measure.

²The set $L^1(D)$ is the set of all Lebesgue integrable functions on D.

If (f_n) and (g_n) have associated decompositions $f_{1n} + f_{2n}$ and $g_{1n} + g_{2n}$ of f_n and g_n respectively such that there is an $n_0 \in \mathbb{N}$ satisfying $f_{1n} = g_{1n}$ a.e. for each $n \ge n_0$, we say that (f_n) and (g_n) are equivalent. Let $\Gamma_0(D)$ be the quotient space of $G_0(D)$ classified by this equivalence relation, whose element containing (f_n) is denoted by $[f_n]$.

Example 1 Let (p_n) be an increasing sequence of real numbers which diverges to ∞ and let (S_n) be a sequence of functions satisfying the following three conditions:

(i) S_n is an integrable function on \mathbf{R}^2 with

$$\lim_{n \to \infty} \iint_{\mathbf{R}^2} S_n(x, y) dx dy = 1,$$

(ii) $\sup_{x,y} |S_n(x,y)| \le p_n$,

(iii) $\operatorname{supp}(S_n) \le [-1/(2p_n), 1/(2p_n)] \times [-1/(2p_n), 1/(2p_n)].$

Then the sequence (S_n) is called a δ -type sequence defined by (p_n) .

The class $[S_n]$ is denoted by δ . Put $h_n(x, y) = S_n(x - a, y - b)$ for $c = (a, b) \in D$ and each n. Then $[h_n]$ is denoted by δ_c .

Proposition 2 If $(f_n) \approx (l_n)$ and $(g_n) \approx (k_n)$, then $(f_n + g_n) \approx (l_n + k_n)$ and $(\lambda f_n) \approx (\lambda l_n)$ for any real number λ .

We set $[f_n]+[g_n] = [f_n + g_n]$ and $\lambda [f_n] = [\lambda f_n]$. Hence $\Gamma_0(D)$ turns out to be a linear space. The following set is the underling space of our theory:

$$\Gamma_0(D) \bigoplus M_0(D) = \{ ([f_n], g) ; [f_n] \in \Gamma_0(D), g \in M_0(D) \}.$$

In what follows, we denote the pair $([f_n], g)$ by $[f_n] \oplus g$. We will use customary notations in vector space for the addition and the scalar multiplication. The space $\Gamma_0(D) \bigoplus M_0(D)$ is a linear space.

2.2 (*E.R.* Λ)-integration on \mathbf{R}^2 Let $\Lambda = (\lambda_n)$ be a sequence of finite measures on \mathbf{R}^2 which is absolutely continuous, that is, (1) any Lebesgue measurable set is λ_n -measurable and (2) m(*A*) = 0 if and only if $\lambda_n(A) = 0$.

Now we introduce a concept of L_0 -Cauchy sequence for two dimensional case in the same way as the one dimensional case.

A Cauchy sequence $(V(g_n, \epsilon_n, A_n))$ is called an L_0 -Cauchy sequence for Λ if it satisfies the following three conditions on D:

 (K_1) if B is a Lebesgue measurable subset of D with $\lambda_n(D \setminus A_n) \geq \lambda_n(B)$, then

$$m(B \cap [-1/\epsilon_n, 1/\epsilon_n] \times [-1/\epsilon_n, 1/\epsilon_n]) \le \epsilon_n.$$

 (K_2) if $m(D \setminus A_n) > 0$ for all n, there exist k, k' > 0 such that

$$k \le \lambda_n (D \setminus A_n) \le k'$$

for all n.

 (K_3) if B is a Lebesgue measurable subset of D with $\lambda_n(D \setminus A_n) \geq \lambda_n(B)$, then

$$\iint_{B} |g_n(x,y)| dx dy \le \epsilon_n$$

Let $\mathbf{F}_0(\Lambda)$ be the set of L_0 -Cauchy sequences on D. A sequence (g_n) with L_0 -Cauchy sequence in $\mathbf{F}_0(\Lambda)$ is called an L_0 -sequence for Λ . Let $L_0(\Lambda)$ be the set of L_0 -sequences (g_n) in $L^1(D)$ for Λ .

Lemma 2 A sequence (g_n) in $L^1(D)$ is an element in $L_0(\Lambda)$ if $(g_n)_{n_0}^{\infty}$ is an element in $L_0(\Lambda_0)$ for some n_0 , where Λ_0 is the subsequence $(\lambda_n)_{n_0}^{\infty}$ of $\Lambda = (\lambda_n)$.

Proposition 3 If $(g_n), (k_n) \in L_0(\Lambda)$, then $(g_n + k_n) \in L_0(\Lambda)$. If $(g_n) \in L_0(\Lambda)$, then $(\lambda g_n) \in L_0(\Lambda)$ for any $\lambda \in \mathbf{R}$.

Definition 3 A sequence $(V(g_n))$ (resp. (g_n)) is called an L_0 -Cauchy sequence (resp. L_0 -sequence) for Λ and g, or for g in short, if $\bigcap_{n=1}^{\infty} V(g_n) = \{g\}$ for $(V(g_n)) \in \mathbf{F}_0(\Lambda)$.

We set

$$I_s((g_n);\Lambda) = \limsup_{n \to \infty} \iint_D g_n(x,y) dx dy$$
$$I_i((g_n);\Lambda) = \liminf_{n \to \infty} \iint_D g_n(x,y) dx dy$$

for $(g_n) \in L_0(\Lambda)$.

Theorem 2 If (g_n) and (f_n) are L_0 -sequences for Λ and g, then

$$I_s((f_n);\Lambda) = I_s((g_n);\Lambda),$$

$$I_i((f_n);\Lambda) = I_i((g_n);\Lambda).$$

Definition 4 Let (g_n) is an L_0 -sequence for Λ and g. If

$$I_s((g_n);\Lambda) = I_i((g_n);\Lambda),$$

this common value is denoted by

$$I(g,\Lambda) = (E.R.\Lambda) \iint_D g(x,y) dx dy$$

and $I(g, \Lambda)$ is called the $(E.R.\Lambda)$ -integral of g on D. If $-\infty < I(g, \Lambda) < \infty$, g is called to be $(E.R.\Lambda)$ -integrable on D.

Lemma 3 Suppose that $(f_n) \in G_0(D)$ has a G_0 -Cauchy sequence $(V(f_n))$ with an associated decomposition $f_{1n} + f_{2n}$ of f_n . Then

$$\lim_{n \to \infty} \int_D f_{2n}(x) dx = 0$$

Suppose that a sequence $(f_n) \in G_0(D)$ has an associated decomposition $f_{1n} + f_{2n}$ of f_n such that $\lim_{n\to\infty} \int_D f_{1n}(x) dx$ exists, where the limit value may be finite or infinite. Then by Lemma 3, we have

$$\lim_{n \to \infty} \int_D f_n(x) dx = \lim_{n \to \infty} \int_D f_{1n}(x) dx.$$

Now we give the definition of the $(E.R.\Lambda)$ -integral on $\Gamma_0(D) \bigoplus M_0(D)$.

Definition 5 Suppose that a sequence (f_n) in $G_0(D)$ has an associated decomposition $f_{1n} + f_{2n}$ of f_n such that the value

$$I([f_n]; D) = \lim_{n \to \infty} \iint_D f_{1n}(x, y) dx dy$$

exists and the $(E.R.\Lambda)$ -integral $I(g,\Lambda)$ of $g \in M_0(D)$ exists, where the values of these integrals may be finite or infinite. Then, if $I([f_n]; D) + I(g,\Lambda)$ has a meaning, this sum is denoted by

$$(E.R.\Lambda) \iint_{D} [f_n] \oplus gdxdy = (E.R.\Lambda) \iint_{D} (f_n(x,y)) \oplus g(x,y)dxdy,$$

and called the (E.R.A)-integral of $[f_n] \oplus g$ on D. If $-\infty < I([f_n]; D) + I(g, \Lambda) < \infty$, $[f_n] \oplus g$ is called to be (E.R.A)-integrable on D.

We obtain the linearity of $(E.R.\Lambda)$ -integral over the space $\Gamma_0(D) \bigoplus M_0(D)$ excepting the indefinite case.

Example 2 Put $D = [0,1]^2$, and $G_n = \{(x,y) ; 1/(2n) \le x \le 1, 1/(2n) \le y \le 1\}$. Let (λ_n^0) be a sequence of measures on D such that

$$\lambda_n^0(E) = \begin{cases} \iint_E \exp(-\frac{1}{y}) \frac{1}{y^2} dx dy, & on \ [0,1] \times [0,1/(2n)] \\ \iint_E 1 dx dy, & on \ G_n \\ \iint_E \exp(-\frac{1}{x}) \frac{1}{x^2} dx dy, & on \ [0,1/(2n)] \times [1/(2n),1] \end{cases}$$

for a measurable subset E of D. We set $\lambda_n(E) = \lambda_n^0(E)/\exp(-2n)$, and

$$f_n(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2}, & \text{on } G_n \\ 0, & \text{on } D \setminus G_n \end{cases}$$

Then, we find that $(V(f_n, \epsilon_n, G_n))_N^{\infty} \in \mathbf{F}_0((\lambda_n))$ for sufficiently large N, where $\epsilon_n = 1/n$. Moreover, it holds that

$$(E.R.T((\lambda_n)) \iint_D \frac{x^2 - y^2}{(x^2 + y^2)^2} dx dy = 0.$$

3 A Translation invariant integral on a subset of \mathbb{R}^2 In Section 3.1, we recall some terminologies and notations used in [11]. In Section 3.2, the concept of the (E.R.T)-integral on an interval of \mathbb{R} is extended to a subset D of \mathbb{R}^2 using some terminologies and notations in Section 3.1. We notice that this integral is defined only on the set $M_0(D)$ without considering $\Gamma_0(D)$.

3.1 Terminologies and notations We recall some terminologies and notations used in the definition of the (E.R.T)-integral ([11]).

Let *I* be a finite or infinite open interval in **R**. We fix two increasing sequences $\alpha = (\alpha_n)$ and $\beta = (\beta_n)$ of real numbers with $\lim_{n\to\infty} \alpha_n = \infty$ and $\lim_{n\to\infty} \beta_n = \infty$, and a decreasing sequence (J_n) of measurable subsets with $J_n \subseteq [-\beta_n, \beta_n]$ and $\lim_{n\to\infty} m(J_n) = 0$.

Let ν_n be an absolutely continuous measure on **R** such that

$$\nu_n(E_n) = \exp(-\alpha_n)$$

for $E_n = \mathbf{R} \setminus [-\beta_n, \beta_n]$ and

$$\nu_n(J_n) = \exp(-\alpha_n)$$

for non empty J_n .

Denote $J_n + a = \{x + a; x \in J_n\}$ by J_n^a . For any measurable subset E of \mathbf{R} and for any different points $a_1, a_2, ..., a_l \in I$, we set

(3.1)
$$\mu_n^0(E) = \sum_{i=1}^l \nu_n((E \cap J_n^{a_i}) - a_i) + \nu_n(E \cap E_n) + m(E \cap (CE_n \setminus \bigcup_{i=1}^l J_n^{a_i})).^3$$

Let

(3.2)
$$\mu_n = \mu_n^0 / \exp(-\alpha_n)$$
 $(n = 1, 2, ...).$

Then (μ_n) is called a sequence of measures defined for $a_1, a_2, ..., a_l$. We denote (μ_n) by $T((a_i)_1^l)$ or $T(a_1, a_2, ..., a_l)$. If $J_{n_0} = \phi$ for some $n_0 \in \mathbf{N}$, the measure μ_n for each $n \ge n_0$ is independent of the choice of points $a_1, a_2, ..., a_l$.

We fix the sequence (ν_n) in the following.

Definition 6 A sequence (g_n) of functions in $M_0(I)$ is said to satisfy (*)-condition for $a_1, a_2, ..., a_l$ if

$$\lim_{n \to \infty} \int_{J_n^a \cap I} |g_n(x)| dx = 0$$

for any $a \in I$ with $a \neq a_i (i = 1, 2, ..., l)$.

Let $L_0^*(T((a_i)_1^l))$ be the set of all sequences (g_n) in $L_0(T((a_i)_1^l))$ with (*)-condition for $a_1, a_2, ..., a_l$.

We define a translation invariant integral over $\Gamma_0(I) \bigoplus M_0(I)$ as follows.

Definition 7 Let $g \in M_0(I)$ be a function such that , for some sequence $T((a_i)_1^l)$ of measures, there exists a sequence $(g_n) \in L_0^*(T((a_i)_1^l))$ with an L_0 -Cauchy sequence $(V(g_n))$ for g. If the $(E.R.T((a_i)_1^l))$ -integral of $[f_n] \oplus g$ exists, the (E.R.T)-integral of $[f_n] \oplus g$

$$(E.R.T)\int_D [f_n] \oplus gdx$$

is defined to be the $(E.R.T((a_i)_1^l))$ -integral of $[f_n] \oplus g$, where the (E.R.T)-integral of $[f_n] \oplus g$ may be finite or infinite. If the (E.R.T)-integral of $[f_n] \oplus g$ is finite, $[f_n] \oplus g$ is said to be (E.R.T)-integrable.

3.2 A Translation invariant integral Let $(J_n), (E_n), (\beta_n), (\alpha_n)$, and (ν_n) be notations in Section 3.1 and we fix these in the following.

Let P and Q be continuous functions on a finite interval [a, b] with $P \leq Q$. Put

$$D = \{(x, y) \in [a, b] \times \mathbf{R} ; P(x) \le y \le Q(x)\},\$$

where P < Q on (a, b). Namely, D is a domain of ordinate type. For any subset A of \mathbb{R}^2 , we denote

$$(A)_x = A \cap (\mathbf{R}^2)_x,$$

where $(\mathbf{R}^2)_x = \{(x, y) ; -\infty < y < \infty\}.$

Let $\varphi_1, \varphi_2, ..., \varphi_l$ be continuous functions on [a, b] whose graphs are contained in D. Put

$$I_n^{\varphi_i} = \{ (x, y) \in [a, b] \times \mathbf{R} ; y \in J_n + \varphi_i(x) \}. \quad (i = 1, 2, ..., l, n = 1, 2...)$$

 $^{{}^{3}}CE_{n} = R \setminus E_{n}$

For each x, we consider a measure in Section 3.1 on a parallel line to the y-axis which goes through the point (x, 0). For each subset E of $(\mathbf{R}^2)_x$,

(3.3)
$$\mu_{n,x}^{0}(E) = \sum_{i=1}^{l} \nu_{n}((E \cap (I_{n}^{\varphi_{i}})_{x}) - \varphi_{i}(x)) + \nu_{n}(E \cap (R \times E_{n})_{x}) + m(E \cap (C(R \times E_{n})_{x} \setminus \bigcup_{i=1}^{l} (I_{n}^{\varphi_{i}})_{x})),$$

where $(I_n^{\varphi_i})_x = \phi$ for x in $R \setminus [a, b]$. Here, the symbol \sum' means that the summation is taken only for the different values in $\{\varphi_i(x) ; i = 1, 2, .., l\}$. Put

(3.4)
$$\mu_{n,x} = \frac{\mu_{n,x}^0}{\exp(-\alpha_n)} \qquad (n = 1, 2, ...).$$

Namely, we have $(\mu_{n,x}) = T((\varphi_i(x))_1^l)$.

Let τ_n^0 be a measure on \mathbf{R}^2 defined by

(3.5)
$$\tau_n^0(F) = \int_{-\beta_n}^{\beta_n} \mu_{n,x}^0((F)_x) dx + \sigma_n((E_n \times \mathbf{R}) \cap F)$$

for $F \subseteq \mathbf{R}^2$, where σ_n is an absolutely continuous measure on $E_n \times \mathbf{R}$ with $\sigma_n(E_n \times \mathbf{R}) = \exp(-\alpha_n)$. Put

Then, (τ_n) is called a sequence of measures defined for $\varphi_1, \varphi_2, ..., \varphi_l$. We denote (τ_n) by $T((\varphi_i)_1^l)$ or $T(\varphi_1, \varphi_2, ..., \varphi_l)$.

We fix sequence (σ_n) in the following.

We define a translation invariant integral on D by using a sequence $T((\varphi_i)_1^l)$ of measures. Suppose that $(V(f_n(x, \cdot))) = (V(f_n(x, \cdot), \epsilon_n, (G_n)_x)) \in \mathbf{F}_0(T((\varphi_i(x))_1^l))$ for almost all x. Then, for almost all x, $V(f_n(x, \cdot))$ satisfies (K_2) -condition. Namely, putting $T((\varphi_i(x))_1^l) = (\mu_{n,x})$, if $m((D \setminus G_n)_x) > 0$ for all n, there exist positive constants c, c' such that

(3.7)
$$c' \le \mu_{n,x}((D \setminus G_n)_x) \le c$$

for all $n \in \mathbf{N}$. A Cauchy sequence $(V(f_n(x, \cdot)))$ is said to satisfy (K_2) -condition uniformly in x if c and c' are independent of x.

Theorem 3 Assume that a sequence (f_n) on D satisfies the following two conditions:

(i) For almost all x, there exists an L_0 -Cauchy sequence $(V(f_n(x, \cdot))) =$

 $(V(f_n(x,\cdot),\epsilon_n,(G_n)_x))$ for $f(x,\cdot)$ and $T((\varphi_i(x))_1^l)$, where ϵ_n is independent of x for each n and $(V(f_n(x,\cdot)))$ satisfies the (K_2) -condition uniformly in x.

(ii) $|f_n| \leq r_n$ on a.e.in D (n = 1, 2, ...) for an increasing divergent sequence (r_n) such that $(r_n \exp(-\alpha_n))_{n_0}^{\infty}$ is a monotone decreasing sequence for some n_0 which converges to 0. Then, there exists an L_0 -Cauchy sequence in $\mathbf{F}_0(T((\varphi_i)_1^l))$ for f.

Proof. Put $(\mu_{n,x}) = T((\varphi_i(x))_1^l)$ and $(\tau_n) = (T((\varphi_i)_1^l))$. Let (g_n) be a sequence on D such that

$$g_n(x,y) = \begin{cases} f_n(x,y), & \text{on } B_n \\ 0, & \text{on } D \setminus B_n, \end{cases}$$

where $B_n = (D \setminus W_n) \cap G_n$ for $W_n = \bigcup_{i=1}^l I_n^{\varphi_i}$.

Since $(V(f_n(x, \cdot)))$ satisfies (K_2) -condition uniformly in x, there exist positive constants c, c' such that

(3.8)
$$c' \le \mu_{n,x}((D \setminus G_n)_x) \le c$$

for all x.

We will show that $(V(g_n))_N^{\infty} = (V(g_n, \eta_n, B_n))_N^{\infty} \in \mathbf{F}_0(T((\varphi_i)_1^l))$ for sufficiently large $N \in \mathbf{N}$ with $n_0 \leq N$, where $\eta_n = (l+c)(b-a+1)(\omega_n + \epsilon_n + m(J_n))$ for $\omega_n = r_n \exp(-\alpha_n)$. By (3.8), we have

(3.9)
$$c'(b-a) \le \tau_n(D \setminus G_n) \le c(b-a).$$

Hence $(V(g_n))$ satisfies (K_2) -condition. By (3.9), we see that

(3.10)
$$\tau_n^0(D \setminus G_n) \le c(b-a)\exp(-\alpha_n).$$

Moreover, we have

(3.11)
$$\tau_n^0(W_n) \le \int_a^b \sum_{i=1}^l \nu_n((I_n^{\varphi_i})_x) dx = l(b-a) \exp(-\alpha_n).$$

By virtue of (3.10) and (3.11), we find

(3.12)
$$\tau_n^0(D \setminus B_n) \le (c+l)(b-a)\exp(-\alpha_n).$$

Let B be a subset of D such that $\tau_n^0(D \setminus B_n) \ge \tau_n^0(B)$. Then, by (3.12), we have

$$(3.13) \quad (c+l)(b-a)\exp(-\alpha_n) \ge \tau_n^0(D \setminus B_n) \ge \tau_n^0(B)$$
$$\ge \tau_n^0(B \cap B_n) = m(B \cap B_n) \quad .$$

Hence, by (3.13), it holds that

$$\iint_{B} |g_{n}(x,y)| dxdy = \iint_{B \cap B_{n}} |f_{n}(x,y)| dxdy$$
$$\leq r_{n}(c+l)(b-a)\exp(-\alpha_{n}) \leq \eta_{n}.$$

Thus $(V(g_n))_N^{\infty}$ satisfies (K_3) -condition.

Next, we will show that $(V(g_n))_N^\infty$ satisfies (K_1) -condition for (τ_n) . For any subset B of D with $\tau_n^0(D \setminus B_n) \ge \tau_n^0(B)$, we find that, by (3.13),

(3.14)
$$m(B \cap (D \setminus W_n)) = \int_a^b m((B \cap (D \setminus W_n))_x)dx$$
$$= \tau_n^0(B \cap (D \setminus W_n)) \le \tau_n^0(B) \le (c+l)(b-a)\exp(-\alpha_n).$$

Moreover, we have

(3.15)
$$m(B \cap W_n) \le m(W_n) \le l(b-a)m(J_n)$$

Therefore, by (3.14) and (3.15), we obtain

$$m(B \cap [-1/\eta_n, 1/\eta_n] \times [-1/\eta_n, 1/\eta_n]) \le m(B) \le \eta_n$$

for sufficiently large n. Thus $(V(g_n))_N^{\infty}$ satisfies (K_1) .

Moreover, since $(V(f_n(x, \cdot)))$ is a Cauchy sequence for almost all x, we have

$$\int_{(G_n)_x} |f_n(x,y) - f_{n+1}(x,y)| dy \le \epsilon_n - \epsilon_{n+1}$$

Hence, it holds that

$$\iint_{B_{n}} |g_{n}(x,y) - g_{n+1}(x,y)| dxdy$$

$$\leq \int_{a}^{b} \int_{(G_{n})_{x}} |f_{n}(x,y) - f_{n+1}(x,y)| dydx \leq \eta_{n} - \eta_{n+1}$$

so that $(V(g_n))_N^\infty$ is a Cauchy sequence. This completes the proof.

Theorem 4 Assume that a sequence (f_n) on D satisfies conditions (i) and (ii) in Theorem 3 and the integral

$$\lim_{n \to \infty} \int_{a}^{b} F_{n}(x) dx$$

exists in the sense that the limit is finite or infinite, where F_n is a function on [a, b] defined by

$$F_n(x) = \int_{P(x)}^{Q(x)} f_n(x, y) dy.$$

Then $(E.R.T((\varphi_i)_1^l))$ -integral of f exists on D, and

$$(E.R.T((\varphi_i)_1^l)) \iint_D f(x,y) dx dy = \lim_{n \to \infty} \int_a^b F_n(x) dx$$

Proof. We use the notations in the proof of Theorem 3. We have

(3.16)
$$\left| \iint_{G_n} f_n(x,y) dx dy - \iint_{B_n} g_n(x,y) dx dy \right|$$
$$\leq \iint_{G_n \setminus B_n} |f_n(x,y)| dx dy \leq \int_a^b \int_{(W_n)_x} |f_n(x,y)| dy dx$$

Since $(V(f_n(x, \cdot)))$ satisfies (K_2) -condition uniformly in x, there exist positive constants c, c' such that

$$c' \le \mu_{n,x}((D \setminus G_n)_x) = \frac{\mu_{n,x}^0((D \setminus G_n)_x)}{\exp(-\alpha_n)} \le c$$

for all x. Hence, it follows that

$$\mu_{n,x}^0((W_n)_x) \le l \exp(-\alpha_n) \le l \ \mu_{n,x}^0((D \setminus G_n)_x)/c'.$$

Let k be an integer with $l/c' \leq k$. By virtue of (K_3) -condition, we have

(3.17)
$$\int_{(W_n)_x} |f_n(x,y)| dy \le k \ \epsilon_n.$$

Here, ϵ_n is independent of x. Therefore, by (3.16) and (3.17), we obtain

(3.18)
$$\lim_{n \to \infty} \iint_{G_n} f_n(x, y) dx dy = \lim_{n \to \infty} \iint_{B_n} g_n(x, y) dx dy.$$

On the other hand, (K_3) -condition implies

(3.19)
$$|\int_{a}^{b} \int_{P(x)}^{Q(x)} f_{n}(x,y)dy - \int_{a}^{b} \int_{(G_{n})_{x}} f_{n}(x,y)dydx|$$
$$\leq \int_{a}^{b} \int_{(D\setminus G_{n})_{x}} |f_{n}(x,y)|dydx \leq (b-a) \epsilon_{n}.$$

Hence, we have , by (3.18) and (3.19),

$$\lim_{n \to \infty} \int_{a}^{b} F_{n}(x) dx = \lim_{n \to \infty} \int_{a}^{b} \int_{(G_{n})_{x}} f_{n}(x, y) dy dx$$
$$= \lim_{n \to \infty} \iint_{B_{n}} g_{n}(x, y) dx dy.$$

Since $(V(g_n))$ is an L_0 -Cauchy sequence and

$$\lim_{n \to \infty} \iint_{B_n} g_n(x, y) dx dy$$

exists, $(E.R.T((\varphi_i)_1^l))$ -integral of f exists on D and

$$(E.R.T((\varphi_i)_1^l)) \iint_D f(x,y) dx dy = \lim_{n \to \infty} \int_a^b F_n(x) dx.$$

Thus we obtain the assertion.

Definition 8 Let (f_n) be a sequence of functions in $L^1(D)$ satisfying the following four conditions:

 (\mathcal{O}_1) For almost all x, $(f_n(x,\cdot))$ satisfies (*)-condition for $\varphi_1(x), \varphi_2(x), ..., \varphi_l(x)$ and there exists a sequence $(V(f_n(x,\cdot))) = (V(f_n(x,\cdot), \epsilon_n, (G_n)_x))$ in $\mathbf{F}_0(T((\varphi_i(x))_1^l))$ on $(D)_x$, where $(V(f_n(x,\cdot)))$ satisfies (K_2) -condition uniformly in x and ϵ_n is independent of x for each n.

 (\mathcal{O}_2) There exists a finite number of points $a_1, a_2, ..., a_m \in [a, b]$ such that $(F_n) \in L_0^*(T((a_i)_1^m))$, where

$$F_n(x) = \int_{P(x)}^{Q(x)} f_n(x, y) dy.$$

 (\mathcal{O}_3) The following limit

$$\lim_{n \to \infty} \int_{a}^{b} \int_{P(x)}^{Q(x)} f_n(x, y) dy dx$$

exists, where the limit may be finite or infinite.

 (\mathcal{AO}) There exists an increasing divergent sequence (r_n) such that (a) the sequence $(r_n \exp(-\alpha_n))$ converges monotonically to 0 for sufficiently large n, and (b) $|f_n| \leq r_n$ a.e. on D (n = 1, 2, ...).

Let $\mathcal{O}(D; T((\varphi_i)_1^l))$ be the set of all sequences (f_n) in $L^1(D)$ satisfying $(\mathcal{O}_1), (\mathcal{O}_2), (\mathcal{O}_3),$ and (\mathcal{AO}) . A sequence $(f_n) \in \mathcal{O}(D; T((\varphi_i)_1^l))$ is called an \mathcal{O} -sequence for $T((\varphi_i)_i^l)$, and the \mathcal{O} -sequence is called a sequence related to f if $\bigcap_{n=1}^{\infty} V(f_n(x, \cdot)) = \{f(x, \cdot)\}$ for a.a.x. Let $\mathcal{T}(\mathbf{R}^2)$ be the set of all sequences $T((\varphi_i)_1^m)$ of measures. The set $\mathcal{T}(\mathbf{R}^2)$ is an ordered set with respect to the order $T((\varphi_i)_1^l) \leq T((\psi_i)_1^p)$ defined by $\{\varphi_1, \varphi_2, ..., \varphi_l\} \subseteq \{\psi_1, \psi_2, ..., \psi_p\}.$

Theorem 5 Let (f_n) and (g_n) be \mathcal{O} -sequences in $\mathcal{O}(D; T((\varphi_i)_1^l))$ and $\mathcal{O}(D; T((\psi_i)_1^p))$ respectively related to f. If $\{\psi_1, \psi_2, ..., \psi_p\}$ contains $\{\varphi_1, \varphi_2, ..., \varphi_l\}$, then

$$(E.R.(T((\varphi_i)_1^l))) \iint_D f(x,y) dx dy = (E.R.T((\psi_i)_1^p)) \iint_D f(x,y) dx dy.$$

Proof. By the assumption of this theorem, there exist L_0 -Cauchy sequences $(V(f_n(x, \cdot)))$, $(V(g_n(x, \cdot)))$ for almost all x such that

(3.20)
$$\bigcap_{n=1}^{\infty} V(f_n(x, \cdot)) = \bigcap_{n=1}^{\infty} V(g_n(x, \cdot)) = \{f(x, \cdot)\} \ a.e.x.$$

Putting $F_n(x) = \int_{P(x)}^{Q(x)} f_n(x, y) dy$ and $G_n(x) = \int_{P(x)}^{Q(x)} g_n(x, y) dy$, there exist L_0 -Cauchy sequences $(V(F_n))$ and $(V(G_n))$ by (\mathcal{O}_2) -condition. Hence, by virtue of Theorem 1, the both limits $\lim_{n\to\infty} F_n(x)$ and $\lim_{n\to\infty} G_n(x)$ exist almost everywhere. Therefore, since the integral of $f(x, \cdot)$ on $(D)_x$ exists uniquely by (3.20), and Proposition 2 in [11], we have

(3.21)
$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} G_n(x) \quad a.e.$$

Moreover, by (\mathcal{O}_2) -condition, there exist two finite sets $\{a_1, a_2, ..., a_r\}$ and $\{b_1, b_2, ..., b_q\}$ such that $(F_n) \in L_0^*(T((a_i)_1^r))$ and $(G_n) \in L_0^*(T((b_i)_1^q))$. Let $\{c_1, c_2, ..., c_e\}$ be the union of $\{a_1, a_2, ..., a_r\}$ and $\{b_1, b_2, ..., b_q\}$. By virtue of Proposition 1 in [11], we have $(F_n), (G_n) \in$ $L_0^*(T((c_i)_1^e))$. Hence, according to (3.21), (\mathcal{O}_3) -condition and Proposition 2 in [11], we have

$$\lim_{n \to \infty} \int_a^b F_n(x) dx = \lim_{n \to \infty} \int_a^b G_n(x) dx,$$

so that we have the assertion by Theorem 4.

By the symmetry of arguments, we can change the role of x and y in the above discussion. Let R and S be continuous functions on [c, d] with $R \leq S$, where R < S on (c, d). Put

$$D = \{(x, y) \in \mathcal{R} \times [c, d] ; R(y) \le x \le S(y)\}.$$

Namely, D is a domain of abscissa type. Let $\phi_1, \phi_2, ..., \phi_m$ be continuous functions on [c, d] such that $R \leq \phi_i \leq S$ (i = 1, 2, ..., m) on [c, d].

Let ϑ_n be a measure on $\mathbf{R} \times E_n$ with $\vartheta_n(\mathbf{R} \times E_n) = \exp(-\alpha_n)$. Using the similar equations as (3.3), (3.4), (3.5), and (3.6), we define a measure

(3.22)
$$\rho_n(F) = \int_{-\beta_n}^{\beta_n} d_{n,y}((F)_y) dy + \vartheta_n((\mathbf{R} \times E_n) \cap F)$$

for each subset F of ${\bf R}^2$, where $(F)_y=\{(x,y)\;;\;x\in F\}$ and

(3.23)
$$(d_{n,y}) = T((\phi_i(y))_1^m).$$

We shall call (ρ_n) a sequence of measures defined for $\phi_1, \phi_2, ..., \phi_m$, and denote it by $T((\phi_i)_1^m)$ or $T(\phi_1, \phi_2, ..., \phi_m)$.

Let (\mathcal{A}_1) , (\mathcal{A}_2) , and (\mathcal{A}_3) be the conditions corresponding to (\mathcal{O}_1) , (\mathcal{O}_2) , and (\mathcal{O}_3) when x is replaced by y. Let $\mathcal{A}(D; T((\phi_i)_1^m))$ be the set of all sequences (f_n) in $L^1(D)$ satisfying (\mathcal{A}_1) , (\mathcal{A}_2) , (\mathcal{A}_3) and (\mathcal{AO}) . A sequence $(f_n) \in \mathcal{A}(D; T((\phi_i)_1^m))$ is called a \mathcal{A} -sequence for $T((\phi_i)_1^m)$, and the \mathcal{A} -sequence is called a sequence related to f if $\bigcap_{n=1}^{\infty} V(f_n(\cdot, y)) = \{f(\cdot, y)\}$ for *a.a.y*.

Let (f_n) and (g_n) be \mathcal{A} -sequences in $\mathcal{A}(D; T(\phi_i)_1^m))$ and $\mathcal{A}(D; T(\theta_i)_1^k))$ related to f respectively. Then, in the same way as Theorem 5, we find that ,if $\{\phi_1, \phi_2, ..., \phi_m\} \supseteq \{\theta_1, \theta_2, ..., \theta_k\}$,

$$(E.R.T((\phi_i)_1^l)) \iint_D f(x,y) dx dy = (E.R.T((\theta_i)_1^k) \iint_D f(x,y) dx dy.$$

Definition 9 Assume that there exist an \mathcal{O} -sequence (f_n) in $\mathcal{O}(D; T((\varphi_i)_1^l))$ (resp. an \mathcal{A} -sequence (f_n) in $\mathcal{A}(D; T((\phi_i)_1^m))$ related to f. Then we denote the integral $(E.R.T((\varphi_i)_1^l)) \iint_D f(x, y) dxdy$ (resp. $(E.R.T((\phi_i)_1^m)) \iint_D f(x, y) dxdy)$ by

$$(E.R.T)_{\mathcal{O}} \iint_{D} f(x,y) dxdy$$
$$(resp. (E.R.T)_{\mathcal{A}} \iint_{D} f(x,y) dxdy).$$

If the integral is finite, f is said to be $(E.R.T)_{\mathcal{O}}$ -integrable (resp. $(E.R.T)_{\mathcal{A}}$ -integrable) on D.

The $(E.R.T)_{\mathcal{O}}$ -integral and $(E.R.T)_{\mathcal{A}}$ -integral are invariant under the translation. For an \mathcal{O} -sequence $(f_n) \in \mathcal{O}(D; T((\varphi_i)_1^l))$, we see that

$$(E.R.T)_{\mathcal{O}} \iint_{D} f(x,y) dx dy = (E.R.T) \int_{a}^{b} (E.R.T) \int_{P(x)}^{Q(x)} f(x,y) dy dx,$$

where $D = \{(x, y) \in [a, b] \times \mathbf{R}; P(x) \le y \le Q(x)\}$. Moreover, for an \mathcal{A} -sequence (f_n) in $\mathcal{A}(D; T((\phi_i)_1^m))$, we see that

$$(E.R.T)_{\mathcal{A}} \iint_{D} f(x,y) dx dy = (E.R.T) \int_{c}^{d} (E.R.T) \int_{R(y)}^{S(y)} f(x,y) dx dy,$$

where $D = \{(x, y) \in \mathbf{R} \times [c, d]; R(y) \le y \le S(y)\}.$

Let D be a domain of ordinate type as well as abscissa type. Then the following corollary holds.

Proposition 4 If (f_n) is a sequence in the intersection of $\mathcal{O}(D; T((\varphi_i)_1^l))$ and $\mathcal{A}(D; T((\phi_i)_1^m))$ related to f, then

(3.24)
$$(E.R.T)_{\mathcal{O}} \iint_{D} f(x,y) dx dy = (E.R.T)_{\mathcal{A}} \iint_{D} f(x,y) dx dy$$

Proof. It holds that ,by Theorem 4,

$$(E.R.T)_{\mathcal{O}} \iint_{D} f(x,y) dx dy = \lim_{n \to \infty} \iint_{D} f_n(x,y) dx dy$$

$$=(E.R.T)_{\mathcal{A}} \iint_{D} f(x,y) dx dy.$$

The comman value in (3.24) is denoted by

$$(E.R.T) \iint_D f(x,y) dx dy.$$

4 Some examples of integrable functions We discuss on two examples of integrable functions.

Example 1 Let D be the set $[0,1]^2$. Let (U_n) be a sequence of subsets of D defined inductively by

$$U_0 = \left(\left(\frac{1}{2}, 1\right) \times \left(0, \frac{1}{2}\right)\right) \cup \left(\left(0, \frac{1}{2}\right) \times \left(\frac{1}{2}, 1\right)\right)$$

and

$$U_{n+1} = \frac{1}{2} \{ U_n \cup (U_n + (1, 1)) \} \qquad n \in \mathcal{N}$$

Then we have a fractal set $\bigcup_{n=0}^{\infty} D \setminus U_n$. Let f be a function on D defined by

$$f(x,y) = \begin{cases} (-1)^n \frac{2^{n+1}}{n+1}, & on \ U_n\\ 0, & otherwise. \end{cases}$$

Moreover, we set

$$f_n(x,y) = \begin{cases} f(x,y), & \text{on } G_n \\ 0, & \text{otherwise,} \end{cases}$$

where $G_n = \overline{\bigcup_{\nu=0}^{2n} U_{\nu}}$. We set $\alpha_n = n \log 4$ and $J_n = \phi$. Then we have

$$\mu_{n,x}^0(E) = \mathbf{m}(E)$$

for any subset E of $(D)_x$, and $\mu^0_{n,x} = T(\varphi_1(x)))$ for φ_1 vanishing on [0,1]. We can see that $(V(f(x,\cdot),1/n,(G_n)_x)) \in \mathbf{F}_0(T((\varphi_1(x))))$ for any $x \in [0,1]$. Hence (f_n) satisfies (\mathcal{O}_1) -condition.

Let F_n be a function on [0,1] defined by

$$F_n(x) = \int_{(G_n)_x} f_n(x, y) dy.$$

Then we have $(V(F_n, 1/n, A_n)) \in \mathbf{F}_0(T(a_1))$, where $a_1 = 0$ and $A_n = [0, 1]$. Indeed,

$$\int_{A_n} |F_n(x) - F_{n+1}(x)| dx = |\sum_{\nu=2n+1}^{2n+2} (-1)^{\nu} \frac{1}{n+1}|$$
$$= \frac{1}{2n+2} - \frac{1}{2n+3}.$$

Hence $(V(F_n, 1/n, A_n))$ is a Cauchy sequence. Hence (f_n) satisfies (\mathcal{O}_2) -condition. Letting $r_n = 2^{2n+1}/(2n+1)$, we obtain $|f_n| \leq r_n$ and the sequence $(r_n \exp(-\alpha_n))$ converges monotonically to 0. Hence (f_n) satisfies (\mathcal{AO}) -condition. Moreover, we have

$$\lim_{n \to \infty} \int_0^1 F_n(x) dx = \lim_{n \to \infty} \sum_{\nu=1}^{2n} (-1)^{\nu} \frac{1}{\nu+1} = \log 2.$$

125

Hence (f_n) satisfies \mathcal{O}_3 -condition. Thus, $(f_n) \in \mathcal{O}(D; T(\varphi_1))$. By a similar argument, we find that $(f_n) \in \mathcal{A}(D; T(\varphi_1))$. Hence we obtain

$$(E.R.T) \iint_{D} f(x,y) dx dy = (E.R.T) \int_{-1}^{1} (E.R.T) \int_{-1}^{1} f(x,y) dy dx$$
$$= (E.R.T) \int_{-1}^{1} (E.R.T) \int_{-1}^{1} f(x,y) dx dy = \log 2.$$

Example 2 Let D and J_n be sets $[-1,1]^2$ and [-1/(2n), 1/(2n)] respectively. Let ν_n be a measure defined by

$$\nu_n(E) = \int_E \exp(-\frac{1}{|x|}) \frac{1}{x^2} dx$$

for any measurable subset E of J_n . For |c| < 1, we set

$$f_n(x,y) = \begin{cases} \frac{1}{x-y+c}, & on \ G_n\\ 0, & otherwise, \end{cases}$$

where G_n is the set $\{(x, y) \in D; |y - \varphi_1(x)| > 1/(2n)\}$ given by a function $\varphi_1(x) = x + c$. We can show that $(f_n) \in \mathcal{O}(D; T(\varphi_1))$. Indeed, we obtain $(V(f_n(x, \cdot), 1/n, (G_n)_x)_N^\infty \in \mathbf{F}_0(T(\varphi_1(x))))$ for a sufficiently large $N \in \mathbf{N}$ uniformly in x. Let F_n be a function defined by

$$F_n(x) = \begin{cases} \int_{(G_n)_x} f_n(x, y) dy, & \text{on } B_n \\ 0, & \text{otherwise,} \end{cases}$$

where

$$B_n = [-1,1] \setminus \{x; \ |x+1+c| < \frac{1}{2n}, \ |x-1+c| < \frac{1}{2n} \}.$$

Then we have

$$F_n(x) = \log|x + 1 + c| - \log|x - 1 + c|$$

on B_n , and $(V(F_n, 1/n, B_n))_{N'}^{\infty} \in \mathbf{F}_0(T(a_1.a_2))$ for a sufficiently large N', where $a_1 = -1 - c$ and $a_2 = 1 - c$. Moreover, we obtain

$$\lim_{n \to \infty} \int_{B_n} F_n(x) dx = \begin{cases} c \log(\frac{4}{c^2} - 1) + 2\log\frac{2+c}{2-c}, & c \neq 0\\ 0, & c = 0. \end{cases}$$

It is easy to show that (f_n) satisfies the remaining conditions.

Similarly as the above argument, we have $(f_n) \in \mathcal{A}(D; T((\phi_1)))$, where $\phi_1(y) = y - c$ on $-1 \leq y \leq 1$. Therefore, it holds that

$$(E.R.T) \iint_{D} \frac{1}{x - y + c} dx dy = (E.R.T) \int_{-1}^{1} (E.R.T) \int_{-1}^{1} \frac{1}{x - y + c} dy dx$$
$$= (E.R.T) \int_{-1}^{1} (E.R.T) \int_{-1}^{1} \frac{1}{x - y + c} dx dy.$$

Acknowledgement. The author would like to thank Professor M.Washihara for useful discussion and comments.

References

- K.Kunugi:Sur une gènèralisation de l'integrale, Fundamental and Applied Aspects of Math.1(1959),1-30.
- [2] H.Okano: Sur une gènèralisation de l'integrale (E.R.) et un théorème génèral de l'integration par parties, J.Math.Soc.Japan.14(1962),432-442..
- [3] K.Nakagami: Integration and differentiation of δ -function I, Math.Japan. **26**(1981),297-317.
- [4] K.Nakagami: Integration and differentiation of δ -function II, Math.Japan. 28(1983),519-533.
- [5] K.Nakagami: Integration and differentiation of δ -function III, Math.Japan. **26**(1983),703-709.
- [6] K.Nakagami: Integration and differentiation of δ -function IV, Math.Japan. **32**(1987),621-641.
- [7] K.Nakagami: Integration and differentiation of δ -function V, Math.Japan. **33**(1988),751-761.
- [8] K.Nakagami: Integration and differentiation of δ -function VI,Math.Japan. **34**(1989),235-251
- [9] K.Nakagami: The space $\Gamma_0(D) \bigoplus M_0(D)$ of generalized functions, Math. Japan. **40**(1994), 381-367.
- [10] K.Nakagami: A hyperbolic differential equation in the space $\Gamma_0(D) \oplus G_0(D)$, Math. Japan. **48**(1998), 31-41.
- [11] K,Nakagami: An integral preserved by a translation on the space $\Gamma_0(D) \oplus G_0(D)$. Sci.Math.Japon. **54**(2001), 69-76.

DEPARTMENT OF COMPUTER SCIENCES, KYOTO SANGYO UNIVERSITY, KAMIG-AMO, KITA-KU, KYOTO, 603-8555