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MULTIPLE INTEGRALS ON THE SPACE Γ0(D)
⊕
M0(D)
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Abstract. The space Γ0(D)
�

M0(D) of generalized functions on an interval D of
R is extended to a susbset D of R2. We define a translation invariant integral over
this space and give some fundamental properties.

1 Introduction The (E.R)-integral (Kunugi[1]) preserves the integrability by the trans-
lation. The functions with a divergence point of integer power order are not (E.R)-
integrable. The (E.R)-integral was extend to the (E.R.ν)-integral by Okano ([2]), by using
an absolutely continuous measure ν in place of Lebesgue measure.

Okano assumed the additional three conditions for a Cauchy sequence to define the
(E.R.ν)-integral. One of the conditions asserts that the Cauchy sequence (V (gn, εn, An))
converges slowly in the sense that there exists an integer k with k ν(D\An+1) ≥ ν(D\An)
for n = 1, 2, .... To remove this restriction, we introduced in [3] the (E.R.Λ)-integral by
using a sequence Λ = (λn) of finite absolutely continuous measures. This integral was
defined on the space Γ0(I)

⊕
M0(I) of generalized functions on an interval I of R. The set

Γ0(I) is the singular part of Γ0(I)
⊕
M0(I) in the sense that it contains the δ-function and

its higher derivatives, and the set M0(I) consists of all measurable functions on I, which is
the regular part of Γ0(I)

⊕
M0(I). By a suitable choice of a measure ν (resp. a sequence

Λ of measures) , we can find many examples of integrable functions with strong singurality.
However, these integrals are not preserved by the translation. In our previous paper

[11], we defined the (E.R.T )-integral which is traslationally invariant on the interval I.
In this paper, we define the space Γ0(D)

⊕
M0(D) of generalized functions on a subset

D of R2, and extend the (E.R.T )-integral to this space.
In Section 2, we define the space Γ0(D)

⊕
M0(D) on a subset D of R2 and define the

(E.R.Λ)-integral over this space.
In Section 3, we extend the (E.R.T )-integral to a subset D in R2.
In Section 4, we introduce two examples of (E.R.T )-integrable functions defined on

subsets in R2.

2 The space of generalized functions on R2and the integral In this section , let
D be a closed subset of R2 . The details of the constructions of Γ0(D)

⊕
M0(D) on the set

D and the integral over the space are omitted, for they are performed in the similar way as
the constructions of the space of generalized functions on an interval of R and the integral
in [3].

2.1 The space Γ0(D)
⊕
M0(D) on a subset D of R2 Let M0(D) be the set of all

real valued Lebesgue measurable functions defined on D. In what follows, we suppose that
M0(D) is classified by the usual equivalence relation f(x) = g(x) a.e. We denote measurable
functions by symbols f(x), g(x), ... and a class in M0(D) containing a measurable function
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g(x) by the same symbol g(x) or g. For each Lebesgue measurable subset A of D and ε > 0,
we define a pre-neighbourhood V (f, ε, A) as

V (f, ε, A) = {g ∈M0(D);
∫∫

A

|f(x, y) − g(x, y)|dxdy ≤ ε}.

We denote V (f, ε, A) by V (f) if there is no fear of confusion.
A pre-neighbourhood V (f, ε, A) of f is said to be rank n if m(A) �= 0 and 2−n <

ε ≤ 2−n+1 for an integer n. The set of pre-neighbourhoods of rank n is denoted by Bn.
Moreover, we consider V (f, ε, A)(= M0(D)) with m(A) = 0 as a pre-neighbourhood of rank
0, and let B0 = {M0(D)}. In this way, we are able to introduce a structure of a ranked
space in M0(D).

Definition 1 ([2], p431) A sequence (V (fn)) of pre-neighbourhoods is called a Cauchy se-
quence if V (f1) ⊇ V (f2) ⊇ ... and V (fn) ∈ Bγ(n) for some monotone increasing sequence
(γ(n)) ∈ N with limn→∞γ(n) = ∞.

We can prove the following lemma similarly as Okano’s lemma ([2], p432).

Lemma 1 If V (fn) = V (fn, εn, An) for n = 1.2, ... and V (f1) ⊇ V (f2) ⊇ ... , then the
following properties hold :

(1) m(An ∩ (D \An+1)) = 0 for every n.1

(2)
∫∫

An
|fn(x, y) − fn+1(x, y)|dxdy ≤ εn − εn+1 for every n.

(3)
∑∞

n=k

∫∫
Ak

|fn(x, y) − fn+1(x, y)|dxdy ≤ εk for every k.

The following theorem holds by Lemma 1.

Theorem 1 If a Cauchy sequence (V (fn, εn, An)) satisfies the condition such that

m((D \An) ∩ ([−1/εn, 1/εn] × [−1/εn, 1/εn])) ≤ εn (n = 1, 2, ...),

then there exists a function f ∈ M0(D) such that limn→∞ fn(x) = f(x) a.e. in D and⋂∞
n=1V (fn, εn, An) = {f}.

For a Cauchy sequence (V (fn, εn, An)) on D, we consider the following two conditions:
(T1) m((D \An) ∩ ([−1/εn, 1/εn] × [−1/εn, 1/εn])) ≤ εn.
(T2) fn is decomposed into a sum of measurable functions f1n and f2n on D, where

supp(f1n) ⊆ D \An and ∫∫
D\An

|f2n(x, y)|dxdy ≤ εn.

If (V (fn)) = (V (fn, εn, An)) is a Cauchy sequence which satisfies conditions (T1) and
(T2) , the Cauchy sequence is called a G0-Cauchy sequence on D .

Let H0(D) be the set of G0-Cauchy sequences on D , and let G0(D) be the set of
sequences (fn) in L1(D) such that there exists a G0-Cauchy sequence (V (fn)) with 0 ∈⋂∞

n=1V (fn). 2

Definition 2 A decomposition fn = f1n +f2n in (T2) is called on associated decomposition
of fn.

Proposition 1 If (fn), (gn) ∈ G0(D), then (fn + gn) ∈ G0(D). If (fn) ∈ G0(D), then
(λfn) ∈ G0(D) for any real number λ.

1The symbol m is the Lebesgue measure.
2The set L1(D) is the set of all Lebesgue integrable functions on D .
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If (fn) and (gn) have associated decompositions f1n + f2n and g1n + g2n of fn and gn

respectively such that there is an n0 ∈ N satisfying f1n = g1n a.e. for each n ≥ n0, we say
that (fn) and (gn) are equivalent. Let Γ0(D) be the quotient space of G0(D) classified by
this equivalence relation, whose element containing (fn) is denoted by [fn].

Example 1 Let (pn) be an increasing sequence of real numbers which diverges to ∞ and
let (Sn) be a sequence of functions satisfying the following three conditions:

(i) Sn is an integrable function on R2 with

lim
n→∞

∫∫
R2
Sn(x, y)dxdy = 1,

(ii) supx,y|Sn(x, y)| ≤ pn,
(iii) supp(Sn) ≤ [−1/(2pn), 1/(2pn)] × [−1/(2pn), 1/(2pn)].
Then the sequence (Sn) is called a δ-type sequence defined by (pn).
The class [Sn] is denoted by δ. Put hn(x, y) = Sn(x − a, y − b) for c = (a, b) ∈ D and

each n. Then [hn] is denoted by δc.

Proposition 2 If (fn) ≈ (ln) and (gn) ≈ (kn), then (fn+gn) ≈ (ln+kn) and (λfn) ≈ (λln)
for any real number λ.

We set [fn]+[gn] = [fn + gn] and λ [fn]=[λfn]. Hence Γ0(D) turns out to be a linear space.
The following set is the underling space of our theory:

Γ0(D)
⊕

M0(D) = {([fn], g) ; [fn] ∈ Γ0(D), g ∈M0(D)}.

In what follows, we denote the pair ([fn], g) by [fn]⊕ g . We will use customary notations
in vector space for the addition and the scalar multiplication. The space Γ0(D)

⊕
M0(D)

is a linear space.

2.2 (E.R.Λ)-integration on R2 Let Λ = (λn) be a sequence of finite measures on R2

which is absolutely continuous, that is, (1) any Lebesgue measurable set is λn-measurable
and (2) m(A) = 0 if and only if λn(A) = 0.

Now we introduce a concept of L0-Cauchy sequence for two dimensional case in the same
way as the one dimensional case.

A Cauchy sequence (V (gn, εn, An)) is called an L0-Cauchy sequence for Λ if it satisfies
the following three conditions on D:

(K1) if B is a Lebesgue measurable subset of D with λn(D \An) ≥ λn(B), then

m(B ∩ [ − 1/εn, 1/εn] × [ − 1/εn, 1/εn]) ≤ εn.

(K2) if m(D \An) > 0 for all n, there exist k, k′ > 0 such that

k ≤ λn(D \An) ≤ k′

for all n.
(K3) if B is a Lebesgue measurable subset of D with λn(D \An) ≥ λn(B), then∫∫

B

|gn(x, y)|dxdy ≤ εn.

Let F0(Λ) be the set of L0-Cauchy sequences on D. A sequence (gn) with L0-Cauchy
sequence in F0(Λ) is called an L0-sequence for Λ . Let L0(Λ) be the set of L0-sequences
(gn) in L1(D) for Λ.
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Lemma 2 A sequence (gn) in L1(D) is an element in L0(Λ) if (gn)∞n0
is an element in

L0(Λ0) for some n0, where Λ0 is the subsequence (λn)∞n0
of Λ = (λn).

Proposition 3 If (gn), (kn) ∈ L0(Λ) , then (gn + kn) ∈ L0(Λ). If (gn) ∈ L0(Λ), then
(λgn) ∈ L0(Λ) for any λ ∈ R.

Definition 3 A sequence (V (gn)) (resp. (gn) ) is called an L0-Cauchy sequence (resp.
L0-sequence) for Λ and g, or for g in short, if

⋂∞
n=1 V (gn) = {g} for (V (gn)) ∈ F0(Λ).

We set
Is((gn); Λ) = lim supn→∞

∫∫
D

gn(x, y)dxdy

Ii((gn); Λ) = lim infn→∞
∫∫

D

gn(x, y)dxdy

for (gn) ∈ L0(Λ).

Theorem 2 If (gn) and (fn) are L0- sequences for Λ and g, then

Is((fn); Λ) = Is((gn); Λ),

Ii((fn); Λ) = Ii((gn); Λ).

Definition 4 Let (gn) is an L0-sequence for Λ and g. If

Is((gn); Λ) = Ii((gn); Λ),

this common value is denoted by

I(g,Λ) = (E.R.Λ)
∫∫

D

g(x, y)dxdy

and I(g,Λ) is called the (E.R.Λ)-integral of g on D. If −∞ < I(g,Λ) <∞,
g is called to be (E.R.Λ)-integrable on D.

Lemma 3 Suppose that (fn) ∈ G0(D) has a G0-Cauchy sequence (V (fn)) with an associ-
ated decomposition f1n + f2n of fn. Then

lim
n→∞

∫
D

f2n(x)dx = 0.

Suppose that a sequence (fn) ∈ G0(D) has an associated decomposition f1n + f2n of
fn such that limn→∞

∫
D f1n(x)dx exists, where the limit value may be finite or infinite.

Then by Lemma 3, we have

lim
n→∞

∫
D

fn(x)dx = lim
n→∞

∫
D

f1n(x)dx.

Now we give the definition of the (E.R.Λ)-integral on Γ0(D)
⊕
M0(D) .

Definition 5 Suppose that a sequence (fn) in G0(D) has an associated decomposition f1n+
f2n of fn such that the value

I([fn];D) = lim
n→∞

∫∫
D

f1n(x, y)dxdy
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exists and the (E.R.Λ)-integral I(g,Λ) of g ∈ M0(D) exists, where the values of these
integrals may be finite or infinite. Then, if I([fn];D) + I(g,Λ) has a meaning, this sum is
denoted by

(E.R.Λ)
∫∫

D

[fn] ⊕ gdxdy = (E.R.Λ)
∫∫

D

(fn(x, y)) ⊕ g(x, y)dxdy,

and called the (E.R.Λ)-integral of [fn]⊕g on D. If −∞ < I([fn];D)+I(g,Λ) <∞ , [fn]⊕g
is called to be (E.R.Λ)-integrable on D.

We obtain the linearity of (E.R.Λ)-integral over the space Γ0(D)
⊕
M0(D) excepting

the indefinite case.

Example 2 Put D = [0, 1]2, and Gn = {(x, y) ; 1/(2n) ≤ x ≤ 1, 1/(2n) ≤ y ≤ 1}. Let
(λ0

n) be a sequence of measures on D such that

λ0
n(E) =

⎧⎨
⎩

∫∫
E exp(− 1

y ) 1
y2 dxdy, on [0, 1] × [0, 1/(2n)]∫∫

E
1dxdy, on Gn∫∫

E
exp(− 1

x) 1
x2 dxdy, on [0, 1/(2n)] × [1/(2n), 1].

for a measurable subset E of D . We set λn(E) = λ0
n(E)/exp(−2n), and

fn(x, y) =

{
x2−y2

(x2+y2)2 , on Gn

0, on D \Gn.

Then,we find that (V (fn, εn, Gn))∞N ∈ F0((λn)) for sufficiently large N , where εn = 1/n.
Moreover, it holds that

(E.R.T ((λn))
∫∫

D

x2 − y2

(x2 + y2)2
dxdy = 0.

3 A Translation invariant integral on a subset of R2 In Section 3.1, we recall some
terminologies and notations used in [11]. In Section 3.2, the concept of the (E.R.T )-integral
on an interval of R is extended to a subset D of R2 using some terminologies and notations
in Section 3.1. We notice that this integral is defined only on the set M0(D) without
considering Γ0(D).

3.1 Terminologies and notations We recall some terminologies and notations used in
the definition of the (E.R.T )-integral ([11]).

Let I be a finite or infinite open interval in R . We fix two increasing sequences α = (αn)
and β = (βn) of real numbers with limn→∞αn = ∞ and limn→∞βn = ∞ , and a decreasing
sequence (Jn) of measurable subsets with Jn ⊆ [−βn, βn] and limn→∞m(Jn) = 0.

Let νn be an absolutely continuous measure on R such that

νn(En) = exp(−αn)

for En = R \ [−βn, βn] and
νn(Jn) = exp(−αn)

for non empty Jn.
Denote Jn + a = {x+ a;x ∈ Jn} by Ja

n . For any measurable subset E of R and for any
different points a1, a2, ..., al ∈ I, we set
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(3.1) µ0
n(E) =

l∑
i=1

νn((E ∩ Jai
n ) − ai) + νn(E ∩ En)

+m(E ∩ (CEn \
l⋃

i=1

Jai
n )).3

Let
(3.2) µn = µ0

n/exp(−αn) (n = 1, 2, ...).

Then (µn) is called a sequence of measures defined for a1, a2, ..., al. We denote (µn) by
T ((ai)l

1) or T (a1, a2, ..., al). If Jn0 = φ for some n0 ∈ N, the measure µn for each n ≥ n0 is
independent of the choice of points a1, a2, ..., al.

We fix the sequence (νn) in the following.

Definition 6 A sequence (gn) of functions in M0(I) is said to satisfy (∗)-condition for
a1, a2, ..., al if

limn→∞
∫

Ja
n∩I

|gn(x)|dx = 0

for any a ∈ I with a �= ai(i = 1, 2, ..., l).
Let L∗

0(T ((ai)l
1)) be the set of all sequences (gn) in L0(T ((ai)l

1)) with (∗)-condition for
a1, a2, ..., al.

We define a translation invariant integral over Γ0(I)
⊕
M0(I) as follows.

Definition 7 Let g ∈ M0(I) be a function such that , for some sequence T ((ai)l
1) of mea-

sures, there exists a sequence (gn) ∈ L∗
0(T ((ai)l

1)) with an L0-Cauchy sequence (V (gn)) for
g. If the (E.R.T ((ai)l

1))-integral of [fn] ⊕ g exists, the (E.R.T )-integral of [fn] ⊕ g

(E.R.T )
∫

D

[fn] ⊕ gdx

is defined to be the (E.R.T ((ai)l
1))-integral of [fn]⊕g, where the (E.R.T )-integral of [fn]⊕g

may be finite or infinite. If the (E.R.T )-integral of [fn] ⊕ g is finite, [fn] ⊕ g is said to be
(E.R.T )-integrable.

3.2 A Translation invariant integral Let (Jn), (En), (βn), (αn), and (νn) be notations
in Section 3.1 and we fix these in the following.

Let P and Q be continuous functions on a finite interval [a, b] with P ≤ Q. Put

D = {(x, y) ∈ [a, b] × R ; P (x) ≤ y ≤ Q(x)},

where P < Q on (a, b). Namely, D is a domain of ordinate type. For any subset A of R2,
we denote

(A)x = A ∩ (R2)x,

where (R2)x = {(x, y) ; −∞ < y <∞}.
Let ϕ1, ϕ2, ..., ϕl be continuous functions on [a, b] whose graphs are contained in D. Put

In
ϕi = {(x, y) ∈ [a, b] × R ; y ∈ Jn + ϕi(x)}. (i = 1, 2, ..., l , n = 1, 2...)

3CEn = R \ En



MULTIPLE INTEGRALS ON THE SPACE Γ0(D)
�

M0(D) 119

For each x, we consider a measure in Section 3.1 on a parallel line to the y-axis which
goes through the point (x, 0). For each subset E of (R2)x,

(3.3) µ0
n,x(E) =

l∑′

i=1

νn((E ∩ (Inϕi)x) − ϕi(x)) + νn(E ∩ (R× En)x)+

+m(E ∩ (C(R × En)x \
l⋃

i=1

(Inϕi)x)),

where (Inϕi)x = φ for x in R \ [a, b]. Here, the symbol
∑′

means that the summation is
taken only for the different values in {ϕi(x) ; i = 1, 2, .., l}.

Put

(3.4) µn,x =
µ0

n,x

exp(−αn)
(n = 1, 2, ...).

Namely, we have (µn,x) = T ((ϕi(x))l1).
Let τ0

n be a measure on R2 defined by

(3.5) τ0
n(F ) =

∫ βn

−βn

µ0
n,x((F )x)dx+ σn((En × R) ∩ F )

for F ⊆ R2, where σn is an absolutely continuous measure on En × R with σn(En × R) =
exp(−αn) . Put

(3.6) τn =
τ0
n

exp(−αn)
(n = 1, 2, ...).

Then, (τn) is called a sequence of measures defined for ϕ1, ϕ2, ..., ϕl. We denote (τn) by
T ((ϕi)l

1) or T (ϕ1, ϕ2, ..., ϕl).
We fix sequence (σn) in the following.
We define a translation invariant integral onD by using a sequence T ((ϕi)l

1) of measures.
Suppose that (V (fn(x, ·))) = (V (fn(x, ·), εn, (Gn)x)) ∈ F0(T ((ϕi(x))l1)) for almost all x.

Then, for almost all x, V (fn(x, ·)) satisfies (K2)-condition. Namely, putting T ((ϕi(x))l1) =
(µn,x), if m((D \Gn)x) > 0 for all n, there exist positive constants c, c′ such that

(3.7) c′ ≤ µn,x((D \Gn)x) ≤ c

for all n ∈ N. A Cauchy sequence (V (fn(x, ·))) is said to satisfy (K2)-condition uniformly
in x if c and c′ are independent of x.

Theorem 3 Assume that a sequence (fn) on D satisfies the following two conditions:
(i) For almost all x, there exists an L0-Cauchy sequence (V (fn(x, ·))) =

(V (fn(x, ·), εn, (Gn)x)) for f(x, ·) and T ((ϕi(x))l1), where εn is independent of x for each n
and (V (fn(x, ·))) satisfies the (K2)-condition uniformly in x.

(ii) |fn| ≤ rn on a.e.in D (n = 1, 2, ...) for an increasing divergent sequence (rn) such
that (rnexp(−αn))∞n0

is a monotone decreasing sequence for some n0 which converges to 0.
Then, there exists an L0-Cauchy sequence in F0(T ((ϕi)l

1)) for f .

Proof. Put (µn,x) = T ((ϕi(x))l1) and (τn) = (T ((ϕi)l
1)) . Let (gn) be a sequence on D such

taht
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gn(x, y) =
{
fn(x, y), on Bn

0, on D \Bn,

where Bn = (D \Wn) ∩Gn for Wn =
⋃l

i=1 In
ϕi .

Since (V (fn(x, ·))) satisfies (K2)-condition uniformly in x , there exist positive constants
c, c′ such that

(3.8) c′ ≤ µn,x((D \Gn)x) ≤ c

for all x.
We will show that (V (gn))∞N = (V (gn, ηn, Bn))∞N ∈ F0(T ((ϕi)l

1)) for sufficiently large
N ∈ N with n0 ≤ N , where ηn = (l+ c)(b−a+1)(ωn + εn +m(Jn)) for ωn = rnexp(−αn).

By (3.8), we have

(3.9) c′(b− a) ≤ τn(D \Gn) ≤ c(b− a).

Hence (V (gn)) satisfies (K2)-condition. By (3.9) , we see that

(3.10) τ0
n(D \Gn) ≤ c(b− a)exp(−αn).

Moreover, we have

(3.11) τ0
n(Wn) ≤

∫ b

a

l∑
i=1

νn((Inϕi)x)dx = l(b− a)exp(−αn).

By virtue of (3.10) and (3.11), we find

(3.12) τ0
n(D \Bn) ≤ (c+ l)(b− a)exp(−αn).

Let B be a subset of D such that τ0
n(D \Bn) ≥ τ0

n(B). Then, by (3.12), we have

(3.13) (c+ l)(b− a)exp(−αn) ≥ τ0
n(D \Bn) ≥ τ0

n(B)
≥ τ0

n(B ∩Bn) = m(B ∩Bn) .

Hence, by (3.13), it holds that∫∫
B

|gn(x, y)|dxdy =
∫∫

B∩Bn

|fn(x, y)|dxdy

≤ rn(c+ l)(b− a)exp(−αn) ≤ ηn.

Thus (V (gn))∞N satisfies (K3)-condition.
Next, we will show that (V (gn))∞N satisfies (K1)-condition for (τn). For any subset B of

D with τ0
n(D \Bn) ≥ τ0

n(B), we find that, by (3.13),

(3.14) m(B ∩ (D \Wn)) =
∫ b

a

m((B ∩ (D \Wn))x)dx

= τ0
n(B ∩ (D \Wn)) ≤ τ0

n(B) ≤ (c+ l)(b− a)exp(−αn).

Moreover, we have

(3.15) m(B ∩Wn) ≤ m(Wn) ≤ l(b− a)m(Jn)

Therefore, by (3.14) and (3.15), we obtain

m(B ∩ [−1/ηn, 1/ηn] × [−1/ηn, 1/ηn]) ≤ m(B) ≤ ηn
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for sufficiently large n. Thus (V (gn))∞N satisfies (K1).
Moreover, since (V (fn(x, ·))) is a Cauchy sequence for almost all x, we have∫

(Gn)x

|fn(x, y) − fn+1(x, y)|dy ≤ εn − εn+1.

Hence, it holds that∫∫
Bn

|gn(x, y) − gn+1(x, y)|dxdy

≤
∫ b

a

∫
(Gn)x

|fn(x, y) − fn+1(x, y)|dydx ≤ ηn − ηn+1,

so that (V (gn))∞N is a Cauchy sequence. This completes the proof.

Theorem 4 Assume that a sequence (fn) on D satisfies conditions (i) and (ii) in Theorem
3 and the integral

lim
n→∞

∫ b

a

Fn(x)dx

exists in the sense that the limit is finite or infnite, where Fn is a function on [a, b] defined
by

Fn(x) =
∫ Q(x)

P (x)

fn(x, y)dy.

Then (E.R.T ((ϕi)l
1))-integral of f exists on D, and

(E.R.T ((ϕi)l
1))

∫∫
D

f(x, y)dxdy = lim
n→∞

∫ b

a

Fn(x)dx.

Proof. We use the notations in the proof of Theorem 3. We have

(3.16) |
∫∫

Gn

fn(x, y)dxdy −
∫∫

Bn

gn(x, y)dxdy|

≤
∫∫

Gn\Bn

|fn(x, y)|dxdy ≤
∫ b

a

∫
(Wn)x

|fn(x, y)|dydx

Since (V (fn(x, ·))) satisfies (K2)-condition uniformly in x , there exist
positive constants c, c′ such that

c′ ≤ µn,x((D \Gn)x) =
µ0

n,x((D \Gn)x)
exp(−αn)

≤ c

for all x. Hence, it follows that

µ0
n,x((Wn)x) ≤ l exp(−αn) ≤ l µ0

n,x((D \Gn)x)/c′.

Let k be an integer with l/c′ ≤ k. By virtue of (K3)-condition , we have

(3.17)
∫

(Wn)x

|fn(x, y)|dy ≤ k εn.
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Here, εn is independent of x. Therefore, by (3.16) and (3.17), we obtain

(3.18) lim
n→∞

∫∫
Gn

fn(x, y)dxdy = lim
n→∞

∫∫
Bn

gn(x, y)dxdy.

On the other hand, (K3)-condition implies

(3.19) |
∫ b

a

∫ Q(x)

P (x)

fn(x, y)dy −
∫ b

a

∫
(Gn)x

fn(x, y)dydx|

≤
∫ b

a

∫
(D\Gn)x

|fn(x, y)|dydx ≤ (b− a) εn.

Hence, we have , by (3.18) and (3.19) ,

lim
n→∞

∫ b

a

Fn(x)dx = lim
n→∞

∫ b

a

∫
(Gn)x

fn(x, y)dydx

= lim
n→∞

∫∫
Bn

gn(x, y)dxdy.

Since (V (gn)) is an L0-Cauchy sequence and

lim
n→∞

∫∫
Bn

gn(x, y)dxdy

exists, (E.R.T ((ϕi)l
1))-integral of f exists on D and

(E.R.T ((ϕi)l
1))

∫∫
D

f(x, y)dxdy = lim
n→∞

∫ b

a

Fn(x)dx.

Thus we obtain the assertion.

Definition 8 Let (fn) be a sequence of functions in L1(D) satisfying the following four
conditions:

(O1) For almost all x, (fn(x, ·)) satisfies (∗)-condition for ϕ1(x), ϕ2(x), ..., ϕl(x) and
there exists a sequence (V (fn(x, ·))) = (V (fn(x, ·), εn, (Gn)x)) in F0(T ((ϕi(x))l1)) on (D)x,
where (V (fn(x, ·))) satisfies (K2)-condition uniformly in x and εn is independent of x for
each n.

(O2) There exists a finite number of points a1, a2, .., am ∈ [a, b] such that (Fn) ∈
L∗

0(T ((ai)m
1 )) ,where

Fn(x) =
∫ Q(x)

P (x)

fn(x, y)dy.

(O3) The following limit

lim
n→∞

∫ b

a

∫ Q(x)

P (x)

fn(x, y)dydx

exists, where the limit may be finite or infinite.
(AO) There exists an increasing divergent sequence (rn) such that (a) the sequence

(rnexp(−αn)) converges monotonically to 0 for sufficiently large n, and (b) |fn| ≤ rn a.e.
on D (n = 1, 2, ...).

Let O(D;T ((ϕi)l
1)) be the set of all sequences (fn) in L1(D) satisfying (O1), (O2), (O3),

and (AO). A sequence (fn) ∈ O(D;T ((ϕi)l
1)) is called an O-sequence for T ((ϕi)l

i) , and
the O-sequence is called a sequence related to f if

⋂∞
n=1 V (fn(x, ·)) = {f (x, ·)} for a.a.x.
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Let T (R2) be the set of all sequences T ((ϕi)m
1 ) of measures. The set T (R2) is an

ordered set with respect to the order T ((ϕi)l
1) ≤ T ((ψi)

p
1) defined by {ϕ1, ϕ2, ..., ϕl} ⊆

{ψ1, ψ2, ..., ψp}.

Theorem 5 Let (fn) and (gn) be O-sequences in O(D;T ((ϕi)l
1)) and O(D;T ((ψi)

p
1))

respectvely related to f . If {ψ1, ψ2, ..., ψp} contains {ϕ1, ϕ2, .. ., ϕl}, then

(E.R.(T ((ϕi)l
1)))

∫∫
D

f(x, y)dxdy = (E.R.T ((ψi)
p
1))

∫∫
D

f(x, y)dxdy.

Proof. By the assumption of this theorem, there exist L0-Cauchy sequences (V (fn(x, ·))),
(V (gn(x, ·))) for almost all x such that

(3.20)
∞⋂

n=1

V (fn(x, ·)) =
∞⋂

n=1

V (gn(x, ·)) = {f (x, ·)} a.e.x.

Putting Fn(x) =
∫ Q(x)

P (x)
fn(x, y)dy and Gn(x) =

∫ Q(x)

P (x)
gn(x, y)dy , there exist L0-Cauchy

sequences (V (Fn)) and (V (Gn)) by (O2)-condition. Hence, by virtue of Theorem 1, the
both limits limn→∞ Fn(x) and limn→∞Gn(x) exist almost everywhere. Therefore, since
the integral of f(x, ·) on (D)x exists uniquely by (3.20), and Proposition 2 in [11], we have

(3.21) lim
n→∞Fn(x) = lim

n→∞Gn(x) a.e.

Moreover, by (O2)-condition, there exist two finite sets {a1, a2, .., ar} and {b1, b2, ..., bq}
such that (Fn) ∈ L∗

0(T ((ai)r
1)) and (Gn) ∈ L∗

0(T ((bi)
q
1)). Let {c1, c2, ..., ce} be the union of

{a1, a2, .., ar} and {b1, b2, ..., bq}. By virtue of Proposition 1 in [11], we have (Fn), (Gn) ∈
L∗

0(T ((ci)e
1)). Hence, according to (3.21), (O3)-condition and Proposition 2 in [11], we have

lim
n→∞

∫ b

a

Fn(x)dx = lim
n→∞

∫ b

a

Gn(x)dx,

so that we have the assertion by Theorem 4.

By the symmetry of arguments, we can change the role of x and y in the above discussion.
Let R and S be continuous functions on [c, d] with R ≤ S, where R < S on (c, d). Put

D = {(x, y) ∈ R× [c, d] ; R(y) ≤ x ≤ S(y)}.

Namely, D is a domain of abscissa type. Let φ1, φ2, .., φm be continuous functions on [c, d]
such that R ≤ φi ≤ S (i = 1, 2, ...,m) on [c, d].

Let ϑn be a measure on R × En with ϑn(R × En) = exp(−αn) . Using the similar
equations as (3.3),(3.4),(3.5),and(3.6), we define a measure

(3.22) ρn(F ) =
∫ βn

−βn

dn,y((F )y)dy + ϑn((R× En) ∩ F )

for each subset F of R2 , where (F )y = {(x, y) ; x ∈ F} and

(3.23) (dn,y) = T ((φi(y))m
1 ).

We shall call (ρn) a sequence of measures defined for φ1, φ2, .., φm , and denote it by T ((φi)m
1 )

or T (φ1, φ2, .., φm) .
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Let (A1) , (A2), and (A3) be the conditions corresponding to (O1), (O2), and (O3) when
x is replaced by y. Let A(D;T ((φi)m

1 )) be the set of all sequences (fn) in L1(D) satisfying
(A1), (A2), (A3) and (AO). A sequence (fn) ∈ A(D; T ((φi)m

1 )) is called a A-sequence
for T ((φi)m

1 ), and the A-sequence is called a sequence related to f if
⋂∞

n=1 V (fn(·, y)) =
{f (·, y)} for a.a.y.

Let (fn) and (gn) be A-sequences in A(D;T (φi)m
1 )) and A(D;T (θi)k

1)) related to f
respectively. Then, in the same way as Theorem 5, we find that ,if {φ1, φ2, ..., φm} ⊇
{θ1, θ2, ..., θk},

(E.R.T ((φi)l
1))

∫∫
D

f(x, y)dxdy = (E.R.T ((θi)k
1)

∫∫
D

f(x, y)dxdy.

Definition 9 Assume that there exist an O-sequence (fn) in O(D;T ((ϕi)l
1)) (resp. an A-

sequence (fn) in A(D;T ((φi)m
1 )) related to f . Then we denote the integral

(E.R.T ((ϕi)l
1))

∫∫
D f(x, y)dxdy (resp.(E.R.T ((φi)m

1 ))
∫∫

D f(x, y)dxdy) by

(E.R.T )O
∫∫

D

f(x, y)dxdy

(resp. (E.R.T )A
∫∫

D

f(x, y)dxdy).

If the integral is finite, f is said to be (E.R.T )O-integrable (resp. (E.R.T )A-integrable) on
D.

The (E.R.T )O-integral and (E.R.T )A-integral are invariant under the translation.
For an O-sequence (fn) ∈ O(D;T ((ϕi)l

1)) , we see that

(E.R.T )O
∫∫

D

f(x, y)dxdy = (E.R.T )
∫ b

a

(E.R.T )
∫ Q(x)

P (x)

f(x, y)dydx,

where D = {(x, y) ∈ [a, b] × R; P (x) ≤ y ≤ Q(x)}. Moreover, for an A-sequence (fn) in
A(D;T ((φi)m

1 )), we see that

(E.R.T )A
∫∫

D

f(x, y)dxdy = (E.R.T )
∫ d

c

(E.R.T )
∫ S(y)

R(y)

f(x, y)dxdy,

where D = {(x, y) ∈ R × [c, d]; R(y) ≤ y ≤ S(y)}.

Let D be a domain of ordinate type as well as abscissa type. Then the following corollary
holds.

Proposition 4 If (fn) is a sequence in the intersection of O(D;T ((ϕi)l
1)) and

A(D;T ((φi)m
1 )) related to f , then

(3.24) (E.R.T )O
∫∫

D

f(x, y)dxdy = (E.R.T )A
∫∫

D

f(x, y)dxdy.

Proof. It holds that ,by Theorem 4,

(E.R.T )O
∫∫

D

f(x, y)dxdy = lim
n→∞

∫∫
D

fn(x, y)dxdy
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= (E.R.T )A
∫∫

D

f(x, y)dxdy.

The comman value in (3.24) is denoted by

(E.R.T )
∫∫

D

f(x, y)dxdy.

4 Some examples of integrable functions We discuss on two examples of integrable
functions.

Example 1 Let D be the set [0, 1]2. Let (Un) be a sequence of subsets of D defined induc-
tively by

U0 = ((
1
2
, 1) × (0,

1
2
)) ∪ ((0,

1
2
) × (

1
2
, 1))

and
Un+1 =

1
2
{Un ∪ (Un + (1, 1))} n ∈ N

Then we have a fractal set
⋃∞

n=0D \ Un. Let f be a function on D defined by

f(x, y) =
{

(−1)n 2n+1

n+1 , on Un

0, otherwise.

Moreover, we set

fn(x, y) =
{
f(x, y), on Gn

0, otherwise,

where Gn =
⋃2n

ν=0 Uν .
We set αn = n log4 and Jn = φ. Then we have

µ0
n,x(E) = m(E)

for any subset E of (D)x, and µ0
n,x = T (ϕ1(x))) for ϕ1 vanishing on [0, 1]. We can

see that (V (f(x, ·), 1/n, (Gn)x)) ∈ F0(T ((ϕ1(x))) for any x ∈ [0, 1]. Hence (fn) satisfies
(O1)-condition.

Let Fn be a function on [0, 1] defined by

Fn(x) =
∫

(Gn)x

fn(x, y)dy.

Then we have (V (Fn.1/n, An)) ∈ F0(T (a1)), where a1 = 0 and An = [0, 1]. Indeed,

∫
An

|Fn(x) − Fn+1(x)|dx = |
2n+2∑

ν=2n+1

(−1)ν 1
n+ 1

|

=
1

2n+ 2
− 1

2n+ 3
.

Hence (V (Fn, 1/n, An)) is a Cauchy sequence. Hence (fn) satisfies (O2)-condition. Let-
ting rn = 22n+1/(2n + 1), we obtain |fn| ≤ rn and the sequence (rnexp(−αn)) converges
monotonically to 0. Hence (fn) satisfies (AO)-condition. Moreover, we have

lim
n→∞

∫ 1

0

Fn(x)dx = lim
n→∞

2n∑
ν=1

(−1)ν 1
ν + 1

= log2.
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Hence (fn) satisfies O3-condition. Thus, (fn) ∈ O(D;T (ϕ1)).
By a similar argument, we find that (fn) ∈ A(D;T (ϕ1)). Hence we obtain

(E.R.T )
∫∫

D

f(x, y)dxdy = (E.R.T )
∫ 1

−1

(E.R.T )
∫ 1

−1

f(x, y)dydx

= (E.R.T )
∫ 1

−1

(E.R.T )
∫ 1

−1

f(x, y)dxdy = log2.

Example 2 Let D and Jn be sets [−1, 1]2 and [−1/(2n), 1/(2n)] respectively. Let νn be a
measure defined by

νn(E) =
∫

E

exp(− 1
|x|)

1
x2
dx

for any measurable subset E of Jn. For |c| < 1, we set

fn(x, y) =
{ 1

x−y+c , on Gn

0, otherwise,

where Gn is the set {(x, y) ∈ D; |y − ϕ1(x)| > 1/(2n)} given by a function ϕ1(x) = x + c.
We can show that (fn) ∈ O(D;T (ϕ1)). Indeed, we obtain (V (fn(x, ·), 1/n, (Gn)x)∞N ∈
F0(T (ϕ1(x))) for a sufficiently large N ∈ N uniformly in x. Let Fn be a function defined
by

Fn(x) =
{ ∫

(Gn)x
fn(x, y)dy, on Bn

0, otherwise,

where
Bn = [−1, 1] \ {x; |x+ 1 + c| < 1

2n
, |x− 1 + c| < 1

2n
}.

Then we have
Fn(x) = log|x+ 1 + c| − log|x− 1 + c|

on Bn, and (V (Fn, 1/n, Bn))∞N ′ ∈ F0(T (a1.a2)) for a sufficiently large N ′, where a1 =
−1 − c and a2 = 1 − c. Moreover, we obtain

limn→∞
∫

Bn

Fn(x)dx =
{
c log( 4

c2 − 1) + 2log 2+c
2−c , c �= 0

0, c = 0.

It is easy to show that (fn) satisfies the remaining conditions.
Similarly as the above argument, we have (fn) ∈ A(D;T ((φ1)), where φ1(y) = y − c on

−1 ≤ y ≤ 1. Therefore, it holds that

(E.R.T )
∫∫

D

1
x− y + c

dxdy = (E.R.T )
∫ 1

−1

(E.R.T )
∫ 1

−1

1
x− y + c

dydx

= (E.R.T )
∫ 1

−1

(E.R.T )
∫ 1

−1

1
x− y + c

dxdy.
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