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MULTIPLE INTEGRALS ON THE SPACE TI'y(D) @ My(D)
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ABSTRACT. The space I'o(D) @ Mo(D) of generalized functions on an interval D of
R is extended to a susbset D of R?. We define a translation invariant integral over
this space and give some fundamental properties.

1 Introduction The (E.R)-integral (Kunugi[l]) preserves the integrability by the trans-
lation. The functions with a divergence point of integer power order are not (F.R)-
integrable. The (E.R)-integral was extend to the (E.R.v)-integral by Okano ([2]), by using
an absolutely continuous measure v in place of Lebesgue measure.

Okano assumed the additional three conditions for a Cauchy sequence to define the
(E.R.v)-integral. One of the conditions asserts that the Cauchy sequence (V(gn, €n, Apn))
converges slowly in the sense that there exists an integer k with k v(D\ Ap4+1) > v(D\4,)
for n = 1,2,.... To remove this restriction, we introduced in [3] the (E.R.A)-integral by
using a sequence A = (\,) of finite absolutely continuous measures. This integral was
defined on the space I'g(I) @ Mo (I) of generalized functions on an interval I of R. The set
T'o(I) is the singular part of T'o(I) @@ Mo(I) in the sense that it contains the d-function and
its higher derivatives, and the set My(I) consists of all measurable functions on I, which is
the regular part of I'g(I) @ Mo(I). By a suitable choice of a measure v (resp. a sequence
A of measures) , we can find many examples of integrable functions with strong singurality.

However, these integrals are not preserved by the translation. In our previous paper
[11], we defined the (E.R.T)-integral which is traslationally invariant on the interval I.

In this paper, we define the space T'o(D) @ My(D) of generalized functions on a subset
D of R?, and extend the (E.R.T)-integral to this space.

In Section 2, we define the space I'g(D) @ Mo(D) on a subset D of R? and define the
(E.R.A)-integral over this space.

In Section 3, we extend the (E.R.T)-integral to a subset D in R?2.

In Section 4, we introduce two examples of (E.R.T)-integrable functions defined on
subsets in R?.

2 The space of generalized functions on R?and the integral In this section , let
D be a closed subset of R? . The details of the constructions of I'g(D) @ Mo (D) on the set
D and the integral over the space are omitted, for they are performed in the similar way as
the constructions of the space of generalized functions on an interval of R and the integral
in [3].

2.1 The space I'y(D)@ My(D) on a subset D of R? Let My(D) be the set of all
real valued Lebesgue measurable functions defined on D. In what follows, we suppose that
My(D) is classified by the usual equivalence relation f(x) = g(x) a.e. We denote measurable
functions by symbols f(z),g(x),... and a class in My(D) containing a measurable function
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g(z) by the same symbol g(z) or g. For each Lebesgue measurable subset A of D and € > 0,
we define a pre-neighbourhood V' (f, ¢, A) as

V(f,e,A) ={g € Mo(D // (z,y) — g(z,y)|dzdy < €}

We denote V(f, €, A) by V(f) if there is no fear of confusion.

A pre-neighbourhood V(f,e, A) of f is said to be rank n if m(A) # 0 and 27" <
e < 277! for an integer n. The set of pre-neighbourhoods of rank n is denoted by B,,.
Moreover, we consider V(f, e, A)(= My(D)) with m(A) = 0 as a pre-neighbourhood of rank
0, and let By = {My(D)}. In this way, we are able to introduce a structure of a ranked
space in My(D).

Definition 1 ([2], p431) A4 sequence (V(fy)) of pre-neighbourhoods is called a Cauchy se-
quence if V(f1) 2 V(f2) 2 ... and V(fn) € By for some monotone increasing sequence
(v(n)) € N with lim,_.v(n) = co.

We can prove the following lemma similarly as Okano’s lemma ([2], p432).

Lemma 1 If V(f,) = V(fn,€n,A4n) for n = 1.2,... and V(f1) 2 V(f2) D ..., then the
following properties hold :

(1) m(A, N (D\ Apt1)) =0 for every n.t

@) [] 4 1fnl:9) — fasr (@ y)ldedy < e — enpr for every n.

8) S [ a1 fu@,y) = Fsa (2, y)ldady < e for every k.

The following theorem holds by Lemma 1.

Theorem 1 If a Cauchy sequence (V(fn,€n, An)) satisfies the condition such that
(D \ An) 1 (=1 e en X [~V 1)) S en (n=1,2,..),

then there exists a function f € My(D) such that lim, o fo(z) = f(x) a.e. in D and
ﬂio:lV(fm%An) ={f}

For a Cauchy sequence (V(fy,€n, Ay)) on D, we consider the following two conditions:

(T1) m((D\ An) N ([=1/€n, 1/€n] x [=1/€n,1/€n])) < e€n.

(Tq) fn is decomposed into a sum of measurable functions fi1, and fs, on D, where

supp(fin) € D\ 4, and
// | fan () |dedy < €.

If (V(fn)) = (V(fn,€n,An)) is a Cauchy sequence which satisfies conditions (T;) and
(T2) , the Cauchy sequence is called a Gp-Cauchy sequence on D .

Let Ho(D) be the set of Go-Cauchy sequences on D , and let Go(D) be the set of
sequences (f,) in L'(D) such that there exists a Go-Cauchy sequence (V(f,,)) with 0 €

Noz1V (fn)- 2

Definition 2 A decomposition frn, = fin+ fon in (T2) is called on associated decomposition

of fn-

Proposition 1 If (fn),(9n) € Go(D), then (fu + gn) € Go(D). If (fn) € Go(D), then
(Afn) € Go(D) for any real number A.

IThe symbol m is the Lebesgue measure.
2The set L!(D) is the set of all Lebesgue integrable functions on D .
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If (f.) and (g.) have associated decompositions f1, + fon and g1, + gan of f, and g,
respectively such that there is an ng € N satisfying f1, = g1, a.e. for each n > ng, we say
that (f,) and (g,) are equivalent. Let T'o(D) be the quotient space of Go(D) classified by
this equivalence relation, whose element containing (f,,) is denoted by [f,].

Example 1 Let (p,) be an increasing sequence of real numbers which diverges to co and
let (Sp,) be a sequence of functions satisfying the following three conditions:
(i) S, is an integrable function on R? with

lim // Sp(z,y)dzdy = 1,
n—oo R?2
(ll) Supz,y|sﬂ(x7y)‘ Spn;

(1) SUpb(S) < [=1/(2n), 1/(2p)] % [~1/(200), 1/ (2pn)].

Then the sequence (Sy,) is called a 6-type sequence defined by (py,).

The class [Sy] is denoted by 6. Put hn(x,y) = Sp(x — a,y — b) for ¢ = (a,b) € D and
each n. Then [hy] is denoted by d..

Proposition 2 If (f,) = (I,) and (gn) = (ky), then (fn+gn) = (ln+ky) and (A f) =~ (Al,)
for any real number .

We set [fn]+[gn] = [fn + gn] and X [fn]=[Afn]. Hence I'o(D) turns out to be a linear space.
The following set is the underling space of our theory:

Lo(D) D Mo(D) = {([fa): 9) 5 [fa] € To(D), g € Mo(D)}.

In what follows, we denote the pair ([f,], g) by [fn] ®¢g . We will use customary notations
in vector space for the addition and the scalar multiplication. The space T'g(D) @ My(D)
is a linear space.

2.2 (E.R.\)-integration on R? Let A = (\,) be a sequence of finite measures on R?
which is absolutely continuous, that is, (1) any Lebesgue measurable set is A,,-measurable
and (2) m(A4) = 0 if and only if A\, (A) = 0.

Now we introduce a concept of Ly-Cauchy sequence for two dimensional case in the same
way as the one dimensional case.

A Cauchy sequence (V(gn, €n, Arn)) is called an Ly-Cauchy sequence for A if it satisfies
the following three conditions on D:

(K4) if B is a Lebesgue measurable subset of D with A\, (D \ A,) > A, (B), then

m(BN[—1/en, 1/en] X [—1/€n, 1/€y]) < €.
(K2) if m(D\ Ay,) > 0 for all n, there exist k, k" > 0 such that
E<A(D\A,) <K

for all n.
(K3) if B is a Lebesgue measurable subset of D with A\, (D \ A,) > A, (B), then

//B |gn (2, y)|drdy < €.

Let Fo(A) be the set of Lo-Cauchy sequences on D. A sequence (g,) with Lo-Cauchy
sequence in Fg(A) is called an Lg-sequence for A . Let Lo(A) be the set of Lg-sequences
(gn) in LY(D) for A.
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Lemma 2 A sequence (g,) in L'(D) is an element in Lo(A) if (g,)° is an element in
(An)-

Lo(Ao) for some ng, where Ay is the subsequence (A\,);0 of A = ’

Proposition 3 If (gn), (kn) € Lo(A) , then (gn + kn) € Lo(A). If (gn) € Lo(A), then
(Agn) € Lo(A) for any X € R.

Definition 3 A sequence (V(gn)) (resp. (gn) ) is called an Lo-Cauchy sequence (resp.
Lo-sequence) for A and g, or for g in short, if (N, V(gn) = {g} for (V(gn)) € Fo(A).

We set
Is((gn); A) = limsup,, , o, // gn(z,y)dzdy
D

(g0 0) = timin o [ [ gu(a)dady
for (gn) € Lo(A).
Theorem 2 If (g,,) and (f,) are Lo- sequences for A and g, then
L((fn); A) = L((gn); A),
Li((fn); A) = 1i((gn); A).
Definition 4 Let (g,) is an Lo-sequence for A and g. If
Is((gn); A) = Li((gn); A),

this common value is denoted by

I(g,A) = (E.R.A) //D g(z,y)dzdy

and 1(g, A) is called the (E.R.A)-integral of g on D. If —oco < I(g,A) < oo,
g is called to be (E.R.A)-integrable on D.

Lemma 3 Suppose that (f,) € Go(D) has a Go-Cauchy sequence (V(fy)) with an associ-
ated decomposition fin, + fon of fn. Then

lim fon(z)dz = 0.
D

n—oo

Suppose that a sequence (f,) € Go(D) has an associated decomposition f1, + fa, of
fn such that lim, . [, p fin(z)dz exists, where the limit value may be finite or infinite.
Then by Lemma 3, we have

lim [ fu(2)de= lim [ fi,(z)de.
D D

n—oo n—o0

Now we give the definition of the (E.R.A)-integral on I'og(D) @ Mo (D) .

Definition 5 Suppose that a sequence (fy,) in Go(D) has an associated decomposition f1,+
fon of fn such that the value

I([fn = lim // fin(z,y)dzdy
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exists and the (E.R.A)-integral I(g,A) of g € My(D) exists, where the values of these
integrals may be finite or infinite. Then, if I([fn]; D) + I(g,A) has a meaning, this sum is
denoted by

RN [[ 110 gdnty = ERA) [[ (ue) @ glan)dady,

and called the (E.R.A)-integral of [fn]®Dg on D. If —oo < I([fn]; D)+1(g,A) < 0o, [fn]Dg
is called to be (E.R.A)-integrable on D.

We obtain the linearity of (E.R.A)-integral over the space I'g(D) @ Mo(D) excepting
the indefinite case.

Example 2 Put D = [0,1)%, and G,, = {(z,y) ; 1/(2n) <z <1, 1/(2n) <y < 1}. Let
(AY) be a sequence of measures on D such that

I exp(—%)y%dxdy, on [0,1] x [0,1/(2n)]
M(E) =< [[1ldzdy, on Gy,
J1% exp(— L) dedudy,  on 0.1/(20)] x [1/(2n), 1]

for a measurable subset E of D . We set \,(E) = \)(E)/exp(—2n), and

22— y? G
(5y)={ wEmm  omCa
Jul@.y) { 0, on D\ Gn.

Then,we find that (V (fn, €n, Gn))¥ € Fo((An)) for sufficiently large N, where €, = 1/n.

Moreover, it holds that
(E.R.T(( // ﬂ_y dxdy = 0.
(x2 +y?)

3 A Translation invariant integral on a subset of R? In Section 3.1, we recall some
terminologies and notations used in [11]. In Section 3.2, the concept of the (E.R.T')-integral
on an interval of R is extended to a subset D of R? using some terminologies and notations
in Section 3.1. We notice that this integral is defined only on the set My(D) without
considering I'g(D).

3.1 Terminologies and notations We recall some terminologies and notations used in
the definition of the (E.R.T)-integral ([11]).

Let I be a finite or infinite open interval in R . We fix two increasing sequences o = (a, )
and 8 = (0, of real numbers with lim,, .., = oo and lim, -0, = 00, and a decreasing
sequence (J,,) of measurable subsets with J,, C [—f,, 3,] and lim,_,com(J,) = 0.

Let v, be an absolutely continuous measure on R such that

vn(Ey) = exp(—ay,)
for E, = R\ [—fn, On] and
Un(Jpn) = exp(—ay,)

for non empty J,.
Denote J,, + a = {x + a;z € J,} by J?. For any measurable subset F of R and for any
different points aq, ag, ...,a; € I, we set
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1
(3.1) po(E) = va((ENJY) — i) + va(ENE,)
i=1
1
+m(EN(CE, \ [ J 752
i=1
Let
(3.2) pin = 12 Jexp(—ay) (n=1,2,..).
Then (u,) is called a sequence of measures defined for aq,as,...,a;. We denote (u,) by
T((ai)ll) or T(a1,az,...,a;). If Jp, = ¢ for some ng € N, the measure pu, for each n > ng is
independent of the choice of points aq, as, ..., a;.
We fix the sequence (v,,) in the following.

Definition 6 A sequence (gn) of functions in My(I) is said to satisfy (x)-condition for
ai, az, ..., a; Zf

Jim, o / 19n(2)]dz = 0
JanIl

for any a € I with a # a;(i =1,2,...,1).
Let L(T((a;)})) be the set of all sequences (gn) in Lo(T((a;)})) with (x)-condition for
a1, az,...,ap.

We define a translation invariant integral over I'o(I) @ My(I) as follows.

Definition 7 Let g € My(I) be a function such that , for some sequence T((a;)}) of mea-
l (V(gn)) for

sures, there exists a sequence (gn) € L§(T((a:)1)) with an Lo-Cauchy sequence
g. If the (E.R.T((a;)}))-integral of [f,] © g ewists, the (E.R.T)-integral of [fn] © g

(E.R.T) /D [fn] © gda

is defined to be the (E.R.T((a;)}))-integral of [f,]® g, where the (E.R.T)-integral of [fn]®g
may be finite or infinite. If the (E.R.T)-integral of [f,] @ g is finite, [fn] ® g is said to be
(E.R.T')-integrable.

3.2 A Translation invariant integral Let (J,,), (E,), (6n), (), and (v,) be notations
in Section 3.1 and we fix these in the following.
Let P and @ be continuous functions on a finite interval [a, b] with P < Q. Put

D= {(z,y) € [a,}] x R ; P(z) <y < Q(a)},

where P < Q on (a,b). Namely, D is a domain of ordinate type. For any subset A of R?,
we denote
(A)z = AN (R,

where (R?), = {(z,9) ; —00 <y < 0o}
Let ¢1, @2, ..., 1 be continuous functions on [a, b] whose graphs are contained in D. Put

L ={(z,y) €[a,b] xR y € S+ i)} (i=1,2,.,1,n=1,2..)

3CE, =R\ B,




MULTIPLE INTEGRALS ON THE SPACE I'g(D) @ Mo(D) 119

For each z, we consider a measure in Section 3.1 on a parallel line to the y-axis which
goes through the point (z,0). For each subset E of (R?),,

l
(33)  pp.(B)= ZI vn((E N (In%")2) = @i(x)) + vn(EN (R X Ep)a2)+

l

m(EN (C(R x Ey) \ |JT%).)),

i=1

where (I,7), = ¢ for z in R\ [a,b]. Here, the symbol Z/ means that the summation is
taken only for the different values in {p;(z) ; i =1,2,..,1}.

Put
40
4 e = —1,2,..).
(3.4) = (n=1.2..)
Namely, we have (fi,..) = T((¢i(z))}).
Let 70 be a measure on R? defined by
6"L
(35) WE) = [ (F)a)do+ (B, x R) N F)
7671

for F C R?, where o, is an absolutely continuous measure on E,, x R with o,(E, x R) =
exp(—ay,) . Put

70

n (n=1,2,.).

Then, (7,) is called a sequence of measures defined for @1, 2, ...,0;. We denote (7,) by
T((¢:)}) or (1,02, 1)

We fix sequence (o) in the following.

We define a translation invariant integral on D by using a sequence T'((;)}) of measures.

Suppose that (V(fn(z,-))) = (V(fu(,"), €n, (Gn)z)) € Fo(T((¢i(w))})) for almost all z.
Then, for almost all 2, V(f,(z,-)) satisfies (K3)-condition. Namely, putting T'((¢:(x))}) =
(o), if m((D\ Gy)g) > 0 for all n, there exist positive constants ¢, ¢’ such that

(3.7) d < ,un,m((D \Gn)z) <c

for all n € N. A Cauchy sequence (V(f,(x,))) is said to satisfy (K3)-condition uniformly
in z if ¢ and ¢’ are independent of z.

Theorem 3 Assume that a sequence (f,) on D satisfies the following two conditions:

(i) For almost all x, there exists an Lo-Cauchy sequence (V(fn(x,-))) =
(V(fu(z,-),€n, (Gp)z)) for f(z,-) and T((pi(z))}), where €, is independent of x for each n
and (V(fn(x,-))) satisfies the (K3)-condition uniformly in x.

(ii) |fn| < 7rm ona.ecin D (n = 1,2,...) for an increasing divergent sequence (r,,) such
that (rnexp(—an))pe is a monotone decreasing sequence for some ng which converges to 0.

Then, there exists an Lo-Cauchy sequence in Fo(T((¢:)})) for f.

Proof. Put (pn2) = T((pi(z))}) and (1) = (T((¢:)})) . Let (g5) be a sequence on D such
taht
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_ fn(xvy)v on B,
gn(®,y) = { 0. on D\ By,

where B, = (D \ W,,) N G,, for W,, = J\_, I,
Since (V(fn(x,-))) satisfies (K2)-condition uniformly in x , there exist positive constants
¢, ¢ such that
(3.8) d < .Un,z((D \Gn)z) <c

for all .
We will show that (V(g,)) = (V(gn, M, Bn))S € Fo(T((p:)})) for sufficiently large
N € N with ng < N , where n,, = (I+¢)(b—a+1)(w, + €, +m(Jp)) for wy, = rpexp(—ay,).
By (3.8), we have

(3.9) d(b—a) <7 (D\Gp) <c(b—a).
Hence (V(gy,,)) satisfies (K3)-condition. By (3.9) , we see that
(3.10) 72D\ G,) < c(b — a)exp(—ay,).

Moreover, we have

(3.11) Tg(Wn)g/Zyn 1,99 )dz = I(b— a)exp(—ap).

By virtue of (3.10) and (3.11), we find
(3.12) 7D\ B,) < (c+1)(b—a)exp(—ay,).
Let B be a subset of D such that 70(D \ B,,) > 70(B). Then, by (3.12), we have

(3.13) (c+l)(b—a)exp( ) = 19D\ B,) > 70(B)
Ta(BN By,) =m(B N B,)

Hence, by (3.13), it holds that

// |9n (2, y)|drdy = // | fn(z,y)|dzdy
BNB,

<rplc+ 1) (b—a)exp(—ay) < ny.
Thus (V(g,)) satisfies (K3)-condition.
Next, we will show that (V (g,))% satisfies (K71)-condition for (7,). For any subset B of
D with 79(D\ B,,) > 79(B), we find that, by (3.13),
(314  m(BA(D\W,) = /bm((Bﬂ (D\ Wa)).)da
=1 (BN(D\ Wn))aﬁ Ta(B) < (c+1)(b — a)exp(—an).
Moreover, we have
(3.15) m(BNW,) <m((W,) <Ii(b—a)m(J,)
Therefore, by (3.14) and (3.15), we obtain

m(B N [=1/1, 1/nn] X [=1/10, 1/0n]) < m(B) < np
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for sufficiently large n. Thus (V(gy))S satisfies (K7).
Moreover, since (V(fn(x,-))) is a Cauchy sequence for almost all =, we have

/( )~ )l S o e

Hence, it holds that
J[ 1onw0) = gusstwlasdy
B,

b
S/ ~/(G) |fn(5157y)_fn+1(£157y)‘dydxSnn_nnJrl7

so that (V(gn))% is a Cauchy sequence. This completes the proof.

Theorem 4 Assume that a sequence (f,) on D satisfies conditions (i) and (ii) #n Theorem

3 and the integral
b

lim F,(x)dx

a

exists in the sense that the limit is finite or infnite, where F), is a function on [a,b] defined
by

Q(x)
Fo(z) = / fn(z,y)dy.

P(z)

Then (E.R.T((¢:)}))-integral of f exists on D, and

ERT () ([ s wtedy = i [ Fi@ie

Proof. We use the notations in the proof of Theorem 3. We have

s | ff (e - i ol )y

b
< // |l y)|dady < / / [, y) | dyde
Gn\Bn a (Wn)l

Since (V(fn(z,-))) satisfies (K2)-condition uniformly in x , there exist
positive constants ¢, ¢’ such that

0 D\ Gp)s
c < Hn,m((D\G”)I) = % =¢

for all z. Hence, it follows that

/‘g,m((Wn)x) <lexp(—a,) <1 M?z,z((D \ Gn)w)/cl~

Let k be an integer with [/¢’ < k. By virtue of (K3)-condition , we have

(3.17) /W fulzy)ldy < k €.
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Here, €, is independent of x. Therefore, by (3.16) and (3.17), we obtain

(3.18) lim // Sz, y)dady = hm // (z,y)dxdy.

On the other hand, (Kg)—COndltlon implies

Q(T)
(3.19) |/ / (z,y)dy — / / (z,y)dydx|
Gn)a

< / [ hyldds < (- a) .
a (D\Gn)m
Hence, we have , by (3.18) and (3.19) ,

b
lim F,(z)dz = lim / / (z,y)dydz

= lim // gn(z,y)dzdy.
n—oo B,

Since (V(gn)) is an Lo-Cauchy sequence and

lim // (z,y)dxdy

exists, (E.R.T((v;)}))-integral of f exists on D and

ERT(@0D) [[ fudzdy = tim [ ' B (e)de

Thus we obtain the assertion.

Definition 8 Let (f,) be a sequence of functions in L'(D) satisfying the following four
conditions:

(O1) For almost all x, (f,(x,-)) satisfies (x)-condition for p1(x),pa(x),..., wi(z) and
there exists a sequence (V (fu(x,-))) = (V(fu(z,"), €n, (Gn)z)) in Fo(T((pi(z))})) on (D)s,
where (V(fn(x,-))) satisfies (Kz)-condition uniformly in x and €, is independent of x for
each n.

(O3) There exists a finite number of points ai,as,..,am € [a,b] such that (F,) €
Li(T((a)7)) ,where

Q@)
Fo(z) = / fn(2,y)dy.

P(x)

lim / / (z,y)dydx

exists, where the limit may be finite or infinite.

(AQ) There exists an increasing divergent sequence (ry) such that (a) the sequence
(rnexp(—ay,)) converges monotonically to O for sufficiently large n, and (b) |fn| < 7 a.e.
onD (n=1,2,..).

Let O(D; T((p:)})) be the set of all sequences (f,) in L*(D) satisfying (O1), (02), (O3),
and (AO). A sequence (f,) € O(D;T((v;)})) is called an O-sequence for T((v;)t) , and
the O-sequence is called a sequence related to f if (\,—, V(fulz,")) = {f(z,")} fora.a.z.

(O3) The following limit
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Let T(R?) be the set of all sequences T((¢;)7") of measures. The set 7(R?) is an
ordered set with respect to the order T((p;)}) < T((¢:)}) defined by {p1,p2,...,¢1} C

{wlvaa "'7¢p}'

Theorem 5 Let (f,) and (gn) be O-sequences in O(D;T((¢:)})) and O(D;T((:)}))
respectvely related to f. If {11,102, ..., } contains {¢1,¢2,.. ., 01}, then

(E.R(T // f(z,y)dzdy = (E.R.T((:)} // fz,y)dzdy.

Proof. By the assumption of this theorem, there exist Lo-Cauchy sequences (V(f,(z,-))),
(V(gn(z,-))) for almost all z such that

(3.20) \V(falz,) = [ Vign(a,) = {f(2,)} acx.

Putting F,( fP Qo) fo(z,y)dy and Gy ( fp(m gn(x,y)dy , there exist Lo-Cauchy
sequences (V(Fn)) and (V(Gp)) by (02)- COndlthH Hence, by virtue of Theorem 1, the
both limits lim, . Fy(x) and lim,,_, ., Gy (x) exist almost everywhere. Therefore, since
the integral of f(x,-) on (D), exists uniquely by (3.20), and Proposition 2 in [11], we have

(3.21) lim F,(z) = lim G,(x) a.e.
Moreover, by (Os)-condition, there exist two finite sets {ai,as,..,a,} and {b1,bo, ..., b4}

such that (F,) € L§(T((a:)7)) and (Gyp) € LE(T((b:)1)). Let {c1,¢2,...,cc} be the union of
{a1,a2,..,a,} and {b1,ba,...,b,}. By virtue of Proposition 1 in [11], we have (F,,), (G,) €
L§(T((¢:)§)). Hence, according to (3.21), (O3)-condition and Proposition 2 in [11], we have

b b
lim F,(z)dr = lim G (z)dz

n—oo a n—oo
so that we have the assertion by Theorem 4.

By the symmetry of arguments, we can change the role of x and y in the above discussion.
Let R and S be continuous functions on [¢,d] with R < S, where R < S on (¢,d). Put

D ={(z,y) e R x[c,d] ; R(y) <z <S(y)}.

Namely, D is a domain of abscissa type. Let ¢1, ¢2, .., ¢, be continuous functions on |[e, d
such that R< ¢, < S (i=1,2,...,m) on [c,d].

Let 9,, be a measure on R x E,, with J,,(R x E,) = exp(—«,) . Using the similar
equations as (3.3),(3.4),(3.5),and(3.6), we define a measure

Bn
(3:22) pu(B) = [ duy((F))dy+ 0,(R X E,) 0 F)

Bn

for each subset F' of R? | where (F), = {(z,y) ; v € F} and

(3.23) (dny) = T((¢i(y))1")-

We shall call (p,,) a sequence of measures defined for ¢1, @2, .., ¢, , and denote it by T'((¢;)7")
or T(¢17 (b?v ooy ¢m) .
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Let (A1), (Az2), and (As) be the conditions corresponding to (O1), (Oz), and (O3) when
x is replaced by y. Let A(D;T((¢:)7")) be the set of all sequences (f,,) in L*(D) satisfying
(A1), (A2), (A3) and (AO). A sequence (f,) € A(D; T((¢;)7")) is called a A-sequence
for T((¢;)T"), and the A-sequence is called a sequence related to f if (o, V(fu(-,y)) =

{f(y)} for a.ay.

Let (f,) and (g,) be A-sequences in A(D;T(¢;)7)) and A(D;T(60;)%)) related to f
respectively. Then, in the same way as Theorem 5, we find that ,if {¢1, d2,...,0m} 2
{917925 "'70k}7

(E.R.T((6:) // f(z,y)dwdy = (E.R.T(( // £z, y)dzdy.

Definition 9 Assume that there exist an O-sequence (f,) in O(D;T((¢;)})) (resp. an A-
sequence (fn) in A(D;T((¢:)T)) related to f. Then we denote the integral

(E.RT((e)h)) [[ p f(x,y)dady (resp.(E.RT((6:)7)) [[ p [z, y)dady) by

(E.R.T)o/ Df(x,y)dxdy

(resp. (E.R.T)4 //D f(z,y)dzdy).

If the integral is finite, f is said to be (E.R.T)o-integrable (resp. (E.R.T) 4-integrable) on
D.

The (E.R.T)o-integral and (E.R.T) 4-integral are invariant under the translation.
For an O-sequence (f,,) € O(D;T((:)})) , we see that

b Q)
(E.R.T) / f(z,y)dydz,
P(z)

(E.R.T)o/ Df(@y)dxdy = (E.R.T)/

a

where D = {(z,y) € [a,b] x R; P(z) <y < Q(z)}. Moreover, for an A-sequence (fy,) in
A(D; T((¢:)7")), we see that

d S(y)
(B.R.T) / Iw.y)dody = (B.RT) / (B.R.T) /R Gy,

where D = {(z,y) € R x [¢,d]; R(y) <y < S(y)}.

Let D be a domain of ordinate type as well as abscissa type. Then the following corollary
holds.

Proposition 4 If (f,) is a sequence in the intersection of O(D;T((¢:)})) and
A(D;T((¢:)7)) related to f, then

(3.24) (E.RT)o //D flz,y)dzdy = (E.R.T) s //D fz,y)dzdy.

Proof. Tt holds that ,by Theorem 4,

n—oo

(E.R.T) / flz,y)dzdy = lim // fn(z,y)dxdy
D
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= (E.R.T)A/ R f(z,y)dzdy.

The comman value in (3.24) is denoted by

(E.R.T)/ Df(x,y)dxdy.

4 Some examples of integrable functions We discuss on two examples of integrable
functions.

Example 1 Let D be the set [0,1]%. Let (U,) be a sequence of subsets of D defined induc-
tively by

Uo= (5, )% (0, 2) U0, 5)x (5 1)
and
Un+1=%{Unu(Un+(1,1))} neN

Then we have a fractal set |J;— o D\ Up. Let f be a function on D defined by

n41
(—1)"%14_1 , on Uy,

0, otherwise.

f(x,y)Z{

Moreover, we set

0, otherwise,

fn(x,y):{ flz,y),  onGy,

where G,, = Uiio U,.
We set av, = n logd and J, = ¢. Then we have

M(r)z,z(E) = m(E)

for any subset E of (D)., and p, , = T(p1(x))) for p1 vanishing on [0,1]. We can

x
see that (V(f(xz,),1/n,(Gp)z)) € 0( ((p1(x))) for any x € [0,1]. Hence (f,) satisfies
(O4)-condition.

Let F,, be a function on [0,1] defined by

Folz) = /( L iy

Then we have (V(F,.1/n, A,)) € Fo(T(a1)), where ay =0 and A, = [0,1]. Indeed,

2n+2 1
F,(x) — Fpi1(2)|de = —-1)”
[ 1) = et =1 3 -]
1 1

242 2n+3
Hence (V(F,,1/n, Ay)) is a Cauchy sequence. Hence (f,) satisfies (Oz)-condition. Let-
ting rn, = 22771 /(2n + 1), we obtain |f,| < v, and the sequence (rnexp(—a,)) converges
monotonically to 0. Hence (f,) satisfies (AQO)-condition. Moreover, we have

1 2n

1
lim F,(z)dr = lim —1)Y —— =log2.
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Hence (fy) satisfies Os-condition. Thus, (fn) € O(D;T(¢1)).
By a similar argument, we find that (f,) € A(D;T(¢1)). Hence we obtain

(E.R.T) / / (@ y)dudy = (B.RT) /

-1

1

(E.R.T)/ﬁ1 [z, y)dydx

1

= (E.R.T)/ (E.R.T)/_1 f(z,y)dxdy = log2.

-1

Example 2 Let D and J,, be sets [—1,1]? and [—1/(2n),1/(2n)] respectively. Let v, be a
measure defined by

1 1
(B = [ exp(or) e
for any measurable subset E of J,. For |c| < 1, we set
1
— on G
_ T—ytc’ n
fn(@,y) { 0, otherwise,

where Gy, is the set {(z,y) € D; |y — p1(x)| > 1/(2n)} given by a function ¢1(x) =z + c.
We can show that (f,) € O(D;T(¢1)). Indeed, we obtain (V(fn(x,-),1/n,(Gn)z)T €
Fo(T(p1(x))) for a sufficiently large N € N uniformly in x. Let F, be a function defined
by

f(Gn)z fn(x,y)dy, on By,
0, otherwise,

F,(x) :{
where . .
Bn=[-LNz; Je+ 14| <oy o =14 < o)
Then we have
F,(z) =loglx + 14 ¢| — loglz — 1 + |

on By, and (V(F,,1/n,Bn)% € Fo(T(a1.a2)) for a sufficiently large N', where a3 =
—1——c and as =1 — c¢. Moreover, we obtain

4 24c
limpy— 0o / F(x)dz = { clog(z — 1) + 2log5%5 c#0
B 07 c=0.

n

It is easy to show that (f,) satisfies the remaining conditions.
Similarly as the above argument, we have (f,) € A(D;T((¢1)), where ¢1(y) =y —c on
—1 < y < 1. Therefore, it holds that

1 ! oo
E.RT ——dzdy = (E.R.T E.RT —dyd
( )//Dx—y‘Fny ( )/—1( )/_1x_y+cyx

1 1

= (E.RT) /7 1(E.R.T) [ 1 x%wdxdy.
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