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Abstract. The present work is concerned with cooperative games with transferable
utility the characteristic function of which may have fuzzy values. Main attention is
devoted to notions of superadditivity, convexity, core, and Shapley value. It turns
out that the proposed fuzzy counterparts of these notions eliminate difficulties and
disappointing features connected with previous approaches.

1. Introduction Since the basic concepts of cooperative game theory and their ele-
mentary properties were established by von Neumann and Morgenstern [10], much work
has been done in developing and analyzing solution concepts of various types of coopera-
tive games. Most of this literature deals with cooperative games in characteristic function
form where the characteristic function of a game is a mapping that assigns to each sub-
set (coalition) of the set of players a real number, worth of the coalition or payoff to the
coalition.

To take into account uncertainty about the degree of participation of players in coalitions,
Aubin [1] and Butnariu [2] extend the domain of definition of the characteristic function from
subsets to fuzzy subsets (fuzzy coalitions) of the set of players, that is, the characteristic
function assigns to each fuzzy coalition again a real number.

In contrast, Mareš [4] – see also Nishizaki and Sakawa [8], and Mareš and Vlach [5, 6] –
is concerned with the uncertainty in the values of characteristic functions. In these models,
the domain of the characteristic function of a game remains to be the system of deterministic
coalitions but the values assigned to coalitions are fuzzy quantities.

The present work continues the study of the Mareš model but introduces other kind
of fuzzy counterparts of conventional notions of the deterministic theory. It turns out
that the presented alternative way of fuzzification eliminates the difficulties connected with
the original approach pointed out in Mareš [4]. We focus our attention on the notions of
superadditivity, convexity, core, and Shapley value of games with transferable utility. For
a similar treatment of games with non-transferable utility, we refer to Mareš and Vlach [7].

Throughout the paper, letter I denotes a non-empty finite set and P(I) stands for the
power set of I, that is, the set of all subsets of I. The elements of I are called players and
subsets of I are called coalitions. For convenience and without loss of generality, we assume
that I = {1, 2, . . . , n} where n is a given positive integer. The n-dimensional Euclidean
space of ordered n-tuples of real numbers is denoted by IRn. If x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) are points in IRn such that xi ≤ yi for each i ∈ I, then we briefly write
x ≤ y or y ≥ x.

In the next two sections we briefly recall some concepts and facts concerning fuzzy
quantitites and cooperative games in characteristic function form with transferable utility
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(TU games). Then we introduce the approach to cooperative games with fuzzy payoffs
proposed and analyzed in Mareš [4]. In the remaining sections, an alternative approach is
presented. Special attention is devoted to fuzzy counterparts of supperadditivity, convexity,
core, and Shapley value of such fuzzy games.

2. Fuzzy Quantities We use the term fuzzy quantity for any fuzzy subset A of the
set IR of all real numbers whose membership function µA : IR → [0, 1] satisfies the following
requirements: There are real numbers a, b, c such that a < b < c, µA(b) = 1 and µA(x) = 0
for each x /∈ [a, c]. The set of all fuzzy quantities is denoted by F(IR). For a fuzzy quantity
A, we define −A as the fuzzy subset of IR whose membership function µ−A is given by
µ−A(x) = µA(−x) for each x ∈ IR. It can easily be seen that −A is also a fuzzy quantity.
The fuzzy quantity whose membership function is defined by µ(r) = 1, µ(x) = 0 for x �= r
will be denoted by 〈r〉.

The arithmetic operations with real numbers are extended to operations with fuzzy
quantities by means of the extension principle proposed by Zadeh [12], see Mareš [3] for a
detailed explanation. Here we need to recall only addition of fuzzy quantities and multipli-
cation of a fuzzy quantity by a real number. Let A and B be fuzzy quantities, and let r be
a real number. The sum of A and B, denoted by A ⊕ B, and the multiplication of A by r,
denoted by rA, are defined as follows:

µA⊕B(x) = sup
y∈IR

[min(µA(y), µB(x − y))] ,

µrA(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for r = 0 and x = 0,

µA

(x

r

)
for r �= 0,

0 for r = 0 and x �= 0.

In addition to the arithmetic operations with fuzzy quantities we shall need the fuzzy
ordering relation on the set of fuzzy quantities used in Mareš [4] to fuzzify TU cooperative
games. Accepting the paradigm that relation between fuzzy quantities is to be fuzzy, we
identify the fuzzy ordering relations over F(IR) with fuzzy subsets of F(IR) × F(IR). The
special fuzzy ordering relation 	 used in [4] is then the fuzzy subset of F(IR)×F(IR) whose
membership function is denoted by ν�. For any ordered pair of fuzzy quantities A,B the
value ν�(A,B) determines the possibility that A 	 B, where

ν�(A,B) = sup
x,y∈IR

x≥y

min [µA(x), µB(x)] .

In some publications, the general concept of fuzzy quantity is reduced to the concept of
(triangular) fuzzy number with one modal value of the membership function, i.e., x0 ∈ IR
such that µA(x0) = 1, and linearly monotonous segments of µA(x) for x < x0 and x > x0.
Even if the following concepts are formulated (and correct - see [4]) for fuzzy quantities, it
can be easier, at least in the first reading, to interpret them as fuzzy numbers.

3. Cooperative Games with Transferable Utility A deterministic coopera-
tive game with transferable utility and player set I is a mapping v : P(I) → IR such that
v(∅) = 0. When there is no danger of misunderstanding, we use brief expressions like a “TU
game v” or just a “game v”; from time to time v is also called the characteristic function
of a game. The set of all TU games with player set I is denoted by V (I).

A game v : P(I) → IR is said to be superadditive, if

v(K) + v(L) ≤ v(K ∪ L)
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for each pair of disjoint coalitions K and L. If a game v : P(I) → IR satisfies the inequality

v(K) + v(L) ≤ v(K ∪ L) + v(K ∩ L)

for each pair of coalitions K and L, then we say that v is convex.
A vector x ∈ IRn is said to be accessible for coalition K if∑

i∈K

xi ≤ v(K).

Informally, the accessibility of x for K can be interpreted as the possibility to distribute the
total payoff v(K) among the members of coalition K in such a manner that each member
i ∈ K receives at least xi.

To define the core of a game, one of the basic solution concepts of a TU game, we first
introduce a relation of dominance between vectors of IRn with respect to a coalition. If
x, y ∈ IRn and K ⊂ I are such that xi ≥ yi for each i ∈ K, and xj > yj for at least one
j ∈ K, then we say that x dominates y via K and write xdomK y. The core of a TU game
v : P(I) → IR is the subset of IRn satisfying the following two requirements: First, each
vector of the core is accessible for the coalition I of all players; second, for each coalition
K, no vector from the core is dominated via K by a vector accessible for K. The core of a
game v is denoted C(v).

Since the core is the solution set of a finite system of nonstrict linear inequalities, we
know that the core is a closed convex subset of IRn. The fact that the core of some games
is empty and the core of some games consists of uncountably many points motivated the
search for single-point solution concepts. One of the earliest such concepts is the Shapley
value [9]. To recall the definition of Shapley value of a game we need some preparatory
definitions.

Let v : P(I) → IR be a TU game with player set I. A carrier of v is a coalition
K such that v(L) = v(L ∩ K) for each coalition L. For a permutation π of I, we define
πv : P(I) → IR by requiring that, for each coalition {i1, i2, . . . , ik} of k players, 1 ≤ k ≤ n,
the value of πv is defined by

(πv) ({π(i1), . . . , π(ik)}) = v ({i1, . . . , ik}) ,

(πv) (∅) = 0.

Finally, if u and v are TU games with player set I, then the sum u + v of these games
is defined as the standard sum of functions, that is, (u + v) (K) = u(K) + v(K) for each
coalition K. Obviously, if u and v are games, so are πv and u + v.

Now we are ready to recall the definition of Shapley value.
The Shapley value of a game v : P(I) → IR is an n-vector T (v) = (T1(v), T2(v), . . . , Tn(v))

satisfying the following three conditions:

(a) If K is a carrier of v, then
∑

i∈K Ti(v) = v(K).

(b) If π is a permutation of I, then Tπ(i)(πv) = Ti(v) for each i ∈ I.

(c) Ti(u + v) = Ti(u) + Ti(v) for each i ∈ I.

It turns out that each TU game v has exactly one Shapley value and, for each i ∈ I,

Ti(v) =
∑
i∈K

(n − 1)!(n − k)!
n!

[v(K) − v(K \ {i})]

where k is the number of players in coalition K and the summation is meant over all
coalitions K containing player i.
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4. Cooperative Fuzzy Games with Transferable Utility In this section
we recall some concepts and facts concerning cooperative fuzzy games considered by Mareš
[4], see also Mareš and Vlach [5, 6]. As mentioned in the Introduction, in this type of games,
the characteristic function is defined on the set of all deterministic coalitions and has values
in the set of fuzzy quantities. Formally, we define such games as follows.

A fuzzy game with player set I and transferable utility, briefly a TU fuzzy game or a
fuzzy game, is a mapping w : P(I) → F(IR) such that w(∅) = 〈0〉. The set of all fuzzy
games with player set I is denoted by W (I). For the simplicity, we suggest to limit attention
to the cases in which the fuzzy values of w(K) are fuzzy numbers in the traditional sense.

A fuzzy game w : P(I) → F(IR) is said to be a fuzzy extension of a game v : P(I) → IR
if, for each K ⊂ I, µw

K(v(K)) = 1 where µw
K is the membership function of w(K).

The fuzzy subset of W (I) the membership function of which is defined by

w �→ min
K,L⊂I, K∩L=∅

ν�(w(K ∪ L), w(K) ⊕ w(L))

is introduced by Mareš as a fuzzy counterpart of the superadditivity of deterministic games.
The value of this membership function indicates the degree to which a fuzzy game w is
superadditive.

Analogously, a fuzzy counterpart of the convexity of deterministic games is defined as
the fuzzy subset of W (I) given by the membership function

w �→ min
K,L⊂I

ν�(w(K ∪ L) ⊕ w(K ∩ L), w(K) ⊕ w(L)).

Furthermore, the core of a fuzzy game w : P(I) → F(IR) is the fuzzy subset of IRn the
membership function of which is defined by

x �→ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν�

(
w(I),

〈∑
i∈I

xi

〉)

min
K⊂I

ν�

(〈∑
i∈K

xi

〉
, w(K)

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

and the Shapley value of a fuzzy game w : P(I) → F(IR) is the vector
T (w) = (T1(w), T2(w), . . . , Tn(w)) of fuzzy quantities defined by

Ti(w) =
∑⊕

K⊂I

〈
(k−1)!(n−k)!

n!

〉
[w(K) ⊕ (−w(K \ {i}))]

where k stands for the number of players in coalition K and
∑⊕ denotes the summation of

fuzzy quantities defined in the section on fuzzy quantities.
For a detailed analysis, we refer to Mareš [4] where also some disappointing features

of this type of fuzzification of superadditivity, convexity and other standard concepts are
discussed. In what follows, we present an alternative way of introducing fuzzy counterparts
of superadditivity, convexity, core and Shapley value by which the difficulties pointed out
by Mareš can be avoided.

5. Fuzzy Subsets Generated by Fuzzy Games Let w : P(I) → F(IR) be a
TU fuzzy game, and let ρw : V (I) → [0, 1] be defined by

ρw(v) = min
K⊂I

µw
K(v(K)),

where V (I) is the set of all games with player set I. In this way, each fuzzy game w generates
a fuzzy subset of V (I), namely, the fuzzy subset the membership function of which is ρw.

It is natural to ask whether the fuzzy subsets generated by different fuzzy games are
also different. The following example shows that in general this is not so.
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Example. Let w1 and w2 be TU fuzzy games with player set I = {1, 2} defined as follows.

µw1
{1}(a) =

1
2
, µw1

{2}(b) = 1, µw1
{1,2}(c) =

1
10

,

µw2
{1}(a) = 1, µw2

{2}(b) =
1
2
, µw2

{1,2}(c) =
1
10

,

for some real numbers a, b, c, and

µw1
K (x) = µw2

K (x) = 0

for each nonempty coalition K and each x /∈ {a, b, c}.
Easy calculations show that, for the deterministic TU game u defined by

u(K) =

⎧⎪⎪⎨
⎪⎪⎩

a for K = {1},
b for K = {2},
c for K = {1, 2},

we have

ρw1(u) = ρw2(u) =
1
10

,

and, for each deterministic game v different from u, we have ρw1(v) = ρw2(v) = 0. Therefore
the different fuzzy games w1 and w2 generate the same fuzzy subset of V (I).

Observe that the games w1 and w2 of the previous example are fuzzy extensions of
no deterministic TU game of two players. It turns out that such an example cannot be
constructed for fuzzy extensions of a deterministic game.
Lemma 1. If w : P(I) → F(IR) is a fuzzy extension of a game v : P(I) → IR, then ρw(v) = 1.
Proof. According to the definition of a fuzzy extension, we have µw

K(v(K)) = 1 for each
K ⊂ I. Therefore

ρw(v) = min
K⊂I

µw
K(v(K)) = 1.

Lemma 2. Different fuzzy extensions of a deterministic game with player set I generate
different fuzzy subsets of V (I).
Proof. Let w1 and w2 be different fuzzy extensions of a game v0 ∈ V (I). Since w1 �= w2,
there is a coalition K0 and a real number x0 such that µw1

K0
(x0) �= µw2

K0
(x0). Let v be the

deterministic game defined by

v(K) =

{
v0(K) for K �= K0,

x0 for K = K0.

Since w1 is a fuzzy extension of v0, we have

min
K �=K0

µw1
K (v0(K)) = 1.

It follows that

ρw1(v) = min
K⊂I

µw1
K (v(K))

= min
{

µw1
K0

(v(K0)), min
K �=K0

µw1
K (v(K))

}
= min

{
µw1

K0
(x0), 1

}
= µw1

K0
(x0).
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Analogously we obtain that ρw2(v) = µw2
K0

(x0). Since µw1
K0

(x0) and µw2
K0

(x0) are different,
we have ρw1(v) �= ρw2(v); in other words, the fuzzy subsets generated by w1 and w2 are
different.

Superadditivity As explained in the previous section, Mareš [4] defines the degree of
superadditivity of a fuzzy game as the minimum of ν�(w(K ∪L), w(K)⊕w(L)) taken over
all pairs of disjoint coalitions K and L. Here we introduce an alternative notion of the
degree of superadditivity.

Let w : P(I) → F(IR) be a fuzzy game. Using the membership function ρw of the fuzzy
subset of V (I) generated by w, we define the degree of superadditivity of w as the value of
the function σ : W (I) → [0, 1] given by

σ(w) = sup ρW (v) = sup min
K⊂I

µw
K(v(K))

where the supremum is taken over all superadditive games v ∈ V (I).
The function σ has all formal properties of a membership function with the domain W (I).

In this sense the superadditive TU fuzzy games form a fuzzy subset of the universum of all
TU fuzzy games W (I).
Theorem 1. If w is a fuzzy extension of a superadditive deterministic game, then σ(w) = 1.
Proof. Let w be a fuzzy extension of a superadditive game v : P(I) → IR. From the
definition of fuzzy extensions, we know that µw

K(v(K)) = 1 for each K ⊂ I. It follows that
ρw(v) = 1, and therefore σ(w) = 1.

Theorem 2. If w1 and w2 are fuzzy games with player set I such that µw1
K (x) ≥ µw2

K (x) for
each K ⊂ I and each x ∈ IR, then σ(w1) ≥ σ(w2).
Proof. It can easily be seen that this is an immediate consequence of the definition of σ.

Convexity Similarly to the previous section, we introduce an alternative concept of the
degree of convexity based on the membership functions of the fuzzy subsets generated by
fuzzy games. Namely, the degree of convexity of a fuzzy game w ∈ W (I) is the value of the
function δ : W (I) → [0, 1] given by

δ(w) = sup ρw(v)

where the supremum is taken over all convex games v ∈ V (I).
Also the convexity of TU fuzzy games introduced here may be interpreted as fuzzy subset

of W (I) with membership function δ, quite analogously to the property of superadditivity.
Theorem 3. If w is a fuzzy extension of a convex deterministic TU game, then δ(w) = 1.
Proof. Let w be a fuzzy extension of a convex game v ∈ V (I). Since w is a fuzzy extension
of v, we have µw

K(v(K)) = 1 for each K ⊂ I. It follows that ρw(v) = 1, and σ(w) = 1
because v is convex.

Theorem 4. If w1 and w2 are fuzzy games from W (I) and such that µw1
K (x) ≥ µw2

K (x) for
each K ⊂ I and x ∈ IR, then δ(w1) ≥ δ(w2).
Proof. This is an easy consequence of the definition of δ.
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Core To introduce the core of a fuzzy game we follow the basic paradigm that it is a
fuzzy subset of IRn. However, in contrast to the core defined in Section 4, we define the
core with the help of the fuzzy subset of V (I) generated by w. The core C(w) of a fuzzy
game w ∈ W (I) is the fuzzy subset of IRn with the membership function γw : IRn → [0, 1]
defined by

γw(x) = sup
x∈C(v)

ρw(v)

where the supremum is taken over all v ∈ V (I) such that x belongs to the core of v. Again in
this case, the core is a fuzzy subset of IRn, like in Section 4. Nevertheless, its construction
is different. Whereas in Section 4, the core is constructed from the values w(K) by a
procedure identical with that used in the crisp games, here the membership function of the
core is derived from the possibility that there exists a (crisp) game for which the referred
imputation belongs to its core. The relation between both approaches is considered below.
Notice that, for each x ∈ IRn, there exists a game v ∈ V (I) such that x ∈ C(v). For
example, for an arbitrarily given x = (x1, x2, . . . , xn), we can take v defined by

v(K) =

⎧⎪⎨
⎪⎩

0 for K = ∅,∑
i∈K

xi for K �= ∅.

We leave to the reader to verify that similarly to the previous two sections, the following
two results are immediate consequences of the definitions of γw.
Theorem 5. If w is a fuzzy extension of a game v ∈ V (I), then γw(x) = 1 for each x ∈ C(v).
Theorem 6. If w1 and w2 are fuzzy games from W (I) such that µw1

K (x) ≥ µw2
K (x) for each

K ⊂ I and each x ∈ IRn, then γw1(x) ≥ γw2(x) for each x ∈ IRn.
As an illustration of how this approach facilitates to use the well developed apparatus

of the conventional game theory, we present the following result.
Theorem 7. If w is a fuzzy game from W (I), then

δ(w) ≤ sup
x∈IRn

γw(x).

Proof. Since every convex game v ∈ V (I) has a nonempty core, we have

δ(w) = sup {ρw(v) : v is convex}
≤ sup {ρw(v) : C(v) �= ∅}
= sup

x∈IRn
[sup{ρw(v) : x ∈ C(v)}]

= sup
x∈IRn

γw(x).

Shapley Value We again follow the principle that the solution concept of a fuzzy game
is to be fuzzy. In contrast to the definition in Section 4, we now define the Shapley value
of a fuzzy game w ∈ W (I) to be the vector (t1(w), t2(w), . . . , tn(w)) of fuzzy quantities the
membership function τw

i of which are defined by

τw
i (x) = sup ρw(v), 1 ≤ i ≤ n,

where the supremum is taken over all games v ∈ V (I) such that x = Ti(v). We can see
that even in this case the method (and paradigm) used in the previous paragraphs for
the core, convexity and superadditivity is applied. Namely, instead of consequent copying
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the deterministic procedure with fuzzy (instead of crisp) quantities, we percept the Shapley
value as a fuzzy set of imputations whose membership function is derived from the possibility
of realization of such crisp TU game for which exactly the relevant imputation is its Shapley
value.

As a straightforward consequence of the definition of τi and Lemma 1, we obtain the
following two results.
Theorem 8. If w is a fuzzy extension of a game v ∈ V (I), then τw

i (Ti(v)) = 1 for each i ∈ I.
Theorem 9. If w1 and w2 are fuzzy games with player set I such that µw1

K (x) ≥ µw2
K (x) for

each coalition K and each x ∈ IR, then τw1
i (x) ≥ τw2

i (x) for each x ∈ IR and each i ∈ I.

The following results show that the Shapley value of fuzzy games reflects in a natural
way the basic requirements from the definition of Shapley value of deterministic games.

First we observe that the components of Shapley value of a fuzzy game are not influenced
by “re-naming” the players according to some permutation exactly in the same way as in
the deterministic case. Second, we have the following result.
Theorem 10. If w is a fuzzy extension of v ∈ V (I), then there exists a point x = (x1, x2, . . . , xn)
from IRn such that τi(xi) = 1 for each i ∈ I, and∑

i∈I

xi = v(I).

Proof. For example, the point with xi = Ti(v) has the required properties.

Third, in order to see how the additivity of the conventional Shapley value is reflected
in its fuzzy counterpart, we define the sum w1 + w2 of fuzzy games w1, w2 ∈ W (I) in the
most natural way, that is,

(w1 ⊕ w2) (K) = w1(K) ⊕ w2(K).

Since 〈0〉 + 〈0〉 = 〈0〉, w1 + w2 is also a game from W (I).
Theorem 11. If w1 and w2 are fuzzy extensions of a game v ∈ V (I), then there exist
x, y ∈ IRn such that, for each i ∈ I,

τw1
i (xi) = τw2

i (yi) = τw1+w2
i (xi + yi).

Proof. We know from Lemma 1 that µw1
K (v(K)) = µw2

K (v(K)) = 1 for all K ⊂ I. Then it
follows from the definition of the addition of fuzzy quantities that µw1+w2

K (v(K)+v(K)) = 1.
Now it suffices to set both x and y equal to the Shapley value T (v) of game v.

Observe that this result admits the following generalization.
Theorem 12. If w1 and w2 are fuzzy extensions of v1 and v2 from V (I), respectively, then
there exist x and y from IRn such that, for each i ∈ I,

τw1
i (xi) = τw2

i (yi) = τw1+w2
i (xi + yi).

Proof. The proof is analogous to that of the previous theorem. The only difference is that
we set

xi = Ti(v1), yi = Ti(v2) for each i ∈ I.

Let us note also interesting ideas regarding the Shapley value presented in [11].
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6. Conclusions The approach to cooperative games with fuzzy payoffs presented in
previous sections represents an alternative to the fuzzification method considered in Mareš
[4]. It seems that this alternative approach is advantageous at least in the sense that it
offers the opportunity of utilizing effectively the tools and results of the conventional coop-
erative game theory for obtaining analogous results for cooperative games with fuzzy payoffs.

The fuzzification of TU games presented above opens a more general methodological
question. The construction of fuzzy game w, used in Mareš [4] and other referred papers,
as well as in the previous sections, can be called “construction from below”. It means that
the primary concepts of it are fuzzy payoffs w(K) of particular coalitions, and the game w
is their composition. This view on the fuzzification is preserved even in this paper – and
the fuzzy class of (deterministic) games is defined via a single fuzzy game w composed from
the fuzzy values w(K).

There exists a possibility to approach to the fuzzification “from above”. It means, to
consider a fuzzy subclass of V (I) as a primary source of the fuzziness. Such a fuzzy subclass
W(I) of V (I) can be used to define the fuzzy game w with values µw

K(x) derived from the
memberships of games in W(K). More precisely, if W(K) is a fuzzy subset of V (I) with
membership function π : V (I) → [0, 1], then it determines a single fuzzy game w, where for
x ∈ R, K ⊂ I,

µw
K(x) = sup{π(v) : v(K) = x}.

This method can open new possibilities, even if it may be expected that some of the
achievable results will be very near to those presented in this paper. Anyway, these consid-
erations are out of the topic of this contribution, and they can be more precisely analyzed
in the future.

References

[1] Aubin, J. P. 1981. Cooperative fuzzy games. Math. Oper. Res. 6: 1–13.

[2] Butnariu, D. 1978. Fuzzy games: a description of the concept. Fuzzy Sets and Systems 1:
181–192.
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