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PROPERTIES OF TOTAL POSITIVITY AND AN APPLICATION TO JOB
SEARCH UNDER UNCERTAINTY
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Abstract. The total positivity of order two is a fundamental property to investigate
the sequential decision problem, and it also plays an important role in the Bayesian
learning procedure for a partially observable Markov process. For this process, we
also deals with a job search, and observe the probability densities on the state space
after some additional transitions by employing the optimal policy. This problem is
considered as an extension of a job search in a dynamic economy discussed in Lippman
and MacCall [8], and we will investigate a problem where the state changes according
to a partially observable Markov process. Associated to each state of the process, the
wages of a job is a random variable, and information about the unobservable state is
obtained through it. All information are summarized by probability distributions on
the state space, and we employ the Bayes’ theorem as a learning procedure. By using
a property called a total positive of order two, some relationships among information,
the optimal policy and the probability density on the state space after some additional
transitions are obtained.

1 Introduction This paper concerns the total positivity of order two to investigate the
learning procedure for a partially observable Markov process, and observes the probability
densities on the state space after some additional transitions. We also deals with a job
search, and observe these probability densities under the optimal policy. This is one of the
optimal stopping problems, and it can be considered as an extension of a job search in a
dynamic economy discussed in Lippman and MacCall [8]. For instance, in economics, we
consider that the conditions of economy are divided into some classes, and assume them
to getting worse. Let’s assume the condition of those can not observe directly. That is, it
cannot be known which one of these class it is now, but there is some information regarding
what a present class is. When each state of this process corresponds the class of the economy,
the wages of a job is a random variable depending on these classes. Differ from the problem
in [8], the state changes according to a partially observable Markov process, and we will
consider the properties of a probability density on the state space after some additional
transitions by employing the optimal policy. For job search in which the state is observable,
it is known that the maximization is achieved by classifying all possible job offers into two
mutually exclusive classes, and the wage of a job offer that separates these two classes is
called the reservation wage. It is not, however, always true for this problem since the state
of the process is unobservable for the decision maker. In Nakai [15], the author observed
these relationships for a partially observable Markov chain.

All information about the unobservable state are summarized by the probability dis-
tributions on the state space, and we employ the Bayes’ theorem as a learning procedure.
By using a property called a total positive of order two, or simply TP2, which is closely
related to the likelihood ratio ordering, we consider some relationships among prior and
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posterior informations, the optimal policy and the probability densities on the state space
after some additional transitions. The properties of the total positivity are also investigated
by Karlin and McGregor [3], Karlin [2] and Karlin and Rinott [4] and by others regarding
the stochastic processes.

In order to observe the case of a partially observable Markov process in which the
Bayes’ theorem is employed as a learning procedure, we will start to reconsider a job search
in a dynamic economy where the state is directly observable. In Section 2, we summarize
the properties regarding job search when the state of the process is directly observable.
It will be shown that the probability densities on the state space after some additional
transitions is TP2 by employing the optimal policy. In Section 3, we will also investigate
the probability densities on the state space after some additional transitions when the state
changes according to a partially observable Markov process. We will also observe the similar
probabilities by employing the optimal policy of the job search. For the Markov process
with the state space [0, S], if the state S designates default, then the probability to become
bankrupt will be also observed, and, therefore, this probability for the case with uncertain
state information. Finally, we summarize the proofs of several properties concerning TP2

used in this paper in Section 4.

2 Job Search in a Dynamic Economy

2.1 Optimal Policy and the Expected Reward Consider a Markov process with the
state space [0, S] and the transition probability P = (ps(t))s,t∈[0,S] where ps = (ps(t))t∈[0,S]

is a probability distribution on [0, S] for any s ∈ [0, S]. Associated to each state s corre-
sponding the class of the economy (s ∈ [0, S]), a wage of a job offer is a random variable
Xs. The job search is a problem to find a job in order to maximize the expected reward.
We consider an individual who is looking for a job. Each period she pays a fixed amount
and receives exactly one job offer. She may continue her search until m jobs appear. In
this model, all rejected job offers are immediately withdrawn. The wage of each job offer
depends on the state of this process. For a finite state Markov chain with the state space
{1, 2, · · · , n}, Lippman and MacCall [8] considered this problem in such a dynamic economy
under two conditions (1) and (2):

(1) Xi is stochastically decreasing in i, i.e. F1(x) ≥ F2(x) ≥ · · · ≥ Fn(x) for all x,

(2)
n∑

j=k

pij is increasing in i for all k(k = 1, 2, · · · , K).

In this paper, the job search will be considered under an uncertainty condition, i.e.
the state of this process can not be observed directly. For this purpose, we introduce two
assumptions concerning the transition probability and the random variables Xs (s ∈ [0, S])
as Assumptions 1 and 2, which are the differences to the Lippmann and MacCall’s case.
For each state s, the random variables Xs are absolutely continuous with density fs(x)
(s ∈ [0, S]). It is possible to generalize it as in Nakai [13], and also apply it to the sequential
decision problems (Nakai [10, 11, 12] and so on). In Definition 1, we introduce a stochastic
order relation among random variables defined on a complete separable metric space with
a total order ≥.

Definition 1 Suppose that two random variables X and Y has the respective probability
density functions f(x) and g(x). If f(y)g(x) ≤ f(x)g(y) for all x and y where x ≥ y, then
X is said to be greater than Y by means of the likelihood ratio, or simply X � Y .

Definition 2 Suppose a set function P = (ps(t))s,t∈[0,S]. If ps(u) pt(v) ≥ pt(u) ps(v), i.e.∣∣∣∣ps(u) ps(v)
pt(u) pt(v)

∣∣∣∣ ≥ 0 for any s, t, u and v, where s ≤ t and u ≤ v (s, t, u, v ∈ [0, S]), then this

P is said to be total positive of order two, or simply TP2.
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It is easy to show that this order defined by Definition 1 is a partial order. Next, we
introduce two assumptions (Assumptions 1 and 2), since we employ the Bayes’ theorem as
a learning procedure.

Assumption 1 For the random variables {Xs}s∈[0,S], if s ≤ t, then Xs � Xt (s, t ∈ [0, S]),
i.e. Xs is decreasing with respect to s by means of the likelihood ratio.

Assumption 2 The transition probability P = (ps(t))s,t∈[0,S] is TP2.

In Assumption 1, Xs � Xt implies that if x > y, then fs(y)ft(x) ≤ fs(x)ft(y) for s and
t where s ≤ t (s, t ∈ [0, S]). From this fact, the random variable Xs takes on smaller values
as s becomes larger, and an example of this is where state 0 represents the highest class, · · · ,
and state S is the lowest class. Assumption 2 is known as TP2 for this Markov process. This
implies that the probability of moving from the current state to ‘better’ states decreases
with improvement in the current state. By this assumption, as the number s associated
with each state becomes larger, the probability to make a transition into the lower class
increases.

When n jobs remain (i.e. there are n stages to go) and a wage of the currently available
job offer is x, if this job is accepted, then a reward un(x) will be obtained. We say we are
in state (s, x) if the economy is in state s and the currently available job offer is x. The
cost c is necessary to search a next job offer, and we induce a discount factor 0 < β < 1.
Let vn(s, x) be a maximal β-discount expected reward attainable when n stages remain and
the currently available job offer is x. By the principle of optimality, these vn(s, x) satisfies
the following optimality equation

vn(s, x) = max

{
un(x),−c + β

∫ S

0

ps(t)dt

∫ ∞

0

vn−1(t, y)dFt(y)

}
,(1)

where v1(s, x) = u1(x). We assume un(x) to be an increasing function of x and n. For

example, un(x) =
1 − δn

1 − δ
x satisfies these conditions, and this is an amount of the total

sum of the capital and interest when we make a deposit of x at an annual interest rate of
γ for n years where δ = 1 + γ. As Lippmann and MacCall [8], it is easy to show that the
maximization is achieved by classifying all possible job offers into two mutually exclusive
classes. The wage of a job offer that separates these two classes is called the reservation
wage, and we denote it as αn(s) when n jobs remain and the current state of the process
is s. Concerning these αn(s) and vn(i, x), Assumptions 1 and 2 and the property of un(x)
imply Lemmas 1 and 2 by the induction principle.

Lemma 1 For any s ∈ [0, S] and positive integer n, αn+1(s) ≥ αn(s). If s < t (s, t ∈
[0, S]), then αn(s) ≥ αn(t) for any positive integer n.

Lemma 2 For any positive integer n, vn+1(s, x) ≥ vn(s, x) and vn+1(s, x) ≥ vn+1(t, x)
where x > 0 and s < t (s, t ∈ [0, S]). If x > y, then vn+1(s, x) ≥ vn+1(s, y).

2.2 Probability Density after Some Additional Transitions In this subsection,
we consider a probability density on the state space after n additional transitions when
the state is directly observable. First, we only consider a change of the states. For
any state s, let ps,n(t) be the probability density on the state space after n additional
transitions (s, t ∈ [0, S], n = 1, 2, · · · ). It is easy to show that ps,n(t) satisfies the re-

cursive equation ps,n(t) =
∫ S

0

ps(u)pu,n−1(t)du with the initial condition ps,1(t) = ps(t).
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Let P n =
(
ps,n(t)

)
s,t∈[0,S]

, then P 1 = P and P n = 〈P , P n−1〉. Here, we use a no-

tation 〈P , Q〉 =

(∫ S

0

ps(u)qu(t)du

)
s,t∈[0,S]

for two functions P = (ps(t))s,t∈[0,S] and

Q = (qs(t))s,t∈[0,S]. Lemma 3 is obtained concerning this notation.

Lemma 3 If the set function P = (ps(t))s,t∈[0,S] and Q = (qs(t))s,t∈[0,S] are TP2, then
〈P , Q〉 is also TP2.

If P n−1 = (ps,n−1(t))s,t∈[0,S] is TP2, then the induction principle on n and Lemma 3
imply that P n = 〈P , P n−1〉 =

(
ps,n(t)

)
s,t∈[0,S]

is TP2 since P is TP2 by Assumption 2.
In this case, ps,n(t) is the probability density on the state space after n additional transi-

tions, given that the process starts in state s and the state changes according to the partially
observable Markov process. We will next consider a job search in a dynamic economy and
observe the similar probabilities by employing the optimal policy. When the state of the
process is s and there are n jobs remain, let ps,n,m(t) be the probability distribution on the
state space after m additional transitions (s, t ∈ [0, S] and m ≤ n, n, m = 1, 2, · · · ) by em-
ploying the optimal policy. For a job search where the state is directly observable, since the
optimal policy is determined by the reservation wages α(s, n), Fs(α(s, n)) is a probability
not to accept the current job offer when the state is s and there are n stages to go. It is,
therefore, easy to show that ps,n,m = (ps,n,m(t))t∈[0,S] satisfies the recursive equation

ps,n,m(t) = Fs(α(s, n))
∫ S

0

ps(x)px,n−1,m−1(t)dx.(2)

The initial condition is ps,n,1 = (ps,n,1(t))t∈[0,S] where ps,n,1(t) = Fs(α(s, n))ps(t). If we
put P n,m =

(
ps,n,m

)
s∈[0,S]

, then P n,1 = (Fs(α(s, n))ps)s∈[0,S] for any n(> 0) and Equation
(2) implies

P n,m = (Fs(α(s, n))〈P , P n−1,m−1〉s)s∈[0,S].(3)

Here, we use a notation 〈P , Q〉s =

(∫ S

0

ps(u)qu(t)du

)
t∈[0,S]

for P = (ps(t))s,t∈[0,S] and

Q = (qs(t))s,t∈[0,S]. The following property is obtained as a corollary of Lemma 3.

Corollary 1 Suppose the set function P = (P s)s∈[0,S] is TP2 and d(s) is a function of s,
then Q = (d(s)P s)s∈[0,S] = (d(s)ps(t))s,t∈[0,S] is also TP2.

These P n,m satisfies the next property.

Proposition 1 P n,m =
(
ps,m,n

)
s∈[0,S]

is TP2.

Proof: We employ the induction principle on m. When m = 1, Corollary 1 implies that
P n,1 = (Fs(α(s, n))ps)s∈[0,S] is TP2. Assume that P n,m is TP2 for any values less than m.
Since P = (ps(t))s,t∈[0,S] and P n−1,m−1 are TP2, Corollary 1 induces that 〈P , P n−1,m−1〉
is also TP2. Lemma 3 implies

P n,m = (Fs(α(s, n))〈P , P n−1,m−1〉s)s∈[0,S]

is also TP2. �
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3 Job Search with Incomplete Information

3.1 Optimal Policy and the Expected Reward A job search on a partially observ-
able Markov process will be considered in thie section, i.e. the state of this process can
not be observed. Information about the unobservable state is assumed to be a probabil-
ity distribution µ on the state space [0, S]. Let S be a set of all information about the
unobservable state, then

S =

{
µ = (µ(s))s∈[0,S]

∣∣∣∣∣
∫ S

0

µ(s) = 1, µ(s) ≥ 0 (s ∈ [0, S])

}
.

Among informations in S, we introduce an order as was stated in Definition 1, i.e. for two
probability distributions µ, ν on [0, S], if µ(t)ν(s) ≥ µ(s)ν(t) for any s, t (s ≤ t, s, t ∈ [0, S])
and µ(t) ν(s) ≥ µ(s) ν(t) at least one pair of s and t, then µ is said to be greater than ν, or
simply µ � ν. This order is a partial order and also said to be total positive of order two, or

simply TP2. By this definition, if µ � ν (µ, ν ∈ S), then, as t become large, the ratio
µ(t)
ν(t)

of the densities increases whenever ν(t) �= 0. On the other hand, if we put ps = (ps(u)) and
pt = (pt(u)), then pt � ps for all s, t ∈ [0, S] since P satisfies Assumption 2. It is possible to
generalize this order relation to investigate a partially observable Markov process, and the
details are shown in Nakai [13, 14] with the applications to the sequential decision problems.
Concerning this order relation, Lemma 4 is also obtained under Assumptions 1 and 2.

Lemma 4 If µ � ν (µ, ν ∈ S), then
∫ ∞

0

h(x)dFµ(x) ≤
∫ ∞

0

h(x)dFν (x) for a non-

decreasing non-negative function h(x) of x.

In this lemma, Fµ(x) =
∫ S

0

µ(s)Fs(x) is a weighted distribution function as in De

Vylder [1]. Regarding the unobservable state of the process, there exists an information
system or an observation process to obtain information about it. Since the random variables
{Xs}s∈[0,S] indicate the wage of a job offer depending on the unobservable state, it can be
considered as an information system of this process, i.e. we improve information about the
unobservable state by using a wage of a current job offer. When prior information is µ, we
first observe a wage of a current job offer depending on the state and improve information
about it by using the Bayes’ theorem. After that, we see time moving forward by one unit
and thus this process will make a transition to a new state. It is also possible to formulate
and analyze this model by other order. If the wage of a current job offer is x, we improve
information as µ(x) = (µ(x, s))s∈[0,S] by employing the Byes’ theorem, and, after changing
to a new state according to P , information at the next stage becomes µ(x) = (µ(x, s))s∈[0,S].

For a set function h(x, s), we introduce a monotonicity property as Definition 3.

Definition 3 For a set valued non-negative function h(x) = (h(x, s))s∈[0,S] for all s in
[0, S] and x ∈ 	+, if x < y then h(x) � h(y) (h(y) � h(x)), i.e. h(x, t)h(y, s) ≥
h(x, s)h(y, t) (h(x, t)h(y, s) ≤ h(x, s)h(y, t)) for any t and s (s ≤ t and s, t ∈ [0, S]).
This function h(x, s) is said to be a decreasing (increasing) function of x.

Since the density functions {fs(x) | s ∈ [0, S]} of {Xs}s∈[0,S] satisfy Assumption 1,
f(x) = (fs(x))s∈[0,S] satisfies f(y) � f(x), i.e. if x > y, then fs(y)ft(x) ≤ fs(x)ft(y) for
any s and t (s ≤ t and s, t ∈ [0, S]). From this fact, f(x) is an increasing function of x.

Regarding the relationship between prior information µ and posterior information µ(x),
the following essential properties can be obtained under Assumptions 1 and 2, which is
known as Lemma 5 of Nakai [13] and so on.
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Lemma 5 If µ � ν, then µ(x) � ν(x) and µ(x) � ν(x) for all x. If µ � ν, then µ(x)
and µ(x) is a decreasing function of x.

Lemma 5 implies that the order relation among prior information µ is preserved in µ(x)
and posterior information µ(x). Furthermore, for same prior information µ, as a wage x of
a job offer increases, posterior information µ(x) becomes worse.

Suppose a job search with prior information µ. Let vn(µ, x) be a maximal β-discount
expected reward attainable when there are n stages to go and the currently available job
offer is x (0 < β < 1). The principle of optimality yields the recursive equation of vn(µ, x)
as

vn(µ, x) = max
{

un(x), c + β

∫ ∞

0

vn−1(µ(x), y)dFµ(x)(y)
}

(4)

with v1(µ, x) = Eµ[u1(X)] =
∫ ∞

0

u1(x)dFµ(x). For the state space [0, S], suppose that

pS(t) ≡ IS(t) as a transition probability and X ≡ 0 with probability 1, then it is possible to
consider that the state S designates default. In this case, IS(t) is an indicator function of

t. Put S(µ, n) =
{

x

∣∣∣∣un(x) ≥ c + β

∫ ∞

0

vn−1(µ(x), y)dFµ(x)(y)
}

and C(µ, n) = S(µ, n)c,

then S(µ, n) and C(µ, n) correspond to a stopping region and a continuance region, re-
spectively, for this job search. Here we note that un(x) is an increasing function of x,
and µ(x) is a decreasing function of x, i.e. µ(y) � µ(x) for x > y. If vn−1(µ(x), z)
is an increasing function of z and a decreasing function of µ, then Lemma 4 implies∫ ∞

0

vn−1(µ(x), z)dFµ(x)(z) ≥
∫ ∞

0

vn−1(µ(y), z)dFµ(y)(z) for x > y. Concerning two re-

gions S(µ, n) and C(µ, n), Lemma 6 is obtained.

Lemma 6 If µ � ν, then S(ν, n) ⊂ S(µ, n) and S(µ, n + 1) ⊂ S(µ, n) for any n.

Since S(µ, n) ∪ C(µ, n) = 	+ and S(µ, n) ∩ C(µ, n) = ∅ for any µ and n ≥ 1, this
lemma implies C(µ, n) ⊂ C(ν, n) and C(µ, n) ⊂ C(µ, n + 1). The value vn(µ, x) also has
a following property.

Lemma 7 If µ � ν, then vn(µ, x) ≤ vn(ν, x). If x > y, then vn+1(µ, x) ≥ vn(µ, x) and
vn(µ, x) ≥ vn(µ, y).

These properties are derived by the induction principle on n as Nakai [13] etc.

3.2 Probability Density after Some Additional Transitions under Uncertainty
Similarly to Section 2.2, we will consider a probability density on the state space after n
additional transitions when the state changes according to a partially observable Markov
process under Assumptions 1 and 2. Initially, we observe these probabilities leaving the
decision and the learning procedure regarding the unobservable state. When prior informa-
tion is µ, let P µ,m be a set function of the probability densities on the state space after
m additional transitions. As the initial condition, if m = 1, then Pµ,1 = (Pµ,1(t))t∈[0,S]

and P 1(µ)t =
∫ S

0

µ(s)ps(t)ds = 〈µ, P 〉(t). Similarly to the previous section, we use a no-

tation 〈µ, P 〉 = (〈µ, P 〉(t))t∈[0,S] and 〈µ, P 〉(t) =
∫ S

0

µ(s)ps(t)ds for µ = (µ(s))s∈[0,S] and

P = (ps(t))s,t∈[0,S]. It is easy to show that 〈〈µ, P 〉,Q〉 = 〈µ, 〈P , Q〉〉. We also define P n

as P 1 = P and P n = 〈P , P n−1〉 for P = (ps(t))s,t∈[0,S]. It is also possible to express that
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µ = 〈µ, P 〉 and µ(x) = 〈µ(x),P 〉. Using this relation yields Pµ,2 = Pµ,1 = 〈µ, P 〉 =
〈µ, P 2〉 for m = 2, and, therefore, Pµ,m satisfies the recursive equation as

P µ,m = Pµ,m−1 = P 〈µ,P 〉,m−1 = 〈〈µ,P 〉,P m−1〉 = 〈µ, P m〉.(5)

Since P is TP2, the induction principle on m implies P m(µ) = 〈µ, P m〉 is also TP2. We
can obtain the following property.

Lemma 8 If µ � ν and P is TP2 (µ, ν ∈ S), then 〈µ, P 〉 � 〈ν, P 〉.
By Equation (5), Lemma 8 yields the next proposition.

Proposition 2 If µ � ν (µ, ν ∈ S), then Pµ,m � Pν ,m.

Next, we observe similar probabilities leaving the decision out of consideration, i.e. we
give consideration to the learning procedure by using a wage of a currently available job
offer. When prior information is µ, we first observe a sample depending on the current
state and improve information about it by using the Bayes’ theorem. After that, we see
time moving forward by one unit and thus this process will make a transition to a new
state. Hence, whenever we say prior information is µ, the transition to the current state
have been finished. When prior information is µ, let P̂µ,m(t) be a probability density on
the state space after m additional transitions (t ∈ [0, S]), and P̂µ,m = (P̂µ,m(t))t∈[0,S].

For a set function u(x) = (u(x, t))t∈[0,S], if
∫ b

a

u(x, s)dF (x) exists for any s (s ∈ [0, S]),

then we use a notation
∫ b

a

u(x)dF (x) =

(∫ b

a

u(x, t)dF (x)

)
t∈[0,S]

for the simplicity sake.

When prior information is µ, since P̂ µ,1 = (P̂µ,1(t))t∈[0,S] is a probability distribu-

tion on the state space at the next stage, we have, P̂µ,1 =
∫ ∞

0

〈µ(x),P 〉dFµ(x) =∫ ∞

0

µ(x)dFµ(x). If prior information at some stage is µ and a wage x of a current job

offer is observed, posterior information will be µ(x) at the next stage. Similarly to the case

of m = 1, P̂µ,2 =
∫ ∞

0

P̂µ(x),1dFµ(x) where P̂µ,2 is a probability distribution on the state

space after 2 stages. Similarly to these cases, when prior information is µ, P̂µ,m satisfies
Equation (6), since P̂ µ,m is a probability distribution on the state space after m stages.

P̂µ,m =
∫ ∞

0

P̂µ(x),m−1
dFµ(x),(6)

where P̂µ,1 =
∫ ∞

0

µ(x)dFµ(x). To obtain the properties about it, we introduce an order.

Definition 4 For two non-negative set functions g(x) and h(x) of x (g(x) = (g(x, s))s∈[0,S]

and h(x) = (h(x, s))s∈[0,S]), if g(x, t)h(x, s) ≥ g(x, s)h(x, t) for any s and t (s ≤ t, s, t ∈
[0, S]), then g(x) is said to be greater than h(x) in the sense of TP2, or simply g(x) � h(x).

Concerning this definition, next properties are obtained under Assumptions 1 and 2.

Lemma 9 If non-negative functions g(x) = (g(x, s))s∈[0,S] and h(x) = (h(x, s))s∈[0,S] are

decreasing with respect to x and g(x) � h(x), then
∫ ∞

0

g(x)dF (x) �
∫ ∞

0

h(x)dF (x).
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Lemma 10 If µ � ν and h(x) is a decreasing function of x, then
∫ ∞

0

h(x)dFµ(x) �∫ ∞

0

h(x)dFν (x).

Next two properties are derived from these lemmas.

Corollary 2 If µ � ν, then
∫ ∞

0

µ(x)dF (x) �
∫ ∞

0

ν(x)dF (x).

Corollary 3 If µ � ν, then
∫ ∞

0

h(µ, x)dFµ(x) �
∫ ∞

0

h(ν, x)dFν (x), where h(µ, x) is

an increasing function of µ and non-increasing function of x.

If µ � ν, then µ � ν and µ(x) � ν(x) by Lemma 5, and, therefore, P̂µ,m has the
following property.

Proposition 3 If µ � ν, then P̂ µ,m is an increasing function of µ, i.e. P̂ µ,m � P̂ ν ,m.

Proof: We employ the induction principle on m. When m = 1, if µ � ν, then P̂µ,1 =∫ ∞

0

µ(x)dFµ(x) and Corollary 2 imply P̂µ,1 � P̂ ν,1.

Since µ(x) � ν(x), P̂µ(x),1 � P̂ ν(x),1. Corollary 3 implies P̂µ,2 =
∫ ∞

0

P̂ µ(x),1dFµ(x)

�
∫ ∞

0

P̂ ν(x),1dFµ(x) = P̂ ν,2, and, therefore, P̂ µ,2 � P̂ ν ,2.

By the induction assumption, if µ � ν, then P̂µ,m−1 � P̂ ν ,m−1. Since µ(x) � ν(x),
we also have P̂µ(x),m−1 � P̂ ν(x),m−1. Corollary 3 implies

P̂ µ,m =
∫ ∞

0

P̂µ(x),m−1dFµ(x) �
∫ ∞

0

P̂ ν(x),m−1dFµ(x)

�
∫ ∞

0

P̂ ν(x),m−1dFν (x) = P̂ ν ,m,

and the proof is completed. �

Finally, we will consider the similar probabilities by giving consideration to the learning
procedure and the optimal policy for this job search. When prior information is µ, after
observing a wage x of the currently available job offer as a sample, information is improved
as µ(x) and the decision maker decides whether to take this job offer or not. If she does
not accept this job offer, the time moves forward by one unit and this process will make a
transition to a new state according to P , and information becomes µ(x).

When there are n jobs remain, suppose that prior information is µ and a wage of
the currently available job offer is not observed at this time. Let (P̃µ,n,m(t))t∈[0,S] be
a probability density on the state space after m additional transitions by employing the
optimal policy (t ∈ [0, S], n, m = 1, 2, · · · , m ≤ n).

For these P̃ µ,n,m = (P̃µ,n,m(t))t∈[0,S], we initially observe the case where m = 1.
Suppose that a wage of the currently available job offer is x and this job is not ac-
cepted. In this time, let improved information about the unobservable state be µ∗ =
(µ∗(s))s∈[0,S]. Let (P̃ ′

µ∗,n,1(t))t∈[0,S] be a probability density on the state space after mak-

ing a transition (s ∈ [0, S]), then P̃
′
µ∗,n,1 = (P̃ ′

µ∗,n,1(t))t∈[0,S] satisfies that P̃ ′
µ∗,n,1(t) =
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∫ S

0

µ∗(s)ps(t)ds and P̃
′
µ∗,n,1 = 〈µ∗, P 〉 = µ∗ since the time period moves forward by one

unit and this process will make a transition to a new state whenever x ∈ C(µ, n). When
a wage x is observed as a sample, since improved information can be obtained as µ(x), we

have P̃µ,n,1(t) =
∫

C(µ,n)

P̃ ′
µ(x),n,1(t)dFµ(x) =

∫
C(µ,n)

dFµ(x)
∫ S

0

µ(x)sps(t)ds. Thus im-

plies P̃µ,n,1 =
∫

C(µ,n)

µ(x)dFµ(x).

Suppose that prior information at the n-th stage is µ, let (P̃µ,n,m(t))t∈[0,S] be a prob-
ability density on the state space after m additional transitions by employing the optimal
policy (t ∈ [0, S], n, m = 1, 2, · · · , m ≤ n). In this case, a new job offer will appear with a
wage depending on the new state, and then make a decision whether to get it or not. Since
this job search continues at least one more stage when x ∈ C(µ, n), it is easy to show that
(P̃µ,n,m(t))t∈[0,S] satisfies the recursive equation as

P̃µ,n,m(t) =
∫

C(µ,n)

P̃µ(x),n−1,m−1(t)dFµ(x),(7)

and P̃ µ,n,m =
(
P̃µ,n,m(t)

)
t∈[0,S]

. Note that
∫ S

0

P̃µ,n,m(t)dt ≤ 1 because
∫

S(µ,n)

dFµ(x) is

a probability to get a job offer at this stage. Furthermore, µ � ν implies C(µ, n) ⊂ C(ν, n),
i.e. the probability to continue at least one more stage decreases as µ increases, and, on the
other hand, the probability to make a transition into the lower class increases as µ increases.
When the state is directly observable, Proposition 1 yields that P n,m = (P s,n,m)s∈[0,S] is
TP2. On the contrary to this case, it is difficult to observe such a property for P̃µ,n,m,
since the probabilities (P̃µ(x),n−1,m−1(t))t∈[0,S] varies according to the wage x of a new job
offer.

4 Total Positivity of Order Two (TP2) Finally, we summarize the proofs of the lem-
mas and corollaries concerning TP2 used in this paper. By using TP2, we introduced some
definitions (Definitions 1, 2, and 3), and these properties are obtained under Assumptions
1 and 2. Lemmas 4, 5, 6 and 7 are obtained in Nakai [13], [14], and, therefore, we omit the
proofs of these properties. Concerning the TP2, Kijima [5] and Kijima and Ohnishi [6, 7]
investigate the properties of TP2 for the financial optimization.

Proof of Lemma 3: Put 〈P , Q〉 = (rs(t))s,t∈[0,S]. Since P = (ps(t))s,t∈[0,S] and
Q = (qs(t))s,t∈[0,S] are TP2, ps(x) pt(y) − pt(x) ps(y) ≥ 0 and qx(u) qy(v) − qy(u) qx(v) ≥ 0
for any s, t, u, v where u ≤ v, s ≤ t and x < y.

rs(u)rt(v) − rs(v)rt(u)

=
∫ S

0

dx

∫ S

x

(ps(y)pt(x) − ps(x)pt(y))(qx(v)qy(u) − qx(u)qy(v))dy ≥ 0,

and, therefore, 〈P , Q〉 =

(∫ S

0

ps(u)qu(t)du

)
s,t∈[0,S]

is TP2.�

Proof of Corollary 1: Since P = (ps(t))s,t∈[0,S] is TP2, ps(u) pt(v) − pt(u) ps(v) ≥ 0
(s < t, u < v). For Q = (d(s)P s)s∈[0,S] = (qs(t))s,t∈[0,S], qs(u) = d(s)ps(u) and qt(v) =
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d(t)pt(v), and, therefore, qs(u)qt(v) − qs(v)qt(u) = d(s)d(t)(pt(v)ps(u) − ps(v)pt(u)) ≥ 0,
for any s, t, u, v where u ≤ v and s ≤ t. �

Proof of Lemma 8: Since 〈µ, P 〉 = (〈µ, P 〉t)t∈[0,S] in which 〈µ, P 〉t =
∫ S

0

µ(s)ps(t)ds

for µ = (µ(s))s∈[0,S] and P = (ps(t))s,t∈[0,S], the definition of µ � ν and the fact that P is
TP2 imply

〈µ, P 〉t 〈ν, P 〉s − 〈µ, P 〉s 〈ν, P 〉t
=

∫ S

0

∫ S

x

(µ(x)ν(y) − µ(y)ν(x))(px(t)py(s) − px(s)py(t)) ≥ 0

for 〈µ, P 〉 = (〈µ,P 〉s)s∈[0,S] and 〈ν, P 〉 = (〈ν, P 〉s)s∈[0,S]. The inequality comes from the
fact that px(s) py(t) − py(s) px(t) ≥ 0 (s < t, u < v) and µ(x)ν(y) − µ(y)ν(x) ≥ 0. This
completes the proof.�

Proof of Lemma 9: Note that g(x) � h(x) implies g(x, t)h(x, s) ≥ g(x, s)h(x, t) for
any s and t (s ≤ t, s, t ∈ [0, S]). It is also that g(y) � g(x) for y < x implies g(y, t) g(x, s) ≥
g(y, s) g(x, t) for any t and s (s ≤ t, s, t ∈ [0, S]). It is also that h(y) � h(x) for y < x
implies h(y, t)h(x, s) ≥ h(y, s)h(x, t) for any t and s (s ≤ t, s, t ∈ [0, S]).

The assumptions of this lemma yield∫ ∞

0

g(x, t)dF (x)
∫ ∞

0

h(y, s)dF (y) −
∫ ∞

0

g(x, s)dF (x)
∫ ∞

0

h(y, t)dF (y)

=
∫ ∞

0

dF (x)
∫ x

0

(g(x, t)h(y, s) − g(x, s)h(y, t)) dF (y)

+
∫ ∞

0

dF (x)
∫ x

0

(g(y, t)h(x, s) − g(y, s)h(x, t)) dF (y)

≥
∫ ∞

0

g(x, s)h(x, t)dF (x)
∫ x

0

(
h(y, s)
h(x, s)

− h(y, t)
h(x, t)

)
dF (y)

+
∫ ∞

0

g(x, s)h(x, t)dF (x)
∫ x

0

(
g(y, t)
g(x, t)

− g(y, s)
g(x, s)

)
dF (y) ≥ 0

for any s, t (s ≤ t, s, t ∈ [0, S]) in which
∫ ∞

0

g(x)dF (x) =
(∫ ∞

0

gs(x)dF (x)
)

s∈[0,S]

and∫ ∞

0

h(x)dF (x) =
(∫ ∞

0

hs(x)dF (x)
)

s∈[0,S]

. These inequalities come from the facts that

g(x, t)h(x, s) ≥ g(x, s)h(x, t), h(x, s)g(x, t) ≥ g(x, s)h(x, t), g(y, t) g(x, s) ≥ g(y, s) g(x, t)
and h(y, t)h(x, s) ≥ h(y, s)h(x, t).�

Proof of Corollary 2: The inequality µ � ν implies µ(x) � ν(x), and µ(x) is a
decreasing function of x. Lemma 9 yields this corollary.�

Proof of Lemma 10: By definition of the weighted distribution functions, dFµ(x) =
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∫ S

0

µ(s)dFs(x)ds and dFν (x) =
∫ S

0

ν(s)dFs(x)ds. Note that

∫ ∞

0

h(x, t)dFµ(x)
∫ ∞

0

h(y, s)dFν (y) −
∫ ∞

0

h(x, s)dFµ(x)
∫ ∞

0

h(y, t)dFν (y)

=
∫ ∞

0

dFµ(x)
∫ x

0

(h(x, t)h(y, s) − h(x, s)h(y, t))dFν (y)

+
∫ ∞

0

dFν (x)
∫ x

0

(h(y, t)h(x, s) − h(y, s)h(x, t))dFµ(y),

and a simple calculation yields

(h(x, t)h(y, s) − h(x, s)h(y, t))dFµ(x)dFν (y)
+(h(y, t)h(x, s) − h(y, s)h(x, t))dFν (x)dFµ(y)

= (h(x, t)h(y, s) − h(x, s)h(y, t))

×
∫ S

0

∫ S

u

(µ(u)ν(v) − µ(v)ν(u))(dFu(x)dFv(y) − dFv(x)dFu(y)) ≥ 0,

for x > y. The last inequality is derived from the following three fact that

1. Xu � Xv yields

dFv(x)dFu(y) − dFu(x)dFv(y) = (fv(x)fu(y) − fu(x)fv(y))dxdy ≤ 0

for any u, v (u ≤ v, u, v ∈ [0, S]), and

2. when x > y, h(y) � h(x) yields h(y, t)h(x, s) ≥ h(y, s)h(x, t) for any s, t (s ≤ t, s, t ∈
[0, S]), and

3. µ � ν yields µ(v) ν(u) ≥ µ(u) ν(v) for any u, v (u ≤ v, u, v ∈ [0, S]).

For t > s, these facts imply the inequality∫ ∞

0

h(x, t)dFµ(x)
∫ ∞

0

h(y, s)dFν (y) −
∫ ∞

0

h(x, s)dFµ(x)
∫ ∞

0

h(y, t)dFν (y) ≥ 0,

and this completes the proof. �

If set valued functions h(x) and g(x) are decreasing with respect to x, then Lemmas 9
and 10 imply next corollary since∫ ∞

0

g(x)dFµ(x) �
∫ ∞

0

g(x)dFν (x) �
∫ ∞

0

h(x)dFν (x).

Corollary 4 If µ � ν and g(x) � h(x), then
∫ ∞

0

g(x)dFµ(x) �
∫ ∞

0

h(x)dFν (x) under

Assumptions 1 and 2 (µ, ν ∈ S).

Proof of Corollary 3: If µ � ν, then µ(x) � ν(x). Lemma 4 and Corollary 4 imply∫ ∞

0

h(µ, x)dFµ(x) �
∫ ∞

0

h(µ, x)dFν (x) �
∫ ∞

0

h(ν, x)dFν (x).�
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