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ON GENERALIZED FRACTIONAL INTEGRAL OPERATORS
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Abstract. We prove the boundedness of the generalized fractional integral operators
and their modified versions on Morrey spaces and on Campanato spaces respectively.
Our approach involves the Hardy-Littlewood maximal function and Young functions.

1. Introduction

Let R+ := (0,∞). Associated to a function ρ : R+ → R+, we define the mapping
f �→ Tρf by

Tρf(x) :=
∫

Rn

f(y)
ρ(|x− y|)
|x− y|n dy,

for any suitable function f on R
n. We also define its modified version T̃ρ by

T̃ρf(x) :=
∫

Rn

f(y)
(
ρ(|x− y|)
|x− y|n − ρ(|y|)(1 − χB0(y))

|y|n
)
dy,

where B0 is the unit ball around the origin and χB0 is the characteristic function of B0.
For example, if ρ(t) = tα, 0 < α < n, then Tρ = Iα — the fractional integral operator or
the Riesz potential. Hence Tρ may be viewed as a generalization of the fractional integral
operator.

Next, for 1 ≤ p < ∞ and a suitable function φ : R+ → R+, we define the generalized
Morrey space Mp,φ = Mp,φ(Rn) to be the set of all functions f ∈ Lploc(R

n) for which

‖f‖Mp,φ
:= sup

B

1
φ(B)

(
1
|B|

∫
B

|f(y)|pdy
)1/p

<∞,

and the generalized Campanato space Lp,φ = Lp,φ(Rn) to be the set of all functions f ∈
Lploc(R

n) for which

‖f‖Lp,φ
:= sup

B

1
φ(B)

(
1
|B|

∫
B

|f(y) − fB|pdy
)1/p

<∞.

Here the supremums are taken over all open balls B = B(a, r) in R
n, |B| denotes the

Lebesgue measure of B in R
n, φ(B) = φ(r), and fB := 1

|B|
∫
B f(y)dy. For Mp,φ, the

function φ(r) is usually required to be nonincreasing and rnφp(r) to be nondecreasing. For
Lp,φ, it is φ(r)

r that is required to be nonincreasing.
One may observe that f belongs to Lp,φ if there exist a constant C < ∞ and, for every

ball B, a constant cB <∞ such that

1
φ(B)

(
1
|B|

∫
B

|f(y) − cB|pdy
)1/p

< C,
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for we then have ‖f‖Lp,φ
< 2C. Accordingly, Mp,φ ⊆ Lp,φ. Further, if 1 ≤ p ≤ q < ∞,

then Mp,φ ⊇ Mq,φ and Lp,φ ⊇ Lq,φ. Unlike BMO (the space of Bounded Mean Oscillation
functions), the Campanato space Lp,φ is generally dependent of the exponent p (see [1] or
[14]). For certain functions φ, Mp,φ and Lp,φ reduce to some classical spaces. For a brief
history of these spaces, see [10], where further references are listed. For recent applications,
see e.g. [6].

In [8, 9], Nakai showed that Tρ is bounded from M1,φ to M1,ψ, while T̃ρ is bounded
from L1,φ to L1,ψ, under some appropriate conditions on ρ, φ and ψ. In [3], Eridani showed
that, for 1 < p < ∞, Tρ is bounded from Mp,φ to Mp,ψ, while T̃ρ is bounded from Mp,φ

to Lp,ψ, under similar conditions on ρ, φ and ψ. In this paper, we prove that, under some
other conditions on ρ, φ and ψ, the operator Tρ is bounded from Mp,φ to Mq,ψ, while T̃ρ
is bounded from Lp,φ to Lq,ψ, for 1 < p ≤ q <∞.

Related results may be found in a recent work of Sugano and Tanaka [12].

2. Basic assumptions and facts

Let us begin with a few assumptions, particularly on the associated function ρ, and some
relevant facts that follow. Hereafter, C, Ci, Cp and Cp,q denote positive constants, which
are not necessarily the same from line to line.

In the definition of Tρ, we always assume that ρ satisfies the following conditions:

(2.1)
∫ 1

0
ρ(t)
t dt <∞;

(2.2) 1
2 ≤ r

s ≤ 2 ⇒ 1
C1

≤ ρ(r)
ρ(s) ≤ C1.

For T̃ρ, we assume that ρ also satisfies two additional conditions, namely:

(2.3)
∫∞
r

ρ(t)
t2 dt ≤ C2

ρ(r)
r for all r > 0;

(2.4) 1
2 ≤ r

s ≤ 2 ⇒ |ρ(r)rn − ρ(s)
sn | ≤ C3|r − s| ρ(s)sn+1 .

For example, the function ρ(r) = rα, 0 < α < n, satisfies (2.1), (2.2) and (2.4). If 0 < α < 1,
then ρ(r) = rα also satisfies (2.3).

A function ρ satisfying (2.2) is said to satisfy the doubling condition (with a doubling
constant C1). If ρ satisfies the doubling condition, then for every integer k and r > 0 we
have ∫ 2k+1r

2kr

ρ(t)
t

dt ∼ ρ(2kr).

Further, it follows from the doubling condition that

ρ(r) ≤ C

∫ r

0

ρ(t)
t
dt,

for every r > 0. Next, if ρ satisfies (2.1)–(2.4), then we have Nakai’s lemma which states
that ∫

Rn

(
ρ(|x1 − y|)
|x1 − y|n − ρ(|x2 − y|)

|x2 − y|n
)
dy = 0

for every choice of x1 and x2 (see [8]). For such a function ρ, the operator T̃ρ maps a
constant to a constant, and hence it is well-defined from one generalized Campanato space
to another.
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In the next section, we shall involve the so-called Hardy-Littlewood maximal operator
M , which is defined by

Mf(x) := sup
B�x

1
|B|

∫
B

|f(y)| dy.

A classical result for M is that it is bounded on Lp for 1 < p ≤ ∞ (see e.g. [13]). Now, if
φ satisfies the doubling condition and

(2.5)
∫∞
r

φ(t)p

t dt ≤ Cφ(r)p for all r > 0,

for some 1 < p <∞, then there exists Cp > 0 such that

‖Mf‖Mp,φ
≤ Cp‖f‖Mp,φ

,

that is, M is bounded on Mp,φ (see [7]).
We shall also involve Young functions and Orlicz spaces in our discussion. A function

Φ : [0,∞] → [0,∞] is called a Young function if Φ is convex, lim
r→0+

Φ(r) = Φ(0) = 0 and

lim
r→∞Φ(r) = Φ(∞) = ∞. A Young function is always nondecreasing. For a Young function

Φ, we define Φ−1(r) = inf{s : Φ(s) > r} (with inf ∅ = ∞). If Φ is continuous and bijective,
then Φ−1 is the usual inverse function. If a Young function Φ satisfies

(2.6) 0 < Φ(r) <∞ for 0 < r <∞,

then Φ is continuous and bijective from [0,∞) to itself. In this case, the inverse function
Φ−1 is increasing, continuous and concave, and hence satisfies the doubling condition.

For a Young function Φ, we define the Orlicz space LΦ = LΦ(Rn) to be the set of all
locally integrable function f on R

n for which
∫

Rn Φ
( |f(x)|

ε

)
dx < ∞ for some ε > 0. We

equip LΦ with the norm

‖f‖LΦ := inf
{
ε > 0 :

∫
Rn

Φ
( |f(x)|

ε

)
dx ≤ 1

}
.

Note that for Φ(r) = rp, 1 ≤ p < ∞, we have LΦ = Lp. For further properties of Young
functions and Orlicz spaces, see e.g. [11]. For their relevance with our subject, see [8, 9].

One more terminology. A function θ : R+ → R+ is said to be almost decreasing if there
exists a constant C > 0 such that θ(r) ≥ C θ(s) for r ≤ s. Almost increasing functions can
be defined analogously.

3. The boundedness of Tρ on Morrey spaces

We shall here consider the generalized fractional integral operator Tρ. For 1 < p < q <∞,
it is well-known that the fractional integral operator Iα is bounded from Lp to Lq provided
that α/n = 1/p−1/q (see e.g. [13], p. 354). More generally, Iα is bounded from the Morrey
space Lp,λ to Lq,µ where α/n = 1/p− 1/q, 0 ≤ λ < n− αp and pµ = qλ. (In our notation,
Lp,λ = Mp,φ with φ(r) = r(λ−n)/p.) This result is due to Spanne (see [10], Theorem 5.4)
and is reproved by Chiarenza and Frasca [2]. (Actually, Chiarenza and Frasca obtained a
stronger result stating that Iα is bounded from Lp,λ to Lq,λ where α/(n − λ) = 1/p− 1/q
and 0 < λ < n − αp, from which Spanne’s result follows as a corollary. Their proofs are
valid for the case λ = 0.) The classical result can be recovered from Spanne’s by taking
λ = 0 (because Lp,0 = Lp). A further generalization of the above result is obtained by
Nakai [7], who showed that Iα is bounded from Mp,φ to Mq,ψ for appropriate functions
φ and ψ(r) = rαφ(r). Here Spanne’s result can be recovered from Nakai’s by taking
φ(r) = r(λ−n)/p with 0 ≤ λ < n− αp and α/n = 1/p− 1/q.

For Tρ, we have the results of Nakai [9] and Eridani [3] mentioned earlier. While Tρ is
a generalization of Iα, these results for Tρ cannot, unfortunately, be viewed as a natural
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generalization of those for Iα (in the sense that we cannot recover the Lp − Lq beound-
edness of Iα from them). Recently, Eridani and Gunawan [4] obtains a generalization of
Chiarenza-Frasca’s result, which has been reformulated by Gunawan [5] as follows. Notice
that Chiarenza-Frasca’s result can be recovered by taking ρ(r) = rα and φ(r) = r(λ−n)/p

with 0 ≤ λ < n and α/(n− λ) = 1/p− 1/q.

Theorem 3.1. [4, 5] Suppose that ρ and φ satisfies the doubling condition. Suppose also
that φ is surjective and satisfies the inequality (2.5) and

φ(r)
∫ r

0

ρ(t)
t
dt+

∫ ∞

r

ρ(t)φ(t)
t

dt ≤ Cφ(r)p/q , for all r > 0,

for 1 < p < q <∞. Then there exists Cp,q > 0 such that

‖Tρf‖M
q,φp/q

≤ Cp,q‖f‖Mp,φ

that is, Tρ is bounded from Mp,φ to Mq,φp/q .

Sketch of Proof. The idea is to split the integral into two parts, namely

Tρf(x) =
∫
|x−y|<R

f(y)
ρ(|x− y|)
|x− y|n dy +

∫
|x−y|≥R

f(y)
ρ(|x− y|)
|x− y|n dy = I1(x) + I2(x).

Then we estimate each part, by decomposing the integral further, diadically. For I1(x), we
use the hypotheses on ρ and φ and the property of the Hardy-Littlewood maximal operator
M to get

|I1(x)| ≤ CMf(x)φ(R)(p−q)/q .

For I2(x), we use the hypotheses on ρ and φ and the fact that f ∈ Mp,φ to obtain

|I2(x)| ≤ C ‖f‖Mp,φ
φ(R)p/q .

By the surjectivity of φ, we can choose R > 0 such that φ(R) = Mf(x).‖f‖−1
Mp,φ

, assuming
that f is not identically 0 and that Mf(x) <∞ for every x ∈ R

n. With this value of φ(R),
the two estimates equal and hence, for every x ∈ R

n, we have

|Tρf(x)|q ≤ CMf(x)p‖f‖q−pMp,φ
.

The desired inequality then follows from this and the fact that the maximal operator M is
bounded on Mp,φ. (QED)

Our new result for Tρ is the following theorem, which may be considered as a general-
ization of Spanne’s result.

Theorem 3.2. Suppose that ρ satisfies (2.1) and (2.2). Suppose further that ρ(r)
rn and

r−n/p
∫ r
0
ρ(t)
t dt are almost decreasing,

∫∞
r

ρ(t)t−n/p

t dt ≤ C r−n/p
∫ r
0
ρ(t)
t dt, and there exist

Young functions Φ1 satisfying (2.6) and Φ2 such that

r−n/p
∫ r

0

ρ(t)
t
dt ∼ Φ−1

1 (r−n) and Φ−1
1 (r−n)Φ−1

2 (r−n) ∼ r−n/q

for 1 < p ≤ q <∞. If φ satisfies the doubling condition and

φ(r)
∫ r

0

ρ(t)
t

dt+
∫ ∞

r

ρ(t)φ(t)
t

dt ≤ C ψ(r), for all r > 0,

then Tρ is bounded from Mp,φ to Mq,ψ.
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Proof. Let B = B(a, r) be any ball in R
n and B̃ = B(a, 2r). For every x ∈ R

n, write

Tρf(x) =
∫
B̃

f(y)
ρ(|x− y|)
|x− y|n dy +

∫
B̃C

f(y)
ρ(|x− y|)
|x− y|n dy = I1

B(x) + I2
B(x).

To estimate I1
B , we set f̃ = fχB̃. Then we have(∫

B

|I1
B(x)|q dx

)1/q

=
(∫

Rn

|Tρf̃(x)χB(x)|q dx
)1/q

≤ C ‖Tρf̃‖LΦ1‖χB‖LΦ2

(see [11]). But Tρ is bounded from Lp to LΦ1 (see Corollary 3.2 of [8]) and ‖χB‖LΦ2 ≤(
Φ−1

2 (|B|−1)
)−1. Hence we obtain(∫

B

|I1
B(x)|q dx

)1/q

≤ C‖f̃‖Lp

(
Φ−1

2 (|B|−1)
)−1

≤ C rn/pφ(r) ‖f‖Mp,φ

(
Φ−1

1 (r−n)rn/q
)

≤ C rn/qφ(r) ‖f‖Mp,φ

∫ r

0

ρ(t)
t

dt

≤ C rn/qψ(r)‖f‖Mp,φ
.

Now we estimate I2
B . Observe that for every x ∈ B we have

|I2
B(x)| ≤

∫
|x−y|≥r

|f(y)| ρ(|x− y|)
|x− y|n dy.

Hence, as in [3], we obtain

|I2
B(x)| ≤ C ‖f‖Mp,φ

∫ ∞

r

ρ(t)φ(t)
t

dt ≤ C ψ(r)‖f‖Mp,φ
,

whence (∫
B

|I2
B(x)|q dx

)1/q

≤ C rn/qψ(r)‖f‖Mp,φ
.

Combining the two estimates, we get the desired inequality for Tρ. (QED)

4. The boundedness of T̃ρ on Campanato spaces

We now turn to the modified fractional integral operator T̃ρ. For ρ(r) = rα, the operator
T̃ρ = Ĩα is well-defined for 0 < α < n + 1 and is known to be bounded from Lp to BMO
when p > 1 and α = n/p, from Lp to Lipβ when p > 1 and 0 < α − n/p = β < 1, from
BMO to Lipα when 0 < α < 1, and from Lipβ to Lipγ when 0 < α+ β = γ < 1.

For a general function ρ, Nakai [8, 9] proved that T̃ρ is bounded from L1,φ to L1,ψ for
appropriate functions φ and ψ. For φ(r) = rβ with 0 ≤ β ≤ 1, the space L1,φ reduces
to BMO (when β = 0) or Lipβ (when 0 < β ≤ 1). In this case, Nakai’s result covers the
BMO–Lipα and Lipβ–Lipγ results for Ĩα. For φ(r) = rβ with −n/p ≤ β < 0, 1 < p < ∞,
we have Eridani’s result [3] which covers the other results for Ĩα. The following theorem is
an extension of Eridani’s.

Theorem 4.1. Suppose that ρ satisfies (2.1)–(2.4), and that φ satisfies the doubling condi-
tion and

∫∞
1

φ(t)
t dt <∞. If∫ ∞

r

φ(t)
t

dt

∫ r

0

ρ(t)
t

dt+ r

∫ ∞

r

ρ(t)φ(t)
t2

dt ≤ Cψ(r) for all r > 0,
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then T̃ρ is bounded from Lp,φ to Lp,ψ for 1 < p <∞.

Proof. Let f ∈ Lp,φ. For any ball B = B(a, r) in R
n, let B̃ = B(a, 2r) and, for every x ∈ B,

write

IB(x) :=
∫

Rn

(f(y) − fB̃)
(
ρ(|x− y|)
|x− y|n − ρ(|a− y|)(1 − χB̃(y))

|a− y|n
)
dy

I1
B(x) :=

∫
B̃

(f(y) − fB̃)
ρ(|x− y|)
|x− y|n dy

I2
B(x) :=

∫
B̃C

(f(y) − fB̃)
(
ρ(|x− y|)
|x− y|n − ρ(|a− y|)

|a− y|n
)
dy

C1
B :=

∫
Rn

(f(y) − fB̃)
(
ρ(|a− y|)(1 − χB̃(y))

|a− y|n − ρ(|y|)(1 − χB0(y))
|y|n

)
dy

C2
B :=

∫
Rn

fB̃

(
ρ(|x− y|)
|x− y|n − ρ(|y|)(1 − χB0(y))

|y|n
)
dy.

Then clearly

T̃ρf(x) − (C1
B + C2

B) = IB(x) = I1
B(x) + I2

B(x),

and one may observe that C1
B and C2

B are well-defined constants (see [8]).
To estimate I1

B , write f̃ := (f − fB̃)χB̃ and φ̃(r) :=
∫∞
r

φ(t)
t dt. Then, as in [3], we have

|I1
B(x)| ≤

∫
B̃

|f̃(y)|ρ(|x− y|)
|x− y|n dy ≤ CMf̃(x)

∫ r

0

ρ(t)
t
dt ≤ C

ψ(r)
φ̃(r)

Mf̃(x).

By Lp boundedness of M and Fact 6.2 (see Appendices), we obtain

1
ψ(r)

(
1
|B|

∫
B

|I1
B(x)|pdx

)1/p

≤ C

φ̃(r)|B|1/p
(∫

B

[Mf̃(x)]pdx
)1/p

≤ Cp

φ̃(r)|B|1/p ‖f̃‖Lp

≤ Cp

φ̃(r)|B|1/p
(
‖(f − σ(f))χB̃‖Lp + |B̃|1/p|fB̃ − σ(f)|

)
≤ Cp

(
‖f − σ(f)‖Mp,φ̃

+ ‖f‖Lp,φ

)
≤ Cp ‖f‖Lp,φ

,

where σ(f) = lim
r→∞ fB(0,r).

It then remains to estimate I2
B . By (2.2) and (2.4), we have

|I2
B(x)| ≤

∫
B̃C

|f(y) − fB̃|
∣∣∣∣ρ(|x− y|)
|x− y|n − ρ(|y − a|)

|y − a|n
∣∣∣∣ dy

≤ C|x− a|
∫
|y−a|≥2r

|f(y) − fB̃|
ρ(|y − a|)
|y − a|n+1 dy

= C|x− a|
∞∑
k=2

∫
2k−1r≤|y−a|<2kr

|f(y) − fB̃|ρ(|y − a|)
|y − a|n+1 dy

≤ C|x− a|
∞∑
k=2

ρ(2kr)

(2kr)n+1

∫
|y−a|<2kr

|f(y) − fB̃| dy

≤ C|x− a|
∞∑
k=2

ρ(2kr)
2kr

(
1

(2kr)n

∫
|y−a|<2kr

|f(y) − fB̃|p dy
)1/p

.
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But, for each k ≥ 2, we have(
1

|B(a, 2kr)|
∫
B(a,2kr)

|f(y) − fB̃|pdy
)1/p

≤ C ‖f‖Lp,φ

∫ 2kr

2r

φ(s)
s

ds

(see Fact 6.1 in Appendices). Hence, by (2.2), (2.3), and our assumption on φ and ψ, we
obtain

|I2
B(x)| ≤ C |x− a|‖f‖Lp,φ

∞∑
k=2

ρ(2kr)
2kr

∫ 2kr

2r

φ(s)
s

ds

≤ C |x− a|‖f‖Lp,φ

∞∑
k=2

∫ 2k+1r

2kr

ρ(t)
t2

(∫ t

2r

φ(s)
s

ds

)
dt

≤ C |x− a|‖f‖Lp,φ

∫ ∞

2r

ρ(t)
t2

(∫ t

2r

φ(s)
s

ds

)
dt

= C |x− a|‖f‖Lp,φ

∫ ∞

2r

(∫ ∞

s

ρ(t)
t2

dt

)
φ(s)
s

ds

≤ C r ‖f‖Lp,φ

∫ ∞

2r

ρ(s)φ(s)
s2

ds ≤ C ψ(r) ‖f‖Lp,φ
,

whence

1
ψ(r)

(
1
|B|

∫
B

|I2
B(x)|pdx

)1/p

≤ C ‖f‖Lp,φ
.

This completes the proof. (QED)

The results for Tρ indicate that the modified fractional integral operator T̃ρ must also be
bounded from Lp,φ to Lq,ψ for appropriate functions φ and ψ. Indeed, we have the following
analog of Theorem 3.2 for T̃ρ.

Theorem 4.2. Suppose that ρ satisfies (2.1) – (2.4). Suppose further that ρ(r)
rn and

r−n/p
∫ r
0
ρ(t)
t dt are almost decreasing,

∫∞
r

ρ(t)t−n/p

t dt ≤ C r−n/p
∫ r
0
ρ(t)
t dt, and there ex-

ist Young functions Φ1 satisfying (2.6) and Φ2 such that

r−n/p
∫ r

0

ρ(t)
t
dt ∼ Φ−1

1 (r−n) and Φ−1
1 (r−n)Φ−1

2 (r−n) ∼ r−n/q

for 1 < p ≤ q <∞. If φ satisfies the doubling condition and

φ(r)
∫ r

0

ρ(t)
t

dt+ r

∫ ∞

r

ρ(t)φ(t)
t2

dt ≤ C ψ(r), for all r > 0,

then T̃ρ is bounded from Lp,φ to Lq,ψ.

Proof. Let f ∈ Lp,φ. For any ball B = B(a, r) in R
n, let B̃ = B(a, 2r) and define

IB, I
1
B, I

2
B , C

1
B and C2

B as in the proof of Theorem 4.1.
To estimate I1

B , write f̃ := (f − fB̃)χB̃ as before. Then I1
B = Tρf̃ (it is Tρ, not T̃ρ), and

hence (as in the proof of Theorem 3.2) we have(∫
B

|I1
B(x)|q dx

)1/q

≤ C rn/qψ(r)‖f‖Lp,φ
.
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Meanwhile, we have the same estimate for I2
B as in the proof of Theorem 4.1, whence(∫

B

|I2
B(x)|q dx

)1/q

≤ C rn/qψ(r)‖f‖Lp,φ
.

The desired inequality for T̃ρ follows immediately from these two estimates. (QED)

5. Examples

Let � be a continuous function on (0,∞) such that

�(r) =

{
1/(log 1/r) for small r > 0,
log r for large r > 0.

We assume that � is Lipschitz continuous on every closed and bounded interval contained
in (0,∞). Then �(r) ∼ �(rn) ∼ 1/�(1/rn). Let

1 < p <∞, 0 < α < n/p, β ≥ 0 and ρ(r) = rα�β(r).(5.1)

Then ρ satisfies the assumption in Theorem 3.2. Moreover, if 0 < α < 1, then ρ satisfies
the assumption in Theorem 4.2. In particular, one may observe that∫ r

0

ρ(t)
t

dt ∼ rα�β(r).

Example 5.1. Take φ(r) = r−n/p�(r)βq/(p−q) where 1/q = 1/p−α/n. Then φ(r)(p−q)/q =
ρ(r) and ∫ ∞

r

ρ(t)φ(t)
t

dt ∼ φ(r)p/q .

From Theorem 3.1 it follows that Tρ is bounded from Mp,φ to Mq,φp/q .

Now, for β > 0, let Φi (i = 1, 2) be Young functions and

Φ1(s) ∼ sq�β(s) for s > 0, 1/q = 1/p− α/n,

Φ2(s) =

{
1/ exp(1/s1/β) for small s > 0,
exp(s1/β) for large s > 0.

Then
Φ1

−1(r) ∼ r1/q/�β(r), Φ2
−1(r) ∼ �β(r),

and

r−n/p
∫ r

0

ρ(t)
t

dt ∼ Φ1
−1

(
1
rn

)
∼
(

1
rn

)1/q

�β(r),

Φ1
−1(r)Φ2

−1(r) ∼ r1/q .

For β = 0, let

Φ1(s) = sq, 1/q = 1/p− α/n, Φ2(s) =

{
0 for 0 ≤ s < 1,
+∞ for s ≥ 1.

Then
Φ1

−1(r) ∼ r1/q , Φ2
−1(r) ≡ 1.
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Example 5.2. Under the condition (5.1), let φ(r)rn/p be almost increasing and φ(r)rα+ε

be almost decreasing for some ε > 0. Then∫ ∞

r

ρ(t)φ(t)
t

dt ∼ ρ(r)φ(r).

From Theorem 3.2 it follows that Tρ is bounded from Mp,φ to Mq,ψ for ψ(r) = ρ(r)φ(r).
(In the case β = 0, this boundedness also follows from Theorem 3 in [7].)

Example 5.3. Under the condition (5.1) and 0 < α < 1, let φ(r)rn/p be almost increasing
and φ(r)rα−1+ε be almost decreasing for some ε > 0. Then

r

∫ ∞

r

ρ(t)φ(t)
t2

dt ∼ ρ(r)φ(r).

From Theorem 4.2 it follows that T̃ρ is bounded from Lp,φ to Lq,ψ for ψ(r) = ρ(r)φ(r). (If
ψ(r) is almost increasing, then this boundedness also follows from Theorem 3.6 in [9] since
Lp,φ ⊂ L1,φ and Lq,ψ = L1,ψ.)

Let us now consider the case where

1 < p = q <∞, β > 0 and ρ(r) =

{
(log 1/r)−β−1 for small r > 0,
(log r)β−1 for large r > 0.

(5.2)

We assume that ρ is Lipschitz continuous on every closed and bounded interval contained
in (0,∞). Then

∫ r
0
ρ(t)
t dt ∼ �β(r) and ρ satisfies the assumptions in Theorem 3.2 and in

Theorem 4.2. Now let Φi (i = 1, 2) be Young functions and

Φ1(s) ∼ sp�β(s), Φ2(s) =

{
1/ exp(1/s1/β) for small s > 0,
exp(s1/β) for large s > 0.

Then
Φ1

−1(r) ∼ r1/p�−β(r), Φ2
−1(r) ∼ �β(r),

and

r−n/p
∫ r

0

ρ(t)
t

dt ∼ Φ1
−1

(
1
rn

)
∼
(

1
rn

)1/p

�β(r),

Φ1
−1(r)Φ2

−1(r) ∼ r1/p.

Example 5.4. Under the condition (5.2), let φ(r) = rδ�γ(r), for −n/p < δ < 0 and
−∞ < γ < +∞, or for δ = −n/p and 0 ≤ γ < +∞. Then∫ ∞

r

ρ(t)φ(t)
t

dt ∼ ρ(r)φ(r) ≤ Cφ(r)
∫ r

0

ρ(t)
t
dt ∼ rδ�β+γ(r).

From Theorem 3.2 it follows that Tρ is bounded from Mp,φ to Mp,ψ for ψ(r) = rδ�β+γ(r).
(This boundedness also follows from Theorem 1 in [3].)

Example 5.5. Under the condition (5.2), let φ(r) = rδ�γ(r), for −n/p < δ < 1 and
−∞ < γ < +∞, or for δ = −n/p and 0 ≤ γ < +∞. Then

r

∫ ∞

r

ρ(t)φ(t)
t2

dt ∼ ρ(r)φ(r) ≤ Cφ(r)
∫ r

0

ρ(t)
t
dt ∼ rδ�β+γ(r).

From Theorem 4.2 it follows that T̃ρ is bounded from Lp,φ to Lp,ψ for ψ(r) = rδ�β+γ(r).
(If δ < 0, then

∫∞
r

φ(t)
t dt ∼ φ(r) and so this boundedness also follows from Theorem 4.1.

If δ > 0, or if δ = 0 and β + γ ≥ 0, then this boundedness also follows from Theorem 3.6 in
[9] since Lp,φ ⊂ L1,φ and Lp,ψ = L1,ψ.)
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6. Appendices

Here we present facts that we used earlier in the proof of Theorem 4.1 (and implicitly in
the proof of Theorem 4.2).

Fact 6.1. If f ∈ Lp,φ for some 1 ≤ p < ∞ and φ satisfies the doubling condition, then for
any ball B = B(a, r) in R

n and k = 1, 2, 3, . . . , we have(
1

|B(a, 2kr)|
∫
B(a,2kr)

|f(y) − fB|pdy
)1/p

≤ C ‖f‖Lp,φ

∫ 2kr

r

φ(t)
t

dt,

where C > 0 is dependent only on n and the doubling constant of φ.

Proof. By Minkowski’s inequality, we have(
1

|B(a, 2kr)|
∫
B(a,2kr)

|f(y) − fB|pdy
)1/p

≤
(

1
|B(a, 2kr)|

∫
B(a,2kr)

|f(y) − fB(a,2kr)|pdy
)1/p

+
k−1∑
j=0

|fB(a,2jr) − fB(a,2j+1r)|.

But, for each j = 0, . . . , k − 1, one may observe that

|fB(a,2jr) − fB(a,2j+1r)| ≤ 1
|B(a, 2jr)|

∫
B(a,2jr)

|f(y) − fB(a,2j+1r)| dy

≤ 2n
(

1
|B(a, 2j+1r)|

∫
B(a,2j+1r)

|f(y) − fB(a,2j+1r)|pdy
)1/p

≤ C φ(2j+1r)‖f‖Lp,φ
.

Summing up, we get

1
|B(a, 2kr)|

∫
B(a,2kr)

|f(y) − fB| dy ≤ C ‖f‖Lp,φ

k−1∑
j=0

φ(2j+1r)

≤ C ‖f‖Lp,φ

k−1∑
j=0

∫ 2j+1r

2jr

φ(t)
t

dt = C ‖f‖Lp,φ

∫ 2kr

r

φ(t)
t

dt,

since φ satisfies the doubling condition. (QED)

Fact 6.1 can actually be generalized as follows.

Fact 6.1′. Let f ∈ Lp,φ for some 1 ≤ p < ∞ and φ satisfy the doubling condition. If
B(a, r) ⊂ B(b, s) in R

n, then

∣∣fB(a,r) − fB(b,s)

∣∣ ≤ C ‖f‖Lp,φ

∫ 2s

r

φ(t)
t

dt,

where C > 0 is dependent only on n and the doubling constant of φ.
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Proof. Indeed, if 2−k−1s ≤ r < 2−ks, then, choosing balls Bj (j = 0, 1, · · ·k) so that the
radius of Bj is 2−js and B(a, r) ⊂ Bk ⊂ Bk−1 ⊂ · · · ⊂ B0 = B(b, s), we have

∣∣fB(a,r) − fB(b,s)

∣∣ ≤ ∣∣fB(a,r) − fBk

∣∣+ k−1∑
j=0

|fBj+1 − fBj |

≤ C‖f‖Lp,φ

k∑
j=0

φ(2−js) ≤ C‖f‖Lp,φ

∫ 2s

2−ks

φ(t)
t

dt. (QED)

Fact 6.2. Let 1 ≤ p <∞, φ satisfy the doubling condition and
∫∞
1

φ(t)
t dt <∞. If f ∈ Lp,φ,

then fB(0,r) converges as r tends to infinity and

‖f − lim
r→∞ fB(0,r)‖Mp,φ̃

≤ C‖f‖Lp,φ
,

where φ̃(r) =
∫∞
r

φ(t)
t dt and C > 0 is dependent only on n and the doubling constant of φ.

Proof. From Fact 6.1′ it follows that there exists a constant σ(f), independent of a ∈ R
n,

such that
lim
r→∞ fB(a,r) = σ(f),

and ∣∣fB(a,r) − σ(f)
∣∣ ≤ C‖f‖Lp,φ

∫ ∞

r

φ(t)
t

dt.

Hence we have, for all B = B(a, r),(
1
|B|

∫
B

|f(x) − σ(f)|pdx
)1/p

≤
(

1
|B|

∫
B

|f(x) − fB|pdx
)1/p

+ |fB − σ(f)|

≤ ‖f‖Lp,φ
φ(r) + C‖f‖Lp,φ

φ̃(r) ≤ C‖f‖Lp,φ
φ̃(r). (QED)
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