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MULTISTAGE THREE-PERSON GAME WITH ARBITRATION
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Abstract. By introducing a specified definition of the equilibrium value of three-
person two-choice games, a multistage three-person game with arbitration is formulated
and solved. Random offers {Xi}n

i=1 are presented one-by-one sequentially, and as each
offer Xi comes up, each player chooses either to accept (A) or to reject (R) it, with
the aim of receiving the most favorable partition of the offer they can get. When
the players’ choices are different, arbitration comes in and forces the “odd-man” (the
“even-men”) to receive pXi(p̄Xi/2 each), where 0 ≤ p = 1 − p̄ ≤ 1 and the game
terminates. It is shown that, in the equilibrium, each player chooses R for small offers
(A for large offers), and randomizes between R and A for other offers, if arbitration
favors the odd-man side, i.e. p ∈

(
1
3
, 1
]

(the even-men side, i.e. p ∈
[
0, 1

3

)
.)

1 Problem. Let Xi, i = 1, 2, · · · , n, be i.i.d. random variables each with uniform distri-
bution on [0, 1]. As each Xi comes up, each player I, II and III must choose simultaneously
and independently of other players’ choices, either to accept (A) or to reject (R) it. If all
players choose A they get 1

3Xi each, and the game terminates. If all players choose R,
then Xi is rejected and the next Xi+1 is presented and the game continues. If players’
choices are different, arbitration comes in and forces the “odd-man” (the “even-men”) to
get pXi(p̄Xi/2 each), where 0 ≤ p = 1 − p̄ ≤ 1, and the game terminates. Arbitration
is fair if p = 1

3 , and favors the odd-man (even-men) side, if p > (<)1
3 . If all of the first

n − 1 random variables are rejected, all players must accept the n-th. Each player aims to
maximize the expected reward he can get, and the problem is to find a reasonable solution
to this three-person n-stage game.

At each stage, each player must think about : (1) He wants to become the odd-man if
p > 1

3 , and an even-man if p < 1
3 , especially when he faces large Xi, and (2) Since each Xi

is a random variable, he can expect a larger one may come up in the future.
Let (vn, vn, vn) be the eq.values for the game (c.f., the game is symmetric for the players).

The Optimality Equation is

(vn, vn, vn) = E[eq.val.Mn(X)] (n ≥ 1, v1 =
1
6
)(1.1)

where the payoff matrix Mn(X) is such that

R by III A by III
MnR(x) = R by II vn−1, vn−1, vn−1 ∗, ∗, px

A by II ∗, px, ∗ px, ∗, ∗
R by III A by III

MnA(x) = R by II px, ∗, ∗ ∗, px, ∗
A by II ∗, ∗, px x/3, x/3, x/3

(∗ stands for (p̄/2)x )

(1.2)

R by I

A by I
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If p = 1
3 , players will evidently coordinate to choose R-R-R repeatedly and switch to

A-A-A as soon as Xi ≥ µn−i appears, where {µn} is the Moser’s sequence

µn = E(X ∨ µn−1) =
1
2
(1 + µ2

n−1) (n ≥ 1, µ1 =
1
2
).

So, the CES (common eq.value) is 1
3µn.

Therefore we are interested in solving the n-stage game for p �= 1
3 .

The game(1.1)-(1.2) is solved for p ∈ (1
3 , 1] and [0, 1

3 ) in Sections 2 and 3, respectively.
We need a specified definition of the eq.val.in the optimality equation, as in Assumption A
stated in Section 2, since the equilibrium is often undetermined in Nash theory of compet-
itive games.

Two-person best-choice games where arbitration comes in are investigated in Ref.[1, 3,
4]. The present paper is a direct extention to three-person game from the two-person game
version Ref.[4]. The game (1.1)-(1.2) reduces to Odd-Man-Wins if p = 1, and Odd-Man-
Out if p = 0, both of which are discussed in Ref.[5]. One of the fundamental and elaborate
literature in game theory (including cooperative theory of games) is Petrosjan and Zenkevich
[2]. There are a few mathematical literature which discuss three-person competitive games,
and two of which are Vorobjev [6] and Sakaguchi [5]. The present paper owes much on
Vorobjev’s work.

2 Solution to the Game where 1
3 < p ≤ 1. We can rewrite (1.2) as

MnR(x) = (p̄/2)xE + (p − p̄/2)xMR(c)|c=(x−1vn−1−p̄/2)/(p−p̄/2),(2.1)

MnA(x) = (p̄/2)xE + (p − p̄/2)xMA(2.2)

where

E =
1, 1, 1 1, 1, 1
1, 1, 1 1, 1, 1

MR(c) =
c, c, c 0, 0, 1
0, 1, 0 1, 0, 0(2.3)

and

MA =
1, 0, 0 0, 1, 0
0, 0, 1 1/3, 1/3, 1/3

(2.4)

Note that MnA(x) doesn’t involve n. The game continutes to the next stage if and only if
R-R-R is chosen. As soon as some one among the players chooses A, the game terminates.

Let V (c) be CEV (common eq.value) of the one-stage game

(2.5)
MR(c)

MA

R by I

A by I

Then CEV of the n-stage game (2.1)-(2.2) is

vn = (p̄/2)Ex + (p − p̄/2)E
[
xV (c)|c=(x−1vn−1−p̄/2)/(p−p̄/2)

]
.(2.6)

As is well known in the Nash theory of competitive games the equilibrium is often
undetermined, even in three-person two-choice games, which we investigate in the present
paper. We prepare the following assumption that is held throughout this paper.

Assumption A If the equilibrium consists of some corner and or edge and a unique inner
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point, the latter is adopted for the equilibrium. If equilibrium consists of a single point,
either a corner or inner point, this is adopted for the equilibrium.

Lemma 1.1 The solution to the three-person game (2.5) is : If c < 1, the mixed-strategy
triple (α0, α0, α0), with α0 =

√
1−c√

1−c+
√

2/3
is in eq. If c ≥ 1, the pure-strategy triple R-R-R

is in eq. The CEV is

V (c) =
{

(1 − c/3)/(
√

1 − c +
√

2/3)2, if c < 1,
c, if c ≥ 1.

(2.7)

V (c) is convex and increasing with values
c = −1/3 0 1/3 1/2 1

V (c) = 5(1 − 2
√

2/3) ≈ 0.2859 3(5 − 2
√

6) ≈ 0.3031 1/3 5(7 − 4
√

3) ≈ 0.3590 1
For the proof, see Sakaguchi [5 ; Theorem 1].

Now recalling that c = (x−1vn−1 − p̄/2)/(p − p̄/2) in (2.1), and rewriting vn−1 simply
by v we find that

c = (2x−1v − p̄)/(3p − 1), 1 − c = 2(p − x−1v)/(3p − 1),

1 − c/3 =
2
3
· 4p − 1 − x−1v

3p − 1
, α0 =

√
1 − c√

1 − c +
√

2/3
=

√
px − v√

px − v +
√

(p − 1/3)x
,

and hence, by Lemma 1.1, we obtain

V (c)|c=(x−1v−p̄/2)/(p−p̄/2)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c = (2x−1v − p̄)/(3p − 1), if x < p−1v

(1 − c/3)
/ (√

1 − c +
√

2/3
)2

if x > p−1v

= 1
3{(4p − 1)x − v}

{√
px − v +

√
(p − 1/3)x

}−2

.

Thus the CEV of the n-stage game is, by (2.6),

vn = E

[
(p̄/2)x +

1
2
(3p − 1)xV (c)

∣∣∣
c=(2x−1v−p̄)/(3p−1)

]
(2.8)

=
p̄

4
+

1
2
(3p − 1)E

⎡
⎢⎣2v − p̄x

3p − 1
I(x < p−1v) +

x{(4p − 1)x − v}
3
{√

px − v +
√

(p − 1/3)x
}2 I(x > p−1v)

⎤
⎥⎦

=
p̄

4
+

5p − 1
4p2

v2 +
(

3p − 1
6

)∫ 1

p−1v

x{(4p − 1)x − v}{√
px − v +

√
(p − 1/3)x

}2 dx

if p−1vn−1 < 1 ; and vn = vn−1, if p−1vn−1 > 1.
Before we state Theorem 1, we give two more lemmas. Consider the function

T (v|p) ≡ p̄

4
+
(

5p − 1
4p2

)
v2 +

(
3p − 1

6

)∫ 1

p−1v

x{(4p − 1)x − v}{√
(p − 1/3)x +

√
px − v

}2 dx.(2.9)

for 0 ≤ v ≤ p ; and v, if p ≤ v ≤ 1.
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Lemma 1.2 T (v|p) is positive and increasing in v ∈ [ 16 , p].

Proof. Since the integral part in the r.h.s.of (2.9) is positive for ∀p ∈ (1
3 , 1], we have

T (v|p) > 0, for ∀0 ≤ v < p. And

T ′(v) =
(

5p − 1
2p2

)
v +
(

3p − 1
6

)
∂

∂v

∫ 1

p−1v

x{(4p − 1)x − v}{√
(p − 1/3)x +

√
px − v

}2 dx.

The derivative part in the r.h.s.is equal to

−3p−1u +
∫ 1

u

x
{

(3p − 1)x −
√

p(p − 1
3 )x(x − u)

}
√

p(x − u)(G(x, u))3
dx

where we have set u = p−1v and G(x, u) =
√

(p − 1/3)x+
√

p(x − u) (Note that the integral
in the r.h.s.doesn’t diverge, since

∫ 1

u
dx√
x−u

converges to 2
√

1 − u). Therefore it follows that

T ′(v) = u +
3p − 1

6

∫ 1

u

x
{
(3p − 1)x −√p(p − 1/3)x(x − u)

}
√

p(x − u)(G(x, u))3
dx,(2.10)

where u = p−1v, in the r.h.s.
Now, since 1

3 < p ≤ 1, we have

(3p−1)x−
√

p(p − 1/3)x(x − u) ≥ (3p−1)x−1
2

{
p(x − u) + (p − 1

3
)x
}

=
(

2p − 5
6

)
x+

1
2
pu

and hence T ′(v) > 0, if 5
12 < p ≤ 1.

For 1
3 < p < 5

12 , we obtain from (2.10)

T ′(v) > u −
(

3p − 1
6

)∫ 1

u

x3/2
√

p − 1/3(G(x, u))−3dx

> u −
(

3p − 1
6

)∫ 1

u

(
p − 1

3

)−1

dx

[
cf . G(x, u) ≤ (p − 1

3
)−1/2x−1/2

]

=
1
2
(3u − 1) ≥ 1

2

(
6
5
− 1
)

=
1
10

> 0
[
cf . u = p−1v ≥ 12

5
· 1
6

]

The lemma is proven. �

Note that, from (2.9) and (2.10),

T (p|p) = 1, T (0|p) =
1
4
p̄ +

(3p − 1)(4p − 1)
12

/ (√
p − 1

3
+
√

p

)2

> 0,(2.11)

T ′(p|p) = 1,(2.12)

and

T ′(0|p) =
(p − 1/3)3/2

2
√

p

3
√

p − 1/3 −√
p√

p − 1/3 +
√

p

{
<
>

}
0, if p ∈

{
(1/3, 3/8)
(3/8, 1]

}
.

Lemma 1.3 ∆(p) ≡ T (1
6 |p) − 1

6 ≥ 0, for p ∈ (1
3 , 1).
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Proof. Eq.(2.8) gives

∆(p) =
1 − 3p

12
+

5p − 1
144p2

+
(

3p − 1
6

)∫ 1

(6p)−1

x
{
(4p − 1)x − 1

6

}
{√

(p − 1
3 )x +

√
px − 1

6

}2 dx.

The third term in the r.h.s.is

≥
(

3p − 1
12

)∫ 1

(6p)−1

x
{
(4p − 1)x − 1

6

}
(2p − 1

3 )x − 1
6

dx
[
cf . (

√
A +

√
B)2 ≤ 2(A + B)

]

≥ (3p − 1)(4p − 1)
4(6p − 1)

∫ 1

(6p)−1
xdx.

[
cf .

(4p − 1)x − 1/6
(2p − 1/3)x − 1/6

≥ 1 +
2(3p − 1)
6p − 1

=
3(4p − 1)
6p − 1

]

Therefore

∆(p) ≥ 1 − 3p

12
+

5p − 1
144p2

+
(3p − 1)(4p − 1)

4(6p − 1)
· 1
2

(
1 − 1

36p2

)

= − 3p − 1
24(6p − 1)

+
1

144p2
· 48p2 − 15p + 1

2(6p − 1)

=
−18p3 + 30p2 − (15/2)p + 1/2

144p2(6p − 1)
,

in which the numerator is easily shown to be positive for ∀p ∈ [1/3, 1]. �

Theorem 1 The solution to the three-person game (1.1)-(1.2) for 1
3 < p ≤ 1, is as follows;

The CES in state (n, x) is
Choose R, if x < p−1vn−1,
Employ the mixed strategy 〈ᾱ0(x), α0(x)〉, where

α0(x) =
√

px − vn−1√
px − vn−1 +

√
(p − 1/3)x

, if x > p−1vn−1.

The CEV vn satisfies the recursion

vn = T (vn−1), (n ≥ 2, v1 = 1/6)

where T (v) = T (v|p) is given by (2.8). And as n → ∞, vn ↑ v∞(p) ≡ sup{v ∈ (0, p)|T (v′|p) >
v′, ∀v′ ∈ (0, v)}, for ∀p ∈ (1

3 , 1].

Proof. By Lemma 1.2

vn−1 < vn =⇒ vn = T (vn−1) < T (vn) = vn+1

and by Lemma 1.3,
v2 = T (v1) = T (1/6) ≥ v1.

Therefore induction gives vn ↑ v∞(p).
By Lemma 1.2, together with (2.11) and (2.12), v∞(p) is equal to the stated one.

This completes the proof of the theorem. �

Remark 1 Some special case ; For p = 1 (i.e., Odd-Man-Wins), Eq.(2.8)-(2.9) becomes
vn = T (vn−1), where

T (v) = v2 +
∫ 1

v

x(x − v/3)(√
x − v +

√
2x/3

)2 dx.

See Sakaguchi [5 ; Theorem 2], in which vn ↑ v∞(1) ≈ 0.2057 as n → ∞ is proven.
For p = 1

3 + 0, Eq.(2.9) gives T (v| 13 + 0) = 1
6 + 3

2v2 and vn = 1
6 + 3

2v2
n−1(n ≥ 2, v1 = 1

6 ),
and it is easily shown that vn ↑ 1

3 as n → ∞.
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3 Solution to the Game where 0 ≤ p < 1
3 . For 0 ≤ p < 1

3 , we can rewrite (1.2) as

MnR(x) = pxE + (1 − 3p)xQR(h)|h=(x−1vn−1−p)/(1−3p),(3.1)

MnA(x) = pxE + (1 − 3p)xQA,(3.2)

where

E =
1, 1, 1 1, 1, 1
1, 1, 1 1, 1, 1

QR(h) =
h, h, h 1/2, 1/2, 0

1/2, 0, 1/2 0, 1/2, 1/2
(3.3)

and

QA =
0, 1/2, 1/2 1/2, 0, 1/2

1/2, 1/2, 0 1/3, 1/3, 1/3
(3.4)

where h is a given constant. Note that MnA(x) doesn’t involve n by the same reason as in
Section 2.

Let W (h) be the CEV of the one-stage game

(3.5)
QR(h)

QA

R by I

A by I

Then the CEV of the n-stage game (3.1)-(3.2) is

wn = pEx + E
[
(1 − 3p)xW (h)|h=(x−1wn−1−p)/(1−3p)

]
(3.6)

We refer to a result in Sakaguchi [5 ; Theorem 3].

Lemma 2.1 The solution to the three-person game (3.5) is as follows : For h ≤ 0, the
pure-strategy triple A-A-A is in eq. For h > 0, the mixed-strategy triple (α0, α0, α0), with
α0 =

√
h√

h+
√

1/3
is in eq. The CEV is

W (h) =

⎧⎨
⎩

1/3, if h ≤ 0,√
h/3+h/3(√

h+
√

1/3
)2 , if h > 0.(3.7)

The function is increasing and convex-concave for 0 < h < 3, attains maximum at h = 3,
and decreasing and concave-convex for h > 3. The two points of inflexion are h = 1

3 (9 ±
4
√

5)(≈ 0.018, 5.981). Computation gives
h = 0 1/3 1/2 1 2 3 12 ∞

W (h) = 0 1/3 3
√

6 − 7 ≈ 0.3485 (
√

3 − 1)/2 ≈ 0.3660 0.3739 3/8 18/49 1/3

Hereafter we sometimes write wn−1 simply by w, omitting the subscript.
Since h = (x−1w − p)/(1 − 3p), we obtain, from (3.7),

W (h)|h=(x−1w−p)/(1−3p) =

⎧⎨
⎩

w−px+
√

3(1−3p)x(w−px){√
3(w−px)+

√
(1−3p)x

}2 , if x < p−1w

1/3, if x > p−1w,

and

α0(x) =

√
h√

h +
√

1/3
=

√
w − px√

w − px +
√

(1/3 − p)x
(if x > p−1w)
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Then the CEV of the n-stage game is, by (3.6),

wn = E
[
px + (1 − 3p)xW (h)|h=(x−1w−p)/(1−3p)

]
(3.8)

=
p

2
+ (1 − 3p)E

[
J(x,w)I(x < p−1w) +

x

3
I(x > p−1w)

]

=

⎧⎪⎪⎨
⎪⎪⎩

1
6
− 1 − 3p

6p2
w2 + (1 − 3p)

∫ p−1w

0

J(x,w)dx, if 0 ≤ w ≤ p,

p

2
+ (1 − 3p)

∫ 1

0

J(x,w)dx, if p ≤ w ≤ 1,

where J(x,w) =
x
{

w−px+
√

3(1−3p)x(w−px)
}{√

3(w−px)+
√

(1−3p)x
}2 .

So we arrive at

Theorem 2 The solution to the three-person game (1.1)-(1.2), for 0 ≤ p < 1
3 , is as follows;

The CES in state (n, x) is
Employ the mixed-strategy triple 〈ᾱ0(x), α0(x)〉, with

α0(x) =
√

wn−1 − px√
wn−1 − px +

√
(1/3 − p)x

, if x < p−1wn−1, and

Choose A, if x > p−1wn−1

The CEV satisfies the recursion

wn = U(wn−1) (n ≥ 2, w1 = 1/6)(3.9)

where U(w) = U(w|p) is given by the r.h.s.of (3.8).

We find from (3.8) that

U(0|p) =
p

2
+ (1 − 3p)E(x/3) =

1
6
,

and

U(1|p) =
p

2
+ (1 − 3p)

∫ 1

0

x
{

1 − px +
√

3(1 − 3p)x(1 − px)
}

{√
3(1 − px) +

√
(1 − 3p)x

}2 dx.

Differentiation gives

∂

∂w
U(w|p) =

(
1 − 3p

6

)∫ (p−1w)∧1

0

(1 − 3p)
√

x/(w − px) −√1/3 − p{√
x−1w − p +

√
1/3 − p

}3 dx(3.10)

−
(

1 − 3p

3p2

)
wI(p−1w < 1).

It seems difficult to know further about U(w|p), as well as its increasingness and mono-
tonicity of wn.

Remark 2 Some special cases ; For p = 0 (i.e., Odd-Man-Out), we obtain from (3.8) and
(3.10) that

U(w|0) =
∫ 1

0

√
wx/3 + w/3(√

w/x +
√

1/3
)2 dx.
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And
∂

∂w
U(w|0) =

1
6

∫ 1

0

√
x/w −√1/3(√
w/x +

√
1/3
)3 dx.

These are identical to the result in Sakaguchi [5 ; Theorem 4]. Furthermore it is shown that
wn converges to

w∞ ≡ inf
{

w ∈
(

0,
1
6

) ∣∣∣ U(w′|0) < w′, ∀w′ ∈
(

w,
1
6

)}
≈ 0.1601.

For p = 1/3 − 0, Eq.(3.6) gives U(w|13 − 0) = 1
6 and wn ≡ 1

6 , ∀n ≥ 1.

Remark 3 The game (1.1)-(1.2) has quite different solutions for the two cases 1
3 < p ≤ 1

and 0 ≤ p < 1
3 , as observed in Theorems 1 and 2, although they seemingly look similar in

(1.1)-(1.2). Furthermore the particular cases p = 1
3 ± 0 give somewhat abnormal phase to

the solution of the problem, as is mentioned in Remarks 1 and 2.

Remark 4 Theorems 1 and 2 show that, in the equilibrium, each player chooses R for
small offers (A for large offers), and randomize R and A, for other offers, if arbitration
favors the odd-man side (even-men side). This optimal behavior is almost the same as in
the two-player game version investigated in Ref.[4].
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