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WEIGHTED PRINCIPAL COMPONENT ANALYSIS
BASED ON FUZZY CLUSTERING
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Abstract. In this paper, we propose a weighted principal component analysis (WPCA)
using the result of fuzzy clustering [4]. The principal component analysis (PCA) [1],
[7] is one widely used and well-known data analysis method. However there is a prob-
lem, when the data does not have a structure that the PCA can capture we cannot
obtain any satisfactory results. For the most part, this is due to the uniformity of the
data structure, which means we cannot find any significant proportion or accumulated
proportion for the obtained principal components.

In order to solve this problem, we use the cluster structure and degree of belong-
ingness of objects to clusters, which is obtained as the fuzzy clustering result. By the
introduction of the pre-classification and the degree of belongingness to the data, we
can transform the data into a clearer structured data, so avoiding the noise in the data.

1 Introduction Recently, PCA is the method of multivariate analysis which is the most
widely used. Due to the particular feature of PCA which can represent the main tendency
of an observed data compactly, PCA has been used as a method to follow up a clue when
we can not see any significant structure in the data. Beside the importance of PCA as
an exploratory method, several extended methods of PCA have been proposed with the
viewpoint that PCA can show the ability to the full, by bringing additional considerations
of the observed data into the analysis. For example, constrained PCA (CPCA) [11], [12],
nonlinear PCA [10], and the time dependent principal component analysis [2] are typical
examples of this.

The proposed method in this paper also takes the position that the method is based on
the idea that we try to bring PCA’s ability into full play by introducing pre-information of
the cluster structure of an observed data. The pre-information of the data is represented
as weights based on a fuzzy clustering result. That is, the main difference between conven-
tional PCA and WPCA based on fuzzy clustering is the introduction of cluster degree as
weights on clusters of the observation space. The weights are represented by the product
of the degree of belongingness of objects to fuzzy clusters with respect to the fuzzy clusters
when an object is fixed. Due to a property of the algebraic product and the condition of
the degree of belongingness, these weights can show how much the data has the clustering
structure. According to weighted linear combination, we can show that the estimates of
principal components for WPCA based on fuzzy clustering are obtained in a similar way
as in conventional PCA. The time dependent principal component analysis [2] also intro-
duces weights to PCA, however, the analysis dose not use the cluster structure of the data.
Moreover, a possibilistic regression model [13], the switching regression model [6], and the
weighted regression analysis based on fuzzy clustering [9] are among several examples of
research that introduced the concept of fuzziness to the regression model.
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This paper is organized as follows: in section 2, we explain conventional principal com-
ponent analysis. A fuzzy clustering method used in this paper is mentioned in section 3.
In section 4, we propose the weighted principal component analysis based on the fuzzy
clustering. Section 5 states several numerical examples for showing the validity and the
better performance of the proposed weighted principal component analysis. The conclusion
is given in section 6.

2 Principal Component Analysis (PCA) When we obtain the observation of objects
with respect to variables, PCA assumes that there are several main components (factors)
caused by the relationship of the variables. The purpose of PCA is to obtain the components
from the data and capture the feature of the objects. That is, PCA abstracts the data to
the main components and finds the feature of the obtained data.

The observed data which are values of p variables with respect to n objects are denoted
by the following:

(1) X = (xia), i = 1, · · · , n, a = 1, · · · , p.

Suppose the first principal component z1 which is defined as the following linear combina-
tion:

(2) z1 = Xl1,

where l
′
1 = (l11, l12, · · · , l1p).

The purpose of PCA is to estimate l1 which maximizes the variance of z1 under the
condition of l

′
1l1 = 1. The variance of z1 is as follows:

(3) V {z1} = V {Xl1} = l
′
1V {X}l1 = l

′
1Σl1,

where, V {·} shows the variance of · and Σ is a variance-covariance matrix of X . Using the
Lagrange’s method of indeterminate multiplier, the following condition is needed for which
l1 has non-trivial solution.

(4) |Σ − λI| = 0,

where λ is an indeterminate multiplier and I is a unit matrix. (4) is the characteristic
equation, so λ is obtained as an eigen-value of Σ. Using (4) and the condition l

′
1l1 = 1, we

obtain

(5) l
′
1Σl1 = λl

′
1l1 = λ.

From (3) and (5), V {z1} = λ. So, l1 is determined as the corresponding eigen-vector for
the maximum eigen-value of Σ.

In order to obtain the second principal component z2, we define the following linear
combination:

(6) z2 = Xl2,

where l
′
2 = (l21, l22, · · · , l2p). We need to estimate l2 which maximizes the variance of z2

under the condition of l
′
2l2 = 1 and covariance of z1 and z2 is 0, that is, z1 and z2 are

mutually uncorrelated. If we denote the covariance between z1 and z2 as cov{z1, z2}, then
this condition is represented as follows:

cov{z1, z2} = cov{Xl1, Xl2} = l
′
1cov{X, X}l2 = l

′
1Σl2 = λl

′
1l2 = 0.
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That is, we need to estimate l2 which satisfy (Σ − λI)l2 = 0 under the conditions l
′
2l2 = 1

and l
′
1l2 = 0. From the fact that the eigen-vectors corresponding to the different eigen-

values are mutually orthogonal, l2 is found as the eigen-vector corresponding to the second
largest eigen-value of Σ. If we get k (k ≤ p) different eigen-values of Σ, according to the
above, we find the k principal components.

As an indicator which can show how many principal components are needed to ex-
plain the data satisfactory, the proportion has been proposed. The proportion of the α-th
principal component Cα is defined as:

(7) Cα =
λα

tr(Σ)
.

From V {zα} = λα and
∑p

α=1 λα = tr(Σ), Cα can explain the importance of the α-th
principal component. Also, the accumulated proportion until k-th principal components is
defined as:

(8) P =
k∑

α=1

Cα.

In order to get the interpretation of the obtained principal components, the factor loading
rα,j which is defined as a correlation coefficient between the α-th principal component zα

and the j-th variable xj has been proposed as following:

(9) rα,j =
cov{zα, xj}√
V {zα}V {xj}

=
√

λαlαj√
σjj

,

where σjj is variance of xj .

3 Fuzzy Clustering Conventional clustering means classifying the given observation
into exclusive subsets (clusters). That is, we can discriminate clearly if an object belongs to a
cluster or not. However, such a partition is hardly enough to represent many real situations.
Then a fuzzy clustering method is offered to contract clusters with vague boundaries, namely
this method allows that one object belongs to some overlapping clusters with some grades.
In other words, the essence of fuzzy clustering is to consider not only the belonging status
to the assumed clusters, but also to consider how much the objects belong to the clusters.
So, there is a merit to representing the complex data situations of real data.

The state of fuzzy clustering is represented by a partition matrix U = (uik) whose ele-
ments show the grade of belongingness of the objects to the clusters, uik, i = 1, · · · , n, k =
1, · · · , K, where n is number of objects and K is number of clusters. In general, uik satisfies
the following conditions:

(10) uik ∈ [0, 1],
K∑

k=1

uik = 1.

Fuzzy c-means (FCM) [3] is one of the methods of fuzzy clustering. FCM is the method
which minimizes the weighted within-class sum of square:

(11) J(U, v1, · · · , vK) =
n∑

i=1

K∑
k=1

(uik)m
d2(xi, vk),

where vk = (vka), k = 1, · · · , K, a = 1, · · · , p denotes the value of the centroid of cluster k,
xi = (xia), i = 1, · · · , n, a = 1, · · · , p is i-th object, and d2(xi, vk) is the square Euclidean
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distance between xi and vk. The exponent m which determines the degree of fuzziness of
the clustering is chosen from [1,∞) in advance. The purpose is to obtain the solutions U
and v1, · · · , vK which minimize (11), and the solutions are obtained by Picard iteration of
the following expressions:

uik =
1

K∑
j=1

{d(xi, vk)/d(xi, vj)} 2
m−1

, vk =

n∑
i=1

(uik)mxi

n∑
i=1

(uik)m

, i = 1, · · · , n; k = 1, · · · , K.

From (11), we can rewrite as:

J(U, v1, · · · , vK) =
n∑

i=1

K∑
k=1

(uik)m
d2(xi, vk)

=
n∑

i=1

K∑
k=1

(uik)m (xi − vk, xi − vk)

=
n∑

i=1

K∑
k=1

(uik)m (xi − hk + hk − vk, xi − hk + hk − vk)

=
n∑

i=1

K∑
k=1

(uik)m [(xi − hk, xi − hk) + 2(xi − hk, hk − vk)

+(hk − vk, hk − vk)],

where (·, ·) denotes real inner product. If we assume

hk =

n∑
i=1

(uik)mxi

n∑
i=1

(uik)m

,

then minimizer of (11) is shown as:

(12) J(U) =
K∑

k=1




n∑
i=1

n∑
j=1

((uik)m(ujk)mdij)/(2
n∑

l=1

(ulk)m)


 ,

using

2
n∑

l=1

(ulk)m
n∑

i=1

(uik)m(xi − hk, xi − hk) =
n∑

i=1

n∑
l=1

(uik)m(ulk)m(xi − xl, xi − xl),

and dij = d(xi, xj). When m = 2, (12) is the objective function of the FANNY algorithm.
The detail of the FANNY algorithm is shown in [8].

4 Weighted Principal Component Analysis (WPCA) based on Fuzzy Cluster-
ing We apply a fuzzy clustering method to the data matrix X shown in (1) and obtain the
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degree of belongingness U = (uik), i = 1, · · · , n, k = 1, · · · , K. Using the obtained U , we
define the weight matrix W as follows:

W =




K∏
k=1

u−1
1k 0 · · · · · · 0

0
K∏

k=1

u−1
2k 0 · · · 0

...
...

...
...

...

0 · · · · · · 0
K∏

k=1

u−1
nk




≡




w1 0 · · · · · · 0
0 w2 0 · · · 0
...

...
...

...
...

0 · · · · · · 0 wn


 .

Then we introduce the following weighted matrix WX :
(13)

WX =




w1 0 · · · · · · 0
0 w2 0 · · · 0
...

...
...

...
...

0 · · · · · · 0 wn







x11 · · · x1p

...
...

...
xn1 · · · xnp


 =




w1x11 · · · w1x1p

...
...

...
wnxn1 · · · wnxnp


 .

In order to avoid 0−1, we replace (10) as the following condition:

(14) uik ∈ (0, 1),
K∑

k=1

uik = 1.

From the property of the algebraic product and the condition (14), we can see that if

uik =
1
K

, for ∃i, ∀k, then
K∏

k=1

u−1
ik (= wi), (∃i) takes minimum value. And if uik is close

to 1 for ∃k,∃i, then
K∏

k=1

u−1
ik (= wi), (∃i) is close to maximum value. That is, the weight wi

shows that if the belonging status of the object i to the clusters is clearer, then the weight
becomes larger. Otherwise, if the belonging status of the object i is more vague situation,
that is, the cluster structure of the data is close to uniformity, then the weight becomes
small. So, WX shows that clearer objects under the cluster structure have larger values
and that the objects which are vaguely situated under the clustering are avoided such as
those which do not have any significant relation to the clustering for example observations
which are treated as noise.

Suppose z̃1 is the first principal component of the transformed data WX shown in (13).
z̃1 is defined as:

(15) z̃1 = WX l̃1,

where l̃
′

1 = (l̃11, l̃12, · · · , l̃1p). The purpose of the WPCA based on fuzzy clustering is to

estimate l̃1 which maximizes the variance of z̃1 under the condition of l̃
′

1l̃1 = 1. The
variance of z̃1 is as follows:

(16) V {z̃1} = V {WX l̃1} = V {X̃ l̃1} = l̃
′

1Σ̃l̃1,

where, WX ≡ X̃, Σ̃ = X̃
′
X̃ = (WX)

′
(WX) = X

′
WWX .
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Using the Lagrange’s method of indeterminate multiplier, the following condition is
needed for which l̃1 has non-trivial solution.

(17) |Σ̃ − λ̃I| = 0,

where λ̃ is an indeterminate multiplier and I is a unit matrix. (17) is the characteristic

equation, so λ̃ is obtained as an eigen-value of Σ̃. Using (17) and the condition l̃
′

1l̃1 = 1,
we obtain

(18) l̃
′

1Σl̃1 = λ̃l̃
′

1l̃1 = λ̃.

From (16) and (18), V {z̃1} = λ̃. So, l̃1 is determined as the corresponding eigen-vector for
the maximum eigen-value of Σ̃. In order to obtain the second principal component z̃2 for
X̃, we define the following linear combination:

(19) z̃2 = X̃ l̃2,

where l̃
′

2 = (l̃21, l̃22, · · · , l̃2p). We need to estimate l̃2 which maximizes the variance of z̃2

under the condition of l̃
′

2l̃2 = 1 and covariance of z̃1 and z̃2 is 0, that is, z̃1 and z̃2 are
mutually uncorrelated and which is represented as follows:

cov{z̃1, z̃2} = cov{X l̃1, X̃ l̃2} = l̃
′

1cov{X̃, X̃}l̃2 = l̃
′

1Σ̃l̃2 = λ̃l̃
′

1 l̃2 = 0,

where cov{z̃1, z̃2} shows covariance between z̃1 and z̃2. That is, we need to estimate l̃2

which satisfy (Σ̃ − λ̃I )̃l2 = 0 under the conditions l̃
′

2 l̃2 = 1 and l̃
′

1l̃2 = 0. From the fact
that the eigen-vectors corresponding to the different eigen-values are mutually orthogonal,
l̃2 is found as the eigen-vector corresponding to the second largest eigen-value of Σ̃. If we
get k (k ≤ p) different eigen-values of Σ̃, according to the above, we find the k principal
components for X̃.

The proportion of α-th principal component for WPCA based on fuzzy clustering, C̃α,
is proposed as follows:

(20) C̃α =
λ̃α

tr(Σ̃)
,

where V {z̃α} = λ̃α and
∑p

α=1 λ̃α = tr(Σ̃). The accumulated proportion until k-th principal
components for WPCA based on fuzzy clustering is defined as:

(21) P̃ =
k∑

α=1

C̃α.

The factor loading r̃α,j between the α-th principal component z̃α and the j-th variable x̃j

is proposed as the following:

(22) r̃α,j =
cov{z̃α, x̃j}√
V {z̃α}V {x̃j}

=

√
λ̃α l̃αj√
σ̃jj

,

where σ̃jj is variance of x̃j .



WPCA BASED ON FUZZY CLUSTERING 365

5 Numerical Example The data is Fisher iris data [5]. The data consists of 150 samples
of iris flowers with respect to four variables, sepal length, sepal width, petal length, and
petal width. The samples are observed from three kinds of iris flowers, iris sestosa, iris
versicolor, and iris virginica.

Figure 1 shows the result of PCA for the iris data. In this figure, the abscissa shows the
values of first principal component shown in (2) and the ordinate is the values of the second
principal component shown in (6). ”s” means iris sestosa, ”c” means iris versicolor, and
”v” is iris virginica. From this figure, we can see iris sestosa (the symbol is ”s”) is clearly
divided from iris versicolor and iris virginica (the symbols are ”c” and ”v”).

Figure 2 shows the proportion (shown in (7)) and accumulated proportion (shown in (8))
of the four components. In this figure, the abscissa shows each component and the ordinate
shows the values of the proportion of each component. Also the value on the barplot shows
the accumulated proportion. From this figure, we can see that it can almost be explained
by the first and the second principal components. However, we can not ignore the third
principal component completely.

Figure 3 shows the result of WPCA based on fuzzy clustering. As a weight W in (13),
we use a fuzzy clustering result which is obtained by using the FANNY algorithm whose
objective function is (12) when m = 2. In figure 3, the abscissa shows the values of the
first principal component and the ordinate is the values of the second principal component.
From this figure, we can see a clear distinction between iris sestosa (the symbol is ”s”) and
iris versicolor, iris virginica (the symbols are ”c” and ”v”), comparing the result shown in
figure 1.

Figure 4 shows the proportion (shown in (20)) and accumulated proportion (shown
in (21)) of WPCA based on fuzzy clustering result. In this figure, the abscissa shows
each principal component and the ordinate is the values of proportion for each principal
component. The value on the barplot is the accumulated proportion for each principal
component. Through a comparison between figure 2 and figure 4, we can see the higher
value of the accumulated proportion until the second principal component in WPCA based
on fuzzy clustering (0.991) than the value of the accumulated proportion until the second
principal component of PCA (0.958). This shows the higher discrimination ability with
WPCA based on fuzzy clustering. Moreover, we can not see any significant meaning for
the third principal component from the result of the proportion of WPCA based on fuzzy
clustering shown in figure 4. So, we can avoid the noise of the data by the introduction of
the weights based on the fuzzy clustering result.
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Figure 2 Barplot of Proportion for PCA
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Figure 3 Result of WPCA based on Fuzzy Clustering for Iris Data
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Tables 1 and 2 show the squared value of λα shown in (5) and the squared value of λ̃α

shown in (18), respectively. In these tables comp.1 shows the first principal component,
comp.2 shows the second principal component, comp. 3 is the third principal component,
and comp. 4 is the forth principal component. From the comparison between the results
of tables 1 and 2, we can see the higher value for the second principal component in table
2 than the value for the second principal component in table 1. Moreover, we can see the
smaller values for the third and the forth principal components in table 2 as compared to
the values for the third and the forth principal components in table 1. From this again,
we can see that the WPCA based on fuzzy clustering has a high capability to capture the
significance of the latent data structure clearly and tends to avoid the noise of the data,
although the value for the first principal component becomes smaller in table 2.

Table 1 Standard Deviations for Principal Components in PCA

Comp. Comp. 1 Comp. 2 Comp. 3 Comp. 4
SD 1.71 0.96 0.38 0.14

Table 2 Standard Deviations for Principal Components in WPCA
based on Fuzzy Clustering

Comp. Comp. 1 Comp. 2 Comp. 3 Comp. 4
SD 1.66 1.11 0.19 0.05

Moreover, tables 3 and 4 show the results of factor loadings which are shown in (9) and
(22), respectively. The values of these tables show the values of the factor loadings which
can show the relationship between each principal component and each variable. So, from
these results, we can see how each component is explained by the variables. It is related
with the interpretation of each component. In these tables, Sepal L. shows sepal length,
Sepal W. shows sepal width, Petal L. shows petal length, and Petal W. is the petal width.

Table 3 Factor Loading in PCA

Comp. Comp. 1 Comp. 2 Comp. 3 Comp. 4
Sepal L. 0.52 0.38 0.72 0.26
Sepal W. -0.27 0.92 -0.24 -0.12
Petal L. 0.58 0.00 -0.14 -0.80
Petal W. 0.57 0.00 -0.63 0.52

Table 4 Factor Loading in WPCA based on Fuzzy Clustering

Comp. Comp. 1 Comp. 2 Comp. 3 Comp. 4
Sepal L. 0.57 -0.32 -0.14 0.75
Sepal W. 0.54 -0.4 -0.37 -0.64
Petal L. 0.56 0.31 0.75 -0.15
Petal W. 0.27 0.80 -0.53 0.00

From the comparison between the results of tables 3 and 4, we can see quiet different
results. For example, in table 3, the first principal component is mainly explained by the
variables, sepal length, petal length, and petal width. However, in table 4, we can see
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that the first principal component is explained by the variables, sepal length, sepal width,
and petal length. Moreover, for the second principal component, we can see the difference,
that is, in table 3, the second principal component is represented by the strong relationship
of the variable sepal width, but in table 4, we can see the high correlation between the
second principal component and the variable petal width. From this, we can see that we
can capture the components which have different meaning from conventional PCA by using
WPCA based on fuzzy clustering. In other words, the ability to capture the different latent
factors of the data is shown by introducing the cluster structure of the data.

6 Conclusion We proposed a weighted principal component analysis using the result of
fuzzy clustering. If the cluster structure which are obtained by the fuzzy clustering and the
principal component structure are the same, then the two results are essentially the same.
However, normally both structures are different, we can obtain the different result from the
result of conventional PCA by using the proposed method.

From several numerical examples, we showed higher discrimination ability of the pro-
posed method compared with conventional PCA.
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