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BOREL PRODUCTS OF RIESZ SPACE-VALUED MEASURES
ON TOPOLOGICAL SPACES

JUN KAWABE

Received April 16, 2004

Abstract. The purpose of the paper is to show the existence and uniqueness of the
Borel product of two Dedekind complete Riesz space-valued σ-measures on completely
regular spaces. It is also shown that the operation making such a Borel product is jointly
continuous with respect to weak order convergence of measures.

1. Introduction

Let X be a Hausdorff space and V a Dedekind complete Riesz space. Denote by B(X)
the σ-field of all Borel subsets of X . A V -valued σ-measure on X is a finitely additive set
function µ : B(X) → V such that µ(∪∞

n=1An) = supn∈N

∑n
k=1 µ(Ak) whenever {An}n∈N is a

sequence of pairwise disjoint sets in B(X). If V possesses a Hausdorff vector topology τ for
which each upper bounded, increasing sequence in V converges in the τ -topology to its least
upper bound, V -valued σ-measures are ordinary topological vector space-valued measures
that are fairly well understood; see Diestel and Uhl [7], Dinculeanu [8], and Kluvánek and
Knowles [13]. But V need not possess any such topology; see Floyd [9].

In usual measure theory on topological spaces, the notion of a Borel product measure is
of central importance. In Wright [21, Theorem 1.7], a general definition is given of what is
meant by a Borel product of two σ-measures on locally compact spaces in the case that those
σ-measures take values in monotone complete, partially ordered vector spaces. Further,
some conditions which imply the existence and uniqueness of such product measures are
established.

The main purpose of the paper is to show the existence and uniqueness of the Borel
product of two Dedekind complete Riesz space-valued σ-measures on completely regular
spaces. In the process of the extension, the crucial step is to find a necessary and sufficient
condition that yields an analogue of the Riesz representation theorem in our setting, that
is, a condition that a given positive linear mapping T from C(X), the space of all bounded,
continuous, real-valued functions on X , into a Dedekind complete Riesz space V can be
uniquely represented by a V -valued σ-measure µ on X such that T (f) =

∫
X fdµ for all

f ∈ C(X). A successful analogue of the Riesz representation theorem was first proved by
Wright [18, Theorem 4.1] in the case that X is compact. See also [19, Theorem 1] for the
case that X is locally compact.

In Section 2 we recall some basic facts about Riesz spaces and give some preliminary
results about Riesz space-valued σ-measures and regularities of such measures on a topo-
logical space. The results explained in the preceding paragraph are obtained in Sections 3
and 4.
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When both X and Y are compact, some results of the paper reduce to the special case of
the results in Wright [18, 19, 20, 21]. However, our work will be needed to develop the theory
of weak order convergence of Riesz space-valued σ-measures, in which we usually assume
that the involved measures are defined on metric spaces or more generally on completely
regular spaces; see Boccuto and Sambucini [3] and [10, 11, 12].

As an application in this light, we show in Section 5 that the operation making the Borel
product of two Riesz space-valued σ-measures is jointly continuous with respect to weak
order convergence of measures.

2. Notation and preliminaries

All the topological spaces in this paper are supposed to be Hausdorff. Denote by R

and N the set of all real numbers and the set of all natural numbers, respectively. In this
section we recall some basic facts about Riesz spaces and give some preliminary results
about regularities of Riesz space-valued σ-measures.

2.1. Riesz spaces. A Riesz space is said to be Dedekind complete if every non-empty subset
that is bounded above has a least upper bound. Every Dedekind complete Riesz space is
Archimedean (Zaanen [22, Theorem 12.3]).

Let V be a Riesz space and put V + := {u ∈ V : u ≥ 0}. Given a net {uα}α∈Γ in V and
u ∈ V we write uα ↓ u to mean that it is decreasing and infα∈Γ uα = u. The meaning of
uα ↑ u is analogous. A net {uα}α∈Γ is said to converge in order to u and is denoted by
uα

o−→ u or limα∈Γ uα = u if there is a net {pα}α∈Γ in V with pα ↓ 0 such that |u−uα| ≤ pα

for all α ∈ Γ. In [22, Lemma 10.1 and Theorem 10.2] some properties of order convergence
are formulated and proved for sequences in a Riesz space, but the analogous properties
are also valid for nets with appropriate modifications. See [12, Proposition 1] for precise
formulae.

In this paper we also need the notions of the limes superior and the limes inferior of
a net in a Riesz space. Let {uα}α∈Γ be an order bounded net in a Dedekind complete
Riesz space V . Then xβ := supα≥β uα exists in V for each β ∈ Γ, and a net {xβ}β∈Γ is
decreasing and bounded below. By the Dedekind completeness of V , there is an element
x ∈ V such that xβ ↓ x and we write x := lim sup uα. Similarly, we write y := lim inf uα,
where yβ := infα≥β uα for each β ∈ Γ and yβ ↑ y. The properties of the limes superior and
limes inferior of nets in V are very much analogous to the properties of those of nets in R.
See [12, Proposition 2] for precise formulae.

Let e ∈ V with e > 0. Denote by Ve the principal ideal generated by the element e, that
is, Ve := {u ∈ V : |u| ≤ re for some r ∈ R with r > 0}. Then, Ve is an AM-space with order
unit e under the order unit norm ‖u‖e := inf{r > 0 : |u| ≤ re}, so that by the Kakutani-
Krein theorem (Schaefer [16, Theorem II.7.4]), it is isometrically and lattice isomorphic to
C(S), the space of all (bounded) continuous real-valued functions on a compact Hausdorff
space S. Since V is Dedekind complete, so also is Ve. Hence S is Stonean, that is, the
closure of every open subset of S is also open [16, Corollary to Proposition II.7.7]. See also
Aliprantis and Burkinshaw [1] and Luxemburg and Zaanen [15] for further information on
Riesz spaces.

2.2. σ-measures. Let X be a topological space. Denote by B(X) the σ-field of all Borel
subsets of X , that is, the σ-field generated by the open subsets of X . Denote by C(X) the
Banach lattice of all bounded, continuous, real-valued functions on X with lattice norm
‖f‖ := supx∈X |f(x)|.

Let V be a Dedekind complete Riesz space. A finitely additive, positive set function
µ : B(X) → V is called a σ-measure on X if whenever {An}n∈N is a sequence of pairwise
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disjoint sets in B(X) then µ(∪∞
n=1An) = supn∈N

∑n
k=1 µ(Ak). We emphasize that only

measures taking positive values are considered. As in the scalar case, every σ-measure has
the monotone sequential continuity from below and from above, in other words whenever
{An}n∈N is an increasing sequence of sets in B(X) then µ(∪∞

n=1An) = supn∈N µ(An) and
whenever it is decreasing then µ(∩∞

n=1An) = infn∈N µ(An), respectively.
In Wright [18, 20] an integral of a measurable real-valued function with respect to a

V -valued σ-measure is constructed, and successful analogues of the monotone convergence
theorem and the Lebesgue convergence theorem are obtained. We shall use them freely in
this paper.

2.3. Some regularities of σ-measures. As in usual measure theory on topological spaces we
shall need to introduce some regularities for Riesz space-valued σ-measures to develop the
theory. Let X be a topological space and V a Dedekind complete Riesz space.

Definition 1. Let µ be a V -valued σ-measure on X .
(i) µ is said to be quasi-regular if whenever G is an open subset of X then

µ(G) = sup {µ(F ) : F ⊂ G and F is closed}.
(ii) µ is said to be quasi-Radon if whenever G is an open subset of X then

µ(G) = sup {µ(K) : K ⊂ G and K is compact},
and it is said to be tight if the above condition holds for G = X .

(iii) µ is said to be τ-smooth if whenever {Gα}α∈Γ is an increasing net of open subsets of
X with G = ∪α∈ΓGα then µ(G) = supα∈Γ µ(Gα).

Remark. The notions of regular and Radon σ-measures will be defined by the same way as
in the scalar case. We omit their definitions because they are not used in the present paper.

Lemma 1. Let µ be a V -valued σ-measure on X.
(i) µ is quasi-regular if and only if for each open subset G of X there are nets {pα}α∈Γ in

V with pα ↓ 0 and {Fα}α∈Γ of closed subsets of X such that Fα ⊂ G and µ(G−Fα) ≤
pα for all α ∈ Γ.

(ii) µ is quasi-Radon if and only if for each open subset G of X there are nets {pα}α∈Γ

in V with pα ↓ 0 and {Kα}α∈Γ of compact subsets of X such that Kα ⊂ G and
µ(G − Kα) ≤ pα for all α ∈ Γ.

(iii) µ is tight if and only if there are nets {pα}α∈Γ in V with pα ↓ 0 and {Kα}α∈Γ of
compact subsets of X such that µ(X − Kα) ≤ pα for all α ∈ Γ.

Further, the above nets {Fα}α∈Γ and {Kα}α∈Γ can be chosen to be increasing.

Proof. (i) The proof of “if” part: Let G be an open subset of X and put u := sup {µ(F ) :
F ⊂ G and F is closed}. It follows from assumption that µ(G) ≤ µ(Fα) + pα ≤ u + pα for
all α ∈ Γ. Since pα ↓ 0, we have µ(G) ≤ u. Whereas, u ≤ µ(G) and thus µ(G) = u.

The proof of “only if” part: Let G be an open subset of X and put F := {F : F ⊂
G and F is closed}. Then F becomes a directed set under the partial ordering defined by
the usual set inclusion. For each F ∈ F , put pF := µ(G−F ). Then {pF}F∈F is a decreasing
net and inf{pF : F ∈ F} = 0. Thus, the nets {pF}F∈F and {F}F∈F are the seeking ones.

The proofs of assertions (ii) and (iii) are analogous.

Lemma 2. Let µ be a V -valued σ-measure on X. Then the following two conditions are
equivalent.

(i) µ is tight and quasi-regular.
(ii) µ is quasi-Radon.
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Proof. The implication that (ii) implies (i) is obvious and we prove the implication that (i)
implies (ii).

Let G be an open subset of X . By Lemma 1 the tightness and quasi-regularity of µ
imply that there are nets {pα}α∈Γ and {qβ}β∈Λ in V with pα ↓ 0 and qβ ↓ 0, {Kα}α∈Γ of
compact subsets of X , and {Fβ}β∈Λ of closed subsets of G such that

µ(X − Kα) ≤ pα and µ(G − Fβ) ≤ qβ(1)

for all α ∈ Γ and β ∈ Λ.
Since the index sets Γ and Λ are directed sets, so is Γ×Λ under the canonical coordinate-

wise ordering.
For each (α, β) ∈ Γ×Λ, put Dα,β := Kα ∩ Fβ and rα,β := pα + qβ . Then each Dα,β is a

compact subset of G and it follows from (1) that

µ(X) − µ(Dα,β) ≤ µ(X − Kα) + µ(X − Fβ)

≤ pα + µ(X − G) + qβ

= µ(X) − µ(G) + pα + qβ .

Thus µ(G − Dα,β) ≤ rα,β for all (α, β) ∈ Γ × Λ. Since rα,β ↓ 0 by [15, Theorem 15.8], the
quasi-Radonness of µ follows from Lemma 1.

Lemma 3. Every quasi-Radon V -valued σ-measure µ on X is τ-smooth.

Proof. Let {Gα}α∈Γ be an increasing net of open subsets of X with G = ∪α∈ΓGα. Then
µ(G) is obviously an upper bound of {µ(Gα)}α∈Γ.

Let u ∈ V satisfying µ(Gα) ≤ u for all α ∈ Γ. If K is a compact subset of G, then there
is α0 ∈ Γ such that K ⊂ Gα0 , so that µ(K) ≤ µ(Gα0) ≤ u. Since µ is quasi-Radon, we have
µ(G) = sup{µ(K) : K ⊂ G and K is compact} ≤ u. Hence µ(G) = supα∈Γ µ(Gα) and this
implies the τ -smoothness of µ.

The following result can be proved as in the case of scalar measures; see [11, Proposition 4]
for the proof.

Proposition 1. Let µ be a τ-smooth V -valued σ-measure on X. Let {fα}α∈Γ be a uni-
formly bounded, increasing net of lower semicontinuous real-valued functions on X. Then∫

X
fdµ = limα∈Γ

∫
X

fαdµ = supα∈Γ

∫
X

fαdµ whenever f = supα∈Γ fα is the pointwise
supremum of fα.

The following lemma will be used to prove the uniqueness of a representing measure in
our Riesz representation theorem; see Theorem 1 below.

Lemma 4. Assume that X is completely regular. Let µ and ν be τ-smooth V -valued σ-
measures on X. If

∫
X fdµ =

∫
X fdν for each f ∈ C(X) then µ = ν on B(X).

Proof. Let G be an open subset of X . We first show that µ(G) = ν(G). Since χ
G

is lower
semicontinuous, there is an increasing net {fα}α∈Γ of continuous real-valued functions on X
such that 0 ≤ fα ≤ χ

G
for all α ∈ Γ and χ

G
(x) = supα∈Γ fα(x) for all x ∈ X [5, Chapter IX,

Section 1, Proposition 5]. Since µ and ν are τ -smooth, it follows from assumption and
Proposition 1 that

µ(G) =
∫

X

χ
G

dµ = sup
α∈Γ

∫
X

fαdµ = sup
α∈Γ

∫
X

fαdν =
∫

X

χ
G

dν = ν(G).

Next we show that µ = ν on B(X). Put A := {A ∈ B(X) : µ(A) = ν(A)}. By the
preceding paragraph, A contains all open subsets of X . It is readily seen that A is a
Dynkin system. Thus it follows from the Dynkin system theorem [2, Theorem 4.1.2] that
A contains B(X), and this implies that µ(A) = ν(A) for all A ∈ B(X).
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Denote by Θ the set of all mappings from N into N. A Dedekind complete Riesz space V is
said to weakly σ-distributive if infθ∈Θ supi∈N qi,θ(i) = 0 whenever {qi,j} is an order bounded,
double sequence in V satisfying qi,j ≥ qi,j+1 for each i, j ∈ N and infj∈N qi,j = 0 for each
i ∈ N. By Lemma 2 and [12, Theorem 3], every weakly σ-distributive, Dedekind complete
Riesz space-valued σ-measure on any complete separable metric space is quasi-Radon.

3. An analogue of the Riesz representation theorem

Let X be a topological space and V a Dedekind complete Riesz space. Denote by B(X)
the Banach lattice of all bounded, Borel measurable real-valued functions on X with lattice
norm ‖f‖ := supx∈X |f(x)|.

In this section we give a necessary and sufficient condition (tightness condition) which
assures the validity of an analogue of the Riesz representation theorem for a positive linear
mapping from C(X) into V . We first extend [18, Proposition 4.1] to the case that X is not
necessarily compact.

Proposition 2. Let X be a completely regular space and Y a compact space. Let T :
C(X) → C(Y ) be a positive linear mapping. Assume that there are nets {pα}α∈Γ in C(Y )
with pα ↓ 0 and {Kα}α∈Γ of compact subsets of X such that T (f) ≤ pα whenever α ∈ Γ
and f ∈ C(X) with 0 ≤ f ≤ 1 and f(Kα) = {0}. Put N := {y ∈ Y : infα∈Γ pα(y) > 0}.
Then there is a mapping T̃ : B(X) → B(Y ) such that

(i) T̃ is positive and linear,
(ii) for each f ∈ C(X), T̃ (f)(y) = T (f)(y) for all y �∈ N ,
(iii) if {fn}n∈N is a uniformly bounded sequence in B(X) which converges pointwise to f ,

then f ∈ B(X) and

T̃ (f)(y) = lim
n→∞ T̃ (fn)(y) for all y ∈ Y,

(iv) if f is a lower semicontinuous real-valued function on X, then

T̃ (f)(y) = sup{T (g)(y) : 0 ≤ g ≤ f, g ∈ C(X)} for all y �∈ N,

and hence T̃ (f) is lower semicontinuous on Y − N .

Proof. For each y �∈ N , define a positive linear functional ϕy on C(X) by ϕy(f) := T (f)(y)
for all f ∈ C(X).

Fix ε > 0 and y �∈ N . Since infα∈Γ pα(y) = 0, there is α0 ∈ Γ with 0 ≤ pα0(y) < ε. It
follows from assumption that ϕy(f) = T (f)(y) < ε whenever f ∈ C(X) with 0 ≤ f ≤ 1
and f(Kα0) = {0}. Then, it is easily verified that the functional ϕy satisfies assumptions
of Proposition III.2.1 [6], so that there is a finite, positive Radon measure my on X such
that T (f)(y) =

∫
X fdmy for all f ∈ C(X).

For each f ∈ B(X), put

T̃ (f)(y) :=

{∫
X fdmy, y �∈ N,

0, y ∈ N.

We shall prove that T̃ satisfies properties (i)–(iv) and it maps B(X) into B(Y ).
The proofs of properties (i) and (ii) are obvious, and property (iii) follows from a stan-

dard argument in measure theory. Property (iv) follows from [4, Chapter IX, Section 5,
Proposition 1].

It remains to prove that T̃ maps B(X) into B(Y ). Let f ∈ B(X) and put hf (y) :=
T̃ (f)(y) =

∫
X fdmy for all y �∈ N . Since T is norm bounded, it is easy to prove that T̃

maps B(X) into the space of all bounded, real-valued functions on Y . Since the pointwise
infimum of continuous functions pα is lower semicontinuous, N = {y ∈ Y : infα∈Γ pα(y) > 0}
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is a Borel subset of Y . Thus, to prove that T̃ (f) ∈ B(Y ) we have only to show that the
function hf is Borel measurable on Y − N .

Put A := {A ∈ B(X) : hχA ∈ B(Y −N)}. By property (iv), A contains all open subsets
of X , and by property (iii) it is readily seen that A is a Dynkin system. Thus, it follows
from the Dynkin system theorem that A contains B(X), so that hf ∈ B(Y − N) whenever
f is a Borel measurable simple function on X .

Since each bounded, Borel measurable function is the pointwise limit of uniformly bounded
sequence of Borel measurable simple functions [2, Theorem 1.5.5], it follows from property
(iii) that hf ∈ B(Y − N) for all f ∈ B(X), and the proof is complete.

Let S be a compact Stonean space. Denote by M the σ-ideal of all meagre Borel subsets
of S. Let κ be a canonical C(S)-valued σ-measure on S such that
(κ1) M is the kernel of κ,
(κ2) κ(A) = χ

A
for each clopen subset A of S.

The existence of κ follows from [18, page 118] and κ is called the Birkhoff-Ulam C(S)-valued
σ-measure on S.

The following lemma has been already given in [18] implicitly.

Lemma 5. Let κ be the Birkhoff-Ulam C(S)-valued σ-measure on S. Then
∫

S
fdκ = f for

all f ∈ C(S).

Proof. Fix f ∈ C(S). Let Φ be the set of all finite linear combinations with real coefficients
of the characteristic functions of clopen subsets of S. Since S is totally disconnected, Φ
separates points of S, and it clearly contains a non-zero constant function. By the real
Stone-Weierstrass theorem, Φ is dense in C(S), so that there is a sequence {fn}n∈N ⊂ C(S)
such that fn uniformly converges to f on S. Thus, it follows from [18, Proposition 3.5] that∫

S
fndκ

o−→ ∫
S

fdκ.
By property (κ2) we have

∫
S

fdκ = f for all f ∈ Φ, so that fn
o−→ ∫

S
fdκ. Hence∫

S
fdκ = f by [22, Theorem 15.4], and the proof is complete.

By Proposition 2 we naturally reach the following definition.

Definition 2. Let X be a topological space and V a Riesz space. We say that a positive
linear mapping T : C(X) → V satisfies the tightness condition if there are nets {pα}α∈Γ in
V with pα ↓ 0 and {Kα}α∈Γ of compact subsets of X such that T (f) ≤ pα whenever α ∈ Γ
and f ∈ C(X) with 0 ≤ f ≤ 1 and f(Kα) = {0}.

We now give an analogue of the Riesz representation theorem for a Dedekind complete
Riesz space-valued positive linear mapping.

Theorem 1. Let X be a completely regular space and V a Dedekind complete Riesz space.
Let T : C(X) → V be a positive linear mapping. Then the following two conditions are
equivalent.

(i) T satisfies the tightness condition.
(ii) There is a quasi-Radon V -valued σ-measure µ on X such that

T (f) =
∫

X

fdµ for all f ∈ C(X).(2)

Further, the µ is uniquely determined by (2) and the quasi-Radonness of µ.

Proof. The uniqueness of µ follows from Lemmas 3 and 4, and we shall prove the existence
of µ.

Put e := T (1) and observe that T maps C(X) into the principal ideal Ve generated by
the element e. We may assume that each pα in Definition 2 is an element of Ve. Indeed, if
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we put p′α := pα ∧ e for each α ∈ Γ, then the net {p′α}α∈Γ is contained in Ve and satisfies
condition of Definition 2.

As we stated in Section 2, the space Ve is lattice isomorphic to C(S) for some compact
Stonean space S. Every lattice isomorphism θ from a Riesz space U onto another Riesz
space W is positive, and its inverse mapping θ−1 is also a lattice isomorphism from W onto
U . Further, θ preserves arbitrary supremum and infimum [1, Theorem 7.9]. Consequently,
to prove the existence of µ we may assume that V = C(S) with S a compact Stonean space.

Let κ be the Birkhoff-Ulam C(S)-valued σ-measure on S. Let T̃ : B(X) → B(S) be a
positive linear mapping constructed in Proposition 2.

For each A ∈ B(X), put µ(A) :=
∫

A T̃ (χ
A
)dκ. Then by the same argument used in the

proof of [18, Theorem 4.1], together with Lemma 5, it can be proved that µ is a C(S)-valued
σ-measure on X such that

(a) T (f) =
∫

X fdµ for all f ∈ C(X), and
(b) µ(G) = sup{T (f) : 0 ≤ f ≤ χ

G
, f ∈ C(X)} for every open subset G of X .

Thus, it remains to prove that µ is quasi-Radon. To do this, by Lemma 2 we have only to
prove the tightness and quasi-regularity of µ.

Since T satisfies the tightness condition, there are nets {pα}α∈Γ ⊂ C(S) with pα ↓ 0 and
{Kα}α∈Γ of compact subsets of X such that T (f) ≤ pα whenever α ∈ Γ and f ∈ C(X) with
0 ≤ f ≤ 1 and f(Kα) = {0}. Thus, it follows from property (b) that

µ(X − Kα) = sup{T (f) : 0 ≤ f ≤ χ
X−Kα

, f ∈ C(X)} ≤ pα

for all α ∈ Γ, so that µ is tight.
Next we prove the quasi-regularity of µ. Let G be an open subset of X . Fix f ∈ C(X)

with 0 ≤ f ≤ χ
G

and put Fn := {x ∈ X : f(x) ≥ 1/n} for all n ∈ N. Then {Fn}n∈N is an
increasing sequence of closed subsets of X and ∪∞

n=1Fn = {x ∈ X : f(x) > 0} ⊂ G. Thus,
T (f) =

∫
X

fdµ ≤ µ(∪∞
n=1Fn) = supn∈N µ(Fn), so that

T (f) ≤ sup{µ(F ) : F ⊂ G and F is closed} ≤ µ(G).

Hence, the quasi-regularity of µ follows from property (b).

The tightness condition in the above theorem is automatically satisfied if X is compact, so
that Theorem 1 reduces to [18, Theorem 4.1] and a special case of [20, Theorem 4.5]. See
also [19, Theorem 1]. However, our work will be needed to develop the theory of weak order
convergence of Riesz space-valued σ-measures, in which we usually assume that the involved
measures are defined on metric spaces or more generally on completely regular spaces.

4. A Borel product of σ-measures

Let X and Y be topological spaces. Recall that B(X) is the Banach lattice of all bounded,
Borel measurable, real-valued functions on X with lattice norm ‖f‖ := supx∈X |f(x)|.
Similar definitions are made for B(Y ) and B(X × Y ).

Throughout this section, let U , V , and W be Dedekind complete Riesz spaces, and 〈·, ·〉
be a bilinear mapping from U × W into V that is bipositive, in other words 〈u, w〉 ∈ V +

whenever u ∈ U+ and w ∈ W+. We assume that 〈·, ·〉 is completely proper, that is, the
following two conditions are satisfied.

(i) Whenever {uα}α∈Γ is an upper bounded, increasing net in U and w ∈ W+ then
supα∈Γ 〈uα, w〉 = 〈supα∈Γ uα, w〉.

(ii) Whenever {wα}α∈Γ is an upper bounded, increasing net in W and u ∈ U+ then
supα∈Γ 〈u, wα〉 = 〈u, supα∈Γ wα〉.

The following example gives some of completely proper, bilinear and bipositive mappings
defined on Dedekind complete Riesz spaces; see also [21].
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Example. (1) Denote by F (I) the Dedekind complete Riesz space of all real-valued func-
tions on an arbitrary non-empty set I. Then the mapping 〈·, ·〉 : F (I) × F (I) → F (I)
defined by 〈f, g〉 := fg for all f, g ∈ F (I) is completely proper.

(2) In the following, let (Ω,A,m) be a σ-finite measure space. Denote by L0(Ω) the super
Dedekind complete Riesz space of all m-measurable real-valued functions on (Ω,A,m). Let
Lp(Ω) (1 ≤ p ≤ ∞) be the usual Lebesgue spaces. Since Lp(Ω) are all ideals in L0(Ω),
they are also super Dedekind complete. Further, Lp(Ω) is a Banach lattice having order
continuous norm for every 1 ≤ p < ∞, but L∞(Ω) is an example of Banach lattices with
norm failing to be order continuous. The following mappings are all completely proper:

• The mapping 〈·, ·〉 : L0(Ω) × L0(Ω) → L0(Ω) defined by 〈f, g〉 := fg for all f, g ∈
L0(Ω).

• Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. The mapping 〈·, ·〉 : Lp(Ω) × Lq(Ω) → L1(Ω)
defined by 〈f, g〉 := fg for all f ∈ Lp(Ω) and g ∈ Lq(Ω) and the mapping 〈·, ·〉 :
Lp(Ω) × Lq(Ω) → R defined by 〈f, g〉 :=

∫
Ω fgdm for all f ∈ Lp(Ω) and g ∈ Lq(Ω).

• The mapping 〈·, ·〉 : L∞(Ω) × L∞(Ω) → L∞(Ω) defined by 〈f, g〉 := fg for all f, g ∈
L∞(Ω).

• Assume that (Ω,A,m) is a finite measure space. The mapping 〈·, ·〉 : L∞(Ω) ×
L∞(Ω) → R defined by 〈f, g〉 :=

∫
Ω fgdm for all f, g ∈ L∞(Ω).

(3) Denote by L1(Rn) the Riesz space of all Lebesgue integrable real-valued functions on
R

n. Then the mapping 〈·, ·〉 : L1(Rn) × L1(Rn) → L1(Rn) defined by 〈f, g〉 := f ∗ g for all
f, g ∈ L1(Rn) is completely proper, where f ∗ g denotes the convolution of f and g.

(4) The results that are similar to (1), (2), and (3) hold for the corresponding sequence
spaces (s) of all real sequences and �p of all p-summable real sequences (1 ≤ p ≤ ∞).

(5) Let L, M , and N be Riesz spaces. Assume that M and N are Dedekind complete.
Denote by Ln(M, N) be the Dedekind complete Riesz space of all order continuous, order
bounded, linear operators from M into N . Similar definitions are made for Ln(L, M)
and Ln(L, N). Then the mapping 〈·, ·〉 : Ln(M, N) × Ln(L, M) → Ln(L, N) defined by
〈P,Q〉 := PQ for all P ∈ Ln(M, N) and Q ∈ Ln(L, M) is completely proper.

In [21, Theorem 1.7] it is shown that given quasi-Radon U -valued σ-measure µ on X
and W -valued σ-measure ν on Y there is a unique quasi-Radon V -valued σ-measure λ on
X × Y such that

λ(A × B) = 〈µ(A), ν(B)〉
for all A ∈ B(X) and B ∈ B(Y ) in the case that X and Y are locally compact. This measure
λ is called the Borel product of µ and ν. Other important cases are also discussed in [21].

In this section we shall extend the above result to the case that X and Y are not
necessarily locally compact. This will be established by the help of our Riesz representation
theorem; see Theorem 1.

Let C denote the field generated by the measurable rectangles on X × Y , that is, the
field generated by sets of the form A × B, A ∈ B(X) and B ∈ B(Y ). If µ : B(X) → U
and ν : B(Y ) → W are finitely additive set functions, a product of µ and ν is the function
defined on measurable rectangles A × B by the formula λ0(A × B) := 〈µ(A), ν(B)〉. Since
every C ∈ C can be represented in the form C = ∪n

i=1(Ai × Bi), where n ∈ N, Ai ∈ B(X),
Bi ∈ B(Y ) (n = 1, 2, . . . , n) and {Ai × Bi}n

i=1 are pairwise disjoint, the set function λ0 can
be extended to C by setting λ0(C) :=

∑n
i=1 〈µ(Ai), ν(Bi)〉. This definition does not depend

on the representation of C and the extension (still denoted by λ0) is finitely additive on C.

Lemma 6. Let X and Y be completely regular spaces. Let µ be a tight U -valued σ-measure
on X and ν a tight W -valued σ-measure on Y . Assume that 〈·, ·〉 is completely proper.
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Then there is a quasi-Radon V -valued σ-measure λ on X × Y such that∫
X×Y

fgdλ =
〈∫

X

fdµ,

∫
Y

gdν

〉

holds for all f ∈ C(X) and g ∈ C(Y ).

Proof. Denote by Φ the set of all C-measurable, simple functions on X × Y . Let Φ be the
closure of Φ in B(X × Y ) with respect to the supremum norm ‖ · ‖. Let λ0 : C → V be the
finitely additive, positive set function constructed above.

For each h =
∑n

i=1 aiχCi
∈ Φ, where n ∈ N, a1, . . . , an ∈ R, and C1, . . . , Cn are pairwise

disjoint sets in C, define a positive linear mapping T0 : Φ → V by T0(h) :=
∑n

i=1 aiλ0(Ci).
This definition does not depend on the representation of h.

Put e1 := µ(X), e2 := ν(Y ), and e := λ0(X × Y ) = 〈e1, e2〉. The principal ideal Ve

generated by the element e becomes a Banach lattice with order unit norm ‖u‖e := inf{r >
0 : |u| ≤ re}. Then, T0 : (Φ, ‖ · ‖) → (Ve, ‖ · ‖e) is a continuous linear mapping, so that it
has a unique continuous linear extension T1 : (Φ, ‖ · ‖) → (Ve, ‖ · ‖e). By the same argument
in the proof of [21, Lemma 1.3], we have

T1(fg) =
〈∫

X

fdµ,

∫
Y

gdν

〉
(3)

for all f ∈ B(X) and g ∈ B(Y ).
Since Φ is a majorizing Riesz subspace of B(X × Y ), it follows from the Kantorovič

extension theorem [1, Theorem 2.8] that T1 has a positive linear extension T2 : B(X×Y ) →
V . Let T be the restriction of T2 onto the space C(X × Y ). Then it follows from (3) that

T (fg) =
〈∫

X

fdµ,

∫
Y

gdν

〉
(4)

for all f ∈ C(X) and g ∈ C(Y ).
To complete the proof, we show that T satisfies the tightness condition by using the

complete properness of 〈·, ·〉. By Lemma 1, the tightness of µ implies that there are nets
{pα}α∈Γ in U with pα ↓ 0 and {Kα}α∈Γ of compact subsets of X such that µ(X−Kα) ≤ pα

for all α ∈ Γ. Similarly, one can find nets {qβ}β∈Λ in W with qβ ↓ 0 and {Lβ}β∈Λ of
compact subsets of Y such that ν(Y −Lβ) ≤ qβ for all β ∈ Λ. Put rα,β := 〈pα, e2〉+ 〈e1, qβ〉
for each (α, β) ∈ Γ × Λ. Since Γ × Λ is a directed set under the canonical coordinate-wise
ordering, {rα,β}(α,β)∈Γ×Λ is also a net and it is decreasing. It follows from the complete
properness of 〈·, ·〉 that 〈pα, e2〉 ↓ 0 and 〈e1, qβ〉 ↓ 0, so that rα,β ↓ 0 [15, Theorem 15.8].

Assume that (α, β) ∈ Γ × Λ and h ∈ C(X × Y ) with 0 ≤ h ≤ 1 and h(Kα × Lβ) = {0}.
Then we have

h = χ
Kα×Lβ

h + χ
(Kα×Lβ)ch = χ

(Kα×Lβ)ch ≤ χ
X−Kα

· 1 + 1 · χ
Y −Lβ

.

Hence we have

T (h) ≤ T2

(
χ

X−Kα
· 1 + 1 · χ

Y −Lβ

)
= T1

(
χ

X−Kα
· 1

)
+ T1

(
1 · χ

Y −Lβ

)
= 〈µ(X − Kα), ν(Y )〉 + 〈µ(X), ν(Y − Lβ)〉
≤ 〈pα, e2〉 + 〈e1, qβ〉 = rα,β ,
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so that T satisfies the tightness condition. Thus, it follows from Theorem 1 that there is a
quasi-Radon V -valued σ-measure λ on X × Y such that

T (h) =
∫

X×Y

hdλ(5)

for all h ∈ C(X × Y ). Since fg ∈ C(X × Y ) whenever f ∈ C(X) and g ∈ C(Y ), it follows
from (4) and (5) that ∫

X×Y

fgdλ =
〈∫

X

fdµ,

∫
Y

gdν

〉
,

and the proof is complete.

We are now ready to show the existence and uniqueness of a Borel product of σ-measures
on completely regular spaces.

Theorem 2. Let X and Y be completely regular spaces. Let µ be a quasi-Radon U -valued
σ-measure on X and ν a quasi-Radon W -valued σ-measure on Y . Assume that 〈·, ·〉 is
completely proper. Then there is a unique quasi-Radon V -valued σ-measure λ on X × Y
such that

λ(A × B) = 〈µ(A), ν(B)〉
for all A ∈ B(X) and B ∈ B(Y ). Further, we have∫

X×Y

fgdλ =
〈∫

X

fdµ,

∫
Y

gdν

〉

for all f ∈ B(X) and g ∈ B(Y ).

Proof. By lemma 6, there is a quasi-Radon V -valued σ-measure λ on X × Y such that∫
X×Y

fgdλ =
〈∫

X

fdµ,

∫
Y

gdν

〉
(6)

for all f ∈ C(X) and g ∈ C(Y ).
Fix f ∈ C(X) with f ≥ 0. Let g be a positive, bounded, lower semicontinuous real-valued

function on Y . Then there is an increasing net {gα}α∈Γ of continuous functions on Y such
that 0 ≤ gα ≤ g for all α ∈ Γ and g(x) = supα∈Γ gα(x) for all x ∈ X . Since ν is τ -smooth
by Lemma 3, it follows from Proposition 1 that

∫
Y

gdν = supα∈Γ

∫
Y

gαdν. Thus, it follows
from the complete properness of 〈·, ·〉 that〈∫

X

fdµ,

∫
Y

gdν

〉
= sup

α∈Γ

〈∫
X

fdµ,

∫
Y

gαdν

〉
.(7)

On the other hand, {fgα}α∈Γ is also an increasing net of continuous functions on X ×Y
such that 0 ≤ fgα ≤ fg for all α ∈ Γ and (fg)(x, y) = supα∈Γ(fgα)(x, y) for all (x, y) ∈
X × Y . Hence it follows from Proposition 1 and the τ -smoothness of λ that∫

X×Y

fgdλ = sup
α∈Γ

∫
X×Y

fgαdλ.(8)

Thus, by (6)–(8) we have ∫
X×Y

fgdλ =
〈∫

X

fdµ,

∫
Y

gdν

〉
.

The same argument as above yields the assertion that∫
X×Y

fgdλ =
〈∫

X

fdµ,

∫
Y

gdν

〉
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whenever f and g are positive, bounded, lower semicontinuous real-valued functions on X
and Y , respectively.

Put B := {B ∈ B(X) : λ(G × B) = 〈µ(G), ν(B)〉 for any open subset G of X}. By the
preceding paragraph, B contains all open subsets of Y and it is easy to check that B is a
Dynkin system. Hence it follows from the Dynkin system theorem that B contains B(Y ),
so that λ(G × B) = 〈µ(G), ν(B)〉 whenever G is an open subset of X and B ∈ B(Y ).

The same argument as above yields the assertion that λ(A×B) = 〈µ(A), ν(B)〉 whenever
A ∈ B(X) and B ∈ B(Y ), and it follows from a standard argument in measure theory that∫

X×Y

fgdλ =
〈∫

X

fdµ,

∫
Y

gdν

〉

whenever f ∈ B(X) and g ∈ B(Y ).
Finally we prove the uniqueness of λ. Let λ′ be a quasi-Radon V -valued σ-measure on

X × Y such that λ′(A × B) = 〈µ(A), ν(B)〉 for all A ∈ B(X) and B ∈ B(Y ), and we shall
prove that λ = λ′ on B(X × Y )

If C is a finite union of rectangles on X × Y , then λ(C) = λ′(C) by the preceding
paragraph. Since the sets of the form G × H , where G and H are open subsets of X and
Y respectively, form a basis of the topology of X × Y , any open subset J of X × Y can be
represented in the form J = ∪α∈ΓJα, where {Jα}α∈Γ is an increasing net of open subsets
of X × Y , each of which is a union of finitely many rectangles. Hence it follows from the
τ -smoothness of λ and λ′ that

λ(J) = sup
α∈Γ

λ(Jα) = sup
α∈Γ

λ′(Jα) = λ′(J).

Put D := {C ∈ B(X × Y ) : λ(C) = λ′(C)}. The preceding paragraph implies that D
contains all open subsets of X×Y and it is easily verified that D is a Dynkin system. Hence
D contains B(X × Y ), and this implies the uniqueness of λ.

Definition 3. The σ-measure λ given in Theorem 2 is called the Borel product of µ and
ν, and is denoted by µ × ν.

5. Joint continuity of the operation making the Borel product

In this section we shall show that the operation of making the Borel product of two
σ-measures is jointly continuous with respect to weak order convergence of measures.

Let X be a topological space and V a Dedekind complete Riesz space. To formulate our
results, the following definitions are needed.

Definition 4. A net {µα}α∈Γ of V -valued σ-measures on X is said to weakly converge in
order to a V -valued σ-measure µ on X , and is denoted by µα

wo−→ µ, if
∫

X fdµα
o−→ ∫

X fdµ
for each f ∈ C(X).

Definition 5 (Lipecki [14]). A V -valued σ-measure µ on X satisfies the countable chain
condition (shortly, CCC) if every family D of pairwise disjoint Borel subsets of X such that
µ(D) �= 0 for all D ∈ D is countable.

If V is super Dedekind complete, that is, it is Dedekind complete and every set in V
possessing a supremum contains an at most countable subset having the same supremum,
then every V -valued σ-measure on S satisfies (CCC). A V -valued σ-measure µ on X is said
to be dominated if there is a finitely additive, positive set function m : B(X) → R such that
µ(A) = 0 whenever A ∈ B(X) and m(A) = 0. Every dominated V -valued σ-measure on X
also satisfies (CCC).
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A Borel subset A of X is called a µ-continuity set if µ(∂A) = 0, where ∂A denotes the
boundary of A. Denote by Gµ the set of all µ-continuity Borel subsets of X . The proof of
the following lemma is an easy modification of [17, Lemma I.3.2] and so it is omitted.

Lemma 7. Let X be a completely regular space and V a Dedekind complete Riesz space.
Let µ be a V -valued σ-measure on X.

(i) Gµ is a subfield of B(X).
(ii) If µ satisfies (CCC) then Gµ contains a basis of the topology of X.

For a uniform space X , denote by U(X) the space of all bounded, uniformly continuous,
real-valued functions on X . The following is a Riesz space version of the Portmanteau
Theorem and was first proved in [3, Theorems 5.2 and 5.6] for a sequence of Dedekind
complete Riesz space-valued means on a normal space. See [11, Theorem 7] for the proof
of Theorem 3.

Theorem 3 (The Portmanteau Theorem). Let X be a completely regular space and V a
Dedekind complete Riesz space. Let {µα}α∈Γ be a net of V -valued σ-measures on X which
is uniformly order bounded, that is, there is an element u ∈ V such that µα(X) ≤ u for
all α ∈ Γ. Let µ be a V -valued σ-measure on X. Assume that µ is τ-smooth. Then the
following conditions (i)– (iii) are equivalent.

(i) µα
wo−→ µ.

(ii) µ(G) ≤ lim inf µα(G) for every open subset G of X and µα(X) o−→ µ(X).
(iii) lim sup µα(F ) ≤ µ(F ) for every closed subset F of X and µα(X) o−→ µ(X).

Each of the above conditions implies the condition
(iv) µα(A) o−→ µ(A) for every µ-continuity Borel subset A of X.

Further, if µ satisfies (CCC), then all four conditions given above are equivalent.
If X is a uniform space, then we can add the following condition equivalent to conditions

(i)– (iii).

(v)
∫

X fdµα
o−→ ∫

X fdµ for every f ∈ U(X).

With the help of our Riesz space version of the Portmanteau Theorem the following
lemma can be proved exactly by the same way as in the scalar case; see [17, Corollary 1 to
Theorem I.3.5].

Lemma 8. Let X be a completely regular space and V a Dedekind complete Riesz space.
Let {µα}α∈Γ be a net of V -valued σ-measures on X and µ a τ-smooth V -valued σ-measure
on X. Let H be a basis of the topology of X that contains X and is closed under finite
intersections. If µα(H) o−→ µ(H) for each H ∈ H then µα

wo−→ µ.

In the rest of the paper, X and Y are completely regular spaces; U , V , and W are
Dedekind complete Riesz spaces with completely proper, bipositive, bilinear mapping 〈·, ·〉 :
U × W → V .

Lemma 9. Let {uα}α∈Γ be a net in U and u ∈ U . Let {wβ}β∈Λ be a net in W and w ∈ W .
Assume that either {uα}α∈Γ or {wβ}β∈Λ is order bounded. If uα

o−→ u and wβ
o−→ w then

〈uα, wβ〉 o−→ 〈u, w〉.
Proof. We first claim the inequality

|〈u, w〉| ≤ 3 〈|u|, |w|〉(9)

holds for each u ∈ U and w ∈ W . Indeed, the positivity of 〈·, ·〉 implies that

〈u, w〉 + 3 〈|u|, |w|〉 ≥ 〈u, w〉 + 〈u, |w|〉 + 〈|u|, w〉 + 〈|u|, |w|〉
= 〈u + |u|, w + |w|〉 ≥ 0,
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so that 〈u, w〉 ≥ −3 〈|u|, |w|〉.
On the other hand, it follows from 〈|u| − u, w + |w|〉 ≥ 0 that

〈u, w〉 ≤ 〈|u|, w〉 + 〈−u, |w|〉 + 〈|u|, |w|〉
≤ 〈|u|, |w|〉 + 〈|u|, |w|〉 + 〈|u|, |w|〉
= 3 〈|u|, |w|〉 .

Thus, the inequality (9) has been proved.
Assume that {wβ}β∈Λ is order bounded. Put w0 := supβ∈Λ |wβ |. By assumption, there

are nets {pα}α∈Γ in U with pα ↓ 0 and {qβ}β∈Λ in W with qβ ↓ 0 such that |uα − u| ≤ pα

for all α ∈ Γ and |wβ − w| ≤ qβ for all β ∈ Λ. Then it follows from (9) that

|〈uα, wβ〉 − 〈u, w〉| ≤ |〈uα − u, wβ〉| + |〈u, wβ − w〉|
≤ 3 〈|uα − u|, |wβ |〉 + 3 〈|u|, |wβ − w|〉
≤ 3 〈pα, w0〉 + 3 〈|u|, qβ〉 .

Since pα ↓ 0 and qβ ↓ 0, the complete properness of 〈·, ·〉 implies that 〈pα, w0〉 ↓ 0 and
〈|u|, qβ〉 ↓ 0. Thus, it follows from [15, Theorem 15.8] that 3 〈pα, w0〉 + 3 〈|u|, qβ〉 ↓ 0, so
that 〈uα, wβ〉 o−→ 〈u, w〉.

The proof is similar in the case that {uα}α∈Γ is order bounded.

The following theorem insists that the operation making the Borel product of two σ-
measures is jointly continuous with respect to weak order convergence of measures. Its
proof needs our Riesz space version of the Portmanteau Theorem and Lemmas in this
section.

Theorem 4. Let {µα}α∈Γ be a net of quasi-Radon U -valued σ-measures on X. Let {νβ}β∈Λ

be a net of quasi-Radon W -valued σ-measures on Y . Assume that either the set {µα(X)}α∈Γ

or the set {νβ(Y )}β∈Λ is order bounded. Let µ be a quasi-Radon U -valued σ-measure on X
and ν a quasi-Radon W -valued σ-measure on Y . Assume that both µ and ν satisfy (CCC).
Then, µα × νβ

wo−→ µ × ν whenever µα
wo−→ µ and νβ

wo−→ ν.

Proof. Assume that the set {νβ(Y )}β∈Λ is order bounded. Denote by P and Q the set of
all open subsets G of X such that µ(∂G) = 0 and the set of all open subsets of Y such that
ν(∂H) = 0, respectively. It follows from Lemma 7 that P contains X and a basis of the
topology of X . Similarly, Q contains Y and a basis of the topology of Y .

Put R := {G×H : G ∈ P , H ∈ Q}. Then R contains X × Y and a basis of the product
topology of X × Y . Further, it is closed under finite intersections. By assumption and
Theorem 3 we have µα(G) o−→ µ(G) for all G ∈ P and νβ(H) o−→ ν(H) for all H ∈ Q.
Thus, it follows from Lemma 9 that

(µα × νβ)(G × H) = 〈µα(G), νβ(H)〉 o−→ 〈µ(G), ν(H)〉 = (µ × ν)(G × H)

for all G ∈ P and H ∈ Q. This implies µα × νβ
wo−→ µ × ν by Lemma 8.

The proof is similar in the case that the set {µα(X)}α∈Γ is order bounded.
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