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VALUE PROBLEMS
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Abstract. An abstract unified theory of both monotone iterative and generalized quasi-
linearization methods is presented for operator equations of coincidence type in ordered
Banach spaces. Applications are given for strong solutions of semilinear elliptic prob-
lems.

1. Introduction

In [9], a joint paper with Radu Precup, we develop an abstract theory of the generalized
quasilinearization method for semilinear operator equations of coincidence type, i.e.

Lu = N (u) , u ∈ D,(1)

in ordered Banach spaces. Our theory contains as a particular case, the monotone iterative
method (see [?, 5, 13, 23]) and, in the same time, is a monotone and nonsmooth version of
Newton method for approximating roots of nonlinear equations. This version unifies some
old ideas, as are presented in abstract setting in [26] (see also the references therein) or
[3, 12, 21, 25], and recent ideas, as they are used in various applications in [14, 15, 18] or
[1, 6, 10, ?, 19, 20, 24]. It is worth to mention that when applied to differential equations,
the Newton method is also known as quasilinearization method. A remarkable contribution
in this direction has been the monograph of Bellman and Kalaba [4]. Interesting new
extensions are due to Lakshmikantham [14]. In [8, 9] we give details regarding the history
of the subject and the place of our theory in relation with similar results.

In this paper we apply the abstract theory on the quasilinearization method for strong
solutions of semilinear elliptic problems. We obtain two monotone, Lp-convergent sequences
of approximate solutions, which satisfy some corresponding linear problems. We estimate
that the order of convergence is two. Our results complement in some sense, and intersect,
but do not include, the ones existing in the literature, mainly given by Lakshmikantham-
Vatsala in [17] and by Lakshmikantham-Leela in [16]. In a forthcoming paper [7] we intend to
consider also the case of fully nonlinear elliptic boundary value problems. By our knowledge,
the quasilinearization method has not been initialized until now to this kind of problems.

2. Abstract theory

In this section we present our abstract theory on quasilinearization, as developed in
[9]. The first result represents a generalization of the monotone iterative technique for
coincidences.
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Theorem 2.1. Let X be an ordered Banach space, Z be an ordered topological linear space,
D a linear subspace of X and α0, β0 ∈ D. Let L : D → Z be a linear operator and N : X → Z
be a mapping. Assume that the following conditions are satisfied:

(i): α0 ≤ β0, Lα0 ≤ N (α0) and Lβ0 ≥ N (β0) ;
(ii): for every u, v ∈ X with α0 ≤ u ≤ v ≤ β0, there is a linear operator P (u, v) : X → Z

such that L − P (u, v) : D → Z is bijective with positive inverse,

N (u) ≤ N (v) − P (u, v) (v − u)(2)

and

−P (u, v) z ≤ −P (α, β) z(3)

for all α, β, u, v, z ∈ X with α0 ≤ α ≤ u ≤ v ≤ β ≤ β0 and z ≥ 0;
(iii): either

(a) the positive cone of X is regular and the operators{
(L − P (α0, β0))

−1
N, (L − P (α0, β0))

−1
P (α0, β0) ,

(L − P (α0, β0))
−1

P (u, u) , u ∈ X, α0 ≤ u ≤ β0
(4)

are continuous on [α0, β0] ,
or
(b) the positive cone of X is normal and the operators (4) are completely continuous
on [α0, β0] .

Then the sequences (αn) , (βn) given by the iterative schemes

Lαn+1 = N (αn) + P (αn, βn) (αn+1 − αn) ,(5)

Lβn+1 = N (βn) + P (αn, βn) (βn+1 − βn)(6)

(n ∈ N) are well and uniquely defined in D. In addition, they are monotonically convergent
in X to the minimal and, respectively, to the maximal solution in [α0, β0] of (1).

Remark 2.1. If N and P (u, v) are continuous then the assumption on operators (4) in
(iii) is satisfied if (L − P (α0, β0))

−1 is continuous, in case (a), and if N is bounded and
(L − P (α0, β0))

−1 is completely continuous, in case (b).

Remark 2.2. In particular, if P (u, v) = 0 for every u, v, Theorem 2.1 reduces to the
monotone iterative method for the operator equation Lu = N (u) with an increasing mapping
N. The reader can see that in this case, (iii) (b) requires that L−1N is completely continuous.

The next result gives conditions so that (αn) , (βn) converge quadratically to the unique
solution in [α0, β0] of (1).

Theorem 2.2. Assume all the assumptions of Theorem 2.1 hold. If
(iv): for every u, v ∈ D with α0 ≤ u ≤ v ≤ β0, there exists a mapping R (v, u) : D → Z

such that

N (u) ≥ N (v) − R (v, u) (v − u) ;(7)

(v): L − R(v, u) is inverse positive, i.e. (L − R(v, u)) z ≥ 0 implies z ≥ 0,
then (1) has a unique solution u∗ in [α0, β0].

In addition assume that the following conditions are satisfied:
(vi): (L − P (u, u))−1 : Z → X is continuous for every u ∈ D, α0 ≤ u ≤ β0;
(vii): there exist two constants c1, c2 > 0 such that

|(R (w,α) − P (α, β)) z|Z ≤ c1 |w − α|X |z|X + c2 |α − β|X |z|X(8)

for all α, β, w, z ∈ D, α0 ≤ α ≤ w ≤ β ≤ β0, z ≥ 0.
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Then the convergence of (αn) , (βn) to u∗ is quadratic.

Remark 2.3. All the above results are valid if the operator N is defined only on [α0, β0]∩D,
instead on the whole space X.

As a consequence of Theorem 2.2, we obtain the following abstract version of Laksh-
mikantham’s generalized quasilinearization method for the semilinear operator equation
(1).

Theorem 2.3. Let X be an ordered Banach space, Z be another ordered Banach space, D
a linear subspace of X and α0, β0 ∈ D. Let L : D → Z be a linear operator and N : X → Z
be a mapping. Assume that the following conditions are satisfied:

(a): α0 ≤ β0, Lα0 ≤ N (α0) and Lβ0 ≥ N (β0) ;
(b): N = N1 − N2, where N1, N2 : X → Z are C1-Gâteaux differentiable mappings

which are convex on [α0, β0], and for every u, v, z ∈ X with α0 ≤ u ≤ v ≤ β0 and
z ≥ 0,

N ′
i(u)z ≤ N ′

i(v)z, i = 1, 2;
(c): L − N ′

1 (u) + N ′
2 (v) : D → Z are bijective with positive inverse for every u, v ∈

[α0, β0] with u ≤ v or v ≤ u;

(d): either
(1) the positive cone of X is regular and the operator

(L − N ′
1 (α0) + N ′

2 (β0))
−1(9)

is continuous on [α0, β0] ,
or
(2) the positive cone of X is normal, the mapping N is bounded and the operator (9)
is completely continuous on [α0, β0] .

Then (1) has a unique solution u∗ in [α0, β0] and the sequences (αn), (βn) given by the
iterative schemes

Lαn+1 = N (αn) + (N ′
1 (αn) − N ′

2 (βn)) (αn+1 − αn) ,(10)

Lβn+1 = N (βn) + (N ′
1 (αn) − N ′

2 (βn)) (βn+1 − βn)(11)

(n ∈ N) are well and uniquely defined in D and they are monotonically convergent in X to
u∗.

If in addition (L − N ′ (u))−1 : Z → X is continuous for every u ∈ D, α0 ≤ u ≤ β0, and
N ′

1, N ′
2 are Lipschitz on [α0, β0] , then the convergence of (αn) , (βn) in X is quadratic.

Remark 2.4. The hypothesis (b) can be replaced by the assumption that N1 and N2 are
twice uniformly differentiable on every segment of X, the positive cone of Z is normal, and
N ′′

i (u) ≥ 0 for every u ∈ X and i = 1, 2 (see [26]).

3. Applications to elliptic problems

Let 1 < p < ∞, Ω be a C2 bounded domain of R
n. We denote by Mn the space of n×n

real matrices; | · |m is the euclidean norm in R
m. The Sobolev spaces W 2,p(Ω) and W 1,p

0 (Ω)
are as defined in [2]. We denote by B the following linear elliptic operator in nondivergence
form

Bu =
n∑

i,j=1

lij(x)
∂2u

∂xi∂xj
+

n∑
i=1

li(x)
∂u

∂xi
(12)
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where L = (lij) ∈ C(Ω,Mn), l = (li) ∈ L∞(Ω, Rn), and

n∑
i,j=1

lij(x)ξiξj ≥ µ|ξ|2 , ∀ x ∈ Ω, ξ ∈ R
n.

We consider the semilinear elliptic problem

u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω), −Bu = f(x, u), for a.e. x ∈ Ω(13)

where f : Ω × R → R is Carathéodory.
We will work in the presence of lower and upper solutions.

Definition 3.1. α0 is a lower solution of (13) if

α0 ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω), −Bα0 ≤ f(x,α0), for a.e. x ∈ Ω.

Whenever the oposite inequality holds for β0, we say that β0 is an upper solution.

We study the approximate solutions for (13) given by the following iterative schemes.

−Bαn+1 = f(x,αn) + P (x,αn, βn) (αn+1 − αn)(14)
−Bβn+1 = f(x, βn) + P (x,αn, βn) (βn+1 − βn) .(15)

Our main result states that, under some additional assumptions on f , these schemes give
monotone and quadratically convergent sequences of approximate solutions. As conse-
quences we obtain two results. One contains similar ideas to those used by Lakshmikantham
et al. (see [18, 10, 17]) as regards the conditions for the nonlinear part and the form of the
function P in the iterative schemes. The basic condition for f is some convexity, and P is
given in terms of derivatives of f . The second consequence of our main result use for P an
expression in terms of divided differences and it can be used when f is not differentiable.

In what follows, for two functions α0, β0 ∈ Lp(Ω) with α0 ≤ β0, we consider the order
interval [α0, β0] given by

[α0, β0] = {u ∈ Lp(Ω) : α0(x) ≤ u(x) ≤ β0(x) for a.e. x ∈ Ω} .

The next theorem is the main result of this section.

Theorem 3.2. Let f : Ω × R → R be a Carathéodory function. Assume that
(i): there exist α0 and β0 a lower and, respectively, an upper solution of (13) with α0 ≤

β0 a.e. in Ω and f(·, α0(·)), f(·, β0(·)) ∈ Lp(Ω);
(ii): there exists a Carathéodory function P : Ω × R

2 → R such that

f (x, u) ≤ f (x, v) − P (x, u, v) (v − u)(16)

for α0 (x) ≤ u ≤ v ≤ β0 (x) , a.e. in Ω. Also, there exists a real number M1 ≥ 0 such
that

0 ≤ −P (x, u, v) ≤ −P (x,α, β) ≤ M1(17)

for α0 (x) ≤ α ≤ u ≤ v ≤ β ≤ β0 (x), a.e. in Ω;

Then the sequences (αn) and (βn) given by the iterative schemes (14) and (15) are well
and uniquely defined in W 2,p(Ω) ∩ W 1,p

0 (Ω), are monotone and converge in the Lp -norm
to the minimal and respectively maximal solution of (13) in the order interval [α0, β0] .

If in addition the following conditions are satisfied
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(iii): there exists a Carathéodory function b : Ω × R
2 → R such that

f (x, u) ≥ f (x, v) − b (x, v, u) (v − u)(18)

for α0 (x) ≤ u ≤ v ≤ β0 (x) , a.e. in Ω;
(iv): 0 ≤ −b(t, v, u) ≤ M2 for all α0(x) ≤ u ≤ v ≤ β0(x) a.e. in Ω, and for some

M2 ≥ 0.

then (13) has a unique solution in the order interval [α0, β0].
Moreover, the next condition

(v): there exist two constants c1, c2 ≥ 0 such that

b (x, u, α) − P (x,α, β) ≤ c1(u − α) + c2(β − α)(19)

for α0 (x) ≤ α ≤ u ≤ β ≤ β0 (x) , a.e. in Ω,

assures that the convergence of (αn) and (βn) in Lp(Ω) is quadratic.

Proof. We divide the proof into several steps.
1) All hypotheses of Theorem 2.1 are fulfilled.

Using notations of Theorem 2.1, let us consider

X = Z = Lp(Ω), D = W 2,p(Ω) ∩ W 1,p
0 (Ω),

Lu = −Bu, N(u) = f(·, u(·)), Q(u, v)z = P (·, u(·), v(·))z,

for u, v ∈ D ∩ [α0, β0] with u ≤ v, and z ∈ D.
The linear operator Q(u, v) is well defined and continuous between D and Lp(Ω), since the
function P is Carathéodory and satisfies some boundedness condition (17), which assure
that P (·, u(·), v(·)) ∈ L∞(Ω). The fact that the nonlinear operator N is well defined and
continuous between the set {u ∈ D : α0 ≤ u ≤ β0} and Lp(Ω) follows by the inequality
(16) and the Lebesgue dominated convergence theorem.
It is easy to see that hypothesis (i), relations (2) and (3) of Theorem 2.1 are valid. Also, for
every u, v ∈ D with α0 ≤ u ≤ v ≤ β0, the mapping L − Q(u, v) from D to Lp(Ω), in fact

w �−→ −Bw − l(·)w, where l(x) = P (x, u(x), v(x)) ≤ 0, a.e. in Ω

is bijective, with positive and continuous inverse ([11], Theorem 9.15 and Lemma 9.17). Let
us remember that the positive cone of Lp(Ω) is regular. Let us notice now that, with these
notations, relations (14)-(15) coincide with (5)-(6).
We apply now Theorem 2.1 and deduce that the sequences (αn) and (βn) given by the
iterative schemes (14) and (15) are well and uniquely defined in W 2,p(Ω) ∩ W 1,p

0 (Ω), are
monotone and converge in the Lp -norm to the minimal and respectively maximal solution
of (13) in the order interval [α0, β0] .

2) The solution is unique in [α0, β0].
Let us denote by u∗ the minimal solution, by u∗ the maximal solution and also put l∗(x) =
b(x, u∗(x), u∗(x)). Using (18) and the above notations, we obtain that −Bu∗ ≥ −Bu∗ −
l∗(x)(u∗ − u∗) a.e. in Ω. Then

−Bu∗ − l∗(x)u∗ ≥ −Bu∗ − l∗(x)u∗, a.e. in Ω,

where l∗ ∈ L∞(Ω) and l∗(x) ≤ 0. The weak maximum principle implies that u∗ ≥ u∗. But
u∗ ≤ u∗. Hence, u∗ = u∗ and the solution is unique in [α0, β0], indeed.

3) The convergence is quadratic.
Let us denote

pn = u∗ − αn and qn = βn − u∗.
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Using (16), (17), (18), (14) and (19) we obtain the following inequalities.

−Bpn+1 − P (x, u∗, u∗) pn+1 ≤ −Bpn+1 − P (x, αn, βn) pn+1

= −P (αn, βn) pn − f (x, αn) + f (x, u∗)
≤ (b (x, u∗, αn) − P (x, αn, βn)) pn

≤ c1p
2
n + c2(βn − αn)pn

= c1p
2
n + c2(qn + pn)pn

≤ c3p
2
n + c4q

2
n.

Whenever p2
n, q2

n ∈ Lp(Ω), using that the linear operator −B − P (·, u∗, u∗)I has a bounded
inverse, we obtain that

||pn+1||Lp ≤ C1||p2
n||Lp + C2||q2

n||Lp .

�

The next theorem is a consequence of the previous one and contains similar ideas to
those used by Lakshmikantham et al. (see [18, 10, 17]) as regards the conditions for the
nonlinear part and the form of the function P in the iterative schemes. The basic condition
for f is some convexity, and P is given in terms of derivatives of f .

Theorem 3.3. Let f : Ω×R → R be a Carathéodory function and α0, β0 be a lower and, re-
spectively, an upper solution of (13), such that α0 ≤ β0 a.e. in Ω and f(·, α0(·)), f(·, β0(·)) ∈
Lp(Ω).
Assume that f = f1 − f2 where f1, f2 : Ω × R → R are Carathéodory, f1(x, ·) and f2(x, ·)
are C1 on R and convex on [α0(x), β0(x)] for a.a. x ∈ Ω. In addition, assume that ∂f1

∂u (x, ·)
and ∂f2

∂u (x, ·) are Lipschitz on [α0(x), β0(x)] with Lipschitz constants not depending on x,
and

−M ≤ ∂f1

∂u
(t, u) − ∂f2

∂u
(t, v) ≤ 0

for all u, v ∈ [α0(x), β0(x)] and for a.a. x ∈ Ω.
Then the sequences (αn) and (βn) given by the iterative schemes

−Bαn+1 = f (x,αn) +
(

∂f1

∂u
(x,αn) − ∂f2

∂u
(x, βn)

)
(αn+1 − αn) ,

−Bβn+1 = f (x, βn) +
(

∂f1

∂u
(x,αn) − ∂f2

∂u
(x, βn)

)
(βn+1 − βn)

are well and uniquely defined in W 2,p(Ω) ∩ W 1,p
0 (Ω), and converge monotonically and

quadratically in Lp(Ω) to the unique solution of (13) in [α0, β0] .

Proof. Apply Theorem 3.2 for P (t, u, v) = b(t, u, v) = ∂f1
∂x (t, u)− ∂f2

∂x (t, v). The differentia-
bility of f1(x, ·) and f2(x, ·) and their convexity on [α0(x), β0(x)] imply that the following
relations hold

f1(x, v) − ∂f1

∂u
(x, v)(v − u) ≤ f1(t, u) ≤ f1(x, v) − ∂f1

∂u
(x, u)(v − u),

−f2(x, v) +
∂f2

∂u
(x, u)(v − u) ≤ f2(x, u) ≤ −f2(x, v) +

∂f2

∂u
(x, v)(v − u),

for all α0(x) ≤ u ≤ v ≤ β0(x). By summing up these inequalities, we obtain relation (16)
and (18). Relation (17) is also valid, since the derivative of a convex function is monotone
increasing. Now it is clear that the hypotheses (i)-(iv) of Theorem 3.2 are fullfiled. It
remains to prove (v). This is valid, indeed as follows by the next inequalities. We use that
f1 and f2 are convex and have Lipschitz derivatives on [α0(x), β0(x)].
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b(x, u, α) − P (x,α, β) =
∂f1

∂u
(x, u) − ∂f1

∂u
(x,α) − ∂f2

∂u
(x,α) +

∂f2

∂u
(x, β)

≤ c1(u − α) + c2(β − α),

for all α0(x) ≤ α ≤ u ≤ β ≤ β0(t). This completes the proof. �

The second consequence of our main result use for P an expression in terms of divided
differences and it can be used when f is not differentiable.

For a function g : [c, d] → R and two given points u, v ∈ [c, d], u 	= v, we let the divided
difference of g on points u, v be defined by

[g; u, v] =
g(u) − g(v)

u − v
.

Recall if the function g is convex, then (by Jensen’s inequality),

[g; u, v] ≤ [g; u, w] ≤ [g; v, w](20)

whenever c ≤ u ≤ v ≤ w ≤ d.

Theorem 3.4. Let f : Ω × R → R be a continuous function and α0, β0 ∈ C(Ω) be a
lower and, respectively, an upper solution of (13), such that α0 ≤ β0 a.e. in Ω and
f(·, α0(·)), f(·, β0(·)) ∈ Lp(Ω). Let α−1, β−1 ∈ C(Ω) such that α−1(x) < α0(x) and
β0(x) < β−1(x) for each x ∈ Ω.
Assume that f = f1 − f2 where f1, f2 : Ω×R → R are Carathéodory, f1(t, ·) and f2(t, ·) are
convex on [α−1(x), β0(x)] and respectively on [α0(x), β−1(x)] for a.a. x ∈ Ω. In addition,
assume that

−M ≤ [f1(x, ·);α−1(x), u] − [f2(x, ·); v, β−1(x)] ≤ 0,

−M ≤ [f1(x, ·); v, β−1(x)] − [f2(x, ·);α−1(x), u] ≤ 0,

for all α0(x) ≤ u ≤ v ≤ β0(x) and for a.a. x ∈ Ω.
Then the sequences (αn) and (βn) given by the iterative schemes

−Bαn+1 = f (x, αn) + ([f1; α−1, αn] − [f2; β−1, βn]) (αn+1 − αn) ,

−Bβn+1 = f (x, βn) + ([f1; α−1, αn] − [f2; β−1, βn]) (βn+1 − βn)

are well and uniquely defined in W 2,p(Ω) ∩W 1,p
0 (Ω), and converge monotonically in Lp(Ω)

to the unique solution of (13) in [α0, β0] .

Proof. Apply Theorem 3.2 for

P (x, u, v) = [f1(x, ·);α−1(x), u] − [f2(x, ·); v, β−1(x)] ,

b(x, v, u) = [f1(x, ·); v, β−1(x)] − [f2(x, ·);α−1(x), u] .
Using inequlities (20) we have

[f1(x, ·);α−1(x), u] ≤ [f1(x, ·);u, v] , [f2(x, ·); v, β−1(x)] ≥ [f2(x, ·);u, v] ,

[f1(x, ·);α−1(x), u] ≥ [f1(x, ·);α−1(x), α] ,
[f2(x, ·); v, β−1(x)] ≤ [f2(x, ·);β, β−1(x)] ,

whenever α−1(x) < α0(x) ≤ α ≤ u ≤ v ≤ β ≤ β0(x) < β−1(x). Whence, by summing up
the first two inequalities and the last two ones, we obtain (16) and (17), respectively.
Using again (20) we obtain

[f1(x, ·);u, v] ≤ [f1(x, ·); v, β−1] , [f2(x, ·);α−1(x), u] ≤ [f2(x, ·);u, v]
whenever α0(t) ≤ u ≤ v ≤ β0(t). Whence, by summing up we get (18). �
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