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ALGEBRAIC STRUCTURES RELATED TO THE COMBINATION OF
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Abstract. Based on a new demand — the commutativity of belief functions com-
bination with refinement/coarsening of the frame of discernment — the role of the
disjunctive rule of combination has increased. To compare the nature of this rule
with a more frequent but also more controversional one, i.e. with Dempster’s rule, an
algebraic analysis was used.

The basic necessary definitions both from the Dempster-Shafer theory and from
algebra are recalled. An algebraic investigation of the Dempster’s semigroup — the
algebraic structure of binary belief functions with the Dempster’s rule of combination
is briefly recalled as well.

After this, a new algebraic structure of binary belief functions with the disjunctive
rule of combination is defined. The structure is studied, and the results are discussed
in a comparison with those ones of the classical Dempster’s rule.

In the end, an impact of new algebraic results to the field of decision making and
some ideas for future research are presented.

1 Introduction When combining two or more belief functions, there are generally ac-
cepted requirements of associativity and commutativity of an operation of their combina-
tion. A new requirement of commutativity of a combination with refinement/coarsening of
the frame of discernment was introduced in [4]. There are three sources of this requirement:
it arises from some applications of belief functions (namely in cases of subjective beliefs
which are not constructed from probabilities), it furthermore arises from logical studies on
belief functions, see [9], and it is motivated by the utilization of a method of representing a
n-dimensional belief function by a set of two-dimensional ones, see [3].

The classical Dempster-Shafer theory uses the Dempster’s (conjunctive) rule of com-
bination ⊕, while the Transferable Belief Model [14, 15] uses its non-normalized version
∩©. To meet the new requirement it is necessary to use the disjunctive rule of combination
∪©, which is the only known associative and commutative combination of belief functions
which commutes with coarsening of the frame of discernment (while ⊕ and ∩© commute
with refinement only).

An algebraic structure of binary belief functions with Demspter’s rule ⊕, called the
Dempster’s semigroup, was in detail studied in a series of publications, e.g. [1, 2, 10, 11, 16].
The new importance of the disjunctive rule of combination ∪© is the motivation for a study
of algebraic structures of belief functions with ∪© to obtain a better theoretical comparison
of both approaches.

The next section briefly recalls the basic definitions. An algebraic analysis of the Demp-
ster’s semigroup which is used as a methodology for the presented investigation is overviewed
in the third section.
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In Section 4, a new algebraic structure — the algebraic structure of belief functions with
operation of combination ∪© (disjunctive rule of combination) — is defined. The structure
is analyzed there. The results are discussed and compared with those of the Dempster’s
semigroup in Section 5.

In Section 6, the disjunctive rule of combination ∪© is considered from a decision making
approach and its impact to this area is presented. In the end, some ideas for future research
are outlined as well.

2 Preliminaries Let us recall some basic algebraic notions and some basic notions from
the Dempster-Shafer theory before we begin a description of its algebra.

A commutative semigroup (called also an Abelian semigroup) is a structure X = (X,⊕)
formed by the set X and a binary operation ⊕ on X which is commutative and associative
(x ⊕ y = y ⊕ x and x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z holds for all x, y, z ∈ X). If it holds that
x ⊕ x = x for x ∈ X , then x is called an idempotent of (X,⊕), if moreover holds y ⊕ x = x
for all y ∈ X , then x is an absorbing idempotent of (X,⊕). A commutative group is a
structure X = (X,⊕,−, o) such that (X,⊕) is a commutative semigroup, o is a neutral
element (x ⊕ o = x) and − is a unary operation of the inverse (x ⊕ −x = o). An ordered
Abelian (semi)group consists of a commutative (semi)group X as above and a linear ordering
≤ of its elements satisfying monotonicity (x ≤ y implies x ⊕ z ≤ y ⊕ z for all x, y, z ∈ X).
A subset of X which is a (semi)group itself is called a sub(semi)group. A subsemigroup
({x|x ≥ o, x ∈ X},⊕, o) is called a positive cone of the ordered Abelian group (OAG) X ,
similarly a negative cone of OAG X for x ≤ o.

For uncertainty processing, we extend OAG with extremal elements � and ⊥ representing
True and False, �⊕ x = �, ⊥ ⊕ x = ⊥, �⊕⊥ not defined. 1

A homomorphism p : (X,⊕1) −→ (Y,⊕2) is a mapping which preserves structure, i.e.
p(x⊕1 y) = p(x)⊕2 p(y) for each x, y ∈ X . The special cases are automorphisms, which are
bijective morphisms from a structure onto itself. Morphisms which also preserve ordering
of elements are called ordered morphisms, see [8].

Ordered structures and ordered morphisms are very important for a comparative ap-
proach to uncertainty management and decision making.

Let us consider a two-element frame of discernment Ω = {0, 1}. Let us denote its
power set as P(Ω). A basic belief assignment is a mapping m : P(Ω) −→ [0, 1], such
that

∑
A⊆Ω m(A) = 1. A belief function is a mapping bel : P(Ω) −→ [0, 1], bel(A) =∑

∅�=X⊆A m(X). In our special case bel(1) = m(1), bel(0) = m(0), bel({0, 1}) = m(1) +
m(0) + m({0, 1}) = 1. Each basic belief assignment determines a pair (m(1),m(0)) and
conversely, each pair (m(1),m(0)) uniquely determines a basic belief assignment.

A focal element is a subset X of the frame of discernment, such that m(X) > 0. If all
the focal elements are singletons (i.e. one-element subsets of Ω), then we speak about a
Bayesian belief function. A probabilistic transformation is a mapping t : BelΩ −→ ProbΩ,
such that bel(X) ≤ t(bel)(X) ≤ 1− bel(X). Thus the probabilistic transformation assigns a
Bayesian belief function (i.e. probability function) to every general one. The fundamental
example of probabilistic transformation is the pignistic transformation introduced by Smets.

The Dempster’s conjunctive rule of combination is given as
(bel1 ⊕ bel2)(A) =

∑
X∩Y =A

1
K m1(X)m2(Y ), where K =

∑
X∩Y �=∅ m1(X)m2(Y ), see [13],

while the disjunctive rule of combination is given by the formula

1Some examples are OAG+ PP = ([0, 1],⊕PP , 1 − x, 1
2
,≤) and MC = ([−1, 1],⊕MC ,−, 0,≤) corre-

sponding to the combining structures of the classical expert systems PROSPECTOR and EMYCIN, see
[10], where x ⊕PP y = xy

xy+(1−x)(1−y)
and x ⊕MC y = x + y − xy for x, y ≥ 0, x + y + xy for x, y ≤ 0 and

x+y
1−min(|x|,|y|) for xy ≤ 0.
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(bel1 ∪©bel2)(A) =
∑

X∪Y =A m1(X)m2(Y ), see [7]. Specially for (m1(1), m1(0)) = (a, b),
(m2(1), m2(0)) = (c, d) we have (a, b) ⊕ (c, d) = (1 − (1−a)(1−c)

1−(ad+bc) , 1 − (1−b)(1−d)
1−(ad+bc) ) and

(a, b) ∪©(c, d) = (ac, bd).

3 On the Dempster’s semigroup Now we introduce some principal notions according
to [10].

Definition 1 A Dempster’s pair (or d-pair) is a pair of reals such that a, b ≥ 0 and a+b ≤
1. A d-pair (a, b) is Bayesian if a + b = 1, (a, b) is simple if a = 0 or b = 0, in particular,
extremal d-pairs are pairs (1,0) and (0,1). (Definitions of Bayesian and simple d-pairs
correspond evidently to the usual definitions of Bayesian and simple belief assignments [10],
[13]). Let D0 denote a set of all non-extremal d-pairs.

Definition 2 The (standard/conjunctive) Dempster’s semigroup2 D0 = (D0,⊕) is the set
of all non-extremal Dempster’s pairs, endowed with the operation ⊕ and two distinguished
elements 0 = (0, 0) and 0′ = (1

2 , 1
2 ), where the operation ⊕ is defined by

(a, b) ⊕ (c, d) =
(

1 − (1 − a)(1 − c)
1 − (ad + bc)

, 1 − (1 − b)(1 − d)
1 − (ad + bc)

)
.

Definition 3 For (a, b) ∈ D0 we define

−(a, b) = (b, a),
h(a, b) = (a, b) ⊕ 0′ = ( 1−b

2−a−b ,
1−a

2−a−b ),
h1(a, b) = 1−b

2−a−b ,

f(a, b) = (a, b) ⊕ (b, a) = (a+b−a2−b2−ab
1−a2−b2 , a+b−a2−b2−ab

1−a2−b2 ).

For (a, b), (c, d) ∈ D0 we further define
(a, b) ≤ (c, d) iff [ h1(a, b) < h1(c, d) or h1(a, b) = h1(c, d) and a ≤ c ].

Let G denote the set of all Bayesian non-extremal d-pairs. Let us denote the set of all
simple d-pairs such that b = 0 (a = 0) as S1 (S2). Furthermore, put S = {(a, a) : 0 ≤ a ≤
0.5}.
(Note: h(a, b) is an abbreviation for h((a, b)), etc.)

Theorem 1 (i) The Dempster’s semigroup with the relation ≤ is an ordered commutative
semigroup with the neutral element 0; 0′ is the only nonzero idempotent of it.

(ii) The set G with the ordering ≤ is an ordered Abelian group (G,⊕,−, 0′,≤) which is
isomorphic to the PROSPECTOR group PP (cf. [10]) and consequently isomorphic
to the additive group of reals with usual ordering.

(iii) The sets S, S1 and S2 with the operation ⊕ and the ordering ≤ form ordered commu-
tative semigroups with neutral element 0, and all are isomorphic to the semigroup of
non-negative elements (positive cone) of the MYCIN group MC.

(iv) The mapping h is an ordered homomorphism of the ordered Dempster’s semigroup
onto its subgroup G (i.e. onto PP).

2A generalization of a notion of the Dempster’s semigroup is described in [16], see also [10]. The resulting
algebraic structure is called a dempsteroid. It has a similar relation to the Dempster’s semigroup as OAG
has to PP or MC. The special case — the standard dempsteroid D0 = (D0,⊕,−, 0, 0′,≤) is defined by
the Dempster’s semigroup.
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Figure 1: Dempster’s semigroup. Homomorphism h is in this representation a projection
to group G along the straight lines running through the point (1, 1). All the Dempster’s pairs
lying on the same ellipse are mapped by homomorphism f to the same d-pair in semigroup
S.

(v) The mapping f is a homomorphism of the Dempster’s semigroup onto its subsemigroup
S (but it is not an ordered homomorphism).

For proofs see [10], [11], [16]. Let us denote h−1(a) = {x|h(x) = a}, and similarly f−1(a) =
{x|f(x) = a}. Using the theorem, see (iv) and (v), we can express

(a ⊕ b) = h−1(h(a) ⊕ h(b)) ∩ f−1(f(a) ⊕ f(b)).

4 The Disjunctive Dempster’s semigroup Let us turn our attention to an algebra
of a binary frame of discernment with the disjunctive rule of combination ∪©. As ∪© is a
commutative and associative operation, we can speak about an Abelian semigroup again.

Because of the different nature of the operation, 0′ = (1
2 , 1

2 ) does not play the analogical
role as in the case of the (standard) Dempster’s semigroup (0′ is not an idempotent). The
other idempotent 0 = (0, 0) of the Dempster’s semigroup is idempotent again, but it is not
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neutral element in this case. To obtain a neutral element we add to D0 a technical pair
1 = (1, 1) which is not a d-pair (it does not correspond to any basic belief assignment).
Analogically, it is useful to consider all pairs (a, a) for a ≥ 1 (or for all a ≥ 0, where (a, a)
for 1

2 < a < 1 do not play any important role in the presented theory).

Definition 4 Let D ∪© denote D0 ∪ {(1, 0), (0, 1), (1, 1)}. The disjunctive Dempster’s semi-
group D ∪© = (D ∪©, ∪©) is the set of all Dempster’s pairs extended by 1 = (1, 1), endowed
with the operation ∪© and two distinguished elements 0 = (0, 0) and 1 = (1, 1), where the
operation ∪© is defined by

(a, b) ∪©(c, d) = (ac, bd)3.

Definition 5 For (a, b) ∈ D ∪© we define

−(a, b) = (b, a),
u(a, b) = (a, b) ∪©( 1

a+b ,
1

a+b ) = ( a
a+b ,

b
a+b ), if a + b > 0,

u1(a, b) = a
a+b , if a + b > 0,

v(a, b) = (a, b) ∪©(b, a) = (ab, ab).

For (a, b), (c, d) ∈ D ∪© we further define
(a, b) ≤ ∪© (c, d) iff [ u1(a, b) < u1(c, d) or u1(a, b) = u1(c, d) and a < c or u1(a, b) =
u1(c, d) and a = c and b ≤ d ].
Note: u(a, b), u1(a, b) are defined on (D ∪© − {(0, 0)}), i.e. it is not defined u(0, 0) which
should be (0

0 , 0
0 ), similarly for u1(0, 0).

Lemma 1 Let x, y (or (a, b), (c, d)) be elements of the disjunctive Dempster’s semigroup.
The following holds:

(o) 1 = (1, 1) is neutral element in D ∪©, while 0 = (0, 0) is an absorbing idempotent there,
⊥ = (0, 1) and � = (1, 0) are idempotents which are neither neutral nor absorbing in
D ∪©,

(i) −(x ∪©y) = −x ∪© − y (i.e. −((a, b) ∪©(c, d)) = (b, a) ∪©(d, c)),

(ii) −(−x) = x (i.e. −(−(a, b)) = (a, b)),

(iii) −x is not an inverse to x, i.e. the equation (a, b) ∪©(c, d) = (1, 1) has no solution in
D ∪© for (a, b) 
= (1, 1),

(iv) u(x) = 0′ iff 0 
= x = −x iff 0 < x ≤ 0′ 4 iff x ∈ S − {0},
(v) x ∪©� = (p1(x), 0), i.e. (a, b) ∪©(1, 0) = (p1(a, b), 0) = (a, 0), where p1(x, y) = x,

x ∪©⊥ = (0, p2(x)), i.e. (a, b) ∪©(0, 1) = (0, p2(a, b)) = (0, b), where p2(x, y) = y.

Proof:
(o): (a, b) ∪©(1, 1) = (1a, 1b) = (a, b),
(0, 0) ∪©(0, 0) = (0 · 0, 0 · 0) = (0, 0), (a, b) ∪©(0, 0) = (0a, 0b) = (0, 0);
(1, 0) ∪©(1, 0) = (1 · 1, 0 · 0) = (1, 0), (a, b) ∪©(1, 0) = (1a, 0b) = (a, 0),
(0, 1) ∪©(0, 1) = (0 · 0, 1 · 1) = (0, 1), (a, b) ∪©(0, 1) = (0a, 1b) = (0, a);
(i): −((a, b) ∪©(c, d)) = −(ac, bd) = (bd, ac) = (b, a) ∪©(d, c);

3 ∪©-sum of two d-pairs (a, b) ∪©(c, d) is defined for all d-pairs from D ∪©, 0 = (0, 0) is not a neutral element

and 0′ = ( 1
2
, 1

2
) is not idempotent of D ∪© .

4We cannot write 0 < ∪© x ≤ ∪© 0′ because ≤ ∪© is defined on D ∪© − {0}, but we can write 0 < x ≤ ∪© 0′
due to ≤ ∪© is equivalent to ≤ on S − {0}.



506 MILAN DANIEL

(a,b)

(b,a)
u(a,b)

(0,1)

b a

b

0
(0,0) (1,0)

1

u(b,a)

a

(1,1)

v(b,a)

Figure 2: Disjunctive Dempster’s semigroup The homomorphism u is, in this repre-
sentation, a projection to group G along the straight lines running through the point (0, 0).
All Dempster’s pairs lying on the same hyperbole are, by the homomorphism v, mapped to
the same d-pair in semigroup S.

(ii): −(−(a, b)) = −(b, a) = (a, b), (the same proof as in the case of D0);
(iii): (a, b) ∪©(c, d) = (ac, bd) = (1, 1) iff ac = 1 & bd = 1 iff a = c = b = d = 1 because of
a, b, c, d ∈ [0, 1].
(iv): (a, b) ∪©( 1

a+b ,
1

a+b ) = ( a
a+b ,

b
a+b ) = (1

2 , 1
2 ) iff a

a+b = 1
2 , b

a+b = 1
2 iff 2a = a + b, 2b =

a + b and a + b 
= 0 iff a = b 
= 0;
(v): (a, b) ∪©(1, 0) = (1a, 0b) = (a, 0) = (p1(a, b), 0),
(a, b) ∪©(0, 1) = (0a, 1b) = (0, b) = (0, p2(a, b)).

Theorem 2

(i) The disjunctive Dempster’s semigroup D ∪© is a commutative semigroup 5 with the
neutral element 1; where 0, ⊥, and � are all the other idempotents of it.

(ii-a) The set G of Bayesian d-pairs is not closed under operation ∪©.

(ii-b) The set G with the ordering ≤ ∪© and with the operation ∪©G = ∪©◦u, where (a, b) ∪©G(c, d) =
u(ac, bd) = ( ac

ac+bd , bd
ac+bd ), is an ordered Abelian group G ∪©G

= (G, ∪©G,−, 0′,≤ ∪©)
which is isomorphic to the PROSPECTOR group PP (cf. [10]) and consequently, it
is isomorphic to the additive group of reals with usual ordering.

(iii) The sets S ∪ {1}, S1 ∪ {�} and S2 ∪ {⊥} with the operation ∪© and the ordering ≤ ∪©
form ordered commutative semigroups with neutral elements 1, �, or ⊥ respectively.
We can define 0 ≤ ∪© x for any x on all these subalgebras. S1 ∪ {�} and S2 ∪ {⊥} are

5The same holds also for restrictions of D ∪© to D0 and to D0 ∪ {⊥,�} .
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isomorphic to the negative cone of the extended (with 0 and ∞) multiplicative group
of positive reals 6, and S ∪ {1} is isomorphically embeddable there.

(iv-a) The mapping u is not a homomorphism of the disjunctive Dempster’s semigroup onto
its subalgebra G.

(iv-b) The mapping u is an ordered homomorphism of the disjunctive Dempster’s semigroup
without 0 (i.e. not defined for 0 = (0, 0)) onto group G ∪©G

(i.e. onto PP), which is
a subset of D ∪©.

(v) The mapping v is a homomorphism of the disjunctive Dempster’s semigroup onto its
subsemigroup S (but it is not an ordered homomorphism).

(vi) An algebra (D ∪© − (S1 ∪ S2), ∪©,≤ ∪©) is a subalgebra of D ∪©, it is an ordered Abelian
semigroup 7 with the only idempotent 1 which is the neutral element of the algebra.

Proof: (i): a, b, c, d ∈ [0, 1], thus ac, bd ∈ [0, 1], ac ≤ a, c and bd ≤ b, d for all a, b, c, d ∈ [0, 1],
thus ac + bd ≤ a + b, c + d ≤ 1, hence D ∪© is closed with respect to ∪©. Associativity and
commutativity follow properties of ∪©. Neutral element 0 and idempotency of 0′ follow (o)
from the previous lemma. (a, b) ∪©(a, b) = (aa, bb) = (a, b) iff aa = a, bb = b iff a, b ∈ {0, 1},
thus there are just four idempotents 0, 1, ⊥, and �, (a, b) ∪©(1, 0) = (a, 0), hence � is neither
neutral nor absorbing, similarly for ⊥.
(ii-a): (a, 1−a) ∪©(b, 1−b) = (ab, (1−a)(1−b)) = (X, Y ), X+Y = ab+1−a−b+ab, X+Y = 1
iff 1 = 1 + 2ab − a − b iff 2ab − a = b iff a = b

2b−1 iff a = b = 0 or a = b = 1.

(ii-b): ∪©G = ∪© ◦ u, where (a, b) ∪©G(c, d) = u((a, b) ∪©(c, d)) = u(ac, bd) = ( ac
ac+bd , bd

ac+bd );
closeness: (a, b), (c, d) ∈ D ∪©, hence (a, b) ∪©(c, d) ∈ D ∪©, thus (a, b) ∪©G(c, d) = u((a, b) ∪©(c, d)) ∈
G, i.e. ∪©G maps D ∪© to G, hence G ⊂ D ∪© is closed with respect to ∪©G,
commutativity: (c, d) ∪©G(a, b) = u(ca, db) = ( ca

ca+db ,
db

ca+db) = ( ac
ac+bd , bd

ac+bd) = (a, b) ∪©G(c, d),

associativity: ((a, b) ∪©G(c, d)) ∪©G(e, f) = (
ace

ac+bd
ace

ac+bd + bdf
ac+bd

,
bdf

ac+bd
ace

ac+bd + bdf
ac+bd

) = ( ace
ace+bdf , bdf

ace+bdf ) =

(
a ce

ce+df
ace

ce+df + bdf
ce+df

,
b df

ce+df
ace

ce+df + bdf
ce+df

) = (a, b) ∪©G((c, d) ∪©G(e, f)),

neutral element: (a, 1 − a) ∪©G(1
2 , 1

2 ) = (
a
2

a
2 + 1−a

2
,

1−a
2

a
2 + 1−a

2
) = ( a

a+1−a , 1−a
a+1−a ) = (a, 1 − a),

inverse: (a, 1 − a) ∪©G(1 − a, a) = ( a(1−a)
a(1−a)+(1−a)a , (1−a)a

(1−a)a+a(1−a) = (1
2 , 1

2 );
monotonicity of ≤ ∪©: for (x, 1 − x) ∈ G it holds that u(x, 1 − x) = (x, 1 − x) and
(x, 1 − x) ≤ ∪© (y, 1 − y) iff x ≤ y; if (a, 1 − a) < (b, 1 − b) i.e. a < b, then az < bz,
hence (a, 1−a) ∪©(z, 1−z) < (b, 1− b) ∪©(z, 1−z); similarly if (a, 1−a) = (b, 1− b) i.e. a = b
then az = bz, hence (a, 1 − a) ∪©(z, 1 − z) = (b, 1 − b) ∪©(z, 1 − z).
An isomorphism from G to PP is the projection p1(a, 1 − a) = a:
p1((a, 1 − a) ∪©G(b, 1 − b)) = p1( ab

ab+(1−a)(1−b) ,
(1−a)(1−b)

ab+(1−a)(1−b) ) = ab
ab+(1−a)(1−b) = a ⊕PP b =

p1(a, 1−a)⊕PP p1(b, 1−b); p1(−(a, 1−a)) = p1(1−a, a) = 1−a = −PP (a) = −PP (p1(a, 1−
a)); p1(0′) = p1(1

2 , 1
2 ) = 1

2 = 0PP ; (a, 1 − a) ≤ (b, 1 − b) iff u1(a, 1 − a) ≤ u1(b, 1 − b) iff
p1(a, 1 − a) ≤ p1(b, 1 − b), hence p1 is an ordered isomorphism.
(iii): Commutativity and associativity follow properties of ∪© in all the three cases. Or-
dered isomorhpisms onto the negative cone of (Re>0

m )+ = (Re>0 ∪ {0,∞}, ·, 1
x , 1,≤), (i.e.

([0, 1], ·, 1,≤)), are the following projections p1(a, a) = a (p1(a, 0) = a and p2(0, a) = a) for

6Negative cone of (Re>0
m )+ = ((0,∞) ∪ {0,∞}, ·, 1

x
, 1,≤), i.e. ([0, 1], ·, 1,≤).

7The same holds also for restriction of D ∪© to D0 − (S1 ∪ S2), i.e. for (D0 − (S1 ∪ S2), ∪©,≤ ∪©).
The set D ∪© − {0} is not closed under ∪©, thus it does not define a subalgebra of D ∪©. Any extension of
definition of u to 0 does not satisfy the monotonicity condition, hence whole D ∪© cannot be an OAG.
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S (S1 and S2 respectively). Proofs are analogous to the case (ii-b).
(a, a) ∪©(b, b) = (ab, ab), a, b ∈ [0, 1

2 ] ∪ [1], thus ab ∈ [0, 1
2 ] ∪ [1], (a, 0) ∪©(b, 0) = (ab, 0), and

(0, a) ∪©(0, b) = (0, ab), hence all three sets are closed under ∪©; for neutral elements see (i).

(iv-a): We know from (ii-a) that G is not closed with respect to the operation ∪©, hence it
is not subalgebra of D ∪©,
moreover: u((a, b) ∪©(c, d)) = u(ac, bd) = ( ac

ac+bd , bd
ac+bd); while u(a, b) ∪©u(c, d) = ( a

a+b , b
a+b ) ∪©

( c
c+d , d

c+d ) = ( ac
(a+b)(c+d) ,

bd
(a+b)(c+d) ) = ( ac

(ac+bd+ad+bc) ,
bd

(ac+bd+ad+bc) );

(iv-b): u((a, b) ∪©(c, d)) = u(ac, bd) = ( ac
ac+bd , bd

ac+bd); u(a, b) ∪©Gu(c, d) = ( a
a+b ,

b
a+b ) ∪©G

( c
c+d , d

c+d ) = (
ac

(a+b)(c+d)
ac

(a+b)(c+d)+
bd

(a+b)(c+d)
,

bd
(a+b)(c+d) )

ac
(a+b)(c+d) , bd

(a+b)(c+d)
) = ( ac

ac+bd , bd
ac+bd) = u((a, b) ∪©(c, d));

(v): v((a, b) ∪©(c, d)) = v(ac, bd) = (ac, bd) ∪©(bd, ac) = (acbd, acbd); v(a, b) ∪©(c, d) =
((a, b) ∪©(b, a)) ∪©((c, d), ∪©(d, c)) = ((ab, ab)) ∪©((cd), (cd)) = (acbd, acbd) = v((a, b) ∪©(c, d)).
(vi): (a, c) ∪©(c, d) = (ac, bd) = (0, x) ∈ S1 iff a = 0 or c = 0, similarly for S2, thus
D ∪© − (S1 ∪ S2) is closed under ∪©, hence our algebra is commutative subsemigroup of D ∪©,
where 1 is neutral idempotent, the other idempotents of D ∪© are not in the subalgebra;
monotonicity of ≤ ∪©: let us suppose that (a, b) ≤ (c, d); if a

a+b = u1(a, b) < u1(c, d) = c
c+d ,

then u1((a, b) ∪©(x, y)) = u1(a, b) ∪©u1(x, y) = a
a+b

x
x+y < c

c+d
x

x+y = u1(c, d) ∪©u1(x, y) =
u1((c, d) ∪©(x, y)); similarly if u1(a, b) = u1(c, d), then u1((a, b) ∪©(x, y)) = u1((c, d) ∪©(x, y)),
in this case it holds that b ≤ d thus also by ≤ dy, hence (a, b) ∪©(x, y) ≤ ∪© (c, d) ∪©(x, y), the
monotonicity holds, and the subalgebra is OAG.

Corollary 1 Let us denote u−1(a) = {x|u(x) = a}, and similarly v−1(a) = {x|v(x) = a}.
Using the theorem, see (iv) and (v), we can express

(a ∪©b) = u−1(u(a) ∪©u(b)) ∩ v−1(v(a) ∪©v(b)).

5 A comparison of the disjunctive Dempster’s semigroup with the standard
(conjunctive) one

Both the algebraic structures have a lot of similarities:
Both of them are ordered Abelian semigroups with a neutral element.
There is the same operation −, which is not inverse in both cases.
Both the structures have subsemigroups S, S1, S2 respectively S ∪ 1, S1 ∪ �, S2 ∪ ⊥ with
neutral elements. The orderings ≤ and ≤ ∪© are the same on S and S1.
Both of them have an OAG defined on G. The orderings ≤ and ≤ ∪© are the same on G.
Both of them have a surjective homomorphism D0 −→ G, resp. D0 − {0} −→ G .
Both of them have a surjective homomorphism D0 −→ S.
Both the semigroup operations ⊕ and ∪© are expressible using these homomorphisms, their
pre-images and operations restricted to S and G.

Differences:
⊕ is not defined for �⊕⊥, while ∪© is defined on the whole extended D+

0 ∪ {(1, 1)}, on the
other hand the homomorphism u is not defined for 0 = (0, 0), hence u(x ∪©y) is not defined
if x ∈ S1 & y ∈ S2 or x ∈ S2 & y ∈ S1 or x = 0 or y = 0.
0 is a neutral element in D0, while it is an absorbing element in D ∪©.
The neutral element 1 = (1, 1) of D ∪© is out of D0.
0′ = (1

2 , 1
2 ) is not an idempotent of D ∪©.

Extremal elements of D0 are not absorbing in D ∪©, ⊥ is not the ≤ ∪©-least element of D ∪©.
The ordering ≤ ∪© is inverse to ≤ on S2, i.e. (0, x) ≤ ∪© (0, y) iff (0, x) ≥ (0, y).
If we add 1 = (1, 1) into D0 we obtain a new absorbing element, where (a, 1− a)⊕ 1 is not
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defined for all (a, 1 − a) ∈ G.
G ∪©G

is not a subalgebra of D ∪©.

The principal is the following.
Both combinations ⊕ and ∪© of two elements (d-pairs) ≥ 0′ (or two ones ≤ 0) are on

homomorphic straight lines further from S (than those, which contain the original elements
(d-pairs)). We can reformulate this as that the certainty which is represented by belief
functions is increased by both combining rules ⊕ and ∪©.

⊕ combination of any two elements (d-pairs) is on an ellipse further from 0, i.e. vagueness
is decreased by the Dempster’s rule ⊕, while ∪© combination of any two elements is on a
hyperbole closer to 0, i.e. vagueness is increased by the disjunctive rule ∪©.

S⊕ = (S,⊕, 0,≤) is o-isomorphic to a positive cone of OAGs, while S ∪© = (S∪{1}, ∪©, 1,≤
) is o-isomorphic to a negative cone of OAGs (ordered such that 0 ≤ 0′). In other words,
inverse elements of S in a group defined by S⊕ are in {(a, a)|a ≤ 0}. While inverse elements
of S in a group defined by S ∪© are in {(a, a)|a ≥ 1}.
6 Impact to decision making Summarizing the results of comparison of the disjunc-
tive Dempster’s semigroup with the standard (conjunctive) one, we obtain the following
originally surprising theorem:

Theorem 3 The groups G⊕ = (G,⊕,−, 0′,≤) and G ∪©G
= (G, ∪©G,−, 0′,≤ ∪©) are identi-

cal; especially x ⊕ y = x ∪©Gy for all x, y ∈ G. (The same holds also for G+
⊕ and G+

∪©G
.)

Proof: G is same in G⊕ and G ∪©G
;

(a, 1 − a) ⊕ (b, 1 − b) = (1 − (1−a)(1−b)
1−(a(1−b)+(b(1−a)) , 1 − ab

1−(a(1−b)+(b(1−a)) ) =

(1−(a−ab+b−ab)−(1−a−b+ab)
1−(a−ab+b−ab) , 1−(a−ab+b−ab)−ab

1−(a−ab+b−ab) ) = ( ab
1−a−b+2ab , 1−a−b+ab

1−a−b+2ab) =

( ab
ab+(1−a)(1−b) ,

(1−a)(1−b)
ab+(1−a)(1−b) ),

∪©G = ∪© ◦ u :
(a, 1 − a) ∪©G(b, 1 − b) = u((a, 1 − a) ∪©(b, 1 − b)) = u((ab, (1 − a)(1 − b)) =
( ab

ab+(1−a)(1−b) ,
(1−a)(1−b)

ab+(1−a)(1−b) );
hence x ⊕ y = x ∪©Gy for all x, y ∈ G, this holds also for extremal elements:
(a, 1 − a) ⊕ (1, 0) = (1, 0), (a, 1 − a) ∪©G(1, 0) = u(a, 0) = (a

a , 0
a ) = (1, 0), analogically for

(0, 1), (1, 0) ⊕ (0, 1) is not defined, (1, 0) ∪©G(0, 1) = u((1, 0) ∪©(0, 1)) = u(0, 0), and it is also
not defined;
the operation ’−’ and 0′ are same for both G⊕ and G ∪©G

;
(a, 1 − a) ≤ (b, 1 − b) iff h1((a, 1 − a)) < h1((b, 1 − b)) or if h1((a, 1 − a)) = h1((b, 1 − b))
and a ≤ b iff 1−(1−a)

2−(a+1−a) = a
1 < b

1 = 1−(1−b)
2−(b+1−b) or a = b and a ≤ b iff a ≤ b;

(a, 1− a) ≤ ∪© (b, 1− b) iff u1((a, 1− a)) < u1((b, 1− b)) or if u1((a, 1− a)) = u1((b, 1− b))
and a ≤ b iff a

a+1−a = a < b = b
b+1−b or a = b and a ≤ b iff a ≤ b;

hence (a, 1− a) ≤ (b, 1− b) iff a ≤ b iff (a, 1− a) ≤ ∪© (b, 1− b) for all a, b ∈ [0, 1], i.e. x ≤ y
iff p1(x) ≤ p1(y) iff x ≤ ∪© y for all x, y ∈ G ∪ {(0, 1), (1, 0)}.
Thus we have G⊕ is just the same as G ∪©G

, and G+
⊕ is the same as G+

∪©G
.

Corollary 2 It holds that:

h(a ⊕ b) = h(a) ⊕ h(b) = h(a) ∪©G h(b)
u(a ∪©b) = u(a) ∪©G u(b) = u(a) ⊕ u(b)

From the point of view of decision making, the difference between ⊕ and ∪© is given by
their homomorphic projections h and u from D0 onto G. (There is no difference on G
because it holds h(x) = u(x) = x for all x ∈ G).



510 MILAN DANIEL

The theorem and its corollary express the importance of projection of D0 onto G from
the point of view of decision making. There are two homomorphic projections h and u
(homomorphic with respect to operations ⊕ and ∪©). Another similar projection is the
pignistic transformation defined in Transferable Belief Model (TBM), see e.g. [14]. Such
projections are useful for decision making using belief functions. Hence, it would be an
interesting and useful task to make a comparative study of these projections.

7 Conclusion A new algebraic structure — the disjunctive Dempster’s semigroup —
is defined on a binary frame of discernment and analyzed in this text. It is compared
with the standard Dempster’s semigroup. The high principal importance of homomorphic
projections of general belief (d-pairs) onto Bayesian ones was shown. And consequently
great importance, from the point of view of decision making, of probabilistic transformations
and of all general Bayesian projections was mentioned.

8 Perspectives for future research There are the following fields for future research.
A comparative study of probabilistic transformations which could be motivated both by

this algebraic analysis and by looking for a combination of belief functions which commutes
with refinement coarsening, see [4]. The first results in this field has already been published
in [6].

A study of automorphisms of the disjunctive Dempster’s semigroup, analogous to the
study of the standard case, see [2].

An algebraic study of subjective logic by Jøsang [12] and the comparison of the alge-
braic structure given on a binary frame of discernment by Jøsang’s consensus operator (an
algebraisation of his opinion space) with both the standard and the disjunctive Dempster’s
semigroup. This topic is just under development, for comparison of the Jøsang’s semigroup
with the standard Dempster’s semigroup, see [7].
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[9] Petr Hájek and Dagmar Harmancová. A note on Dempster’s rule. Technical Report 891,
Institute of computer Science, Academy of Sciences of the Czech Republic, Prague, 2001.
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