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Hyperidentities for Varieties of Star Bands
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Abstract. Hyperidentities have been studied both in general and for speci�c varieties

of algebras. In the latter case, attention has focussed on varieties of type (2), varieties

of semigroups, and recently on inverse semigroup varieties of type (2; 1). In this paper

we investigate hyperidentities for another family of type (2; 1) varieties, the varieties

of star-bands. Using Petrich's equational description of the lattice of all star-band

varieties, we present separating hyperidentities satis�ed by these varieties.

1 Introduction Just as identities are used to classify algebras into varieties, hyperiden-

tities are used to classify varieties into collections called hypervarieties. A hyperidentity is

formally the same as an identity, built up of operation symbols and variables. Let V be

any variety, and let u � v be any identity, of arbitrary type. For each operation symbol

in the identity, choose a term of V of the same arity. Substitution of these terms into

u � v leads to an identity in the variables of u � v which may or may not hold in V . If

every choice of terms of V of appropriate arity leads to an identity which holds in V , we

say that V hypersatis�es u � v, and that u � v is a hyperidentity for V . (This notion of

substitution of terms of V into an identity may be made more precise using the concept of

hypersubstitution; details may be found in [G-S].)

Hyperidentities have been much studied, both in general and for speci�c varieties of

algebras. In the general situation, the concept of solidity and the generalization to pre-

hyperidentities and other M -hyperidentities have been signi�cant. (See for example [T],

[G-S], [D] and [D-R].) For speci�c varieties, attention has focussed on algebras of type (2)

such as semigroups, (see [D-W], [P]) and recently on inverse semigroups as algebras of type

(2; 1), as in [C-W], and [C-W1]. In this paper we consider another speci�c context, that

of the star-band algebras of type (2; 1). In Section 2 we describe the unary hyperidentities

and binary iterative hyperidentities satis�ed by the star-band varieties, and in Section 3

we produce for each star-band variety a hyperidentity satis�ed by it but not by any larger

varieties.

A star-regular band, or star-band for short, is an algebra of type (2; 1) with a binary mul-

tiplication indicated by juxtaposition and a unary operation �, which satis�es the following

identities:

x(yz) � (xy)z, x�� � x, (xy)� � y�x�, xx�x � x, and xx � x.

Let B� be the variety of all star-bands. The lattice of all subvarieties of B� was �rst

described by Adair in [Ad]; we use here a later description by Petrich ([Pet]). This lattice

consists of four special varieties, then a countably in�nite chain of varieties Vn, with each

variety being de�ned within B� by one additional identity. For u � v an identity of type

(2; 1), we will use the notation V (u � v) for the subvariety of B� determined by u � v. For
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Figure 1: The lattice of varieties of star-bands

any term u of type (2; 1), we use the notation u for the left-to-right dual of u, so that for

instance x1x
�

2x2 = x2x
�

2x1. The lattice of all varieties of star-bands is shown in Figure 1.

We list here the varieties which appear in this diagram:

TR = V (x � y), the trivial variety,

V1 = SL = V (x� � x) = V (x � xx�) = V (xy � yx), the variety of semilattice star-bands,

RB = V (xyx � x), the variety of rectangular star-bands,

V2 = NB = V (xy � xy�xy) = V (xyzw � xzyw), the variety of normal star-bands,

V3 = RegB = V (xy � xx�yxy) = V (xyzx � xyxzx), the variety of regular star-bands.

Above n = 2, the varieties Vn are de�ned inductively as follows ([Pet]):

V2n�4 = V (Pn � Pn) = V (PnPn � Rn), for n � 3,

and V2n�3 = V (Qn � Q
n
) = V (Q

n
Qn � Rn), for n � 3.

Here the words Pn, Qn and Rn are inductively de�ned, as follows:
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P2 = x2, Pn = Rn�1xnPn�1;

Q2 = x2x1, Qn = Rn�1xnQn�1;

R2 = x2x1x2, Rn = Rn�1xnRn�1.

For any word w, the content c(w) of w is the set of letter variables (ignoring stars) which

occur in w. Note that c(xx�) = fxg = c(x�). (The content is also sometimes denoted by

V ar(w), the set of all variables which occur in the term w.) Many of our calculations for

identities will use the following important fact about contents.

Lemma 1.1 ([Ad]) For any words u, v and w, if c(v) � c(u) = c(w), then the identity
uvw � uw holds in every variety of star-bands.

2 Some Hyperidentities for Star-Band Varieties In this section we give some ex-

amples of hyperidentities satis�ed by some of the varieties of star-bands, looking at unary

hyperidentities and binary iterative hyperidentities.

Example 2.1 A unary hyperidentity of the form

F1(F2(� � �Fk(x) � � � ) � G1(G2(� � �Gl(x) � � � ),

for some unary operation symbols F1; : : : ; Fk, G1; : : : , Gl, not necessarily all distinct, is

either satis�ed by B� or holds only in the varieties SL and TR. This is because there are

only four unary terms in B�, namely x, x�, xx� and x�x, and substitution of any of these

into the hyperidentity leads to an identity of the form u � v, where u and v are again

among the four terms. This means that u � v is trivial, or is one of the six identities

x � x�, x � xx�, x � x�x, x� � xx�, x� � x�x or xx� � x�x. It is well known (see [Ad])

that each of these six identities de�nes the variety SL. Thus either all the identities u � v

are trivial, and the hyperidentity holds in B�, or we obtain one or more SL identities, and

the hyperidentity holds only in SL (and its one subvariety TR).

Example 2.2 Non-trivial unary iterative hyperidentities have the form F a(x) � F b(x) for

some b > a � 1. For star-bands these hyperidentities reduce to two cases:

a) When a and b have opposite parity, i.e. when one is even and the other odd, using

x� for F forces x � x�, so the hyperidentity F a(x) � F b(x) holds only in SL and TR.

b) When a and b have the same parity, so that either both are odd or both are even,

substitution of any of the four unary terms x, x�, xx� or x�x leads to a trivial identity

which holds in all of B�.

Example 2.3 A unary hyperidentity

F1(F2(� � �Fk(x) � � � ) � G1(G2(� � �Gl(x) � � � ),

in which the two rightmost operation symbols Fk and Gl are di�erent holds only in SL and

TR. This is because use of xx� for Fk and x�x for Gl forces the identity xx� � x�x, which

de�nes SL.

We next consider binary iterative hyperidentities for varieties of star-bands. We de�ne

F 2(x; y) = F (F (x; y); y) and inductively, F k+1(x; y) = F (F k(x; y); y), for k � 2. A binary

iterative hyperidentity is a hyperidentity of the form F a(x; y) � F b(x; y), for some b > a �

1.

Theorem 2.4 (i) If b > a � 1 and a and b have opposite parity, then the hyperidentity
F a(x; y) � F b(x; y) holds only in SL and TR.

(ii) If b � 3 with b odd, then F (x; y) � F b(x; y) holds only in SL and TR.
(iii) If b � a � 2 have the same parity, then the hyperidentity F a(x; y) � F b(x; y) is

satis�ed in every variety of star-bands.
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Proof. (i) Using x� for F forces x� � x, and hence SL. It is clear that the hyperidentity

does hold in TR and SL.

(ii) It is easy to verify inductively that for b odd, the result of using x�y� for F in F b(x; y)

is the word yx�y�. Thus using x�y� in the hyperidentity gives x�y� � yx�y�, which de�nes

the variety SL.

(iii) Let t be any binary term. We will let tn denote the result of substituting t for F

in the term Fn(x; y), for n � 1. We must show that when b > a � 2 have the same parity,

the identity ta � tb holds in every variety of star-bands.

We can show directly that if t is any of the terms x, y, x�, y�, x�x, xx�, xy, yx, xyx or

yxy, then in fact ta � tb is a trivial identity. So we may assume that t contains both letters

x and y in its content, and has at least one occurrence of the star operator.

We introduce some notation from Adair ([Ad]). For any word p, we de�ne the initial

part of p to be the word obtained from p by keeping only the �rst occurrence of each letter in

p, in the order in which they �rst occur in p; dually, the �nal part of p is the word obtained

from p by keeping only the last occurrence of each letter in p, in the order in which they

make their last occurrence. We also de�ne (p) to be the longest left cut of p with one

variable, and dually, Æ(p) to be the longest right cut of p with one variable. Then it follows

from [Ad] that it will suÆce to prove that the words ta and tb always have the same initial

and �nal parts, and the same  and Æ values.

This means that we will be interested in the \starts" of words like ta: the longest one-

letter pre�x of the word, and the order in which the variables make their �rst appearance;

and dually for the \ends". In order to investigate starts and ends, we classify the original

term t, as follows. There are eight possible one-letter pre�xes, x, x�, xx� and x�x for x and

similarly for y, and for each of these there are two choices for the next symbol. This gives

rise to 16 possible starts for t, and dually we get sixteen possible ends for t.

We will use the notation t � swe to indicate that t starts with the word s, ends with

the word e, and has some (possibly empty) word w in between. Note that because of

idempotence, we may assume that the start s and the end e do not overlap.

The start and end of the word tn, for n � 2, depends on the start and end of t = t1,

in an inductive manner determined according to the following key observation. If Fn(x; y)

has produced a word tn, then we can obtain the word tn+1 from it by going through tn
and replacing every occurrence of x or x� by tn or t�

n
respectively, while leaving each y

or y� alone. This means that occurrences of y in t play a much less signi�cant role than

occurrences of x, and suggests the following convenient notation. For � and � equal to any

of the words y, y�, yy� or y�y, we will write t = [�]w (or t = w[�]) to indicate that t has

the form either w or �w (respectively w or w�). This notation allows us to group our two

hundred and �fty-six possible start-end combinations into the following four cases.

Case 1: t = t1 = [�]xw1x[�], for some (possibly empty) word w1.

Note that this means that [�]t1 � t1 and t1[�] � t1. Let us inductively de�ne wn+1 as the

result of using tn for the x-input and y as the y-input in the subword wn. Then we have t2
� [�]t1w2t1[�] � t1w2t1, and for each k � 2, tk+1 � [�]tkwk+1tk[�]. Thus by induction, for

all n � 2 we have tn starting with [�]t1 � t1 and ending with t1[�] � t1. In particular, this

means that ta and tb have the same initial, �nal,  and Æ values, since they are all equal to

the corresponding values for t1.

Case 2: t = t1 = [�]xw1x
�[�], for some (possibly empty) word w1.

Then t2 � [�]t1w2t
�

1[�], and for each k � 2, tk+1 � [�]tkwk+1t
�

k
[�]. By induction, we get

that for n � 2, the word tn starts with [�]t1 � t1, and so has the same initial and  value

as t1. This also means that for n � 2, tn ends with t�1[�], and so has the same �nal and Æ

values as t�1[�]. In particular, ta and tb have the same initial, �nal,  and Æ values.
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Case 3: t= t1 = [�]x�w1x[�], for some (possibly empty) word w1.

This case is dual to Case 2, and is proved in a similar way.

Case 4: t = t1 = [�]x�w1x
�[�], for some (possibly empty) word w1.

Then t�1 � [��]xw�1x[��], so that [��]t�1 � t�1 � t�1[�
�]. We have t2 � [�]t�1w1t

�

1[�], and for

any k � 1, tk+1 � [�]t�
k
wk+1t

�

k
[�], and

tk+2 � [�]t�
k+1

wk+2t
�

k+1
[�] � [�][��]tkw

�

k+1
tk[��]wk+2[�

�]tkw
�

k+1
tk[��][�].

Therefore by induction, for n � 3 and odd, the word tn starts with [�][��]t1 and ends

with t1[�
�][�]. Thus if b � a are both odd, ta and tb have the same initial, �nal,  and Æ

values. Similarly, for n � 4 and even, we have tn starting with [�][��][�]t�1 and ending with

t�1[�][��][�], and ta � tb holds. Finally, for the special case a = 2 and b � 2 is even, we note

that t2 also starts with [�][��][�]t�1, since [�]t�1 � [�][��]t�1 � [�][��][�][��]t�1 � [�][��][�]t�1;

and similarly for the ends.

3 Separating Varieties of Star-Bands by Hyperidentities So far all the hyperiden-

tities considered for varieties of star-bands either hold in all of B�, or hold only in SL and

TR. This raises the question of whether given any two distinct varieties of star-bands, we

can �nd a hyperidentity satis�ed by one but not the other. In particular, for each variety

in the lattice, can we �nd a hyperidentity satis�ed by it but not by the next higher variety?

In this section we produce such separating hyperidentities.

Lemma 3.1 (i) The following hyperidentity holds in RB, but not in SL or NB:

F (F (F (a; F (F (a; a); a)); a); a)� F (F (F (a; F (F (a;x); a)); a); a).

(ii) The following hyperidentity holds in NB but not in RegB:

F (F (F (a; F (F (a; x); F (y; a))); a); a) � F (F (F (a; F (F (a; y); F (x; a))); a); a).

Proof. (i) This hyperidentity fails in SL because using xy for F gives a � axa, which

de�nes RB. We can verify directly, by substitution of all 16 terms, that it does hold in RB.

(ii) Using xy for F yields the identity axya � ayxa, which is known to de�ne NB. Thus the

hyperidentity cannot hold in RegB. It does hold in NB = SL
W
RB, by direct veri�cation

of terms.

To produce a hyperidentity for each Vn, n � 3, which is not satis�ed by the next variety

in the chain, we consider Petrich's identities from Section 1. For n � 3, we have V2n�3
= V (Qn � Q

n
) = V (Q

n
Qn � Rn). It is easily veri�ed that these two de�ning identities

are also equivalent to the identity Q
n
� Rn, with an analogous identity for V2n�4. We

modify this identity by doubling each variable, then left associating, to form a potential

hyperidentity An � Bn for the variety V2n�3. For instance, for n = 3 and the variety V3,

we obtain the identity x2x1 x3x2x1x2 � x2x1x2x3x2x1x2 and the potential hyperidentity

A3 � B3:

F (x2; F (x2; F (x1; F (x1; F (x3; F (x3; F (x2; F (x2; F (x1; F (x1; F (x2; x2) : : : ) �

F (x2; F (x2; F (x1; F (x1; F (x2; F (x2; F (x3; F (x3; F (x2; F (x2; F (x1; F (x1; F (x2; x2) : : : ).

It is clear that this identity An � Bn is not a hyperidentity in the next highest variety

V2n�2. Our goal now is to show that is does hold as a hyperidentity in the variety V2n�3. A

similar process and proof may be carried out for the even varieties V2n�4, using analogous

identities.
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To prove that this identity An � Bn is a hyperidentity for V2n�3, we must show that

every identity obtained from it by replacing F by a term t still holds in Vn. We shall verify

this in a number of lemmas, for which we �rst introduce some necessary notation. We shall

denote the identity resulting from use of a term t for F in the hyperidentity by At

n
� Bt

n
.

It is clear that to evaluate such an identity, we always begin at the right hand end of each

term with t(x2; x2), and continue evaluating subwords of the form F (l; F (l; w)), where l

represents a variable letter and w is any interim word. We note that the right hand side of

the hyperidentity is almost the same as the left hand side, except that it has an additional

occurrence of \F (x2; F (x2;" at one stage, and also that all the variables in the hyperidentity

occur at least once to the right of this extra occurrence. Of particular interest therefore

is the interim word d = dt which is obtained by evaluation up to the point where the two

sides of the hyperidentity di�er. We then denote by e = et the right hand side interim word

obtained by evaluating F (x2; F (x2; d)). We shall use notation such as u(x; y) to mean that

u is a word whose content is one of fxg, fyg or fx; yg.

The �rst Lemma deals with words whose �rst and last content variable is y; that is

words which begin with either y or y� and end with either y or y�.

Lemma 3.2 Let t � p(y)u(x; y)q(y), where p, q 2 fy; y�g and u(x; y) is a word with content
fx; yg. Then At

n
� Bt

n
holds in V2n�3.

Proof. Here we examine the interim words d and e. We note that

e � F (x2; F (x2; d))

� F (x2; p(d)u(x2; d)q(d))

� F (x2; p(d)q(d)), since x2 occurs in d,

� p(p(d)q(d))Uq(p(d)q(d)) for some word U ,

� p(p(d)q(d))q(p(d)q(d)), since c(U ) � c(d).

There are four possible combinations for p and q. When p = q = y or p = q = y�, it

is easy to see that e = d, so that all subsequent evaluations in the hyperidentity give the

same result on either side. When p = y and q = y�, or vice versa, we �nd that e = dd�,

or analogously e = d�d. But here we claim that d is star-dual, meaning that d� = d, so in

both cases this reduces to d as well. To see that d is star-dual when p = y and q = y�, we

note that any evaluation F (l; F (l; w)) gives a star-dual result in this case.

Thus in the remaining Lemmas we consider terms t which either start or end with x or

x�. We classify such terms according to whether the �rst y variable encountered on each

side carries a star or not. We use � for the empty word.

Lemma 3.3 Let t � r(x)yu(x; y)ym(x), where r;m 2 f�; x; x�; xx�; x�xg are not both
empty and u is any word. Then At

n
� Bt

n
holds in V2n�3.

Proof. For any letter l and any interim word w, we obtain

F (l; F (l; w)) � F (l; r(l)wu(l; w)wm(l))

� r(l)r(l)wu(l; w)wm(l)Ur(l)wu(l; w)wm(l)m(l) (*) for some word U .

Case 1: If neither r nor m is empty, we see that (*) reduces to r(l)wm(l). In this case it

is clear that the �nal identity At

n
� Bt

n
is a consequence of the de�ning identity for V2n�3;

the base identity is copied twice, with each variable x being replaced by r(x) in one copy

and by m(x) in the other.

Case 2: If r is non-empty but m is empty, so that t = r(x)yu(x; y)y, then we have

e = F (x2; F (x2; d))

� F (x2; r(x2)du(x2; d)d)

� F (x2; r(x2)d), since x2 occurs in d,
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� r(x2)r(x2)dUr(x2)d for some word U ,

� r(x2)d, by content.

Moreover, for any subsequent evaluation F (l; F (l; w)) the fact that all variables have

now been encountered means that we obtain r(l)w. This means that our �nal identity

At

n
� Bt

n
has the form ar(x2)b � ab, for some words a and b. But both a and b contain

r(x2), so that by content this identity holds in V2n�3.

Case 3: If r is empty but m is not, we obtain a situation analogous to Case 2. We get

e � dm(x2), and subsequent evaluations with letter l merely attach m(l) to the right hand

side of the previous word. Thus we obtain an identity of the form am(x2)b � ab, which

does hold in V2n�3.

Lemma 3.4 Let t � r(x)y�u(x; y)ym(x), where r;m 2 f�; x; x�; xx�; x�xg are not both
empty and u is any word. Then At

n
� Bt

n
holds in V2n�3.

Proof. Since r and m are not both empty, we consider three cases.

Case 1: When neither r nor m is empty, it is easy to verify that in the �rst stages

of evaluation we have F (x1; F (x1; F (x2; x2))) = r(x1)m(x1)
�m(x2)

�m(x2)m(x1). Then for

further evaluations we see that

F (l; F (l; w)) � F (l; r(l)w�u(l; w)wm(l))

� F (l; r(l)w�wm(l)), by content,

� r(l)m(l)�w�wr(l)�Ur(l)w�wm(l)m(l), for some word U ,

� r(l)m(l)�w�wm(l), by content.

It follows that the �nal identity At

n
� Bt

n
is again a consequence of the de�ning identity

for V2n�3, with the identity copied twice and each variable x replaced by m(x)� in one copy

and by m(x) in the other (with a �nal r(x2) on the left end).

Case 2: Let r be non-empty but m empty, so t = r(x)y�u(x; y)y. Then we have e =

F (x2; F (x2; d))� F (x2; r(x2)d
�u(x2; d)d)� r(x2)d

�d, by content, since x2 occurs in d. Then

in the subsequent evaluations, we obtain F (l; F (l; e)) � r(l)e�e � r(l)d�dr(x2)
�r(x2)d

�d �

r(l)d�d on one side and F (l; F (l; d)) � r(l)d�d on the other. Thus the two sides give exactly

the same results in this case.

Case 3: Let r be empty but m non-empty, so t = y�u(x; y)ym(x). Then for any evalua-

tion we have

F (l; F (l; w)) � F (l; w�u(l; w)wm(l))

� m(l)�w�u(m; l)�wUw�u(l; w)wm(l)m(l), for some word U ,

� m(l)�w�wm(l),

which is star-dual, and so reduces to m(l)�wm(l). Thus the �nal identity At

n
� Bt

n

has the form of a two-copy instance of the original de�ning identity, with each variable x

replaced by m(x)� in one copy and dually in the other.

Lemma 3.5 Let t � r(x)y�u(x; y)y�m(x), where r;m 2 f�; x; x�; xx�; x�xg are not both
empty and u is any word. Then At

n
� Bt

n
holds in V2n�3.

Proof. The �rst evaluation on either side gives F (x2; x2) = r(x2)x
�

2u(x2; x2)x
�

2m(x2),

which by content reduces to r(x2)x
�

2m(x2). Subsequent evaluations then give

F (l; F (l; w)) � F (l; r(l)w�u(l; w)w�m(l))

� r(l)m(l)�wu(l; w)�wr(l)�Um(l)�wu(l; w)�wr(l)�m(l), for some word U ,

� r(l)m(l)�wr(l)�m(l), by content.

>From this we see that the �nal identity At

n
� Bt

n
is again a doubled instance of the

de�ning identity for V2n�3; here each variable x is replaced by r(x)m(x)� in one copy and

by m(x)r(x)� in the other.
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We have now tested all the terms necessary, establishing the following theorem.

Theorem 3.6 For any n � 3, the identity An � Bn is a hyperidentity satis�ed by the
variety V2n�3, but not by the variety V2n�2.

This has given us hyperidentities for each of the varieties Vn in the chain for which n is

odd. We can carry out a similar process for n even, using a modi�ed version of the Petrich

identities. In this case too we obtain hyperidentities; the proof is very similar, so details

are omitted.

Corollary 3.7 For every star-band variety Vn, n � 3, there is a hyperidentity separating
it from the next variety in the chain.

We conclude this investigation of hyperidentities for varieties of star-bands with a remark

about solid varieties. A variety is said to be solid if each of its identities also holds as a

hyperidentity. Solid varieties have been much investigated, both in general and for speci�c

varieties, especially varieties of semigroups (see [P]). However, it is easy to see that there

are no solid varieties of star-bands. This is because the de�ning identity (xy)� � y�x� does

not hold as a hyperidentity in any non-trivial variety of star-bands.
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