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ABsTRACT. We consider HP? — HP and HP — h? (local Hardy space) boundedness of
Calderén-Zygmund operators and give a counter example at critical index. We show
HP — hP boundedness of Calderén’s commutator.

1. INTRODUCTION

Consider the operator defined by

Tf(z) =pv. - K(z,y)f(y)dy,

where K is a Calderén-Zygmund kernel (see Sect.2).

Alvarez and Milman [1],[2] proved that if kernel K (z,y) has some regularity then T is a
bounded operator from H? to LP, and if T*1 = 0 then T is a bounded operator from HP
to HP.

In this paper we show that if 7*1 belongs to Lipschitz class then T is bounded operator
from HP to h? (local Hardy space defined by Goldberg [4]).

2. DEFINITIONS AND NOTATIONS

The following notation is used: For a set E C R™ we denote the Lebesgue measure of E
by |E| and xg is a characteristic function of E.

We denote a ball of radius r centered at xo by B(zo,r) = {z; |z — zo| < r}.

We define two maximal functions.

Let ¢ € S be a fixed function such that [ ¢(z)dz # 0, then we define

@) =supiso | [ f)pe(@ —y)dyl,  f(2) =supisiso | [ F(W)ee(w —y)dyl,
where pi(z) =t~ "p(x/t).

Definition 2.1. (Fefferman—Stein’s Hardy space [3])

HP(R") = {f € S5 [|fllm> = Ilf " llL» < 00}
Definition 2.2. (local Hardy space [4])

W(R") = {f € S"s Ifllne = lf "Il < o0}
Remark . || flln> < [|f|l 7o
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Definition 2.3. (Lipschitz space)

Lip(R"™) = {f; | fllLip. = sup 11(@) = 7y)] ny)| < oo} for 0<e<l.
TF£y |1‘ - y|
Remark . (HP)* = Lipyp1/p—1) where n/(n+1) <p <1 (duality, see [3]).
Definition 2.4. Let T be a bounded linear operator from S to §'. T is called a standard
operator if T satisfies the following conditions.
(1) T extends to a continuous operator on LZ.
(ii) There exists a function K(z,y) defined on {(z,y) € R" x R";x # y} which satisfies

K(z,y)| < ——.
| | |z —y|™

(iii) (Tf,q) //K z,y)f (x)dydx for f,g € S with disjoint supports.

Definition 2.5. A standard operator T is called a §-Calder6n—Zygmund operator if K (z,y)
satisfies

T
K (2,9) - K(2,2)| + K (y,2) — K(2,2)] < c%
if 2|y — z| < |x — 2| , for some 0 < § < 1.

Examples . Let T be a classical singular integral operator defined by

710 =po. [ R )y,

where (2 satisfies the following conditions.
(iv) Q(rw)—ﬂ( ) forr >0,z #0.
(v) Jgn—1 Q(z)do = 0 where do is the induced Euclidean measure on S™~'.
(vi) Qe Llpg.

Then T is a §-Calderén—Zygmund operator.
The Hilbert transform and the Riesz transforms are 1-Calderén—Zygmund operators (§ =

1).
Definition 2.6. A standard operator T is called a weak-§-Calderén-Zygmund operator if
K (z,y) satisfies

sup sup / (1K (@,y) — K(2,2)| + |K (y,3) — K(2,2)]) do
r>0 ‘y—z‘<r 2jr<|z z|<2jJrl

<0279

forsome 0 < §<1,7=1,2,3,....
Remark . If a standard operator T is d-Calder6n—Zygmund operator then it is weak-o-
Calderé6n—Zygmund operator.
Ezamples . Let I; = (27,27+1] where j € Z. For z > 0, we define K(z) =277 if z €I .

And for z < 0, let K(z) = —K(—x).

We define T'f(x) = pv. [ K(x — y)f(y)dy. Then T is a weak-1-Calderén-Zygmund
operator (0 = 1).

The truncated Riesz transforms (R;)® f(z) = fa<‘y‘<byj/|y|”-f(m—y)dy (0 < a<b) are
weak-1-Calderén—Zygmund operators.
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3. THEOREMS

Alvarez and Milman [1], [2] obtained next results.
Theorem A . IfT is a weak-0-Calderén—Zygmund operator then T is a bounded operator
from HY to L? where 25 <p <1.

Theorem B . If T is a 5—Caldero’anygmund operator such that T*1 = 0 then T is a
bounded operator from H? to H? where == <p < 1.
Remark . T* is an adjoint operator of T. T and T* are simultaneously §- or weak-6-
Calderén—-Zygmund operators. For the definition of 7*1, see [6], p.412.

We have the following:

Theorem 1. If T is a weak-6-Calderdn—Zygmund operator such that T*1 =0 then T is a
bounded operator from H to H? where ;25 <p <1.

Theorem 2. If T is a weak-6-Calderdn— Zygmund operator such that T*1 € Lip. then T is
a bounded operator from HP to h? where = <p <1 and - < p.

Remark . The conditions %5 < p and ;% < p are the best p0551ble (see Sect.6).

4. LEMMAS

We shall show some properties about Hardy space. Let %5 <p <1.
Definition 4.1. A function a(z) is a (HP, co)-atom centered at zo if there exists a ball
B(xg,r) such that the following conditions are satisfied

(1) supp a C B(Qfo,?“),

(2) llaflp= <r/7,

(3) [a(z)dz=0.
Definition 4.2. A function a(z) is a (HP,1)-atom centered at x if there exists a ball
B(z,r) such that the following conditions are satisfied (1), (3) and

2) llallgs < re=1/e),
Lemma 1 ([5], p.34). If a function a(x) is a (HP,00)-atom or (HP?,1)-atom then we have
lla||g» < Cp,n, where Cpp, is a constant depending only p and n.
Remark . Note that p < 1.

Definition 4.3. A function a(x) is a (h?,1)-atom centered at zp if there exists a ball
B(zg,r) of radius r > 1 such that the following conditions are satisfied (1) and (27).
Lemma 2 ([4]). If a function a(z) is a (h?,1)-atom then we have ||al|lpr < Cp 1.
Lemma 3. We assume a function a(zx) satisfies next conditions. There exists 0 < r < 1
and CU() € R™ such that (1), (2) and
N | [a(z)dz| <1.

Then we have ||allpe < Cpn.

Proof. We write

a(z) = (a(z) —ap)xp(z) + apxs(r) = a1(z) + ax(z),

where B = B(xg,r) and ap = \BI I a(y)dy.

ay(z)/2 is a (HP, 00)-atom, so by Lemma 1 we have ||a1||Hp < Cpn-

supp a2 C B(zo,1) and f|a2 Ndz < |ap||B| = | [y a(y)dy| < 1. So ax(x) is a (hP,1)-
atom. By Lemma 2 we have ||az|[pe < Cpp.
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Definition 4.4. Suppose a > n(1/p—1). A function M (z) is a (h?, 1, a)-molecule centered
at zo if there exists r > 0 such that the following conditions are satisfied

(M) / M (2)|dz < (1),
le—zo|<2r

(Mz) / |M(z)||x — zo|“dz < potn(i=1/p)
lz—axo|>2r

(M;) ‘/M(a;)da; <1

Remark . For the definition of HP-molecule, see [2] and [5].

Lemma 4. If a function M(zx) is a (h?,1, a)-molecule then we have ||M||n» < Cpan-

Proof. Let Ey = {z;|x — xo| < 2r} and E; = {z;2r < |z — mg| < 2lp) i = 1 2,3,.

and let Xz(m) = XE; (ZU), )22(.’15) = ﬁXEz (.’17), m; = \E1'1| fEl dy: m; = fE dy a‘nd
M;(z) = (M(z) —m;)xi(z)-
We write
=3 Mi(z) + > mixi(z) = > Mi(z) + Y riii(x)
i—0 i—0 i=0 i=0

Let N; = 372 my, and we write

= Z M;(z) + Z Ni(Xi(x) — Xi—1(x)) + NoXo(x)

=I+II+1II

We shall show [|I||me < Cpam, [II||ar < Cpa,n and |[I1I]|pe < Cpp.

First we estimate I.

It is clear that supp M; C B(zo,2!!r), [ M;(z)dz = 0.

Furthermore [ |My(z)|dz < 2r™(1~ l/p) by the condltlon (M;). So by Lemma 1 we have
|Mollss < Gy

Using the condition (Ms), we have

/|M Jdz < 2(2'r) / M ()| — wo|*de
< 2(27'1“) 047.Ot+n(1 1/p) <2.2° azrn(lfl/p).

By Lemma 1 we have
M| < Cp n27m’r"(1*1/1))(2i+1 » n(l/p—1) _ =0, 2 —a+tn(l/p-1))i_

Since @ > n(1/p— 1), we obtain Y=, ||M;[|%s < Cpan and ||I|ar < Cpan-
Next we estimate 1.

Let A;(z) = Ni(Xi(z) — Xi-1()).
It is clear that supp A; C B(zo,2""'r), [ A;(x

Using the condition (M), we have

4ill = < Ca(2ir)™" / |M (2) |z
|e—zo|>2tr
< Co(2i) " (2r) " / M (2)||z — 20| dx
|z—zo|>2tr

< Cn2i(fnfoc)rfnfaroz+n(lfl/p) — Cn2i(7n7a)1“7n/p.
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By Lemma 1 we have
| Asl| e < Cmei(fnfa)Tfn/p(QiJrlr)n/p < Cp7n2i(fa+n(1/p71))_

Since @ > n(1/p— 1), we obtain Y ;= ||4il|%» < Cpan and ||II||gr < Cpan-
Finally we estimate I11.

It is clear that supp Noxo C B(xo,2r).

Using the conditions (M;) and (M), we have

[ NoXoll 1 §/|M(w)|dm

< /lww0<2r|M(£L’)|d1'+(2r)o‘/ |M (z)||z — zo|*da

|e—zo|>2r

< pr(=1/p)  (gpy=epatn(i=1/p) < gpn(1=1/p)
Similarly we have
INoxollLe < C'nf'_”/|M(a:)|dm < Cprm/?,

If » > 1, by Lemma 2 we have ||NoXo|lnr < Cpn-
If » < 1, using the condition (Ms), we have

= ‘/M(a:)da:

<1

‘/ NoXo(z)dz

By Lemma 3 we have ||[NoXo|lnr < Cpn.
So we obtain |[III]|pr < Cpp-

5. PROOF OF THEOREMS

The proofs of two theorems are similar, so we prove only Theorem 2.

By the atomic decomposition, it suffices to show that there exists C} ¢ 5., > 0 such that
ITallne < Cpes.n, for every (HP, 00)-atom a.

By using the interpolation theorem between L? and HP or h?, we may assume p < 1.
We have to check that if an atom a(x) is supported in B(zg,r) then Ta(x) satisfies the

conditions of Definition 4.4.

Since T is bounded on L?, we have

(4) / Ta(z)|de < Cor™?||Tal| 2
|e—wxo|<2r

< Cor™?||al| 2 < Cor™?||a)|peer™? = Cprt—1/P),
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By the condition of Definition 2.6 and the cancellation property of atom we have

/ Ta@)|lz — zo|*dz = 3 /  [Ta@)lle - zo|*de

lz—axo|>2r i=1 2ir<|e—mo|<2i+1r

<> [
j=1 2

(271 —n/p/ / |K (z,y) — K(z,z0)|dzdy
ly—zo|<r J2ir<|z—zo|<2i+1r

/| K@)~ Kz do

ir<|lz—wmo|<2itlr

Mg

1

<.
Il

€2 (@ /g = Y gela-paeni ),

_pﬂg

Jj=1 j=1
Since p > -2 we can choose « such that n(1/p—1) < a < 4.
So we have
) / (Ta(e) ||z — ol de < Cs ur+n1-1/7)
|x—wxo|>2r

If r>1, by (1) and (2), we have

(6) ‘ / Ta(z)ds

If r < 1, by the duality of HP and Lip, we have
‘ / Ta(z

M n
Since p > e We have

(7) ‘ / Ta(z)dx

By (4)—(7) we obtain the desired result.

<||Tallzr < Cspr™ 1P < O .

[(T'a, 1) = [(a, T"1)| < Cyllal]

T*1||L1pe

Hmke

< Cn||T*1||Lipe7"n+€7n/p-

< CollT*1|Lip, -

6. ExAMPLE AND COUNTEREXAMPLES

Definition 6.1. Calderén’s commutator is defined as

1if@) =po. [ MO0 )0y

Theorem 3. Ifb' € L N Lip., then Ty is a bounded operator from HP to h? where
= <p<l

Proof. If b’ € L then T is bounded on L? (see [6], p.408) and a 1-Calderén—Zygmund
operator (0 = 1).

We can write T 1(z) = —H (b")(x) where H is the Hilbert transform. Since H is bounded
on Lip, (see [6], p.214), we have T;*1(z) € Lip, .

By Theorem 2 we obtain the desired result.

Theorem 4. The conclusion of Theorem A is not true in general for p < P
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Proof. Let
0, 0<z<1/2
d(z) =< (1—1z)°, 1/2<2<1
0, otherwise.
And let I’C [27 + 2k,27 + 2k + 1] where j = 1,2,3,... , and k is an integer such that

0<k<2-1_1.
For z > 0, we define K(z) as
K(z) = 2-1(1+0) (g — 27 — 2k), ifre I]k for some j, k
0, otherwise.
And for z <0, letK( ): —K(—x).
We define T'f(z) = [ K(z —y)f(y)dy .
It is clear that T is a o- Calderon Zygmund operator.

We shall show that T'a does not belong to LP(R!) for some a(x) € H? where p < ﬁ.
Let

1, 0<z<1/2
a(z) =< —1, 1/2<z<1
0, otherwise.
And let I]’?* =[27 + 2k, 27 + 2k +1/2].
For z € I}* we have

Ta(z) = 27701+ / (y — 27 — 2k)°dy
2742k

= 2770+ (g — 27 — 2k)TF /(6 + 1).

So we have
[ o =204 [ (o1 — 2y o+ v
v 11*/2
= Cp,52_j(1+6)p/ TP gy
=(C, 52 70HP, "
and

/ |Ta(z)|Pdx > ZZ/ |Ta(z)|Pdz
le[>2 1k

j=1 k

=Cps Z 9-i(1+8)pgj—1

Jj=1
=Cs Z 9i(1—(1+6)p)
Jj=1

This series diverges if p < 1+6

Remark . Similarly we can give counterexamples for n > 2.

Theorem 5. The conclusion of Theorem 2 is not true in general for p < 1+e'
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Proof. We consider Calderén’s commutator Ty, f(z) = p.v. [, bla)—b(y) f(y)dy,

(z—y)?
where
1 14+e€
Tz 0<z<1
b(z) = (= — 15, 1<z
0, otherwise.

Then T}, is a 1-Calderén-Zygmund operator and T;'1 € Lip., but we shall show
lim, 0 ||Ts(ar)||ne = oo for some (H?, co)—atoms {a.(z)} .

Let
—r /P —r<z<-—-r/2
ar(r) =< rl/p, —r/2<z<0
0, otherwise,
where r > 0.

By the same argument used in the proof of Lemma 4 (see the estimate of I17), it suffices
to show

lim/ Ty(a.)(z)dz| = oc.
r—0 R
By calculations we have
—r/2 1 0 1
Ty(a,)(z) = r~ /P bz —/ —d +/ —d
e “{ R A S
r271/p €

20+¢€) (z+7r)(z+7r/2)

for0 <z <1
Since Ty(a.)(x) > 0, we have

[ i G e
Rl " 2(1+¢€) Jo (x+r)(z+7r/2)

> L L/r z€ dzx
—2(14¢€) 3r2 J

P 1/t 14e

6(1+¢€)2"

v

Ifp< %ﬂ, we have

71‘1_1;% . Ty(a,)(z)dz = co.
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