
Scientiae Mathematicae Japonicae Online, Vol. 4, (2001), 35{44 35

CALDER�ON{ZYGMUND OPERATORS ON Hp(Rn)

YASUO KOMORI

Received November 20, 1999; revised February 9, 2000
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Abstract. We consider Hp
! H

p and Hp
! h

p (local Hardy space) boundedness of

Calder�on{Zygmund operators and give a counter example at critical index. We show

H
p
! h

p boundedness of Calder�on's commutator.

1. Introduction

Consider the operator de�ned by

Tf(x) = p:v:

Z
Rn

K(x; y)f(y)dy;

where K is a Calder�on{Zygmund kernel (see Sect.2).
Alvarez and Milman [1],[2] proved that if kernel K(x; y) has some regularity then T is a

bounded operator from Hp to Lp, and if T �1 = 0 then T is a bounded operator from Hp

to Hp.
In this paper we show that if T �1 belongs to Lipschitz class then T is bounded operator

from Hp to hp (local Hardy space de�ned by Goldberg [4]).

2. Definitions and Notations

The following notation is used: For a set E � Rn we denote the Lebesgue measure of E
by jEj and �E is a characteristic function of E.

We denote a ball of radius r centered at x0 by B(x0; r) = fx; jx� x0j < rg.
We de�ne two maximal functions.
Let ' 2 S be a �xed function such that

R
'(x)dx 6= 0, then we de�ne

f++(x) = supt>0 j
R
f(y)'t(x� y)dyj; f+(x) = sup1>t>0 j

R
f(y)'t(x� y)dyj;

where 't(x) = t�n'(x=t).

De�nition 2.1. (Fe�erman{Stein's Hardy space [3])

Hp(Rn) = ff 2 S 0; kfkHp = kf++kLp <1g:

De�nition 2.2. (local Hardy space [4])

hp(Rn) = ff 2 S 0; kfkhp = kf+kLp <1g:

Remark . kfkhp � kfkHp .
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De�nition 2.3. (Lipschitz space)

Lip�(R
n) = ff ; kfkLip� = sup

x6=y

jf(x)� f(y)j

jx� yj�
<1g for 0 < � < 1:

Remark . (Hp)� = Lipn(1=p�1) where n=(n+ 1) < p < 1 (duality, see [3]).

De�nition 2.4. Let T be a bounded linear operator from S to S 0. T is called a standard
operator if T satis�es the following conditions.

(i) T extends to a continuous operator on L2:

(ii) There exists a function K(x; y) de�ned on f(x; y) 2 Rn
�Rn;x 6= yg which satis�es

jK(x; y)j �
C

jx� yjn
:

(iii) (Tf; g) =

Z Z
K(x; y)f(y)g(x)dydx for f; g 2 S with disjoint supports.

De�nition 2.5. A standard operator T is called a Æ-Calder�on{Zygmund operator ifK(x; y)
satis�es

jK(x; y)�K(x; z)j+ jK(y; x)�K(z; x)j � C
jy � zjÆ

jx� zjn+Æ

if 2jy � zj < jx� zj , for some 0 < Æ � 1:

Examples . Let T be a classical singular integral operator de�ned by

Tf(x) = p:v:

Z
Rn


(x� y)

jx� yjn
f(y)dy;

where 
 satis�es the following conditions.

(iv) 
(rx) = 
(x) for r > 0; x 6= 0:

(v)
R
Sn�1


(x)d� = 0 where d� is the induced Euclidean measure on Sn�1:

(vi) 
 2 LipÆ :

Then T is a Æ-Calder�on{Zygmund operator.
The Hilbert transform and the Riesz transforms are 1-Calder�on{Zygmund operators (Æ =

1).

De�nition 2.6. A standard operator T is called a weak-Æ-Calder�on{Zygmund operator if
K(x; y) satis�es

sup
r>0

sup
jy�zj<r

Z
2jr�jx�zj<2j+1r

(jK(x; y)�K(x; z)j+ jK(y; x)�K(z; x)j) dx

� C2�jÆ

for some 0 < Æ � 1; j = 1; 2; 3; : : : :

Remark . If a standard operator T is Æ-Calder�on{Zygmund operator then it is weak-Æ-
Calder�on{Zygmund operator.

Examples . Let Ij = (2j ; 2j+1] where j 2 Z. For x > 0, we de�ne K(x) = 2�j if x 2 Ij .
And for x < 0, let K(x) = �K(�x).
We de�ne Tf(x) = p:v:

R
R1 K(x � y)f(y)dy. Then T is a weak-1-Calder�on{Zygmund

operator (Æ = 1).
The truncated Riesz transforms (Rj)

b
af(x) =

R
a<jyj<b

yj=jyj
n �f(x�y)dy (0 < a < b) are

weak-1-Calder�on{Zygmund operators.
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3. Theorems

Alvarez and Milman [1], [2] obtained next results.

Theorem A . If T is a weak-Æ-Calder�on{Zygmund operator then T is a bounded operator

from Hp to Lp where n

n+Æ
< p � 1.

Theorem B . If T is a Æ-Calder�on{Zygmund operator such that T �1 = 0 then T is a

bounded operator from Hp to Hp where n

n+Æ
< p � 1.

Remark . T � is an adjoint operator of T . T and T � are simultaneously Æ- or weak-Æ-
Calder�on{Zygmund operators. For the de�nition of T �1, see [6], p.412.

We have the following:

Theorem 1. If T is a weak-Æ-Calder�on{Zygmund operator such that T �1 = 0 then T is a

bounded operator from Hp to Hp where n

n+Æ
< p � 1.

Theorem 2. If T is a weak-Æ-Calder�on{Zygmund operator such that T �1 2 Lip� then T is

a bounded operator from Hp to hp where n

n+Æ
< p � 1 and n

n+�
� p.

Remark . The conditions n

n+Æ
< p and n

n+�
� p are the best possible (see Sect.6).

4. Lemmas

We shall show some properties about Hardy space. Let n

n+1
< p < 1.

De�nition 4.1. A function a(x) is a (Hp;1)-atom centered at x0 if there exists a ball
B(x0; r) such that the following conditions are satis�ed

(1) supp a � B(x0; r),
(2) kakL1 � r�n=p,
(3)

R
a(x)dx = 0 .

De�nition 4.2. A function a(x) is a (Hp; 1)-atom centered at x0 if there exists a ball
B(x0; r) such that the following conditions are satis�ed (1), (3) and

(2') kakL1 � rn(1�1=p).

Lemma 1 ([5], p.34). If a function a(x) is a (Hp;1)-atom or (Hp; 1)-atom then we have

kakHp � Cp;n where Cp;n is a constant depending only p and n.

Remark . Note that p < 1.

De�nition 4.3. A function a(x) is a (hp; 1)-atom centered at x0 if there exists a ball
B(x0; r) of radius r � 1 such that the following conditions are satis�ed (1) and (2').

Lemma 2 ([4]). If a function a(x) is a (hp; 1)-atom then we have kakhp � Cp;n.

Lemma 3. We assume a function a(x) satis�es next conditions. There exists 0 < r < 1
and x0 2 Rn such that (1), (2) and

(3') j
R
a(x)dxj � 1.

Then we have kakhp � Cp;n.

Proof. We write

a(x) = (a(x) � aB)�B(x) + aB�B(x) = a1(x) + a2(x);

where B = B(x0; r) and aB = 1
jBj

R
B
a(y)dy.

a1(x)=2 is a (Hp;1)-atom, so by Lemma 1 we have ka1kHp � Cp;n.
supp a2 � B(x0; 1) and

R
ja2(x)jdx � jaB jjBj = j

R
B
a(y)dyj � 1. So a2(x) is a (hp; 1)-

atom. By Lemma 2 we have ka2khp � Cp;n.
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De�nition 4.4. Suppose � > n(1=p�1). A functionM(x) is a (hp; 1; �)-molecule centered
at x0 if there exists r > 0 such that the following conditions are satis�ed

(M1)

Z
jx�x0j<2r

jM(x)jdx � rn(1�1=p);

(M2)

Z
jx�x0j�2r

jM(x)jjx � x0j
�dx � r�+n(1�1=p);

(M3)

����
Z
M(x)dx

���� � 1:

Remark . For the de�nition of Hp-molecule, see [2] and [5].

Lemma 4. If a function M(x) is a (hp; 1; �)-molecule then we have kMkhp � Cp;�;n.

Proof. Let E0 = fx; jx� x0j < 2rg and Ei = fx; 2ir � jx � x0j < 2i+1rg; i = 1; 2; 3; : : : ,
and let �i(x) = �Ei

(x); ~�i(x) =
1
jEij

�Ei
(x); mi =

1
jEij

R
Ei

M(y)dy; ~mi =
R
Ei

M(y)dy and

Mi(x) = (M(x)�mi)�i(x).
We write

M(x) =

1X
i=0

Mi(x) +

1X
i=0

mi�i(x) =

1X
i=0

Mi(x) +

1X
i=0

~mi ~�i(x):

Let Nj =
P1

k=j ~mk and we write

M(x) =

1X
i=0

Mi(x) +

1X
i=1

Ni(~�i(x)� ~�i�1(x)) +N0 ~�0(x)

= I + II + III:

We shall show kIkHp � Cp;�;n; kIIkHp � Cp;�;n and kIIIkhp � Cp;n:

First we estimate I .
It is clear that supp Mi � B(x0; 2

i+1r);
R
Mi(x)dx = 0:

Furthermore
R
jM0(x)jdx � 2rn(1�1=p) by the condition (M1). So by Lemma 1 we have

kM0kHp � Cp;n.
Using the condition (M2), we haveZ

jMi(x)jdx � 2(2ir)��
Z
Ei

jM(x)jjx � x0j
�dx

� 2(2ir)��r�+n(1�1=p) � 2 � 2��irn(1�1=p):

By Lemma 1 we have

kMkHp � Cp;n2
��irn(1�1=p)(2i+1r)n(1=p�1) = Cp;n2

(��+n(1=p�1))i:

Since � > n(1=p� 1), we obtain
P1

i=1 kMik
p

Hp � Cp;�;n and kIkHp � Cp;�;n.
Next we estimate II .
Let Ai(x) = Ni(~�i(x)� ~�i�1(x)).
It is clear that supp Ai � B(x0; 2

i+1r);
R
Ai(x)dx = 0:

Using the condition (M2), we have

kAikL1 � Cn(2
ir)�n

Z
jx�x0j�2ir

jM(x)jdx

� Cn(2
ir)�n(2ir)��

Z
jx�x0j�2ir

jM(x)jjx� x0j
�dx

� Cn2
i(�n��)r�n��r�+n(1�1=p) = Cn2

i(�n��)r�n=p:
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By Lemma 1 we have

kAikHp � Cp;n2
i(�n��)r�n=p(2i+1r)n=p � Cp;n2

i(��+n(1=p�1)):

Since � > n(1=p� 1), we obtain
P
1

i=1 kAik
p

Hp � Cp;�;n and kIIkHp � Cp;�;n.
Finally we estimate III .
It is clear that supp N0 ~�0 � B(x0; 2r).
Using the conditions (M1) and (M2), we have

kN0 ~�0kL1 �

Z
jM(x)jdx

�

Z
jx�x0j<2r

jM(x)jdx + (2r)��
Z
jx�x0j�2r

jM(x)jjx � x0j
�dx

� rn(1�1=p) + (2r)��r�+n(1�1=p) � 2rn(1�1=p):

Similarly we have

kN0 ~�0kL1 � Cnr
�n

Z
jM(x)jdx � Cnr

�n=p:

If r � 1, by Lemma 2 we have kN0 ~�0khp � Cp;n.
If r < 1, using the condition (M3), we have

����
Z
N0 ~�0(x)dx

���� =
����
Z
M(x)dx

���� � 1:

By Lemma 3 we have kN0 ~�0khp � Cp;n.
So we obtain kIIIkhp � Cp;n.

5. Proof of Theorems

The proofs of two theorems are similar, so we prove only Theorem 2.
By the atomic decomposition, it suÆces to show that there exists Cp;�;Æ;n > 0 such that

kTakhp � Cp;�;Æ;n, for every (Hp;1)-atom a.
By using the interpolation theorem between L2 and Hp or hp, we may assume p < 1.
We have to check that if an atom a(x) is supported in B(x0; r) then Ta(x) satis�es the

conditions of De�nition 4.4.
Since T is bounded on L2, we have

(4)

Z
jx�x0j�2r

jTa(x)jdx � Cnr
n=2

kTakL2

� Cnr
n=2

kakL2 � Cnr
n=2

kakL1r
n=2 = Cnr

n(1�1=p):
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By the condition of De�nition 2.6 and the cancellation property of atom we haveZ
jx�x0j�2r

jTa(x)jjx� x0j
�dx =

1X
j=1

Z
2jr�jx�x0j<2j+1r

jTa(x)jjx� x0j
�dx

�

1X
j=1

(2j+1r)�
Z
2jr�jx�x0j<2j+1r

�����
Z
jy�x0j<r

[K(x; y)�K(x; x0)]a(y)dy

����� dx
�

1X
j=1

(2j+1r)�r�n=p
Z
jy�x0j<r

Z
2jr�jx�x0j<2j+1r

jK(x; y)�K(x; x0)jdxdy

�

1X
j=1

Cn2
�(2jr)�r�n=prn2�jÆ =

1X
j=1

Cn2
�2j(��Æ)r�+n(1�1=p):

Since p > n

n+Æ
we can choose � such that n(1=p� 1) < � < Æ.

So we have Z
jx�x0j�2r

jTa(x)jjx� x0j
�dx � CÆ;nr

�+n(1�1=p):(5)

If r � 1 , by (1) and (2), we have����
Z
Ta(x)dx

���� � kTakL1 � CÆ;nr
n(1�1=p)

� CÆ;n:(6)

If r < 1 , by the duality of Hp and Lip�, we have����
Z
Ta(x)dx

���� = j(Ta; 1)j = j(a; T �1)j � Cnkak
H

n

n+�
kT �1kLip�

� CnkT
�1kLip�r

n+��n=p:

Since p � n

n+�
we have

����
Z
Ta(x)dx

���� � CnkT
�1kLip� :(7)

By (4){(7) we obtain the desired result.

6. Example and Counterexamples

De�nition 6.1. Calder�on's commutator is de�ned as

Tbf(x) = p:v:

Z
R1

b(x)� b(y)

(x� y)2
f(y)dy:

Theorem 3. If b0 2 L1 \ Lip�, then Tb is a bounded operator from Hp to hp where
1
1+�

� p � 1.

Proof. If b0 2 L1 then Tb is bounded on L2 (see [6], p.408) and a 1-Calder�on{Zygmund
operator (Æ = 1).

We can write T �
b
1(x) = �H(b0)(x) where H is the Hilbert transform. Since H is bounded

on Lip� (see [6], p.214), we have T
�

b
1(x) 2 Lip� .

By Theorem 2 we obtain the desired result.

Theorem 4. The conclusion of Theorem A is not true in general for p � n

n+Æ
.
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Proof. Let

�(x) =

8><
>:
xÆ ; 0 � x � 1=2

(1� x)Æ ; 1=2 < x � 1

0; otherwise:

And let Ik
j
= [2j + 2k; 2j + 2k + 1] where j = 1; 2; 3; : : : , and k is an integer such that

0 � k � 2j�1 � 1.
For x � 0, we de�ne K(x) as

K(x) =

(
2�j(1+Æ)�(x� 2j � 2k); if x 2 Ik

j
for some j; k

0; otherwise:

And for x � 0, let K(x) = �K(�x).
We de�ne Tf(x) =

R
R1 K(x� y)f(y)dy .

It is clear that T is a Æ-Calder�on{Zygmund operator.
We shall show that Ta does not belong to Lp(R1) for some a(x) 2 Hp where p � 1

1+Æ
.

Let

a(x) =

8><
>:

1; 0 � x < 1=2

�1; 1=2 � x < 1

0; otherwise:

And let Ik�
j

= [2j + 2k; 2j + 2k + 1=2].

For x 2 Ik�
j

we have

Ta(x) = 2�j(1+Æ)
Z

x

2j+2k

(y � 2j � 2k)Ædy

= 2�j(1+Æ)(x � 2j � 2k)Æ+1=(Æ + 1):

So we have Z
I
k�

j

jTa(x)jpdx = Cp;Æ2
�j(1+Æ)p

Z
I
k�

j

(x � 2j � 2k)(Æ+1)pdx

= Cp;Æ2
�j(1+Æ)p

Z 1=2

0

x(Æ+1)pdx

= Cp;Æ2
�j(1+Æ)p;

and Z
jxj�2

jTa(x)jpdx �

1X
j=1

X
k

Z
Ik�
j

jTa(x)jpdx

= Cp;Æ

1X
j=1

2�j(1+Æ)p2j�1

= Cp;Æ

1X
j=1

2j(1�(1+Æ)p):

This series diverges if p � 1
1+Æ

.

Remark . Similarly we can give counterexamples for n � 2.

Theorem 5. The conclusion of Theorem 2 is not true in general for p < 1
1+�

.
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Proof. We consider Calder�on's commutator Tbf(x) = p:v:
R
R1

b(x)�b(y)

(x�y)2
f(y)dy;

where

b(x) =

8><
>:

1
1+�

x1+�; 0 � x < 1

x� �

1+�
; 1 � x

0; otherwise:

Then Tb is a 1-Calder�on{Zygmund operator and T �
b
1 2 Lip�, but we shall show

limr!0 kTb(ar)khp =1 for some (Hp;1){atoms far(x)g .
Let

ar(x) =

8><
>:
�r�1=p; �r � x < �r=2

r�1=p; �r=2 � x < 0

0; otherwise,

where r > 0.
By the same argument used in the proof of Lemma 4 (see the estimate of III), it suÆces

to show

lim
r!0

����
Z
R1

Tb(ar)(x)dx

���� =1:

By calculations we have

Tb(ar)(x) = r�1=p b(x)

(
�

Z �r=2

�r

1

(x� y)2
dy +

Z 0

�r=2

1

(x� y)2
dy

)

=
r2�1=p

2(1 + �)
�

x�

(x+ r)(x + r=2)

for 0 < x < 1.
Since Tb(ar)(x) � 0, we haveZ

R1

Tb(ar)(x)dx �
r2�1=p

2(1 + �)

Z
r

0

x�

(x+ r)(x + r=2)
dx

�
r2�1=p

2(1 + �)

1

3r2

Z
r

0

x� dx

=
r�1=p+1+�

6(1 + �)2
:

If p < 1
1+�

, we have

lim
r!0

Z
R1

Tb(ar)(x)dx =1:
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