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A NOTE ON AN UPPER BOUND FOR THE COVARIANCE MATRIX OF
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ABSTRACT. This paper complements the results of Toyooka and Kariya (The Annals
of Statistics, 1986) by evaluating an upper bound for the covariance matrix of a typical
generalized least squares estimator in a heteroscedastic model.

1 Introduction. We consider the problem of estimating the coefficient vector of a het-
eroscedastic model with two distinct variances. We investigate the efficiency of a typical
generalized least squares estimator (GLSE) by evaluating an upper bound for its covari-
ance matrix. The upper bound considered here is the one that Toyooka and Kariya (1986)
derived under a more general setup. In Toyooka and Kariya (1986), under a general lin-
ear regression model with a certain covariance structure which includes a serial correlation
model and a heteroscedastic model as its special cases, the general formula of an upper
bound for the risk matrix of a GLSE was obtained. The result was further applied to sev-
eral typical GLSE’s in the above two specific models. However, as for the heteroscedastic
model, their evaluation was not explicit and was limited to the common mean model, a
special case of the heteroscedastic model. In this paper, we complement their result by
treating an unbiased GLSE based on the ratio of the two sample variances and obtaining
an explicit expression of the upper bound for its covariance matrix.

In Section 2, we briefly review the results of Toyooka and Kariya (1986) on which our
discussion is based. In Section 3, we present the main result. In Section 4, we investigate the
relation between the upper bound evaluated in Section 3 and an alternative upper bound
which has been considered from a different point of view by Kariya (1981), Bilodeau (1990)
and Kurata and Kariya (1996).

2 Preliminaries. The heteroscedastic model considered here is given by
(1) y,=X;B+e; (1=12),

where y; :n; x 1, X : nj x k, rankX; =k, B: k x 1, e; : nj x 1 and the error terms
e;’s are supposed to be independently distributed as the normal distribution N, (0, ajz- I,).
The model (1) is a special case of the following general linear regression model of the form

(2) y=XB+e with E()=0 and Cov(e) = Q =’X,

where X is an n x k known matrix of rank k, Q = 023X is positive definite and 3 is a function
of an unknown but estimable parameter 6, say ¥ = 3(6). In fact, letting n = n; + nao,

§ =) x=(&) = (2)
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and Q = 02 with 02 = 0%, § = 0? /03 and

@) z—x0)- (o )

in (2) obviously yields the model (1).
Under the general model (2), the Gauss-Markov estimator (GME)

B(Z)=(X'2'X)'X'sly

is the best linear unbiased estimator of 3, provided that # in 3(6) is known. In our case
where 6 is unknown, a GLSE of the form

(5) B = (X'ST'X)IX'S Ty with $=3(8)

is often used, where § = f(e) is an estimator of # based on the ordinary least squares (OLS)
residual vector

(6) e=Ny with N=1I, - X(X'X)*X'".

Kariya (1985), Kariya and Toyooka (1985) and Eaton (1985) proved that if the distribution
of e satisfies

(7) E(U1|U.2) =0 a.s.,

then for any GLSE of the form (5), its risk matrix is bounded below by the covariance
matrix of the GME, that is,

(8) Cov (B(=)) < E((BE) - B)BE) -8))

holds, where u; = X' 'e, us = Z'e and Z is any n x (n — k) matrix such that X'Z =0
and Z'Z = I,,_j,. We note that the condition (7) is satisfied when € is normally distributed.

Based on the inequality (8), Toyooka and Kariya (1986) derived an upper bound for the
risk matrix of a GLSE relative to the covariance matrix of the GME in the case where 3
in (2) has the following structure

(9) 2 =%20)"'=1,+ 0D with §€0.

Here © is an open and nonempty interval in R, A(f) is a continuous function on ©, and D
is a known nonnegative definite matrix. As is discussed in their paper, the heteroscedastic
model treated here satisfies the condition (9), since the matrix ¥ in (4) is rewritten as (9)
by letting © = (0,00), A(A) =6 — 1 and

0 0
p-(o 1. )

In the following lemma, the upper bound obtained in Toyooka and Kariya (1986) is pre-
sented in the context of the heteroscedastic model. (See also Section 3 of their paper.)

Lemma 1 (Toyooka and Kariya (1986)) In the heteroscedastic model (3) with (4), suppose
that an estimator 6 satisfies 6 € © a.s., and let

Bi={yeR"|0>60}, By={yeR'|6<0}, Wy=1, W,=6%/6>, F=6"'D
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and

(10) M= (X's'X)"\2x's VPFE 2L, - X (X' X)TIX's Y.
Then for the GLSE (%) with 3 = (),

(11) E((B(2)-B)(BE) - B)') < [1+hi +h]Cov (B())

holds, where h; = E(H;),

(12) H; =1p,(0 — 0)*W;e' M'Me/o* (j =1,2)

and 1p denotes the indicator function of a set B.

In Toyooka and Kariya (1986), the evaluation of h; was limited to the common mean model
which is obtained by letting ¥k = 1 and X = (1,---,1)" : n x 1 in the model (3). Further,
they did not derive its explicit expression. In Section 3 and 4, we derive it under the model
(3) with general X, and clarify the structure of the upper bound.

3 Evaluation of Upper Bound. For the heteroscedastic model (3) with (4), a minimal
sufficient statistic is given by (by, b,s?,s2), where

(13) by = (X;X;) ' Xy,
and
(14) s; =y Ny, =e;Nje; with Nj;=1I, —X;(X;X;)7'X".

The statistics b;’s and s7/07’s are independently distributed as N (83,07 (X;X;)~") and
an]_, the x2-distribution with degrees of freedom m; = n; — k, respectively.
A typical estimator of € is of the form

(15) 0 =cs?/s? with ¢>0.

To apply Lemma 1, we confirm that the estimator 6 is a function of the OLS residual vector
e in (6). Letting e = (e}, e})’ such that e; : n; x 1, we decompose e; into two independent
parts as

e = y,—-X1(X'X)' X'y
[ X161+ Niei] — X1 (X'X) 7' [X'Xby + X5 X2(bs — by)]
= N161—Xl(XIX)71XI2X2(b2—b1),

from which s% = e Ne; follows. Similarly, we obtain s% = e4Nse» and thus we can apply
Lemma 1 to the GLSE of the form

A A A~

(16) BE) = X' X)Xy with £=3x(f)
= (XX, +0X,X,) N(X'X1by +0X,Xby).

As is well known, the estimator B(f]) is unbiased and has finite second moments for all
¢ > 0. A typical choice of ¢ will be ¢ = my/my. A lot of researches have been made on the
efficiency of the GLSE in the literature. See, for example, Khatri and Shah (1974), Taylor
(1977,1978), Swamy and Mehta (1979) and Kubokawa (1998) in addition to the papers
given in the previous sections.
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Lemma 2 For any GLSE of the form (16), the quantity Hy + Ho in (12) is expressed as
(17) Hy + Hy = ((9,0) Q(by — by),

where the functions { and Q are defined as

(18) 0(6,6) = Lo(6/9) + £o(8/8)  with Lo(t) = (t = 1) 151y
and
6>
Qx) = gl Vz
with

(19) V=X X, (X'T!'X)I X, X, (XS X)) I XL X, (X'E X)X X,
respectively.

Proof. From (12), we readily obtain Hy; = (y(8/6) € M'Me (62/02) and Ho=(y(0/6)
e'M'Me (#?/0?). Hence we have

Hy + H, = ((0,0) ' M' Me (%/05?).

Since V2FRY2 = D, we get

(20) Me=(X'S7'X) V?*X'D[I, - X(X'=E'X) ' X's']e.
Substituting
X'De = X4, X ,(by — B)
and
(21) X'DX(X's 'X)'1X's e

= X5 Xo(X'ES7' X)X X (b — bo) + (X1 X1 +0X,X5)(bs — B)]
= XL Xo(X'S7' X)X X1 (b — bo) + X5 X5(bo — B)

into (20) proves (17), where the last equality of (21) is due to
X'E X =X\ X, +6X,X,.0

Since 6 depends only on s?’s, the quantities l(é,ﬁ) and @Q(b; — b2) are independent.
Hence we see that
hit+hs = BE(H +H)=E (e(é,a)) E(Q(by — by))
(22) = plggmi,me) E(Q(br —b2)),

where the last equality defines the function p(c;mi,ms) = E(£(6,0)). The second factor of
(22) is further calculated in the following lemma.

Lemma 3

07“2'

(23) E(Q(by — b)) = Z A+om)? =q(r, - ,mk30) (say),

=1

where 1, --- 7 are the latent roots of the matriz (X' X ) V2 X, X (XX ) /2.
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Proof. Let G be a k x k nonsingular matrix such that
XX, =GG' and Xy,X, =GRG' with R=diag{ry, --,r},

where diag denotes the diagonal matrix. Then the matrices V' in (19) and Cov(b; — bs)
are expressed as
V = GG'(GG'+0GRG')"'GRG'(GG'+0GRG')"'GRG'(GG' + GRG')"'GG'
= G diag{r}/(1+0r)°,- - 12 /(1 +0)°} G
and
Cov(by —by) = o*[(X1 X)) +071(X,X5)™"]
= oG diag{(1+06r1)/0r1), -+, (1 +6rx)/(Ore)} G,

respectively. Thus the result follows since E(Q (b1 — b2)) = (02/a*)tr(V Cov(by — by)).0
Note that the function ¢ in (23) does not depend on the choice of ¢ in 6 = cs?/s3.

On the other hand, the quantity p(c;myi,me2) = E(£(8,0)) reflects the loss of efficiency

caused by estimating unknown 6. As a loss function for estimating 6, the function £(d,6)
depends only on 6/, say £(6,60) = £(6/6). 1t has the following symmetric inverse property

ity =L(1/t) foranyt >0,

which means that the loss function equally penalizes the underestimate and the overestimate
of 6. The term “symmmetric inverse” is due to Bilodeau (1990).
To describe p(c; m1, ms2), we use the hypergeometric function

— (a1);(az); 27 , = .
2F1(a1,a2;a3;z):Z%F with (a); = H(a+z) and (a) =1,
j=0 7 ’ i=0

which converges for |z| < 1. (See, for example, Abramowitz and Stegun (1972))
Theorem 1 Let m; >4 (j = 1,2). Then, for any § = cs3/s3 (¢ > 0), the equality

pi(c;my,me) (0<c<1)
plc;my, my) = pa(m1,ms) (c=1)
p3(c;mi,me)  (1<c)

holds, where p1, ps and ps are given by

(24)
1 Mo mi + ms Moy ma
; 9 = B(__2; ) m2/2 F ’__2’_ ]-)
p1(c;my,mo) B(%,%) { 5 3)c 5 5 B + c
(m1+m2)/2
my 1 mi+my Ty
B (1 - 2,3) e F ,3; 1
B m23)e 1+c o I T
(25)
1 mo mi + me ma 1
. B(M2 - 28),m (M g gL
p2(ma,ms) Yo P (B, 1) { 5 3)2 1( 5 3 5 T 2)

mq mi + me my 1
B (% -2,3),m (T2 5 0155 )
+ 5 3)2 1( 5 3 5 + 2)}
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and
(26) ps(c;my, ma) = pi(1/¢;ma, ma),
respectively. (Thus, for any GLSE B(X()) with 0 = c¢s2/s2,
Cov (BB0)) < [1+ ple;ma, mo)a(rs, -+ ,mis )] Cov (B(E(9)))
holds.)
Proof. Let v; = s7/07 so that v; ~ x7, . Then, by (18), we have
(27) p(c;my,m2) = E (bo(cvi/v2)) + E (lo(v2/cv1))
from which the following equality
(28) ple;ma, ma) = p(1/c;ma, ma)

is obtained.
We first prove (24) and (25). Letting a = 1/(20™t™2)/2T(m, /2)['(m2/2)), the first
term of the right hand side of (27) is written as

E (bo(cvy [va)) = a// (cv1 Jve — 1)21){'“/2711)?2/271 exp (—(v1 + v2)/2) dvidvs.
cvy /va>1

Making transformation z; = vy and z2 = va/(cvy) with dvidvy = cz1dz1dzs and integrating
with respect to z; yields

1 0o
(29) a Cm2/2/ Z§m2/272)*1(1 . 22)2 (/ Z§m1+m2)/271 exp (_(1 n 62‘2)21/2) d2‘1> dzy
0 0
1
= 0 [ AT A Pk e Ry
0

with a’ = a x ¢™2/2T((my 4+ my)/2)20m1tm2)/2 = ¢m2/2 |B(my /2, my/2). To evaluate (29)
in the case where 0 < ¢ < 1, we use the following well known formula

1
(30) / t727 (1 — )" 79271 (1 — 2t) "' dt = B(az, a3 — as) 2 F1 (a1, a2; as3; 2),
0

which is valid for 0 < a2 < a3 and |z| < 1. Applying the formula (30) to the right hand
side of (29) proves the first term of the right hand side of (24). When 1 < ¢, applying the
following formula

(31)

1
/ ta271(1 — t)a37a271(1 — Zt)ialdt = (]_ — z)f‘“B(ag, asz — 02) 2F1 (al, az — a2, a3; %) 5
0 Z =

which is valid for 0 < as < ag and z < —1, establishes
(32)

E (€o(cvy [v2)) = B(m»/2 -2,3)

_ + mo mo c
1 (mitma)/2ma/2 1L _
Bl 2,ma2) 0+ e

3. = 1:
2 ”2+’1+c
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Substituting ¢ = 1 into (32) yields the first term of (25).
Next we consider the second term of the right hand side of (27). By interchanging m;
and my and replacing ¢ by 1/cin (29), we obtain

1
(33) E (50(02/01&)) — all/ Z£m1/2—2)—1(1 _ 21)2(1 + c—lzl)—(m1+m2)/2dzl
0

with @’ = 1/(c™/?B(my /2, m2/2)). Since 0 < ¢ < 1 is equivalent to 1 < ¢~!, applying
(31) to the right hand side of (33) establishes the second term of (24). The second term of
(25) is obtained by letting ¢ = 1. Thus (24) and (25) are proved. Finally, (26) is obtained
from (28). O

In the table below, we treat the GLSE with ¢ = msy/m; and summarize the values
of p(ma/myi;my, msy) for my,ms = 5,10,15,20,25,50. The table is symmetric in m; and
ma, which is a consequence of (28). We can observe that the upper bound monotonically
decreases in m; and ms.

Table of p(ma/mi;m1,ms)

mi 5 10 15 20 25 50

ma

5 18.3875 | 8.8474 | 7.7853 | 7.3423 | 7.0056 | 6.6356
10 88474 | 1.8203 | 1.2826 | 1.0879 | 0.9873 | 0.8138
5 77853 | 1.2826 | 0.8156 | 0.6518 | 0.5687 | 0.4288
20 7.3423 | 1.0879 | 0.6518 | 0.5013 | 0.4258 | 0.3001
25 7.0056 | 0.9873 | 0.5687 | 0.4258 | 0.3544 | 0.2369
50 6.6356 | 0.8138 | 0.4288 | 0.3001 | 0.2369 | 0.1349

4 Comparison with Another Upper Bound. In this section, we investigate the re-
lation between the upper bound 1 + p(c¢;my,msa) q(r1,--- ,71;6) and an alternative upper
bound considered in the literature. In Kariya (1981) and Bilodeau (1990), it is shown that
for any GLSE B(X(6)) of the form (16), the following inequality

(34) Cov (B(29)) < [1+ E(a(d,0))] Cov (B(Z(6)))
holds, where a(f,6) is a symmetric inverse loss function given by
NS BN X (/6 -1)?
a(,6) = 5 [0/9 +0/6 - 2] ==

The inequality (34) is derived from the structure of the conditional covariance matrix of
B(X(f)) given . An extension of this result is given in Kurata and Kariya (1996) and
Kurata (1999).

We show that the relation between the two upper bounds is indefinite. More precisely,

Theorem 2 (i) The relation between ((8,60) and a(8,8) is given by
(35) 0(6,0)/4 > a(8,0).
(ii) The range of the function q is given by

0<q(re, - re;0) < k/4,

and its mazimum is attained when ry = --- = r, = 1/6. As r; goes to either 0 or oo
(i=1,---,k), the function q converges to 0.
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Proof. (i) is proved as

(0,0 = (8/6- 1)21{é/9>1} +(0/6 - 1)21{9/é>1}
(6/6 — 1) (/6 — 1)
——‘572;__‘1{é/o>1}'+ “‘za@;“‘l{e/é>1}

_ (/9 —1)? (/6 — 1)?
= ———572;__‘1{é/0>1}'+ ___572;__‘1{é/0<1}
A )

(ii) is obvious from (23).0
The inequality (35) clearly implies that 1+ p(c;m1,m2)/4 > 1+ E(a(6,0)). However,
the factor g(r1,--- ,rk;8) can be so small (or large) that

1+p(c;m1,m2)q(r1,--- 7rk;6) S (OT Z) 1+E(a’(é’0))

holds. While the upper bound 1 + p(c;my, m2)q(r1,--- ,rk;0) depends on the regressor

matrix X through r;’s, the alternative upper bound 1+ E(a(f,8)) ignores the information
contained in X.
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