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ON A CLASS OF ULTRAMETRIC MEASURES

ANGEL PoOPEScU

Received December 8, 2000

ABSTRACT. In this note we associate to any compact C in an ultrametric space (X, d) a real
valued and a p-adic valued measure uc. We prove that any p-adic valued continuous function
f:C — C, is pc-integrable. Using this measure we extend the definition of the trace function
[2] to any T € C,.

Let (X,d) be an ultrametric space and C' be an infinite compact set in X. By Blz,r] =
{y € X | d(z,y) <r} we denote the ”closed” ball with centre in = and with radius . From the
topological point of view, this last one is a closed and an open (clopen) set in X. If z € C, we
denote by D[z,r] = B[z,r] N C. Moreover, if B[z,r] N C' # () we can choose x to be in C too. Let
g1 > 0 be the diameter of C, i.e. the smallest ¢ > 0 such that C' C Blz,¢], for an € C. This
means that C = D[xz,e;]. For any 0 < € < 1, C can be covered with at least two balls. Let ez < €1,
be the smallest ¢ < e; such that we can cover C' with the smallest number of balls, no > 1. By
definition we put n; = 1. Suppose we have constructed e; and n;. For any 0 < € < ¢; let us denote
by n(e) the number of distinct balls (they are uniquely determined by C and e!) of radius € > 0
which cover effectively the compact C. By the construction of ; and n; we have that n(e) > n;.
We choose now n;;1 to be the smallest n(g) > n;.Let M; 11 = {5’ ER|0<E < ,n(sl) = niH}
and denote by €;41 = inf M;;4. Since C' is infinite 1 = ny,n,, ... is a strictly increasing sequence
of natural numbers and €1 > &5 > --- is a strictly decreasing sequence of positive numbers.

In the following, by a ball of C', we mean an intersection of the type D[z,e] = Blz,e]NC =
{y € C|d(z,y) <e}, where z € C. Let us denote by S; the (finite) set of all distinct balls
D[xg.’),si], Jj =1,2,...,n;, which cover the compact C. For any i = 1,2, ... let k;; be the number of

balls D[mgi),si] € S; which are contained in the fixed ball D[xg-i_l),si,l] from S; ;. For instance,
k11 = 1land ki + kio + -+ - kin, = ny, for every i = 2,3, .... The sequence {e; > e > ---} and the
infinite matrix (k;;), ¢ =1,2,..., j = 1,2,...,n; are called the configuration of C.

It is not difficult to see that any sequence of positive real numbers {e; > e > ---} and any
infinite matrix of positive integers (k;;), wherei = 1,2, ..., and j = 1,2, ..., n;, are the configuration
of an infinite number of distinct compacts in C,, the complex p-adic numbers, i.e. the completion
of an algebraic closure of the field of p-adic numbers Q, relative to the usual p-adic distance.

Definition 0.1 Let C be an infinite compact set in an ultrametric space (X,d). For any ball
D[ng),sl] €S, Ji € {1,2, ...,ni}, let

D[mg-j),si] C D[mg-j;l),si_l] c:--C D[wﬁ),sl] be its saturated tower of balls (i.e. D[mgf),sk] €
Sk, foranyk =1,2,...,i). For anyl=1,2,...,i let ky;, be the number of balls of radius e; which are
where Nij, = kij, - kajy - -+ - kij,. We call this last number the (standard) ultrametric measure of
D[x(?),si].

J

contained in the ball D[wg-f;l),sl_l]. By definition, the measure ofD[xg-f),Ei], ue (D[wgz),sl]) =

It is easy to prove the following result.
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Lemma 0.1 The real valued function puc can be uniquely extended to a o-additive measure (also
denoted by pc) on the Borel field of all the closed subset of C.

For any ¢ = 1,2, ... we consider the cannonical covering of C' with all the disjoint balls from
Si. In any ball D[z; ( ) ,€i] we choose an element :vg-z), j €41,2,...,n;} (it can be thought to be the
”centre” of the ball) Let now f : C' — C be a function defined on C with complex values.

Definition 0.2 A functwn f:C — C is said to be integrable on C' if the set of complex numbers
( ) )il = Zf g),sz]) has a unique limit point in C.

Remark 0.1 It is not difficult to see that any integrable function on C is a bounded function on
C. Moreover, all the classical theory of the Riemann’s and Darbouz’s sums (including Darbouz’s
criteria) works well in this situation.

LetW(f;D[wg-i),si])=sup{|f(w) )2,y € Dl e}
and w(f;1) :max{ (f; D[ ; ,sz]) |j= 1,2,...,ni}.

Theorem 0.2 Let C be an infinite compact in the ultrametric space (X,d) and f : C — C, be a

continuwous complex valued function defined on C,such that the series Zw(f;i) s convergent in
i=1

C. Then f is integrable on C.

J
convergent to a complex number I, then any other sequence of sums tends to the same number 1.

Hence, in the following we shall fix, for any i = 1,2, ..., the set of elements (z (-))],j =1,2,...,n; and

consider them to be the centers of their correspondlng balls. We want now to estimate the dlfference
Si; — Si—1 (here S; = S;[f; ( )J]) Let us fix a term f(z;, (= 1)),uo(D[:r(z 1),5271]) from the sum

Jo

Si—1 and denote by D[z}, e ] o DI i), t = ko, all the balls from S; which are contained in

D[xgz b ,€i—1]. Using Definitions 1 and 2, S; — S;—1 can be grouped into sums of the following type:

Proof. Let us remark that if one of the sequence of sums (for a fixed (z (2)) i), {Si[f; (m(z))J } is

t ni—1
1 (4) (2 . (i-1) -
o Zl @) = 7@l )] But 18; = Sici| < w(f5i - 1), because Zluc(p[xjo i) = 1
u= Jo=
m+n—1 oo
Therefore |Sy4n — Sn| < Z w(f;7) and, using the covergence of the series Zw(f;i), we
i=n =1

obtain that the sequence {S,},, is uniformly convergent relative to the choice of {;ng.i) big,i=1,2, .,
j=1,2,..n,;

Remark 0.2 If f : C — C is a continuous function then there ezists subsequences {S;, }n of
(o)
{Sn}n such that the series Zw(f;in) is convergent. In this case we say that the function f is
integrable relative to the sug;etjuence {in}n of {1,2,3,...}. Even in the particular case f(z) = x
(o]
and w(f;i) = g; the series Zsi may be divergent. So that, generally speaking, we can say nothing

i=1
about the set of limit points of the sums {S;};.
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Let us now suppose that the measure pc has values in the p-adic complex number field C,. A
function f : C — C, is called p-adic integrable if it is integrable (Definition 0.2 with C,, instead
of C!) relative to this p-adic valued measure 1. We denote by [ fduc its p-adic measure.

Theorem 0.3 Let C be an infinite compact in the ultrametric space (X,d) and f: C — C, be a
continuous function defined on C' with p-adic values. Then f is p-adic integrable on C.

Proof. We follow the same reasoning as in the proof of Theorem 0.2. Since f is continuous the
sequence w(f;n) — 0 when n — oco. Hence |S,+1 — Sn|p — 0, when n — oo and this one is enough
to assure the uniform convergence of {S,}, in C,.

Remark 0.3 Let T be a transcendental element in C, (relative to Q,) and C(T) be the orbit of
T with respect to the Galois group G = Galeont(Cp/Qyp) ~ Gal(Q,/Qp). We know [1], [2], [5]
that C(T) is an infinite compact set in C,. For any k = 0,1,2,... we define the k-th moment of
T (it depends only of C(T)!) by M,ET) = [@*duc(r). For instance, M, is the trace of T. The
generating series (the trace function in [2]) F(T,X) =1+ M(T)X + Mx(T)X? + --- can now be
defined for every T € C,, not only for (x)-elements [2]. All the properties of the trace function on
C, [2] can be extended for every T € C,, with our definition. These series and the above integral
are fundamental tools for studing arithmetical properties of different infinite towers of algebraic
extensions of Q, ([2], Section 9).
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