Scientiae Mathematicae Japonicae Online, Vol. 4, (2001), 929-934 929

REMARKS ON THE SPACES OF RIEMANNIAN METRICS
ASSOCIATED WITH CONTACT FORMS ON 3-MANIFOLDS

ATSUHIDE MORI

Received November 28, 2000; revised March 26, 2001

ABSTRACT. We recall and improve the correspondence theorem of Etnyre-Ghrist [1]
between a positively rescaled Reeb field for a contact 1-form and a rotational Beltrami
field for a Riemannian metric on a closed oriented 3-manifold. Given a contact form, we
associate it with the space of Riemannian metrics for which the Reeb field is a Beltrami
field with certain additional properties. We obtain a product structure on this space
of metrics and then, by applying it, we characterize certain geometric structures on
3-manifolds.

1 Introduction. Recently, J.Etnyre and R.Ghrist [1] found a correspondence between
a Reeb-like field in contact topology and a rotational Beltrami field in topological hydro-
dynamics. Let M3 be a closed oriented 3-manifold. A Reeb-like field on M3 is a positively
rescaled Reeb field for a given positive contact form on M?. On the other hand, a rota-
tional Beltrami field on M3 is a non-singular vector field X satisfying V x X = fX for some
function f > 0. Here V x X denotes the curl of X with respect to a given Riemannian
metric ¢ and a fixed positive volume form v on M?3. It is easy to see that the definition of
a rotational Beltrami field is independent of the choice of v. The correspondence theorem
says that the set of all Reeb-like fields on M3 can be regarded as the set of all rotational
Beltrami fields on M? if we don’t fix a contact form nor a metric.

We consider the case where the above f can be taken as f = 1 with respect to g and
the g-induced volume form v,. Then we call X a normal Beltrams field for ¢ if moreover
g9(X,X) =1 holds. Fix a positive volume form v on M?®. Then we can improve the above
correspondence theorem as follows.

(1) A Reeb field X, for some contact form o with a A da = v corresponds to a normal
Beltrami field for some v-inducing metric g (Theorem 5).

(2) A rotational Beltrami field for a Riemannian metric g is a positively rescaled normal
Beltrami field for some Riemannian metric g’ (Remark 6).

Every positive contact form o on M3, therefore, can be associated with the subspace
F, of the space R(M?) of all Riemannian metrics on M?, where F, consists of any element
¢ inducing the volume form o A do and satisfying ¢(Xa, ) = . Set Bq = {f| X3 = X HC
IT*M?) and C, = Ugpesn, Fs(C R(M?)). In this paper, we study these spaces. Our results
are the following theorems.

Theorem A(Theorem 10). For any positive contact form a on a closed oriented 3-
manifold M?, the above Co, Fo and B, are connected and contractible. Moreover, Cq
is fibred trivially by {Fs}sen, over Ba.

We obtain the following theorem by using Theorem A and a result of Geiges and Gonzalo
[2] on the characterization of closed 3-manifolds admitting Cartan structures.
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Theorem B(Theorem 15). Let M? be a closed orientable 3-manifold. Then there are two
contact forms o and 3 on M? satisfying

1) a Ada = hB AdS for some function h > 0 and
2) XoLXs with respect to some g € Co NCp
if and only if M? is diffeomorphic to a SU(2)-, SLy- or E;-77Lanifold.

The class of closed oriented 3-manifolds admitting positive contact forms o and 3 with
X3 # +X, and Co NCs # 0 seems very small since such a manifold has to admit another
normal Beltrami field than +X, for the same metric in C,. It is even likely that this class
coincides with one stated in Theorem B.

2 The correspondence theorem. We will work in the smooth category throughout
this paper. First we prepare some definitions.

Definition 1. A vector field X on a Riemannian 3-manifold (M?,g) is called a Beltram
field if it is everywhere colinear with its curl, that is, V. x X = fX for some function f
on M?*. Here the curl V x X is the vector field determined by tvxxv = d(g(X,-)) for a
fixed volume form v (¢ denotes the interior product). A non-singular Beltrami field is called
a rotational Beltrami field if the above f satisfies f > 0. A rotational Beltrami field for
the particularly g-induced volume form v, is called a normal Beltrams field if f =1 and

g(X, X) =1 hold.

Remark 2. Beltrami fields form an important and still mysterious class of steady (i.e.,
time-independent) solutions of the following Euler’s equation for a perfect incompressible
fluid with a volume form v (see [1]).

Let {X,}ier be a family of vector fields. X; can be considered as the velocity field of
an perfect incompressible fluid if it satisfies the Euler’s equation

X +Vx,Xi=—Vp:, Lxv=0

for some family p; of functions, called the pressure term. Here Vx, denotes the covariant
derivative with respect to g along Xy. Then the curl of X; with respect to v and g satisfies

x, d(g(Xe, )(Y)

Xig(X,Y) —Yg(X¢, Xy) — g(Xe, Vx,Y = Vv X))
g(vXtXt7Y) 7g(vYXthf)

= g(erXtvy) o %Yg(Xtht)

(tx,evxx, p1)(Y)

From now on, we assume that X; is time-independent, that is, X; = X holds for any ¢ € R.
Put p=ps and P=p+ %g(X, X). Then the first portion of the Euler’s equation yields

LXIVx XM = —dP.

Then we see that a Beltrami field corresponds to a P-free steady fluid while a normal
Beltrami field corresponds to a special kind of pressure-free fluid. Note also that a normal
Beltrami field generates a divergence-free geodesical flow.

Definition 3. A 1-form o on an oriented 3-manifold M?3 is called a positive contact form
if a A da is a positive volume form. Then a vector field X on M? is called a Reeb field for
aif txda =0 and txa = 1 hold. Such an X always exists and is determined uniquely by
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a, so we denote it by X,. A Reeb-like field Y is a positively rescaled Reeb-field, that is,
Y = fX, for some function f > 0.

The following is the Etnyre-Ghrist’s correspondence theorem.

Theorem 4 ([1]). Let M? be an oriented 3-manifold. Given a Riemannian metric g on
M3, any rotational Beltrami field for g, if it exists, is a Reeb-like field for some positive
contact form on M3. Conversely, given a positive contact form o« on M?, any Reeb-like
field for o is a rotational Beltrams field for some Riemannian metric on M?>.

Note that the definition of rotational Beltrami fields are independent of the choice of
the fixed volume form v in Definition 1. The above theorem says that a vector field X is a
Reeb-like field for some positive contact form if and only if X is a rotational Beltrami field
for some Riemannian metric. It may be difficult, however, to associate the set of all such
contact forms with the set of all such metrics in a general way. So we state a more detailed
correspondence theorem as follows.

Theorem 5. Let M3 be an oriented 3-manifold equipped with a positive volume form v.
Given a v-inducing Riemannian metric g, any normal Beltramsi field with respect to g, if it
exists, is a Reeb field for some contact form o with o Ada = v on M?®. Conversely, for any
contact form o on M® with o A da = v, the Reeb field X, is a normal Beltrami field for
some v-inducing metric. Thus a vector field X is a Reeb field X, for some contact form «
with o A do = v of and only +f X is a normal Beltrams field for some v-inducing metric.

Proof. Suppose that Vx X = X with respect to v and a v-inducing metric g and g(X, X) =
1 hold. Putting a = g(X,-), we have

aANda=g(X, ) Nvxxr.
Since g is v-inducing, we have
v = g(Xv ) /\9(62: ) A 9(637 ) = g(Xv ) Nixv

for a local orthonormal framing (X, e2, e3). Thus the condition V x X = X implies a Ada =
v. Then X = X, holds since txda = txixv =0 and txa = g(X, X) = 1.

Conversely, suppose that X = X, for a with a A da = v. Then choose a local frame
(X, ea, e3) such that (e, e3) forms a symplectic basis for da on ker ev. Since there is a global
complex structure J on ker o compatible with da, we may assume e3 = Jey. Let g be
the metric for which (X, ez, e3) is orthonormal. Note that ¢ is globally defined since each
transformation map between charts preserves the orthonormality of (e, e3) as an element
of SU(1) with respect to J. Then X is a normal Beltrami field for ¢ since g(X,X) = 1 and
d(g(X.-)) = da = txv . This completes the proof.

Remark 6. Our normal condition may seem much too strong at a glance. Note that,
however, a given rotational Beltrami field for a metric ¢ can be rescaled to be a normal
Beltrami field for another metric ¢’. This fact follows immediately from the theorems 4 and
5. Moreover we can see, from Moser’s theorem, that even when we fix arbitrary volume
form v the Weinstein conjecture translates to whether any normal Beltrami field for any
v-inducing Riemannian metric generates a flow with a closed orbit.

3 The Spaces of metrics. Given a positive volume form v on a closed oriented 3-
manifold M?, we set Cont(M?) = {all positive contact forms on M}(C T'T*M?) and
Cont(M?,v) = {a] a ANda = v}(C Cont(M?)). Let R(M?) be the space of all Riemannian
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metrics on M? and R(M?,v) its subset consisting of all v-inducing metrics. For any o €
Cont(M?), put
Fa=A{g€ R(Afsva Ada)| g(Xa,-) = af,
Fo = {9 € ROM®)| g(Xa,") = a},
By ={B € Cont(M*)| X5 = Xo}
and

Co= |J 75 (cRO).
BEBa

Note that we can also define the above C, by Co, = {g € R(M?)| 8 := g(X,,") € B, and
g € R(M?,3 A dB3)}. Then the following lemmas hold.

Lemma 7. R(M?) and Fo are connected and contractible.

Proof. For fixed gg € R(M?) and any g € R(M?), the family {tgo + (1 — t)g}iejo,1) defines
a contraction from R(M?) to {go}. If ¢ and go are in F., then so are tgo + (1 — t)g since
(tgo + (1 —t)g)(Xa,) = ta+ (1 — t)a = . This ends the proof.

Lemma 8. F, is connected and contractible.

Proof. Any metric g(€ F,) has the following form on each Darboux coordinate (z,y, 2)

with o = zdy + d-z.

a b 0
g=| b c+2? =z (a>0,b>0,ac—b* =1)
0 x 1

where a, b and ¢ are some local functions. Fix the orthonormal framing

o2 L0 10 o o
S P Vadx® Ja e ”’ay “o.

on each Darboux coordinate, whose dual is

<a(— xdy +dz), +adr + ;ady, \jady> .

Put hy = a ® a. Then we have

0 0 0
ho = 0 22 =z
0 = 1

on each Darboux coordinate. Note that h, satisfies ho(Xo, ) = a and hy(e, ) = 0 for any
e € ker . Then for any ¢ € F, inducing a volume form fv (f > 0), the family

(1-0+) - ha)+he (ef0.0)

defines a retraction from .7?04 to Fu. Note that this retraction fixes any element of F, since
f =1 holds in this case. Thus the lemma follows from Lemma 7.
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Lemma 9. Puta; = (1—t)a+ts for 3 € Ba. Let {Yi}ie[o,1] be the family of vector fields
determined by a A B = vy, (¢ A dag) and {@i}iepo,1) the famaly of diffeomorphisms on M?
obtained by integrating Yy under the initial condition ¢y = Idys. Then Fo, = (¢4)«(Fa)
(t €[0,1]) holds.

Proof. On each Darboux coordinate (z,y, z) for @ with a = zdy + dz, we have
B —a=pdx + qdy

for some functions p and ¢ with p. = ¢. = 0 and ¢, — py > —1. This yields

et (222
L 14 t(ge — py) oz pay P )
Then we have

d
Ly, o0+ Pl —pdz — qdy + pdx + qdy = 0.

Thus F,, = (¢1)«(Fa) holds for M is closed. This ends the proof.
These lemmas imply the following theorem.

Theorem 10. For any contact form o on a closed oriented 3-manifold M?, the above Cy,
Fo and By are connected and contractible. Moreover, Co s fibred trivially by {Fs}sen,
over the space B, with projection g — g(Xa,-).

Remark 11. We see that (€ B, ) satisfies fMg GAdB = fMg aAda from Lemma 9. Note
that, however, this does not mean 3 A df = a A da in general. It may be interesting to

compare Lemma 9 and Theorem 10 with the Gray’s stability theorem [3]. Note also that if
4/ is in B, then Bg = B, holds.

Co NCs may be non-empty even when +3 ¢ B,. Here is an example.

Example 12. Put M? = T° = R*/(27Z), v = dx A dy A dz, o = sinzdz + cos zdy,
8 = —coszdr + sinzdy and v = sinzdy + cosadz. Then we can easily see that the
Eucridean metric dz? + dy? + d2? is in the intersection Co N Cs NC,. Note that all these
contact forms are, then, equivalent up to isometries.

4 Cartan structures. We recall a definition and one of the results in Geiges and
Gonzalo [2].

Definition 13. We say that a pair («, 5) of contact forms on a closed oriented 3-manifold
M?3 is a Cartan structure on M? if a Ada = A dB and a AdB = 3 A da =0 hold.

Theorem 14 ([2]). Let M? be a closed orientable 3-manifold. Then M? admits a Cartan
structure if and only if M3 is diffeomorphic to a quotient of the Lie group G under a discrete
and cocompact subgroup I' acting from the left, where G 1s one of the following:

1) SU(2),

2) §ITQ, the universal cover of PSL(2;R) or

3) B, the universal cover of the orientation-preserving isometry group of the Euclidean

R2.

The manifolds satisfying the above condition are called SU(2)-manifolds, S Ly-manifolds
or Ej-manifolds respectively. As an application of Theorem 10 and this characterization
theorem, we can prove the following theorem.
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Theorem 15. Let M? be a closed orientable 3-manifold. Then there are two contact forms
a and 3 on M3 satisfying

1) a Ada = hB Adp for some function h >0 and
2) XoLXs with respect to some g € Co NCp
if and only if M?® is diffeomorphic to a SU(2)-, SLs- or E;-mamfold.

Proof. First, we prove the ‘if” part. The Lie algebra of G = SU(2), SL, or E, admits a
basis (e, €2, e3) with

[61762} = (563, [62,63} = €1, [63,61] = €9

where § = +1,—1 or 0 respectively (see [2]). We regard these as left-invariant vector fields
on G. Then take the dual frame (6',6%,6%) and set « = 6" and 3 = 6#*. Then the pair
(v, B) is a Cartan structure. Take the metric ¢ and the orientation of M by means of the
oriented orthonormal basis (€1, €3, e2). Then we have for example da(es, e2) = a([ez, e3]) =
1= 6% A 6?(es, e2) and conclude the ‘if” part.

Next, we prove the ‘only if” part. Theorem 10 implies that there is the (unique) fibre
For(e! € By) containing the metric g. Thus by changing o and 3 if necessary, we may
assume g € Fo N Fg. Then we have ker ol X and ker f1 X 3. Thus dofker g = dfB|kera =0
holds. This yields 8 Ada = aAdB = 0. The pair (o, 3), therefore, forms a Cartan structure
on M?. Thus the theorem follows from Theorem 14.
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