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Abstract. We recall and improve the correspondence theorem of Etnyre-Ghrist [1]

between a positively rescaled Reeb �eld for a contact 1-form and a rotational Beltrami

�eld for a Riemannian metric on a closed oriented 3-manifold. Given a contact form, we

associate it with the space of Riemannian metrics for which the Reeb �eld is a Beltrami

�eld with certain additional properties. We obtain a product structure on this space

of metrics and then, by applying it, we characterize certain geometric structures on

3-manifolds.

1 Introduction. Recently, J.Etnyre and R.Ghrist [1] found a correspondence between

a Reeb-like �eld in contact topology and a rotational Beltrami �eld in topological hydro-

dynamics. Let M3 be a closed oriented 3-manifold. A Reeb-like �eld on M3 is a positively

rescaled Reeb �eld for a given positive contact form on M3. On the other hand, a rota-

tional Beltrami �eld on M3 is a non-singular vector �eld X satisfying r�X = fX for some

function f > 0. Here r � X denotes the curl of X with respect to a given Riemannian

metric g and a �xed positive volume form � on M3. It is easy to see that the de�nition of

a rotational Beltrami �eld is independent of the choice of �. The correspondence theorem

says that the set of all Reeb-like �elds on M3 can be regarded as the set of all rotational

Beltrami �elds on M3 if we don't �x a contact form nor a metric.

We consider the case where the above f can be taken as f � 1 with respect to g and

the g-induced volume form �g. Then we call X a normal Beltrami �eld for g if moreover

g(X;X) � 1 holds. Fix a positive volume form � on M3. Then we can improve the above

correspondence theorem as follows.

(1) A Reeb �eld X� for some contact form � with � ^ d� = � corresponds to a normal

Beltrami �eld for some �-inducing metric g (Theorem 5).

(2) A rotational Beltrami �eld for a Riemannian metric g is a positively rescaled normal

Beltrami �eld for some Riemannian metric g0 (Remark 6).

Every positive contact form � on M3, therefore, can be associated with the subspace

F� of the space R(M3) of all Riemannian metrics on M3, where F� consists of any element

g inducing the volume form �^ d� and satisfying g(X�; �) = �. Set B� = f�j X� = X�g(�
�T�M3) and C� =

S
�2B�

F�(� R(M3)). In this paper, we study these spaces. Our results

are the following theorems.

Theorem A(Theorem 10). For any positive contact form � on a closed oriented 3-

manifold M3, the above C�, F� and B� are connected and contractible. Moreover, C�
is �bred trivially by fF�g�2B� over B�.

We obtain the following theorem by using Theorem A and a result of Geiges and Gonzalo

[2] on the characterization of closed 3-manifolds admitting Cartan structures.
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Theorem B(Theorem 15). Let M3 be a closed orientable 3-manifold. Then there are two

contact forms � and � on M3 satisfying

1) � ^ d� = h� ^ d� for some function h > 0 and

2) X�?X� with respect to some g 2 C� \ C�

if and only if M3 is di�eomorphic to a SU(2)-, gSL2- or fE2-manifold.

The class of closed oriented 3-manifolds admitting positive contact forms � and � with

X� 6= �X� and C� \ C� 6= ; seems very small since such a manifold has to admit another

normal Beltrami �eld than �X� for the same metric in C�. It is even likely that this class

coincides with one stated in Theorem B.

2 The correspondence theorem. We will work in the smooth category throughout

this paper. First we prepare some de�nitions.

De�nition 1. A vector �eld X on a Riemannian 3-manifold (M3; g) is called a Beltrami

�eld if it is everywhere colinear with its curl, that is, r � X = fX for some function f

on M3. Here the curl r� X is the vector �eld determined by �r�X� = d(g(X; �)) for a
�xed volume form � (� denotes the interior product). A non-singular Beltrami �eld is called

a rotational Beltrami �eld if the above f satis�es f > 0. A rotational Beltrami �eld for

the particularly g-induced volume form �g is called a normal Beltrami �eld if f � 1 and

g(X;X) � 1 hold.

Remark 2. Beltrami �elds form an important and still mysterious class of steady (i.e.,

time-independent) solutions of the following Euler's equation for a perfect incompressible


uid with a volume form � (see [1]).

Let fXtgt2R be a family of vector �elds. Xt can be considered as the velocity �eld of

an perfect incompressible 
uid if it satis�es the Euler's equation

_Xt +rXt
Xt = �rpt; LXt

� = 0

for some family pt of functions, called the pressure term. Here rXt
denotes the covariant

derivative with respect to g along Xt. Then the curl of Xt with respect to � and g satis�es

(�Xt
�r�Xt

�)(Y ) = �Xt
d(g(Xt; �))(Y )

= Xtg(Xt; Y )� Y g(Xt;Xt)� g(Xt;rXt
Y �rYXt)

= g(rXt
Xt; Y ) � g(rYXt;Xt)

= g(rXt
Xt; Y ) � 1

2
Y g(Xt;Xt):

From now on, we assume that Xt is time-independent, that is, Xt = X holds for any t 2 R.

Put p = pt and P = p+ 1
2
g(X;X). Then the �rst portion of the Euler's equation yields

�X�r�X� = �dP:

Then we see that a Beltrami �eld corresponds to a P -free steady 
uid while a normal

Beltrami �eld corresponds to a special kind of pressure-free 
uid. Note also that a normal

Beltrami �eld generates a divergence-free geodesical 
ow.

De�nition 3. A 1-form � on an oriented 3-manifold M3 is called a positive contact form

if � ^ d� is a positive volume form. Then a vector �eld X on M3 is called a Reeb �eld for

� if �Xd� = 0 and �X� = 1 hold. Such an X always exists and is determined uniquely by
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�, so we denote it by X�. A Reeb-like �eld Y is a positively rescaled Reeb-�eld, that is,

Y = fX� for some function f > 0.

The following is the Etnyre-Ghrist's correspondence theorem.

Theorem 4 ([1]). Let M3 be an oriented 3-manifold. Given a Riemannian metric g on

M3, any rotational Beltrami �eld for g, if it exists, is a Reeb-like �eld for some positive

contact form on M3. Conversely, given a positive contact form � on M3, any Reeb-like

�eld for � is a rotational Beltrami �eld for some Riemannian metric on M3.

Note that the de�nition of rotational Beltrami �elds are independent of the choice of

the �xed volume form � in De�nition 1. The above theorem says that a vector �eld X is a

Reeb-like �eld for some positive contact form if and only if X is a rotational Beltrami �eld

for some Riemannian metric. It may be diÆcult, however, to associate the set of all such

contact forms with the set of all such metrics in a general way. So we state a more detailed

correspondence theorem as follows.

Theorem 5. Let M3 be an oriented 3-manifold equipped with a positive volume form �.

Given a �-inducing Riemannian metric g, any normal Beltrami �eld with respect to g, if it

exists, is a Reeb �eld for some contact form � with �^ d� = � on M3. Conversely, for any

contact form � on M3 with � ^ d� = �, the Reeb �eld X� is a normal Beltrami �eld for

some �-inducing metric. Thus a vector �eld X is a Reeb �eld X� for some contact form �

with � ^ d� = � if and only if X is a normal Beltrami �eld for some �-inducing metric.

Proof. Suppose thatr�X = X with respect to � and a �-inducingmetric g and g(X;X) =

1 hold. Putting � = g(X; �), we have

� ^ d� = g(X; �) ^ �r�X�:

Since g is �-inducing, we have

� = g(X; �) ^ g(e2; �) ^ g(e3; �) = g(X; �) ^ �X�

for a local orthonormal framing (X; e2; e3). Thus the condition r�X = X implies �^d� =

�. Then X = X� holds since �Xd� = �X�X� = 0 and �X� = g(X;X) = 1.

Conversely, suppose that X = X� for � with � ^ d� = �. Then choose a local frame

(X; e2; e3) such that (e2; e3) forms a symplectic basis for d� on ker�. Since there is a global

complex structure J on ker� compatible with d�, we may assume e3 = Je2. Let g be

the metric for which (X; e2; e3) is orthonormal. Note that g is globally de�ned since each

transformation map between charts preserves the orthonormality of (e2; e3) as an element

of SU(1) with respect to J . Then X is a normal Beltrami �eld for g since g(X;X) = 1 and

d(g(X; �)) = d� = �X� . This completes the proof.

Remark 6. Our normal condition may seem much too strong at a glance. Note that,

however, a given rotational Beltrami �eld for a metric g can be rescaled to be a normal

Beltrami �eld for another metric g0. This fact follows immediately from the theorems 4 and

5. Moreover we can see, from Moser's theorem, that even when we �x arbitrary volume

form � the Weinstein conjecture translates to whether any normal Beltrami �eld for any

�-inducing Riemannian metric generates a 
ow with a closed orbit.

3 The Spaces of metrics. Given a positive volume form � on a closed oriented 3-

manifold M3, we set Cont(M3) = fall positive contact forms on Mg(� �T�M3) and

Cont(M3; �) = f�j �^ d� = �g(� Cont(M3)). Let R(M3) be the space of all Riemannian
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metrics on M3 and R(M3; �) its subset consisting of all �-inducing metrics. For any � 2
Cont(M3), put

F� = fg 2 R(M3; � ^ d�)j g(X�; �) = �g;
eF� = fg 2 R(M3)j g(X�; �) = �g;
B� = f� 2 Cont(M3)j X� = X�g

and

C� =
[

�2B�

F� (� R(M3)):

Note that we can also de�ne the above C� by C� = fg 2 R(M3)j � := g(X�; �) 2 B� and

g 2 R(M3; � ^ d�)g. Then the following lemmas hold.

Lemma 7. R(M3) and eF� are connected and contractible.

Proof. For �xed g0 2 R(M3) and any g 2 R(M3), the family ftg0+(1� t)ggt2[0;1] de�nes
a contraction from R(M3) to fg0g. If g and g0 are in eF� then so are tg0 + (1 � t)g since

(tg0 + (1� t)g)(X�; �) = t�+ (1� t)� = �. This ends the proof.

Lemma 8. F� is connected and contractible.

Proof. Any metric g(2 F�) has the following form on each Darboux coordinate (x; y; z)

with � = xdy + dz.

g =

0
@ a b 0

b c+ x2 x

0 x 1

1
A (a > 0; b > 0; ac� b2 � 1)

where a; b and c are some local functions. Fix the orthonormal framing

(X�; e2; e3) =

�
@

@z
;

1p
a

@

@x
;

1p
a

�
�b @

@x
+ a

@

@y
� ax

@

@z

��

on each Darboux coordinate, whose dual is�
�(= xdy + dz);

p
adx+

bp
a
dy;

1p
a
dy

�
:

Put h� = � 
 �. Then we have

h� =

0
@ 0 0 0

0 x2 x

0 x 1

1
A

on each Darboux coordinate. Note that h� satis�es h�(X�; �) = � and h�(e; �) = 0 for any

e 2 ker�. Then for any g 2 eF� inducing a volume form f� (f > 0), the family�
(1 � t) + t

1

f

�
(g � h�) + h� (t 2 [0; 1])

de�nes a retraction from eF� to F�. Note that this retraction �xes any element of F� since

f � 1 holds in this case. Thus the lemma follows from Lemma 7.



METRICS AND CONTACT FORMS 933

Lemma 9. Put �t = (1�t)�+t� for � 2 B�. Let fYtgt2[0;1] be the family of vector �elds

determined by � ^ � = �Yt(�t ^ d�t) and f�tgt2[0;1] the family of di�eomorphisms on M3

obtained by integrating Yt under the initial condition �0 = IdM3 . Then F�t = (�t)�(F�)
(t 2 [0; 1]) holds.

Proof. On each Darboux coordinate (x; y; z) for � with � = xdy + dz, we have

� � � = pdx + qdy

for some functions p and q with pz = qz = 0 and qx � py > �1. This yields

Yt =
1

1 + t(qx � py)

�
�q @

@x
+ p

@

@y
� xp

@

@z

�
:

Then we have

LYt�t +
d

dt
�t = �pdx� qdy + pdx + qdy = 0:

Thus F�t = (�t)�(F�) holds for M is closed. This ends the proof.

These lemmas imply the following theorem.

Theorem 10. For any contact form � on a closed oriented 3-manifold M3, the above C�,
F� and B� are connected and contractible. Moreover, C� is �bred trivially by fF�g�2B�
over the space B� with projection g 7! g(X�; �).
Remark 11. We see that �(2 B�) satis�es

R
M3 �^d� =

R
M3 �^d� from Lemma 9. Note

that, however, this does not mean � ^ d� = � ^ d� in general. It may be interesting to

compare Lemma 9 and Theorem 10 with the Gray's stability theorem [3]. Note also that if

�� is in B� then B� = B� holds.

C� \ C� may be non-empty even when �� 62 B�. Here is an example.

Example 12. Put M3 = T 3 = R3=(2�Z)3, � = dx ^ dy ^ dz, � = sin zdx + cos zdy,

� = � cos zdx + sin zdy and 
 = sinxdy + cosxdz. Then we can easily see that the

Eucridean metric dx2 + dy2 + dz2 is in the intersection C� \ C� \ C
 . Note that all these

contact forms are, then, equivalent up to isometries.

4 Cartan structures. We recall a de�nition and one of the results in Geiges and

Gonzalo [2].

De�nition 13. We say that a pair (�; �) of contact forms on a closed oriented 3-manifold

M3 is a Cartan structure on M3 if � ^ d� = � ^ d� and � ^ d� = � ^ d� = 0 hold.

Theorem 14 ([2]). Let M3 be a closed orientable 3-manifold. Then M3 admits a Cartan

structure if and only if M3 is di�eomorphic to a quotient of the Lie group G under a discrete

and cocompact subgroup � acting from the left, where G is one of the following:

1) SU(2),

2) gSL2, the universal cover of PSL(2;R) or

3) fE2, the universal cover of the orientation-preserving isometry group of the Euclidean

R2.

The manifolds satisfying the above condition are called SU(2)-manifolds, gSL2-manifolds

or fE2-manifolds respectively. As an application of Theorem 10 and this characterization

theorem, we can prove the following theorem.
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Theorem 15. LetM3 be a closed orientable 3-manifold. Then there are two contact forms

� and � on M3 satisfying

1) � ^ d� = h� ^ d� for some function h > 0 and

2) X�?X� with respect to some g 2 C� \ C�
if and only if M3 is di�eomorphic to a SU(2)-, gSL2- or fE2-manifold.

Proof. First, we prove the `if' part. The Lie algebra of G = SU(2); gSL2 or fE2 admits a

basis (e1; e2; e3) with

[e1; e2] = Æe3; [e2; e3] = e1; [e3; e1] = e2

where Æ = +1;�1 or 0 respectively (see [2]). We regard these as left-invariant vector �elds

on G. Then take the dual frame (�1; �2; �3) and set � = �1 and � = �2. Then the pair

(�; �) is a Cartan structure. Take the metric g and the orientation of M by means of the

oriented orthonormal basis (e1; e3; e2). Then we have for example d�(e3; e2) = �([e2; e3]) =

1 = �3 ^ �2(e3; e2) and conclude the `if' part.

Next, we prove the `only if' part. Theorem 10 implies that there is the (unique) �bre

F�0(�0 2 B�) containing the metric g. Thus by changing � and � if necessary, we may

assume g 2 F� \ F�. Then we have ker�?X� and ker�?X�. Thus d�jker� = d�jker� = 0

holds. This yields � ^d� = �^d� = 0. The pair (�; �), therefore, forms a Cartan structure

on M3. Thus the theorem follows from Theorem 14.
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