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Abstract. A stochastic order consisting of a shifted version of the well-known re-

versed hazard rate order is proposed. Namely, for two continuous random variables

X and Y we say that X is smaller than Y in the up reversed hazard rate order, de-

noted as X �rh" Y , if X � x�rh Y for each x � 0. Some properties of such order are

presented, including the preservation under (i) transformations by strictly monotone

convex functions, (ii) formation of coherent systems, (iii) Poisson shock models.

1 Introduction Recently Lillo et al. (2000) have studied in detail four shifted stochastic

orders, namely the up likelihood ratio order, the down likelihood ratio order, the up hazard

rate order, and the down hazard rate order, that have been obtained starting from the

well-known likelihood ratio order and hazard rate order.

Along a similar line, in this paper we propose the `up reversed hazard rate order', that

is a shifted version of the reversed hazard rate order. This will be de�ned in Section 2

where some of its properties will also be discussed, including a preservation result con-

cerning transformations of random variables by strictly monotone convex functions. The

preservation of this order under the formation of coherent systems and under Poisson shock

models is then presented in Section 3 and in Section 4, respectively.

Throughout this paper `increasing' and `decreasing' mean respectively `nondecreasing'

and `nonincreasing'. Also, we use the convention a=1 = 0 and a=0 =1 if a > 0. Moreover,

`=d' denotes equality in law.

2 The up reversed hazard rate order Let X and Y be continuous random variables

having respectively distribution function FX and FY , survival function FX and F Y , and

support (lX ; uX) and (lY ; uY ), with �1 � lX < uX �1 and �1 � lY < uY � 1. When

X and Y will be assumed absolutely continuous, their probability density functions will be

denoted respectively by fX and fY .

Let us preliminarly recall the de�nitions of some well-known stochastic orders (see, for

instance, Shaked and Shanthikumar (1994)): X is said to be smaller than Y in the

� likelihood ratio order (denoted byX �lr Y ) if fX(t)=fY (t) is decreasing in t 2 (lX ; uY ),

provided that X and Y are absolutely continuous;

� hazard rate order (denoted by X �hr Y ) if FX(t)=F Y (t) is decreasing in t 2 (�1;

maxfuX; uY g);

� reversed hazard rate order (denoted by X �rh Y ) if

FX(t)

FY (t)
is decreasing in t 2 (minflX; lY g;1):(1)
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Recently, Lillo et al. (2000) have analysed four stochastic orders obtained as shifted

versions of �lr-order and �hr-order. Let us now recall two of such orders; we say that X is

smaller than Y in the

� up likelihood ratio order (denoted by X �lr" Y ) if X � x�lr Y for each x � 0 or,

equivalently, if

fX(t+ x)

fY (t)
is decreasing in t 2 (lX � x; uX � x) [ (lY ; uY ) for all x � 0;(2)

provided that X and Y are absolutely continuous;

� up hazard rate order (denoted by X �hr" Y ) if X � x�hr Y for each x � 0 or, equiv-

alently, if

FX(t+ x)

F Y (t)
is decreasing in t 2 (�1; uY ) for all x � 0:(3)

Along a similar line, hereafter we de�ne the `up' shifted version of the reversed hazard

rate order.

De�nition 2.1 Let X and Y be continuous random variables; X is said to be smaller than

Y in the up reversed hazard rate order (denoted by X �rh" Y ) if

X � x�rh Y for each x � 0:(4)

Rewriting (4) by means of (1) one has the following result.

Theorem 2.1 Let X and Y be continuous random variables; then X �rh" Y if and only if

FX(t + x)

FY (t)
is decreasing in t 2 (lX ;1) for all x � 0:(5)

In Section 3 we shall make use of the following result, that is an immediate consequence

of Theorem 2.1.

Corollary 2.1 Let X and Y be continuous random variables; if X �rh" Y , then

FX(t + x) � F Y (t) for all t 2 (lX ;1) and for all x � 0:

In order to analyse some properties of �rh"-order let us recall that a distribution function

FX is said to be logconcave if ft 2 R:FX(t) > 0g is an interval of the form (lX ;1), with

�1 � lX <1, and if logFX is concave on (lX ;1); that is, if

FX(t + x)

FX(t)
is decreasing in t 2 (lX ;1) for all x � 0:(6)

Making use of De�nition 2.1 and Theorem 2.1 it is not hard to prove the properties

stated in the following

Proposition 2.1 (i) (re
exivity) X �rh"X if and only if FX is logconcave;

(ii) (transitivity) if X �rh" Y and Y �rh" Z then X �rh" Z;

(iii) (antisymmetry) if X �rh" Y and Y �rh"X then X =d Y if and only if FX is logconcave;
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Hereafter we shall analyse some connections between �rh"-order and �rh-order. From

(1) and (5) it easily follows that

X �rh" Y =) X �rh Y:

In the following theorem we give conditions under which the reciprocal implication holds.

To this purpose, it is useful to recall that (1) gives

X �rh Y =) lX � lY and uX � uY :(7)

Theorem 2.2 Let X and Y be continuous random variables. If X or Y have logconcave

distribution function, and if X �rh Y , then X �rh" Y .

Proof. Assume that FX is logconcave. From (7) we have lX � lY and uX � uY . For any

�xed x � 0 and for t � lX it is

FX(t+ x)

FY (t)
=
FX(t + x)

FX(t)

FX(t)

FY (t)
:(8)

Due to (6) and (1), the given assumptions imply that the ratios at the right-hand-side of

(8) are both decreasing in t 2 (lX ;1). Hence, recalling Theorem 2.1 we obtain X �rh" Y .

When FY is logconcave the proof is similar.

The following example shows that the logconcavity of FX or FY is an essential assump-

tion of Theorem 2.2.

Example 2.1 Assume that X has distribution function (see Block et al., 1998)

FX(t) = exp

�
�1�

1

t

�
� 1(0;1](t) + exp

�
t
2
� 5

2

�
� 1(1;2](t) + exp

�
�
1

t

�
� 1(2;1)(t)

and that Y has distribution function

FY (t) = [FX(t)]
3=2
; t 2 R;

where 1A(t) is the indicator function of the set A. From (1) it then follows X �rh Y ,

with X and Y having proportional reversed hazard rate functions (see Gupta et al., 1998,

or Di Crescenzo, 2000). However, Theorem 2.2 cannot be applied being FX and FY not

logconcave. Indeed, noting that FX(t+1)=FY (t) is not monotone for t 2 (0;1), Theorem 2.1

gives that X 6�rh" Y . Finally, being not hard to prove the stronger relation X �lr Y , this

example also shows that

X �lr Y 6=) X �rh" Y:

Let us now give the following important preservation result.

Theorem 2.3 Let X and Y be continuous random variables; if X �rh" Y then

(i) '(X)�rh" '(Y ) for any strictly increasing convex function ';

(ii) '(Y )�hr" '(X) for any strictly decreasing convex function '.

Proof. Denote by '�1 the inverse function of '. In order to prove (i), note that from the

strict monotonicity of ' we have

F'(X)(t+ x)

F'(Y )(t)
=
FX('

�1(t + x))

FY ('�1(t))
=
FX('

�1(t) +  (t; x))

FY ('�1(t))
;(9)
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where  (t; x) := '
�1(t+x)�'�1(t). Since '�1 is increasing, due to Theorem 2.1 the ratio

FX('
�1(t)+u)=FY ('

�1(t)) is decreasing in t for each u � 0. Also  (t; x) � 0 is decreasing

in t due to the convexity of '. Hence, the ratios in (9) are decreasing in t for all x � 0, so

that '(X)�rh" '(Y ) by Theorem 2.1.

Let us prove (ii). Since ' is strictly decreasing, one has:

F'(Y )(t+ x)

F'(X)(t)
=
FY ('

�1(t + x))

FX('�1(t))
=
FY ('

�1(t) +  (t; x))

FX('�1(t))
;(10)

with  (t; x) de�ned as above. It is not hard to see that assumption X �rh" Y is equivalent

to the following condition:

FY (t+ x)

FX(t)
is increasing in t 2 (lX ;1) for all x � 0:

Since '�1 has now been assumed to be decreasing, the ratio FY ('
�1(t) + u)=FX('

�1(t))

is then decreasing in t for each u � 0. Moreover,  (t; x) � 0 is still decreasing in t by the

convexity of ', so that the ratios (10) are decreasing in t for all x � 0. Due to (3), we

�nally have '(Y )�hr" '(X).

It should be mentioned that the validity of Theorem 2.3 has been suggested by some in-

teresting similar relations between �hr-order and �rh-order that have been given by Nanda

and Shaked (2000). Other relations concerning monotone transformations and dual stochas-

tic orders have also been given in Theorem 3.1 of Di Crescenzo and Ricciardi (1996).

Hereafter we shall obtain a characterization result about relation X �rh" Y when X and

Y are absolutely continuous. To this purpose, recall that the reversed hazard rate function

of an absolutely continuous random variable Z is given by

�Z(z) =
d

dz
logFZ (z) =

fZ(z)

FZ(z)
; z 2 (lZ ; uZ);(11)

and that if X and Y are absolutely continuous then

X �rh Y () �X(t) � �Y (t) for all t 2 (lY ; uX):(12)

Note that the reversed hazard rate has been receiving increasing attention in the recent

literature of reliability analysis and stochastic modeling (see, for instance, the papers by

Block et al. (1998) and by Chandra and Roy (2001)).

Theorem 2.4 Let X and Y be absolutely continuous random variables. Then X �rh" Y if

and only if there exists a random variable Z with a logconcave distribution function such

that X �rh Z �rh Y .

Proof. Let X �rh" Y . If uX � lY and Z is any random variable with a logconcave

distribution function on [uX; lY ], then X �rhZ �rh Y . Hence, let us assume that lY < uX.

Denoting by �X and �Y the reversed hazard rate functions of X and Y , respectively, it is

not hard to see that condition (5) can be expressed as �Y (t) � �X(t+ x) for all x � 0 and

lY < t < uX � x; that is:

�Y (v) � �X(w) for lY < v � w < uX:(13)

Set now e� (z) = max
w�z

�X(w), z 2 (lX ; uX). Then, e�(z) � 0 for z 2 (lX ; uX) and
R uX
lX

e�(z) dz
=1, due to relation e�(z) � �X(z) for z 2 (lX ; uX):(14)
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Such conditions ensure that e� is a reversed hazard rate function. Let us assume that

Z has hazard rate function e� . As e� is decreasing, due to (11) Z has a logconcave dis-

tribution function. Moreover, from (12) and (14) one has X �hr Z. From (13) it is

�Y (v) � max
w�v

�X(w) � e�(v) so that Eq. (12) �nally implies Z �hr Y .

In order to prove the suÆcienty part of the theorem, assume that X �hrZ �hr Y , with Z

having a logconcave distribution function. Then, Theorem 2.2 gives X �hr"Z �hr" Y . Thus,

due to the transitivity property expressed by (iii) of Proposition 2.1, we have X �hr" Y .

Note that if X and Y are absolutely continuous random variables, due to (13) Theo-

rem 2.4 yields the following equivalence:

X �hr" Y () �Y (v) � �X(w) for lY < v � w < uX;(15)

use of which will be made in the proof of Theorem 3.1

Let us now give a characterization of relation X �rh" Y for non-positive random vari-

ables. As usual, hereafter [X�x jX < x] denotes the `past life' of X, i.e. a random variable

whose distribution is the same as the conditional distribution of X � x given that X < x.

Theorem 2.5 Let X and Y be non-positive continuous random variables; then X �rh" Y

if and only if

[X � x jX < x]�rh Y for all x 2 (lX ; uX):

Proof. For brevity we limit the proof to the case when X and Y have the same support.

Recalling that the distribution function of [X � x jX < x] is given by G(t) = FX(x +

t)=FX (x) if t < 0 and by G(t) = 1 otherwise, we have that G(t)=FY (t) is decreasing in

t 2 (lX ; uX) if and only if

FX(t+ x)

FY (t)
is decreasing in t 2 (lX ; uX):

The proof then follows as an immediate consequence of (1) and (5).

We conclude this section by pointing out the relations holding among the three shifted

orders considered in this paper and the corresponding usual ones in the case of absolutely

continuous random variables X and Y :

X �hr" Y (= X �lr" Y =) X �rh" Y

+ + +

X �hr Y (= X �lr Y =) X �rh Y

3 Comparison of coherent systems Consider a coherent system consisting of n com-

ponents, where the i-th component is characterized by an absolutely continuous random

lifetime Xi, with survival function FXi
(t). Following Barlow and Proschan (1965), let the

system reliability function be given by h(p1; p2; : : : ; pn). The random lifetime of the system

will be denoted by h(X), and its reversed hazard rate function by �h(X)(t).

We aim to compare the above system with a system with identical structure, the random

lifetimes of its components being now identically distributed to an absolutely continuous

random lifetime Y . Thus, h(Y ) will denote the random lifetime of this system and �h(Y )(t)

its reversed hazard rate function.

In the following theorem we compare the random lifetimes of the two systems according

to the �rh"-order. This is an analogous of Theorem 3.1 of Nanda et al. (1998), where the

same result is presented in the case of �rh-order.
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Theorem 3.1 If

nX
i=1

(1� pi) @h=@pi

1� h(p)
is increasing in pi for all i = 1; 2; : : : ; n,(16)

then h(X)�rh" h(Y ) whenever Xi�rh" Y , i = 1; 2; : : : ; n.

Proof. Recalling the expression of the reversed hazard rate function of a coherent system

(see (3.1) of Nanda et al. (1998), for instance), for z > 0 and t � 0 we have:

�h(X)(z + t) =

nX
i=1

�Xi
(z + t)

�
1� FXi

(z + t)
� @h=@pi

1� h(p)

�����
pi=FXi (z+t)

:

Hence, due to relation (15), hypothesis Xi �rh" Y gives

�h(X)(z + t) � �Y (z)

nX
i=1

�
1� FXi

(z + t)
� @h=@pi

1� h(p)

�����
pi=FXi (z+t)

:

Since the sum in the right-hand-side is increasing in pi by assumption (16), recalling that

Corollary 2.1 gives FXi
(z + t) � F Y (z), we obtain

�h(X)(z + t) � �Y (z)

nX
i=1

�
1� F Y (z)

� @h=@pi

1� h(p)

�����
pi=FY (z)

� �h(Y )(z):

This concludes the proof by virtue of (15).

As noted in Remark 3.2 of Nanda et al. (1998), the assumption (16) is satis�ed by

several coherent systems, including the k-out-of-n one (as proved in Theorem 3.2 of Nanda

et al. (1998)).

4 Comparison of Poisson shock models Consider two devices, both subjected to

shocks randomly occurring according to a Poisson process of intensity �. Let Pk and Qk

denote respectively the probability that the �rst and the second device will not survive the

�rst k shocks. Then, denoting by X and Y the random lifetimes of the two devices, their

distribution functions are given by:

FX(t) =

1X
k=0

e
��t(�t)k

k!
Pk; FY (t) =

1X
k=0

e
��t(�t)k

k!
Qk; t � 0:(17)

Numerous results on preservation of stochastic orderings under Poisson shock models have

been presented in the literature (see, for instance, Singh and Jain (1989) and Kebir (1994)).

Along the same line, in the following theorem we give conditions on Pk and Qk such that

lifetimes X and Y are ordered according to �rh". The proof is based on classical results of

total positivity (see Karlin (1968)).

Theorem 4.1 If

Pk+j

Qk
is decreasing in k for all j � 0,(18)

then X �rh" Y .
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Proof. From (17), for any real c, we have

FX(t + s) � cFY (t) =

1X
j=0

e
��s(�s)j

j!

1X
k=0

e
��t(�t)k

k!
(Pk+j � cQj):(19)

Assumption (18) implies that Pk+j � cQj has at most one change of sign; if one change

occurs, it occurs from + to �. Making use of the variation diminishing property of

e
��t(�t)k=k!, due to (19) the same statement holds for FX(t + s) � cFY (t) as a func-

tion of t. This implies that FX(t + s)=FY (t) is decreasing in t � 0. The proof then follows

from Theorem 2.1.

We note that, on the grounds of Theorem 2.1, assumption (18) can be viewed as a

condition leading to the up reversed hazard rate ordering between integer-valued random

variables.
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