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RELATIONS BETWEEN SOME CLASSES OF FUNCTIONS
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ABSTRACT. In this paper the necessary and sufficient conditions for the inclusion of classes
H* and V]v(n)] in the class BV (p(n) 1 oo) is found.

It is well-known that the notion of variation of a function was introduced by C. Jordan in 1881 in
the paper [6], devoted to the convergence of Fourier series. In 1924 N. Wiener [11] generalized this
notion and introduced the notion of p-variation. L. Young [12] introduced the notion of ®-variation
of a function.

Definition 1 (see [12]) Let ® be a strictly increasing continuous function on [0,+00) and ® (0) =
0. f will be said to have bounded ®-variation on [0,1], or f € Vg if

n

ve (f) = sg[pZ@ (If (zr) = f (zr-1)]) < o0,

k=1
where I = {0 < xo < 1 < --- <z, < 1} is an arbitrary partition.

If ® (u) = u the Vg coincides with the Jordan class V' and when ® (u) = uv?, p > 1 it coincides
with the Wiener class V.

C(0,1) and B (0,1) are, respectively, spaces of continuous and bounded functions given on
[0, 1].

In 1974 Z.A. Chanturia [3] introduced the notion of the modulus of variation of a function.

Definition 2 (see [3]) The modulus of variation of function f € B (0,1) is said to be the function
v (n, f) defined as: v (0, f) =0 and forn > 1

n—1

v(n, f) =sup > |f (tans1) = f (t21)]

n k=0
where I1,, is an arbitrary partition of [0, 1] into n disjoint intervals (t2k,tar+1), K =0,1,....,n — 1.

If v (n) is a non-decreasing and convex upwards function and v (0) = 0 then v (n) will be called
the modulus of variation [3].

Let the modulus of variation v (n) is given, then the class of functions f, given on [0, 1], for
which v (n, f) = O (v(n)) when n — oo, will be denoted by V' [v (n)] [3].

In 1990 H. Kita and K. Yoneda [7] introduced the notion of the generalized Wiener’s class
BV (p(n) 1T p)-
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Let f be a function defined on (—o0, +00) with period 1. A is said to be a partition with period
1, if
(1) A<t <tp <t <ta< - <t <tbmgr <---

satisfies tgym,m =t + 1 for K =0,+1,£2, ..., where m is a positive integer.

Definition 3 (see [7]) When 1 < p(n) T p as n — +oo, where 1 < p < +o0, f is said be a
function of BV (p(n) 1 p) if and only if

V(fip(n)Tp) =

1/p(n)
. 1
= supsup (ZIf th) — f (trer)|"" )> 1p(A) > on [ < o0

where p (A) = irgf |tk — th—1]-

When p(n) = p for all n, BV (p(n) 1 p) coincides with V,, which is the Wiener’s classes of
bounded p-variation.
If f € C(0,1), then the function

w (6, f) = max{|f (z) = f (y)| : |z —y| <6, w,y € [0,1]}

is called the modulus of continuity of the function f.
The modulus of continuity of an arbitrary function f € C (0,1) has the following properties:
1. w(0) =

w () is nondecreasing;

(
(

w (0) is continuous on [0, 1];
w (

= W N

51+52)<w(51)+w(62) f0r0<61<62<51—+—62<1

An arbitrary function w () which is defined on [0,1] and has the properties 1-4 is called the
modulus of continuity.

If the modulus of continuity w () is given then H* denoted the class of function f € C(0,1)
for which w (0, f) = O (w (§)) as § — 0.

The relation between different classes of generalized bounded variation was taken into account
in the works of Avdaspahic [1],Kovocik [8], Belov [2], Chanturia [4] and Medvedieva [9].

H.Kita and K.Yoneda [7] proved some sufficient conditions for the inclusion of classes H* and
Vv (n)] in the class BV (p(n) 1 00) .In this paper the necessary and sufficient conditions for this
inclusion is found.In particular,we prove the followings

Theorem 1 H* C BV (p(n) 1 00) if and only if
2) w(t)=0 (tl/P<U°gz 1/tD) ast—0+.

Theorem 2 V [v(n)] C BV (p(n) 1 o) if and only if

n—oo
k=1

- 1/p(n)
(3) lim (Z (v (k) —v(k— 1))P<">> < 400.



RELATIONS BETWEEN SOME CLASSES OF FUNCTIONS 107

For the proof of this theorems two lemmas are needed:

Lemma 1 (Oskolkov [10]) Let there be given disjoint intervals Ay, C [0,1], & = 1,2,..., and
{gr : k > 1} be a sequence of periodic functions with period 1 such that g (x) = 0 for x € [0, 1]\ Ay,
if w(6, gr) <w(0) and the functionsg is defined by

(o)

g(@) =Y g (z)

k=1

then
w(d,9) <2w(6).

Lemma 2 (see [5], p. 111) Let 0 < ap, |, 0 < by, |, and let the relations

holds.

Proof of Theorem 1. Let f € H and Abe a partitiondefined by (1) such that p (A) > .
Then from the condition of the theorem we get

m 1/p(n)
ST ) = £ ()P
7j=1

|

m 1/p(n)
=0 (Z (w(t; - tj_1>>p<">)

=1

1/p(n)
(w(tj — tjl;f))p(n)>

M-

1/p(n)

Jj=1

m ey

p(n)

N 1/p(n)
0 (Z(tj_tj_y(@%]))

Jj=1
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1/p(n)
=0 (Z (tj —tj_l)) :O(l) as n — oQ.

=1

Therefore f € BV (p(n) 1 00) holds.
Next we suppose that {p (n) : n > 1} and w (§) does not satisfy (2). As an example we construct
function from H* which is not in BV (p (n) 1 00).

Since w (t) (#'/P(les21/ t]))f1 is not bounded by hypothesis, there exists a sequence of positive
numbers {u;, | 0: k > 1} such that

w (u},) (1L',C)71/p([1°gz L/u]) — 00 as k — o00.

Then it is evident that there exists a sequence {uy : k > 1} C {u}, : £ > 1} such that

Uf
. 4¢w0wym%u%n+5“k5“kl

Consider the function f; defined by

w(ug),if z=4j+3)ug, j =0,1,2,...,my;

0if z € [0, ugp] U [(4my, + 5) ug, 1], © = (45 + 1) uy,
J=1,2,...,my;

is linear and continuous for other z € [0,1],

fe(z) =

where
_ 1
"= N o ()BT |
Let N
fole) =3 fu@), fo(0) =0
k=1
and

folx+1)=fo(z), L€ Z.

First we prove that fo € H“. Let § < uy. Since “’E;il) < 2wgi2), 0 < 8y < 41, it follows that

) wijzo@w@“)zoww»

Uk
Let 6 > ug. Since w (§) is non-decreasing function we get
(6) w (0, fr) < 2| falle = 2w (ur) < 2w (9) .

From (5)and (6) we have
(7) w (6, fr) = O (w(9))-
From Lemma 1 and by (4), (7) we obtain

fo € H*.
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Next we shall prove that fy ¢ BV (p(n) 1 00). From the construction of the function we get

- 1/p(log 1/ui])
(Z |fo (45 + 3) ug) — fo (45 + 1) uk>|p<“°g”"k”)
Jj=1

i=1

i 1/p([log 1/ux])
= (Z | fr (45 + 3) ug) — fr (45 + 1) uk)|P<“°g1/“kD>

i=1

- 1/p([log 1/ux])
— Z w (uk)l’([log 1/uk])
7j=1

([log 1/uk])

- 1/p([log 1/ux])
- (Z | e (45 + 3) uy,) |P(Los 1/uk])>

= w(uk)mi/p

1/p([log 1/ux])
> cw (ug) !
= w(uk)P([logl/w]) Uk

= C\/w (ug) ulzl/p([logl/u’“]) — 00 as k — oo.

Therefore we get fo ¢ BV (p(n) 1 c0) and the proof is complete.
Proof of Theorem 2. Let f € Vv(n)and A: - <ty <top <ty <-+ <tm <tmyr <+
be any partition with period 1 and p (A) > 2% Without loss of generality it may be assumed that

|f (t5) = F (&)l 2 [f () = F ()], G=1,..,m—1.

It is evident that

Since v (n) is upwards convex,for any n > 1
(8) v(n+1)—v(n) <v(n)—v(n-1),
if we takeay = |f (tx) — f (tx_1)|, b = v (k) — v (k — 1) and ® (u) = v, and apply Lemma 2,
from the condition of the theorem we get

m

STIF ) = ()P

=1

<> W) —v(G -1

Jj=1
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o
<> (WG —vG -1,
j=1
m 1/p(n)
ST ) = £ ()™
7j=1
o 1/p(n)
< Z(U(j)—v(j—l))p(n) <ec<oo, forn=1,2,..
Jj=1

Therefore we proved that f € BV (p(n) 1T 00).
Next we suppose that the condition (3) does not satisfy. As an example we construct function
from V [v (n)] which is not in BV (p(n) 1 00).

Since
- 1/p(n)
; N s 1))\ 2() —
Tm | > (@G -v(G-1) = o0,
j=1
there exists a sequence of integers {my : k > 1} such that
omp 1/p(me)
. A . p(mk) —
9) Jim. ; (v () —v(G—1) 0.

We choose a monotone increasing sequence of positive integers {ns : k > 1} C {my : k > 1}
such that

(10) p (k) > ng-1.
(11) Nk > 2nk—1
From (10) it is evident that

9nk—1""k—2"1 1/p(nk)
(12) S wl@) —vG -1
Jj=1
N—1

< e27(m) < ¢ < oo.

Applying the inequality

oo p oo
(13) (Zak> §Za§ (0<p<1l,a;,>0k=1,2..),
k=0 k=0

by (9) and (12) we get

onk 1/p(ne)

(14) > (v (j) = v (j — 1)) — 00 as k — 0o.

j=2"k—1"mk—2"141
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From (13) we have
2nk 1/p(nk)

(15) > @@ -vG -y

j=2mk—1"mk—2"141

onk—ng—1-1 1/p(nx)
S( > (v(j)—v(j—l))”"“)

j=2mk—1"mk—2"141

2"k 1/p(ng)
+( > (v(j)—v(j—l))”"“) :

j=amk—me—1=1 4

First we prove that

onk—nE—1—1 1/p(ni)
(16) ( Z (w(y)—v({y- 1))”("’“)) — 400 as k — oo.

j=2"k-1"mk—2"14]

We suppose that {ny : k> 1} does not satisfy (16).
From (8),(10) and (11) we obtain

Q"k_"k—l_l

> (v (j) —v (G — 1)

j=2mk—1"mk—2"141

Z |:(U (an—nk71—1) —v (2nk—nk,1_1 _ 1))p(nk)
% (2nk*nk_1*1 _ 2nk_17nk_2,1)]1/p(nk)

> oy (2ot <o (et -] 2
>ec [U (2nk*nk—1*1) —v (2nk*nk—1*1 _ 1)] 2nk/p(nk)’

then by hypothesis we get
(17) v (2nk*nk—1*1) —v (2nk7nk—171 _ 1) =0 (27nk/p(nk)) )

By (8) and (17) we get

2nk l/p('”-k)
(18) > w@ v
j:2"k_"k—1_1+1

< o (2Tt —p (20Tt - )] 200)
=0(1) as k— oo.
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From (15),(18) and by hypothesis we obtain

ok 1/p(ng)
(19) > (v () —v (G = P
j:2"k—1*"k—2’1+1
<ec< oo as k— oo

We arrive at a contradiction (see (14)).
Therefore we get

pra—mp_g-1 1/p(n)

(20) 3 (v (j) —v(j —1)P™

j=2mk—1"mk—2"141

9"k~ mk—1"1_9np_1-np_2-1

= > (v (j + 2t mema L

Jj=1

s\
— v (j2mrTme 1)) ) — 400 as k — oo.

Counsider the function g, (z) defined by

v (an_lfnk_Qfl _|_]) —v (2nk_17mc—271 +j— 1) Jif ¢ = 22"—];,
§ = 1,202 mt _gmeamnlat

. np—ng—1-1_ognp_1-npg_2—1_
i (z) = 0,if z € [0, ] U [2 2 L],
p=%E, i =0,1,2,., 2 et gmer e D

is linear and continuous for other z € [0,1].
Let
g(@) = gi(x), g(0)=0
k=3
and
glz+l)=g(z), l€Z

First we prove that g € V [v (n)]. For any positive integer n > 2"27"1~1 we choose an integer
k (n) such that
QMk(n)—1—Mk(n)—2—1 <n< IMk(n) ~Mk(n)—1~1

Denote
m(n) = QM (n) =1~ Me(n)—2—1_
It is evident that
@) v(n,g) <
k(n)—1

S c Z v (2nk*nk—1*1 _ 2nk—1*nk—2*1,gk) +u (TL - m (TL) agk(n))
k=3
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From the construction of the function we obtain

k(n)—1
(22) Z v (2"’“_"’%1—1 — 2"k71—nk72—1,gk)

k(n)—1 2™k~ mk—1~1_omk—1""k—2"1_1

< > [v (2me-1 a2t 4 )

k=3 j=1

—v (2nk—1—nkfz—1 +j— 1)]

k(n)—1
< Z [U (2nk—nk—1—1) v (2”k—1—nk72—1)]

k=

< cv (2me-1Tmm =271 < ey (n).

w

Analogously,we get

(23) v (TL -—m (TL) 7gk(n))
n—m(n)
< Z [U (2"k(n)—1—nk(n)—z—1 4 j) —v (27’%(")71—”1&-(")72—1 +j— 1)]
j=1

=v (TL —m(n) + 2nk(n)—1*nk(n)—2*1) —v (27%(")—1*7%(")—2*1) <w(n).

Owing to (21), (22) and (23) we get g € V [v (n)].
Finally we prove that g ¢ BV (p(n) 1 co0) .By (20) and from the construction of the function
we get

9"k~ Pk—1"1_9nk—1""k-2"1_1 2 — 1 2 plnr) 1/p(nr)
Z 9 2Nk -9 ANk
j=1
~ omk~mk—1-1_gnk—_1-me—2-1_1 2 1 2 p(ne) 1/p(nk)

j=1
ok~ nE—1—1_ong_1-np_2-1_1 1/p(n)

- > o ()
Mk~ Pk—1"1_9nk—1""k—2"1_1

j=1
= Z (U (2%—1*%_271 +J)

Jj=1

1 n
—v (2merTmee Tl g g 1))p(nk)) /plme) S oo as k— oc.

Therefore we get g ¢ BV (p(n) 1 0o0) and the proof of Theorem 2 is complete.
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