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ON ATOMS OF BCK-ALGEBRAS
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ABSTRACT. Atoms in BCK-algebras are considered. The notions of the star BCK-
algebras and the star part of BCK-algebras are introduced. The properties of some
substructures which consist of atoms are investigated. Furthermore, by isomorphic view,
there are and only n + 1 BCK-algebras X with |X|=n 41 and |S¢(X)| = n.

1. Introduction By a BCK-algebra we mean an algebra (X; *,0) of type (2, 0) satisfying
the axioms:

for any z,y and z in X. For any BCK-algebra X, the relation < defined by <y if and only
if x x y = 0 is a partial order on X (see [1]).

A BCK-algebra X has the following properties for any z,y, z€ X:

(6) zx0 ==z,

(7) (wxy) 2= (z*z)*y,

(8) <y implies that x * 2<y * z and 2z x y<z * .

In a BCK-algebra X, if an element o satisfying:

(a) a0,
(b) zeX\{0} and z<a imply z =a

then the element a is called an atom of X. Since 0 is the least element of X, it is obvious
that an atom of X is a minimal element of X.

Let (X;*,0) be a BCK-algebra. A non-empty subset S of X is called a subalgebra if
z,y€S implies x x y€S. By an ideal I of X we mean 0€l and y,x *x yel imply z€l. If an
ideal I of X is also a subalgebra of X, then I is called a close ideal of X. It has been known
that an ideal of a BCK-algebra is a close ideal (see [2]).

2. Star subalgebras of BCK-algebras Let X be a BCK-algebra. We define

S¢(X) ={a€X;a=0or ais an atom of X .}
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The subset Si(X) is called the star part of X.
Propsition 2.1. Let X be a BCK-algebra. If a,b€S5:(X) and a#b, then a * b = a.

Proof. In case a = 0 or b = 0, the proof is trivial. Assume a#0 and b#0, by a * b<a
and a is an atom of X, we get axb=0oraxb=a. Ifaxb=0, then a =0 or a = b since
b is an atom of X. It is a contradiction, hence a x b = a. The proof is completed.

By Propsition 2.1 we can immediately get

Theorem 2.2. For any BCK-algebra X, S;(X) is a subalgebra of X.
Let X be a BCK-algebra and S be a subalgebra of X. S is called a star subalgebra of
X if S;(S) = S. Particularly X is called a star BCK-algebra if X = S;(X).

Remark. S;(X) may be not a maximal star subalgebra.

Example 1. Let X ={0,---,—n—1,—n,—n+1,--- ,—3,-2,—1} and partial order <
as follows 0<:--< —n— 1< —n< —n+ 1<+ — 3< — 2< — 1. Define operation * by
wu—d 0 Ty
vy = x, others

for any x,y in X. Then (X;x*,0) is a BCK-algebra and S;(X) = {0}. If take the subalgebra
S ={0,1} of X, then S;(S) = S. In this example, S;(X) is not a maximal star subalgebra
of X.

Example 2. Let X = {0, 1,2,3}. Take the operation table of X as follows

x[0 1 2 3
00 0 0 0
1{1 00 1
202 1 0 2
3133 30

Then (X;*,0) is a BCK-algebra. S;(X) = {0,1,3} is a maximal star subalgebra of X but
not the largest star subalgebra of X since S = {0, 2} is a star subalgebra of X.

Theorem 2.3. Let X be a BCK-algebra and S be a subalgebra of X. Then S is a star
subalgebra of X if and only if for any a,b€eS, a#b implies a * b = a.

Proof. By Propsition 2.1, the necessity part is obvious. In the sufficiency part, for any
beS\{0}, if there exists zo€S\{0} such that zo<b, then we have zy = b or zo#b. If xo#D,
then we get 2o * b = 0 by zo<b and zy * b = zo by the condition of the Theorem, hence
xo = 0. It is contradictory that zo€S\{0}. Hence zo = b and b is an atom of S. The proof
is completed.

Theorem 2.4. Let X be a BCK-algebra. Then S;(X) is a maximal star subalgebra of
X if and only if for any element z in X\S;(X), there exists an element a in S;(X)\{0} suh
that a<z.

Proof. Assume S be a star subalgebra of X and S;(X)CS. If there exists an element xq
of X in S\S;(X), then there exists an element a in S;(X)\{0}CS such that a<zy. Hence
the element z( is not an atom of S. It is contrdictory that S is a star subalgebra of X. And
the sufficient part is proved. On the other hand, if there exists zo in X\S;(X) such that
for all a in S;(X)\{0}, a * 2o#0, then we have a x zog = a by a *x xo<a and a€S;(X)\{0}.
Assume zg * a = b, we get

(xoxb)xa= (zo*xa)xb=0bxb=0,
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that is zg * b<a, hence zogx*b=0or xg xb = a. If g * b = a, then

axxy = (g *b) *xxog = (o *2zp) *b=0%xb=0.

It is a contradition. Hence zo xb = 0. By bxxzg = (zg*a) xxg = (xg*xz9) *a = 0xa = 0, we
have £g = b = xg x a. Then we get o * a = x¢ and a * kg = a for all a€S;(X). Therefore
S = Sy (X)UJ{zo} is a star subalgebra of X by Theorem 2.3. It is contradictory that S¢(X)
is a maximal star subalgebra. The proof is completed.

Corollary 2.5. For a finite BCK-algebra X, S;(X) is a maximal star subalgebra of X.

Theorem 2.6. Let X be a BCK-algebra. S;(X) is the largest star subalgebra of X if
and only if X = S;(X).

Proof. The sufficiency part is obvious. Conversely, for any zeX\{0}, S = {0,z} is a
star subalgebra of X, hence z€5;(X) since S;(X) is the largest star subalgebra. The proof
is completed.

Let (X;%1,0), (Y;%2,0) be two BCK-algebras. The set XxY = {(z,y);z€X,yeY}
about operation *: (z1,y1) * (T2,y2) = (T1%1Z2,Y1%*2y2) becomes a BCK-algebra, and (0,0)
is the zero element of X xY'.

Generally, S;(X xY)#S:(X)xS:(Y), but we have

Theorem 2.7. Let X, Y be two BCK-algebras. Then

Si(XxY) = (5:(X)x{0}HU({0} x5:(Y))

Proof. It is obvious that S;(X xY)D(S:(X)x{0}UJ({0}xS¢(Y")). Furthermore, for any
(zo,y0)ESH(X XY), if 297#0 and yo#0, then we get (xg,0) * (xo,yo) = (0,0). It is contradic-
tory that (zo,yo0)€S:(X xY'). Hence we get o = 0 or yo = 0. If zp = 0, then it is easy to
prove that yo€S:(Y"). Similarly, if yo = 0, then xo€5;(X). The proof is completed.

Corollary 2.8. For any finite BCK-algebra X, Y, we have |S;(XxY)| = |S:(X)| +
1S: (V)| - 1.

Corollary 2.9. Let X, Y be two BCK-algebras. Then S;(X xY) = S;(X)xS:(Y) if and
only if Si(z) = {0} or S¢(Y) = {0}

Let X be a BCK-algebra. If an atom b of X satisfies that b+ z = b for any x€ X \{b},
then we call b is a strong atom of X. Take the subset of X

D(X) = { beS,(X); b is a strong atom of X or b=0 }

we have
Theorem 2.10. For any BCK-algebra X, D(X) is a closed ideal of X.

Proof. We need to prove that D(X) is an ideal of X only. Assume y,z * yeD(X), if
xxy =x, then zeD(X). If  *xy#x, then (z xy) *x = x * y by the definition of D(X). On
the other hand,

(zxy)sz=(zxz)*y=0xy =0,

hence we get zxy = 0. By yeD(X) and zxy = 0, we have x = 0 or z = y, hence zeD(X).
The proof is completed.

3. On star BCK-algebras Suppose (X;x*,0) be a BCK-algebra. For any a€X, we use
a~! denote the selfmap of defined by za=! = z * a. Let M(X) denote the set of all finite
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product a~!---b7! of selfmaps with a,---,b€X. It is clear that M (X) becomes a commu-

tative monoid under composition of maps and 07! is the identity. We difine a relation <,
on M(X) as follows:

u v <amh b e (T o) R (a7 =0

for any z€X. We call M(X) the adjoint semigroup of X (see [3]). It is obvious that
M(S) = {u=t w7l u, --,v€S} becomes a subsemigroup of M (X) for any non-empty
subset S of X.

Lemma 3.1. Let X be a BCK-algebra and o = a; - -a,, 1€ M(S;(X)). If S;(X) is an
ideal of X, then Kero = {0,a1,az2,---,a,}

Proof. It is obvious that {0, a1, as, -, a,} CKero by Section 1. Conversely, if ¢ = a; !

and beKero, then ba; ! = bxa; = 0. We get b =0 or b = a; by a; €S,(X), hence b€{0, a;}
and the Lemma holds for n = 1. Now we assume the Lemma has already been proved for
n = k, then we prove the case of 0 = a; "tas ' --ap lary, b If beKero, bo = 0, then we
have beS;(X) by S¢(X) is an ideal of X and ay,- -+ ,ar+1€S:(X). Since (b* apr1) xb=10
and beS(X), we get bxarr1 =0or bxagyr; =b. M bxagyq =0, then b = agy; or b=0
hence b€{0, a1, ,agt1}. If b* agy1 = b, then

1

-1 -1 -1 —1y, — 1
O0=bo=bar™" --ar " arr1™ = (bagt1™ " )ay ™" -

.ak_l = bal_l. . .ak_ R

we have b€{0, a1, - ,ar}C{0,a1, -+ ,ar,ary1} by our assumption. The proof is com-
pleted.

Theorem 3.2. Let X be a BCK-algebra. Then X is a star BCK-algebra if and only if
forallc =a;~ ! -a, teM(X), Kero = {0,a1, -+ ,an}-

Proof. By Lemma 3.1, the necessity part is obvious. In sufficiency part, for any element
a€X\{0}, if there exists z€X such that r<a, then z€Kera ' = {0,a}, hence z = 0 or
T = a, and a is an atom of X. The proof is completed.

By a positive implicative BCK-algebra, we mean a BCK-algebra (X x,0) such that for
all x,y,2€X, (xxy)x2z = (x*x2)*(y*2). If for all z,yeX, y* (y xx) = x x (x * y), then
X is said to be a commutative BCK-algebra. It is alse noteworthy that X is a positive
implicative BCK-algebra if and only if (z xy) *y = 2 x y for all z,y€X (see [4]). By using
these results, we have

Theorem 3.3. If X is a star BCK-algebra, then the following results hold:

(a) X is a positive implicative BCK-algebra;
(b) X is a commutative BCK-algebra.

Proof. (a) For any z,ye X, if z xy = 0, it is obvious that (z *xy) *y = x * y. Assume
x * y#0, then we have x xy = x by zxy<wx and z is an atom of X. Hence (z*xy) xy = z xy.

(b) For any z,yeX,if xxy =0 or y*x = 0, then we get z =0 or z =y or y = 0, hence
it is obvious that y* (y*z) = x * (z *y). Assume z * y#0 and y * 2#£0, then we get xxy = x
and y*x = y by z xy<y and y * x<y, hence z * (x xy) = 0 = y % (y * ). The proof is
completed.

4. The count of a class finite BCK-algebras Let u be an element in BCK-algebra X.
If for any x€X, ux z = 0 implies u = z, then u is called a maximal element of X.

Theorem 4.1. Let X be a BCK-algebra. If ueX\D(X) is a maximal element of X,
then for any be D(X), u*b = u.
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Proof. It is trivial to see the case b = 0. If b#0, then we have (u* (u*b))*b = 0 by BCK
axiom (2), hence ux(uxb) = 0 or b, since b is an atom of X. If ux (u*b) = b, then we can get

bxu=(u*(uxb))*xu=(u*xu)*(u*xb) =0 (ux*xb) =0,
it is contradictory that b is a strong atom of X. Hence u * (u % b) = 0. Therefore u xb = u
by u is a maximal element of X. The proof is completed.

Lemma 4.2. If X = {0,a;,---,a,} is a BCK-algebra with S;(X) = {0,a1, -+ ,an_1}
and D(X) ={0,a1, - ,a;} (0<i<n —2), then for all ar€S;(X)\D(X), ax * a, = 0.

Proof. By (ax *xan) *ar = (ar *ar) *a, = 0xa, =0, we get ar *a, = 0 or a *xa, = ax
since ay, is an atom of X. If ay % a, = ag, then we have ar€D(X) by Propsition 2.1, it is
contradictory that ar¢D(X). Hence ay * a,, = 0. The proof is completed.

Corollary 4.3. In Lemma 4.2, the element a,, is a maximal element of X.

Let X be a BCK-algebra with | X| =n+1,|S;(X)| =n and |D(X)| =i+1 (0<i<n—2).
Assuming X = {0,a1,a2, - ,an}, St(X) ={0,a1,--- ,an—1} and D(X) = {0,a1,--- ,a;},
by above discussing, the operation table of X must be as table one.

In table one, anr = an * ar(i + 1<k<n —1). After, we shall give the number of this class
BCK-algebras by determining the value of a, in table one.

Lemma 4.4. Let BCK-algebra X = {0, a3, a2, -+ ,a,} with S;(X) = {0,a1,a2, -+ ,an_1}
and D(X) = {0,a1,a2,--- ,a;}. If |S¢(X)\D(X)|>2, then the following conclusions hold:

(a) For any ax€S:(X)\D(X), an * ar#ar;

(b) If there exists ar€S;(X)\D(X) such that a, * ar, = a; and a;#a,, then a, * a; = ay;

(c) If there exists ar, a€S:(X)\D(X) and ar#aq; such that a, * ar, = ai, an * a1 = ag,
then for all a,€S:(X)\{D(X)U{ar,a:}}, an * ap = an.

Proof. (a) If there exists ax €S, (X)\D(X), such that a,*a;, = ay, then take a;€S:(X)\D(X),
a;#ay, we have

0= ((a;r *ax) * (@ * an)) * (an *ar) (by aziom (1))
= (a; * (a1 *x ap)) * (an * ag) (by Proposition 2.1)
= (a;*0) * (a, * ag) (by Lemma 4.2)
= a;*(ap * ag)
= a*ag (by our assumption )
= w (by Propsition 2.1)

It is a contradiction. Hence (a) holds.

(b) By BCK axioms (2), we have 0 = (a,, * (an *ag)) *ar = (an*a;)xay. Hence an*xa; = 0
or a, * a; = ag- If a, * a; = 0, then we get a,, = a; by Lemma 4.2. It is contradictory that
a;#a,. Therefore a, *x a; = ay, and the proof of (b) is completed.

(c) If there exists a, €S (X)\{D(X)U{ak, a;}} such that a, * a, = a, and a,#a,, then
by BCK axioms (1) we have 0 = ((an * ap) * (an * ar)) * (ar * ap) = (ag * ar) * ar. If ag#ay,
then a4 * a; = a4 by Propsition 2.1. Hence 0 = a4 * a; and a, = ay, therefore we get

0= (an * (an % ap)) *ap = (an * ag) xap = (an * a) * ap = a; * ap = ay.

It is a contradiction. If a; = a;, then it is contradictory that

0= (an * (an *ap)) *ap = (an * ay) xap = (an * ;) * ap = ag, * ap = ag.
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Hence (c) holds. And the proof of the Lemma is completed.

Theorem 4.5. By isomorphic view, there are total n + 1 BCK-algebras X with |X| =
n+ 1 and |S¢(X)| = n.

Proof. Assuming X = {0,a1,as, -+ ,a,} with S¢(X) = {0,a1,a2,--- ,a,—1} and
D(X)={0,a1,a2,--- ,a;} (0<i<n — 2), we determine the operation tables of X according
to the order of D(X).

Case 1. |D(X)| = n — 1, that is D(X) = {0,a1,a2,--- ,an_2}. In this case, we only
need to determine the value of Up(n—1) = Qn * Gp_1 in table one. By a, * a,—170 and
Gp * Up—1<ap, We have a, * Gp—1 = Gp_1 O Ay * Gp—1 = aQy. laking Un(n—1) = Gn-1 and
Un(n—1) = an each, we get two different operation tables—table two and table three

By BCK-algebra axioms (1)—(5) we can verify that table two and table three indeed
give two BCK-algebras. Hence, there are and only two BCK-algebras in Case 1.

Case 2. |D(X)| =n—2, that is |S¢(X)\D(X)| = 2. In this case, if ap*ap—2 = an*ap_1 =
an, then by table one we get the operation table of X as table four

If the operation table of X is different from table four, then we have a, * an_o = an_1
and a, *xa,_ 1 = a,_o by Lemma 4.4. Hence by table one the operation table must be as
table five

By BCK-algebra axioms (1)—(5) we can verify X which are given by table four and table
five are BCK-algebras. Hence, there are and only two BCK-algebras in Case 2.

Case 3. |D(X)| < n — 2, that is |S¢(X)\D(X)| > 2. In this case, if a,, * ar = an,
k=1i+1,---,n—1, then by table one we get the operation table of X as table six

By BCK-algebra axioms (1)—(5) we can verify X which is given by table six is BCK-
algebra. If the operation table of X is different from table six, then by Lemma 4.4, there
are two elements ag,q;€S:(X)\D(X) such that a, * ar = a; and a, * a = aj. Assume
ar = an—2 and a; = an,—1. We get ap ¥ap =an,p=1+1,--- ,n — 3 by Lemma 4.4. Hence
by table one the operation table must be as follows

* 0 ai a2 T 423 Aiy1 ' Gp—-3 Ap—2 Gpn-1 G0an
0 0 0 0 - 0 0 - 0 0 0 0
251 ay 0 ay R 251 ay R 251 ay ajq ajq
as as as 0 R as as R as as as as
a; a; a; a; R 0 a; R a; a; a; a;
ip1 | Gip1  Qip1 Qg1 Qg 0 - a1 a1 a1 0
ap—-3 | Ap—3 0OGp—-3 0ap-3 =" ap—-3 QAp—-3 " 0 Gp—3 0an-3 0
Up—2 | Ap—2 GOGp—2 Qap-2 =" ap—2 Ap-—2 - Ap—2 0 Qp—2 0
Ap—1 | Gn—1 An—1 An—1 ot An—-1 Qp—1 ot An—-1 Qp—1 0 0
an, (29 an, 29 ot an, (29 ot an, An—1 Apn—2 0

(table seven)

But the algebra defined by table seven is not a BCK-algebra, for, we have

((@n—3 * Gn-1) * (An—3 * an)) * (an * an—1) = (@n—3 *0) * Gp—2 = an_370,

namely, the BCK-algebra axiom (1) does not hold. Hence, there exists and only one BCK-
algebra X with |[D(X)| =4+ 1 < n — 2 in Case 3 by table six. Since the order of D(X)



ON ATOMS OF BCK-ALGEBRAS 121

can take 1,2,--- ,n — 3, the proof is completed by combinig Case 1, Case 2, Case 3, and
the operation tables are given by table two — table six.

* 0 a1 az - a; i1 Gn—3 Qn—2 An-1 Qn
0 0 0 e 0 0 e 0 0 0 0
ay 251 0 251 T ay 251 T 251 251 ajq ay
as as as 0 T as as T as as as a2
a; a; a; a; T 0 a; T a; a; a; a;
Qi1 | Gip1  Qip1 Gigl iyl 0 Qi1 Qi1 Qi1 0
Gp—3 | An—3 Gp-3 Qanp_3 ap—3 ap—3 e 0 Gp—3 Gp—3 0
Up—2 | Ap—2 Gp-—2 (ap_2 Ap—2 Qp—2 Gp—2 0 Gp—2 0
An—1 An—1 An—1 An—1 An—1 An—1 An—1 An—1 0 0
429 GQp, 429 GQp, Qn An(i41) An(n—3) Qn(n—2) Qn(n-1) 0
(table one)
* 0 ay as a; Gyl n-3 Gn_2 Gnp_1 Qdp
0 0 0 0 0 0 0 0 0 0
a1 ai 0 a1 a1 ai a1 ai a1 ai
as as as 0 as as as as as as
a; a; a; a; 0 a; a; a; a; a;
Ai+1 | Gi41 Qi1 Qi1 41 0 Ai+1 Qi1 Qi1 Q41
Gp—3 | An—3 Gp-3 Qanp-—3 Gp—3 (Anp—3 0 p—3 0an-3 Gp-3
Ap—2 | Gp—2 (Ap—2 Ap—23 Ap—2 Qp—2 Apn—2 0 Ap—2 Qp—2
Ap—1 | Gn—1 An—-1 Qp—1 An—-1 Qp—1 An—-1 Qp—1 0 0
an an an an an an an An  QAp_1 0
(table two)
* 0 ay as a; Qi1 p-3 Gn-2 Gp_1 QAp
0 0 0 0 0 0 0 0 0 0
a1 ai 0 a1 a1 ai a1 ai a1 ai
as as as 0 as as as as as as
a; a; a; a; 0 a; a; a; a; a;
Ai+1 | Gi41 Qi1 Qi1 41 0 Ai+1 Qi1 Qi1 Q41
(p—-3 | An—3 Gp-3 0an-3 (p—3 An-—3 0 p—3 0An-3 Gp-3
Ap—2 | Gp—2 (Ap—2 Ap—23 Ap—2 Qp—2 Apn—2 0 Ap—2 Qp—2
Ap—1 | Gn—1 An—-1 Qp—1 An—-1 Qp—1 An—-1 Qp—1 0 0
an an an n n an n an n 0

(table three)
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* 0 ay as a; Gyl n-3 Gpn_2 Gnp_1 Qdp
0 0 0 0 0 0 0 0 0 0
ay 251 0 ay ay 251 ay 251 ay ajq
as as as 0 as as as as as as
a; a; a; a; 0 a; a; a; a; a;
Ai+1 | Gi41 Qi1 Qi1 41 0 Ai+1 Qi1 Qi1 Q41
Gp—3 | An—3 Gp-3 Qanp_3 ap—-3 (Anp—3 0 p—3 0an-3 Gp-3
Up—2 | An—2 Gp—-2 (ap_2 Up—2 (Ap—2 Ap—2 0 Qp—2 0
Ap—1 | Gn—1 An—-1 Qp—1 An—-1 Qp—1 An—-1 Qp—1 0 0
an an an an an an an an an 0
(table four)
* 0 ay as a; Gyl n-3 Gn_2 Gnp_1 Qdp
0 0 0 0 0 0 0 0 0 0
a1 ai 0 a1 a1 ai a1 ai a1 ai
as as as 0 as as as as as as
a; a; a; a; 0 a; a; a; a; a;
Ai+1 | Gi41 Qi1 Qi1 41 0 Ai+1 Qi1 Qi1 Q41
Gp—3 | An—3 Gp-3 Qanp-—3 Gp—3 (Anp—3 0 p—3 0an-3 Gp-3
Ap—2 | Gp—2 (Ap—2 Ap—23 Ap—2 Qp—2 Apn—2 0 Ap—2 0
Ap—1 | Gn—1 An—-1 Qp—1 An—-1 Qp—1 An—-1 Qp—1 0 0
Qp Gnp Qp Qp Qp Gnp Qp Gp—1 Qn—2 0
(table five)
* 0 a1 as a; Qi1 p-3 Gpn_2 Gp_1 dn
0 0 0 0 0 0 0 0 0 0
ai a1 0 a1 ai a1 ai a1 ai ai
as as as 0 as as as as as as
a; a; a; a; 0 a; a; a; a; a;
Qi1 | Qix1  Qit1  Qit1 @it1 0 Giy1  Giy1  Qix1 O
Up—-3 | An—3 (Gp—-3 0An-3 (p—3 An-—3 0 p—3 An-3 0
Ap—2 | Gp—2 (Ap—2 Ap-—2 Ap—2 QAp-2 Ap—2 0 Ap—2 0
Gp—1 | AGn—1 Gp-1 GQp-1 Gp—1 QAn-—1 Gp—1 QAn-—1 0 0
an an an n an n an n an 0

(table six)



ON ATOMS OF BCK-ALGEBRAS 123

REFERENCES

[1] K.Iseki, An algebra related with a propositional calculus, Proc. Japan Acad., 42(1966), 26-29

[2] Wenping Huang, Nil-radical in BCI-algebras, Math. Japonica 37, No.2 (1992), 363-366

[3] Wenping Huang, Adjoint semigroups of BCI-algebras, SEA Bull. Math., Vol.19, No.3 (1995) 95-98

[4] K.Iseki and S.Tanaka, An introduction to the theory of BCK-algebra, Math. Japonica 23, No.1(1978),
1-26

Department of Mathematics

Langfang Teacher’s College
Langfang 065000, Hebei, P.R.China



