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ON ATOMS OF BCK-ALGEBRAS

DAJUN SUN

Received January 31, 2000

Abstract. Atoms in BCK-algebras are considered. The notions of the star BCK-

algebras and the star part of BCK-algebras are introduced. The properties of some

substructures which consist of atoms are investigated. Furthermore, by isomorphic view,

there are and only n+ 1 BCK-algebras X with jXj = n+ 1 and jSt(X)j = n.

1. Introduction By a BCK-algebra we mean an algebra (X ; �; 0) of type (2; 0) satisfying

the axioms:

(1) ((x � y) � (x � z)) � (z � y) = 0,

(2) (x � (x � y)) � y = 0,

(3) x � x = 0,

(4) x � y = y � x = 0 impies x = y,

(5) 0 � x = 0

for any x; y and z in X . For any BCK-algebra X , the relation � de�ned by x�y if and only

if x � y = 0 is a partial order on X (see [1]).

A BCK-algebra X has the following properties for any x; y; z2X :

(6) x � 0 = x,

(7) (x � y) � z = (x � z) � y,

(8) x�y implies that x � z�y � z and z � y�z � x.

In a BCK-algebra X , if an element a satisfying:

(a) a6=0,

(b) x2Xnf0g and x�a imply x = a

then the element a is called an atom of X . Since 0 is the least element of X , it is obvious

that an atom of X is a minimal element of X .

Let (X ; �; 0) be a BCK-algebra. A non-empty subset S of X is called a subalgebra if

x; y2S implies x � y2S. By an ideal I of X we mean 02I and y; x � y2I imply x2I . If an

ideal I of X is also a subalgebra of X , then I is called a close ideal of X . It has been known

that an ideal of a BCK-algebra is a close ideal (see [2]).

2. Star subalgebras of BCK-algebras Let X be a BCK-algebra. We de�ne

St(X) = fa2X ; a = 0 or a is an atom of X .g
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The subset St(X) is called the star part of X .

Propsition 2.1. Let X be a BCK-algebra. If a; b2St(X) and a6=b, then a � b = a.

Proof. In case a = 0 or b = 0, the proof is trivial. Assume a6=0 and b6=0, by a � b�a

and a is an atom of X , we get a � b = 0 or a � b = a. If a � b = 0, then a = 0 or a = b since

b is an atom of X . It is a contradiction, hence a � b = a. The proof is completed.

By Propsition 2.1 we can immediately get

Theorem 2.2. For any BCK-algebra X , St(X) is a subalgebra of X .

Let X be a BCK-algebra and S be a subalgebra of X . S is called a star subalgebra of

X if St(S) = S. Particularly X is called a star BCK-algebra if X = St(X).

Remark. St(X) may be not a maximal star subalgebra.

Example 1. Let X = f0; � � � ;�n� 1;�n;�n+ 1; � � � ;�3;�2;�1g and partial order �

as follows 0�� � �� � n� 1�� n�� n+ 1�� � � � 3�� 2�� 1. De�ne operation � by

x � y =

�
0; x�y

x; others

for any x; y in X . Then (X ; �; 0) is a BCK-algebra and St(X) = f0g. If take the subalgebra

S = f0; 1g of X , then St(S) = S. In this example, St(X) is not a maximal star subalgebra

of X .

Example 2. Let X = f0; 1; 2; 3g. Take the operation table of X as follows

� 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 1 0 2

3 3 3 3 0

Then (X ; �; 0) is a BCK-algebra. St(X) = f0; 1; 3g is a maximal star subalgebra of X but

not the largest star subalgebra of X since S = f0; 2g is a star subalgebra of X .

Theorem 2.3. Let X be a BCK-algebra and S be a subalgebra of X . Then S is a star

subalgebra of X if and only if for any a; b2S, a6=b implies a � b = a.

Proof. By Propsition 2.1, the necessity part is obvious. In the suÆciency part, for any

b2Snf0g, if there exists x02Snf0g such that x0�b, then we have x0 = b or x0 6=b. If x0 6=b,

then we get x0 � b = 0 by x0�b and x0 � b = x0 by the condition of the Theorem, hence

x0 = 0. It is contradictory that x02Snf0g. Hence x0 = b and b is an atom of S. The proof

is completed.

Theorem 2.4. Let X be a BCK-algebra. Then St(X) is a maximal star subalgebra of

X if and only if for any element x in XnSt(X), there exists an element a in St(X)nf0g suh

that a�x.

Proof. Assume S be a star subalgebra of X and St(X)�S. If there exists an element x0
of X in SnSt(X), then there exists an element a in St(X)nf0g�S such that a�x0. Hence

the element x0 is not an atom of S. It is contrdictory that S is a star subalgebra of X . And

the suÆcient part is proved. On the other hand, if there exists x0 in XnSt(X) such that

for all a in St(X)nf0g, a � x0 6=0, then we have a � x0 = a by a � x0�a and a2St(X)nf0g.

Assume x0 � a = b, we get

(x0 � b) � a = (x0 � a) � b = b � b = 0;
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that is x0 � b�a, hence x0 � b = 0 or x0 � b = a. If x0 � b = a, then

a � x0 = (x0 � b) � x0 = (x0 � x0) � b = 0 � b = 0:

It is a contradition. Hence x0 � b = 0. By b�x0 = (x0 �a)�x0 = (x0 �x0)�a = 0�a = 0; we

have x0 = b = x0 � a. Then we get x0 � a = x0 and a � x0 = a for all a2St(X). Therefore

S = St(X)
S
fx0g is a star subalgebra of X by Theorem 2.3. It is contradictory that St(X)

is a maximal star subalgebra. The proof is completed.

Corollary 2.5. For a �nite BCK-algebra X , St(X) is a maximal star subalgebra of X .

Theorem 2.6. Let X be a BCK-algebra. St(X) is the largest star subalgebra of X if

and only if X = St(X).

Proof. The suÆciency part is obvious. Conversely, for any x2Xnf0g, S = f0; xg is a

star subalgebra of X , hence x2St(X) since St(X) is the largest star subalgebra. The proof

is completed.

Let (X ; �1; 0), (Y ; �2; 0) be two BCK-algebras. The set X�Y = f(x; y);x2X; y2Y g

about operation �: (x1; y1) � (x2; y2) = (x1�1x2; y1�2y2) becomes a BCK-algebra, and (0,0)

is the zero element of X�Y .

Generally, St(X�Y ) 6=St(X)�St(Y ), but we have

Theorem 2.7. Let X , Y be two BCK-algebras. Then

St(X�Y ) = (St(X)�f0g)
S
(f0g�St(Y ))

Proof. It is obvious that St(X�Y )�(St(X)�f0g)
S
(f0g�St(Y )). Furthermore, for any

(x0; y0)2St(X�Y ), if x0 6=0 and y0 6=0, then we get (x0; 0) � (x0; y0) = (0; 0). It is contradic-

tory that (x0; y0)2St(X�Y ). Hence we get x0 = 0 or y0 = 0. If x0 = 0, then it is easy to

prove that y02St(Y ). Similarly, if y0 = 0, then x02St(X). The proof is completed.

Corollary 2.8. For any �nite BCK-algebra X , Y , we have jSt(X�Y )j = jSt(X)j +

jSt(Y )j � 1:

Corollary 2.9. Let X , Y be two BCK-algebras. Then St(X�Y ) = St(X)�St(Y ) if and

only if St(x) = f0g or St(Y ) = f0g

Let X be a BCK-algebra. If an atom b of X satis�es that b � x = b for any x2Xnfbg,

then we call b is a strong atom of X . Take the subset of X

D(X) = f b2St(X); b is a strong atom of X or b = 0 g

we have

Theorem 2.10. For any BCK-algebra X , D(X) is a closed ideal of X .

Proof. We need to prove that D(X) is an ideal of X only. Assume y; x � y2D(X), if

x � y = x, then x2D(X). If x � y 6=x, then (x � y) � x = x � y by the de�nition of D(X). On

the other hand,

(x � y) � x = (x � x) � y = 0 � y = 0;

hence we get x � y = 0. By y2D(X) and x � y = 0, we have x = 0 or x = y, hence x2D(X).

The proof is completed.

3. On star BCK-algebras Suppose (X ; �; 0) be a BCK-algebra. For any a2X , we use

a�1 denote the selfmap of de�ned by xa�1 = x � a. Let M(X) denote the set of all �nite
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product a�1� � �b�1 of selfmaps with a; � � �; b2X . It is clear that M(X) becomes a commu-

tative monoid under composition of maps and 0�1 is the identity. We di�ne a relation �1

on M(X) as follows:

u�1� � �v�1�1a
�1
� � �b�1()(xu�1� � �v�1) � (xa�1� � �b�1) = 0

for any x2X . We call M(X) the adjoint semigroup of X (see [3]). It is obvious that

M(S) = fu�1� � �v�1;u; � � �; v2Sg becomes a subsemigroup of M(X) for any non-empty

subset S of X .

Lemma 3.1. Let X be a BCK-algebra and � = a1
�1� � �an

�12M(St(X)). If St(X) is an

ideal of X , then Ker� = f0; a1; a2; � � �; ang

Proof. It is obvious that f0; a1; a2; � � �; ang�Ker� by Section 1. Conversely, if � = a1
�1

and b2Ker�, then ba1
�1 = b�a1 = 0. We get b = 0 or b = a1 by a12St(X), hence b2f0; a1g

and the Lemma holds for n = 1. Now we assume the Lemma has already been proved for

n = k, then we prove the case of � = a1
�1a2

�1
� � �ak

�1ak+1
�1. If b2Ker�, b� = 0, then we

have b2St(X) by St(X) is an ideal of X and a1; � � � ; ak+12St(X). Since (b � ak+1) � b = 0

and b2St(X), we get b � ak+1 = 0 or b � ak+1 = b. If b � ak+1 = 0, then b = ak+1 or b = 0

hence b2f0; a1; � � � ; ak+1g. If b � ak+1 = b, then

0 = b� = ba1
�1
� � �ak

�1ak+1
�1 = (bak+1

�1)a1
�1
� � �ak

�1 = ba1
�1
� � �ak

�1;

we have b2f0; a1; � � � ; akg�f0; a1; � � � ; ak; ak+1g by our assumption. The proof is com-

pleted.

Theorem 3.2. Let X be a BCK-algebra. Then X is a star BCK-algebra if and only if

for all � = a1
�1
� � �an

�1
2M(X), Ker� = f0; a1; � � � ; ang.

Proof. By Lemma 3.1, the necessity part is obvious. In suÆciency part, for any element

a2Xnf0g, if there exists x2X such that x�a, then x2Kera�1 = f0; ag, hence x = 0 or

x = a, and a is an atom of X . The proof is completed.

By a positive implicative BCK-algebra, we mean a BCK-algebra (X ; �; 0) such that for

all x; y; z2X , (x � y) � z = (x � z) � (y � z). If for all x; y2X , y � (y � x) = x � (x � y), then

X is said to be a commutative BCK-algebra. It is alse noteworthy that X is a positive

implicative BCK-algebra if and only if (x � y) � y = x � y for all x; y2X (see [4]). By using

these results, we have

Theorem 3.3. If X is a star BCK-algebra, then the following results hold:

(a) X is a positive implicative BCK-algebra;

(b) X is a commutative BCK-algebra.

Proof. (a) For any x; y2X , if x � y = 0, it is obvious that (x � y) � y = x � y. Assume

x � y 6=0, then we have x � y = x by x � y�x and x is an atom of X . Hence (x � y) � y = x � y.

(b) For any x; y2X , if x � y = 0 or y � x = 0, then we get x = 0 or x = y or y = 0, hence

it is obvious that y � (y �x) = x� (x�y). Assume x�y 6=0 and y �x6=0, then we get x�y = x

and y � x = y by x � y�y and y � x�y, hence x � (x � y) = 0 = y � (y � x). The proof is

completed.

4. The count of a class �nite BCK-algebras Let u be an element in BCK-algebra X .

If for any x2X , u � x = 0 implies u = x, then u is called a maximal element of X .

Theorem 4.1. Let X be a BCK-algebra. If u2XnD(X) is a maximal element of X ,

then for any b2D(X), u � b = u.
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Proof. It is trivial to see the case b = 0. If b6=0, then we have (u� (u�b))�b= 0 by BCK

axiom (2), hence u�(u�b) = 0 or b, since b is an atom of X . If u�(u�b) = b, then we can get

b � u = (u � (u � b)) � u = (u � u) � (u � b) = 0 � (u � b) = 0;

it is contradictory that b is a strong atom of X . Hence u � (u � b) = 0. Therefore u � b = u

by u is a maximal element of X . The proof is completed.

Lemma 4.2. If X = f0; a1; � � � ; ang is a BCK-algebra with St(X) = f0; a1; � � � ; an�1g

and D(X) = f0; a1; � � � ; aig (0�i�n� 2), then for all ak2St(X)nD(X), ak � an = 0.

Proof. By (ak � an) � ak = (ak �ak) �an = 0 � an = 0, we get ak � an = 0 or ak � an = ak
since ak is an atom of X . If ak � an = ak, then we have ak2D(X) by Propsition 2.1, it is

contradictory that ak 62D(X). Hence ak � an = 0. The proof is completed.

Corollary 4.3. In Lemma 4.2, the element an is a maximal element of X .

Let X be a BCK-algebra with jX j = n+1, jSt(X)j = n and jD(X)j = i+1 (0�i�n�2).

Assuming X = f0; a1; a2; � � � ; ang, St(X) = f0; a1; � � � ; an�1g and D(X) = f0; a1; � � � ; aig,

by above discussing, the operation table of X must be as table one.

In table one, ank = an � ak(i+1�k�n� 1). After, we shall give the number of this class

BCK-algebras by determining the value of ank in table one.

Lemma 4.4. Let BCK-algebraX = f0; a1; a2; � � � ; angwith St(X) = f0; a1; a2; � � � ; an�1g

and D(X) = f0; a1; a2; � � � ; aig. If jSt(X)nD(X)j�2, then the following conclusions hold:

(a) For any ak2St(X)nD(X), an � ak 6=ak;

(b) If there exists ak2St(X)nD(X) such that an � ak = al and al 6=an, then an � al = ak;

(c) If there exists ak; al2St(X)nD(X) and ak 6=al such that an � ak = al, an � al = ak,

then for all ap2St(X)nfD(X)
S
fak; algg, an � ap = an.

Proof. (a) If there exists ak2St(X)nD(X), such that an�ak = ak, then take al2St(X)nD(X),

al 6=ak, we have

0 = ((al � ak) � (al � an)) � (an � ak) (by axiom (1) )

= (al � (al � an)) � (an � ak) (by Proposition 2:1)

= (al � 0) � (an � ak) (by Lemma 4:2)

= al � (an � ak)

= al � ak (by our assumption )

= al (by Propsition 2:1 )

It is a contradiction. Hence (a) holds.

(b) By BCK axioms (2), we have 0 = (an �(an�ak))�ak = (an�al)�ak: Hence an�al = 0

or an � al = ak. If an � al = 0, then we get an = al by Lemma 4.2. It is contradictory that

al 6=an. Therefore an � al = ak, and the proof of (b) is completed.

(c) If there exists ap2St(X)nfD(X)
S
fak; algg such that an � ap = aq and aq 6=an, then

by BCK axioms (1) we have 0 = ((an � ap) � (an � ak)) � (ak � ap) = (aq � al) � ak: If aq 6=al,

then aq � al = aq by Propsition 2.1. Hence 0 = aq � ak and aq = ak, therefore we get

0 = (an � (an � ap)) � ap = (an � aq) � ap = (an � ak) � ap = al � ap = al:

It is a contradiction. If aq = al, then it is contradictory that

0 = (an � (an � ap)) � ap = (an � aq) � ap = (an � al) � ap = ak � ap = ak:
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Hence (c) holds. And the proof of the Lemma is completed.

Theorem 4.5. By isomorphic view, there are total n + 1 BCK-algebras X with jX j =

n+ 1 and jSt(X)j = n.

Proof. Assuming X = f0; a1; a2; � � � ; ang with St(X) = f0; a1; a2; � � � ; an�1g and

D(X) = f0; a1; a2; � � � ; aig (0�i�n� 2), we determine the operation tables of X according

to the order of D(X).

Case 1. jD(X)j = n � 1, that is D(X) = f0; a1; a2; � � � ; an�2g. In this case, we only

need to determine the value of an(n�1) = an � an�1 in table one. By an � an�1 6=0 and

an � an�1�an, we have an � an�1 = an�1 or an � an�1 = an. Taking an(n�1) = an�1 and

an(n�1) = an each, we get two di�erent operation tables|table two and table three

By BCK-algebra axioms (1)|(5) we can verify that table two and table three indeed

give two BCK-algebras. Hence, there are and only two BCK-algebras in Case 1.

Case 2. jD(X)j = n�2, that is jSt(X)nD(X)j = 2. In this case, if an�an�2 = an�an�1 =

an, then by table one we get the operation table of X as table four

If the operation table of X is di�erent from table four, then we have an � an�2 = an�1
and an � an�1 = an�2 by Lemma 4.4. Hence by table one the operation table must be as

table �ve

By BCK-algebra axioms (1)|(5) we can verify X which are given by table four and table

�ve are BCK-algebras. Hence, there are and only two BCK-algebras in Case 2.

Case 3. jD(X)j < n� 2, that is jSt(X)nD(X)j > 2. In this case, if an � ak = an;

k = i+ 1; � � � ; n� 1, then by table one we get the operation table of X as table six

By BCK-algebra axioms (1)|(5) we can verify X which is given by table six is BCK-

algebra. If the operation table of X is di�erent from table six, then by Lemma 4.4, there

are two elements ak; al2St(X)nD(X) such that an � ak = al and an � al = ak. Assume

ak = an�2 and al = an�1. We get an � ap = an; p = i+ 1; � � � ; n� 3 by Lemma 4.4. Hence

by table one the operation table must be as follows

� 0 a1 a2 � � � ai ai+1 � � � an�3 an�2 an�1 an
0 0 0 0 � � � 0 0 � � � 0 0 0 0

a1 a1 0 a1 � � � a1 a1 � � � a1 a1 a1 a1
a2 a2 a2 0 � � � a2 a2 � � � a2 a2 a2 a2
... � � � � � � � � � � � � � � �

ai ai ai ai � � � 0 ai � � � ai ai ai ai
ai+1 ai+1 ai+1 ai+1 � � � ai+1 0 � � � ai+1 ai+1 ai+1 0
... � � � � � � � � � � � � � � �

an�3 an�3 an�3 an�3 � � � an�3 an�3 � � � 0 an�3 an�3 0

an�2 an�2 an�2 an�2 � � � an�2 an�2 � � � an�2 0 an�2 0

an�1 an�1 an�1 an�1 � � � an�1 an�1 � � � an�1 an�1 0 0

an an an an � � � an an � � � an an�1 an�2 0

(table seven)

But the algebra de�ned by table seven is not a BCK-algebra, for, we have

((an�3 � an�1) � (an�3 � an)) � (an � an�1) = (an�3 � 0) � an�2 = an�3 6=0;

namely, the BCK-algebra axiom (1) does not hold. Hence, there exists and only one BCK-

algebra X with jD(X)j = i + 1 < n � 2 in Case 3 by table six. Since the order of D(X)
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can take 1; 2; � � � ; n � 3, the proof is completed by combinig Case 1, Case 2, Case 3, and

the operation tables are given by table two | table six.

� 0 a1 a2 � � � ai ai+1 � � � an�3 an�2 an�1 an
0 0 0 0 � � � 0 0 � � � 0 0 0 0

a1 a1 0 a1 � � � a1 a1 � � � a1 a1 a1 a1
a2 a2 a2 0 � � � a2 a2 � � � a2 a2 a2 a2
... � � � � � � � � � � � � � � �

ai ai ai ai � � � 0 ai � � � ai ai ai ai
ai+1 ai+1 ai+1 ai+1 � � � ai+1 0 � � � ai+1 ai+1 ai+1 0
... � � � � � � � � � � � � � � �

an�3 an�3 an�3 an�3 � � � an�3 an�3 � � � 0 an�3 an�3 0

an�2 an�2 an�2 an�2 � � � an�2 an�2 � � � an�2 0 an�2 0

an�1 an�1 an�1 an�1 � � � an�1 an�1 � � � an�1 an�1 0 0

an an an an � � � an an(i+1) � � � an(n�3) an(n�2) an(n�1) 0

(table one)

� 0 a1 a2 � � � ai ai+1 � � � an�3 an�2 an�1 an
0 0 0 0 � � � 0 0 � � � 0 0 0 0

a1 a1 0 a1 � � � a1 a1 � � � a1 a1 a1 a1
a2 a2 a2 0 � � � a2 a2 � � � a2 a2 a2 a2
... � � � � � � � � � � � � � � �

ai ai ai ai � � � 0 ai � � � ai ai ai ai
ai+1 ai+1 ai+1 ai+1 � � � ai+1 0 � � � ai+1 ai+1 ai+1 ai+1
... � � � � � � � � � � � � � � �

an�3 an�3 an�3 an�3 � � � an�3 an�3 � � � 0 an�3 an�3 an�3
an�2 an�2 an�2 an�2 � � � an�2 an�2 � � � an�2 0 an�2 an�2
an�1 an�1 an�1 an�1 � � � an�1 an�1 � � � an�1 an�1 0 0

an an an an � � � an an � � � an an an�1 0

(table two)

� 0 a1 a2 � � � ai ai+1 � � � an�3 an�2 an�1 an
0 0 0 0 � � � 0 0 � � � 0 0 0 0

a1 a1 0 a1 � � � a1 a1 � � � a1 a1 a1 a1
a2 a2 a2 0 � � � a2 a2 � � � a2 a2 a2 a2
... � � � � � � � � � � � � � � �

ai ai ai ai � � � 0 ai � � � ai ai ai ai
ai+1 ai+1 ai+1 ai+1 � � � ai+1 0 � � � ai+1 ai+1 ai+1 ai+1
... � � � � � � � � � � � � � � �

an�3 an�3 an�3 an�3 � � � an�3 an�3 � � � 0 an�3 an�3 an�3
an�2 an�2 an�2 an�2 � � � an�2 an�2 � � � an�2 0 an�2 an�2
an�1 an�1 an�1 an�1 � � � an�1 an�1 � � � an�1 an�1 0 0

an an an an � � � an an � � � an an an 0

(table three)
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� 0 a1 a2 � � � ai ai+1 � � � an�3 an�2 an�1 an
0 0 0 0 � � � 0 0 � � � 0 0 0 0

a1 a1 0 a1 � � � a1 a1 � � � a1 a1 a1 a1
a2 a2 a2 0 � � � a2 a2 � � � a2 a2 a2 a2
... � � � � � � � � � � � � � � �

ai ai ai ai � � � 0 ai � � � ai ai ai ai
ai+1 ai+1 ai+1 ai+1 � � � ai+1 0 � � � ai+1 ai+1 ai+1 ai+1
... � � � � � � � � � � � � � � �

an�3 an�3 an�3 an�3 � � � an�3 an�3 � � � 0 an�3 an�3 an�3
an�2 an�2 an�2 an�2 � � � an�2 an�2 � � � an�2 0 an�2 0

an�1 an�1 an�1 an�1 � � � an�1 an�1 � � � an�1 an�1 0 0

an an an an � � � an an � � � an an an 0

(table four)

� 0 a1 a2 � � � ai ai+1 � � � an�3 an�2 an�1 an
0 0 0 0 � � � 0 0 � � � 0 0 0 0

a1 a1 0 a1 � � � a1 a1 � � � a1 a1 a1 a1
a2 a2 a2 0 � � � a2 a2 � � � a2 a2 a2 a2
... � � � � � � � � � � � � � � �

ai ai ai ai � � � 0 ai � � � ai ai ai ai
ai+1 ai+1 ai+1 ai+1 � � � ai+1 0 � � � ai+1 ai+1 ai+1 ai+1
... � � � � � � � � � � � � � � �

an�3 an�3 an�3 an�3 � � � an�3 an�3 � � � 0 an�3 an�3 an�3
an�2 an�2 an�2 an�2 � � � an�2 an�2 � � � an�2 0 an�2 0

an�1 an�1 an�1 an�1 � � � an�1 an�1 � � � an�1 an�1 0 0

an an an an � � � an an � � � an an�1 an�2 0

(table �ve)

� 0 a1 a2 � � � ai ai+1 � � � an�3 an�2 an�1 an
0 0 0 0 � � � 0 0 � � � 0 0 0 0

a1 a1 0 a1 � � � a1 a1 � � � a1 a1 a1 a1
a2 a2 a2 0 � � � a2 a2 � � � a2 a2 a2 a2
... � � � � � � � � � � � � � � �

ai ai ai ai � � � 0 ai � � � ai ai ai ai
ai+1 ai+1 ai+1 ai+1 � � � ai+1 0 � � � ai+1 ai+1 ai+1 0
... � � � � � � � � � � � � � � �

an�3 an�3 an�3 an�3 � � � an�3 an�3 � � � 0 an�3 an�3 0

an�2 an�2 an�2 an�2 � � � an�2 an�2 � � � an�2 0 an�2 0

an�1 an�1 an�1 an�1 � � � an�1 an�1 � � � an�1 an�1 0 0

an an an an � � � an an � � � an an an 0

(table six)
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