Scientiae Mathematicae Japonicae Online, Vol. 4(2001), 213-220 213

INTEGRALS, SUMS OF RECIPROCAL POWERS AND
MITTAG-LEFFLER EXPANSIONS

J.M. AMIGO
Received February 25, 2000
ABSTRACT. The zeta series with odd exponents and the alternating series of the
positive odd integers to an even power can be expressed as infinite integrals involving
derivatives of some hyperbolic functions. These integral formulas can be derived in
a straightforward way from the Mittag-Leffler series of the corresponding hyperbolic
function.

1. INTRODUCTION

Let {(n) denote, as usual, the zeta series of exponent n = 2,3, ...,

Other related series of reciprocal powers are [1, Ch. 23]

(1) Z 7 = (1-2""")¢(n)
) =3 G = (027w
forn=2,3,... (n(1) =In2) and

(3) Ln)=Y" % (n=1,2,..)

Remember that

n+1 (27T)2n . (27T)2n _
: 2(2n)!32” = 20! |Ban|  (n=1,2,...)

(4) ((2n) = (=)

where By =1, By = —1/2, By =1/6, By = —1/30, ... are the Bernoulli numbers, and

(xf2? ) (wj2)

(5) L@2n+1)= ()" 2(2n)! 2n = W

|Esn| (n=0,1,...)

where Eg =1, E4 =5, ... (all integers) are the Euler numbers.
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No similar numerical formulas for ((2n+1) and L(2n) are known. Instead, some integral
expressions can be derived in a variety of ways, usually from properties of the transcendental
functions ((z) and I'(z), z € C, or (in a more involved way) via Jacobian elliptic functions.
But there are also more elementary techniques based, for example, on the Mittag-Leffler
expansions of some hyperbolic functions [5, Ch. 7]. Indeed, it can be shown that

1. from
> 2k +1
sechz =71 ) (- k—+2
P ((2kJ2rl)7r) T2
it follows
m2n—l1 *° dx d*" lsechz
L2n)=(-)"—4——— —_——
(6) (@n) = (=) 22"(2n—1)!/0 z  drPn]
2. from
> 1
tanhz = 2z T ——
;} ((2k;1)w)2 +.’L'2
it follows
w2 * dz d®>™ tanh z
MmAl) = () |
@ (@n+1)=(-) (22n+1_1)(2n)z/0 v don
3. from i
0o \k+1
ho=1-2225 )
zeschao T ; 2 1P
it follows
27)2n * dx d*" ! (z csch )
2 1) = (— n+1 ( / e
®) )= D@ Dy, = de
4. from
> 1
the =14+22") —————
rcothz + 2z ;k2”2+m2
it follows
w2n * dzx d?™"*!(z coth )
9 m+l)=(-) " [
( ) C( n + ) ( ) (2n+1)!/0 T dx2n+1

This paper can be considered a continuation of [3], which contains a proof of (8) based
on the corresponding Mittag-Leffler expansion. The proofs of (7) and (9) are formally
analogous. In this paper we extend this technique to the L-series by showing (6). Other
interesting integral expressions for L(2n) will be also derived (v.g. Eq. (19)).

2. FIRST STEP: L(2)

From the Mittag-Leffler expansion of sech z [5, Ch. 7]

(o)

2k +1
SeChaZ:ﬂ'Z(—)k +
k=0

((%;1)”)2+x2 (x € R)
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and the decomposition in simple fractions (z # 0)

(DFr@Ek+1) 44 1 B 1
S e e L e
it follows
sechz 4 N (=)* _ )"
(11) 2 szzo (2k + 1)22 (2 + 1) |:((2k+1)ﬂ') +m2:|
_ 4 (4 (=)*
Now,
= (o (x/2) || _
N
so that
sechz 1 4 (-)*
he _ 1 _4 : (e #0)
(12) T > w kZ:O (2K + 1) {((%;1)#) +:r2] "
and
1 —sechz 1 sechz 4 & (-)*
Losecho 1 sechs 4 : (2 #0)
= R ”kzo(ml) [(W) ”2} 0

The rhs of (13) extends by continuity the function on the lhs to all z € R.
On the other hand,

i/ooda: ) -y ! /md—l‘
k=170 (2k + 1) |:((2k;1)7r)2+x2:| —2k+1 ), ((2kgl)w)2+x2

oo 1 o0 oo

2

1 2 2x 1 by
I;zkﬂ 2k + Dr M 2k D, ;(2“1)2 @=73
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for all € R, so that (13) can be integrated termwise [2, Th. 10.26] to obtain

m [ dx = () o dx
= — (1 —sechz) = Z /
4 / x2 2k +1 )2
0 ( ) Jo ((Zk;rl) ) T2

Eol

o

e (—)F 2 2z o

- z% 2k + 1) [(Qk e T 1)7r] .
(=)*

2k + 1)2

)

The integral on the lhs can be eventually simplified by integration by parts with the
following result:

~
I

I
NE

Il
h ol
N ©

Corollary 2.1. We have

(e} (e} h
L(Q)ZZ/ d—wsechmtanhx:—z/ de sech
0o 4 J, =z dz

3. GENERALIZATION: L(2n)

In order to generalize the previous result, we need the following lemma.

Lemma 3.1. Forn=1,2,... andz #0

sechz 1  Ey 1 Eynn 1
14 = —+ 5+t
(14) x?n x?n 4] x2n—2 ot (2n — 2)! 22 +
n 22n .- (_)k
+(=) 2n—1 Z okt 1)\ 2
k=0 (2k + 1)2n-1 {(( == )ﬂ) n a:Z]
n—1 o'}
E2k 1 N 22n (_)k
- (2k)! p2n—2k +(=) p2n—1 Z

~
I

0 k=0 (2k + 1)2n—1 [((%;1)”)2 + x2}

Proof. The proof is by induction. For n = 1, we get Eq.(12). Suppose now the formula is
true for n € N and let us prove it for n + 1.

n—1

sechz 1 sechw Esp, 1
(15) 222 g2 p2n _;(Qk)!w%—?k“
N 22n S (_)k
+(-) m2n—1 Z

k=0 (2k + 1)2n—122 {(W)Q + 332]

To decompose in simple fractions the general term of the last series, resort to (10),

1 4 1 1

2 - 2 2.2 >
22 [((%;1)#) +x2} 2 | 2k + 1)z (2% + 1) |:((2k—|2-1)ﬂ') +m2}
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hence

M

i ()"
“|

=0 (2h + 1)2n-102 {( ur)* 4

. Z - 4 i (—)*
71.2 Qk +1 2n+1g[j2 w2 Pt 2k‘ + 1)2n+1 ((Qk_gl)ﬂ)Q N xZ]
Substitution in Eq. (15) leads to
sech z — . 22" 4 L(2n+1)
p2nte Z |x2n 2k+2 +(-) p2n—1 12 2
22n 4 S ( )
n+1
+(=) a2n—1 72 Z (2k

=0 (2k + 1)2nH [(

1)77) + x2}

Finally, using (5),

sech z
x2n+2

2_:1 By 1 Bw o2 ()"
(2k) g2n—2h 2 (2n)! 7T2n+1 =0 (2k + 1)2n+1 [ (kJrl)ﬁ)2 +x2}

3

_ EQk 1 n+1 2n+1) ( )k
B (2k)! 22(n+1)—2k +(=) 7r2(n+1) 1 Z 2
! (2k+1)7r) +a:2]
(24

k=0

Eq. (14) defines by continuity the function

sechz nz_:l Ey 1
(k) 2?7~ o

(16)

x2n

at z = 0.

Corollary 3.2. Forn=1,2,...

R — B o
(17) L(2n) = (—-) 22—n/0 por (sechx— g (Qk)!x
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Proof. Integration of (14) from 0 to oo yields

n—1
e By 1 sech x
/0 dx (Z (2k)! g2n—2k T p2n )

k=0

— (_)n+1 22n i (_)k /00 dz
w2l £ (2 + 1)2n 1 (MY e
2

22n 00 (_)k 2x o

— _\n+1 t
( ) r2n—1 ~ (2k + 1)2n—1 |:(2k- + 1)71- arctan (2k n 1)7"}0

22n

= ()" L)

O

Another expression can be derived from Corollary 3.2 by subdividing [0, 00) = [0,&) U
[€,00) with 0 < ¢ < 7/2 and using the Taylor series [1, 4.5.66]

(18) sechz = Z gz’;' 2 (x| < 7/2)
k=0

as follows:

> sechz
— £2k72n+1 +/ dl’
kZ:O 2k — 2n + 1)(2k)! ¢ x2n

Hence, for 0 < & < /2,

RS 2k—2n+1 = sechx
Lzn) = (};} 2k—2n+1 YR +/5 v = )

In particular, choosing £ = 1,

oo

, Tl Eoy, *  gechz
(19) L) = ("= (;0 (2k — 2n + 1)(2Kk)! +/1 de =" >

which can be considered a generalization of (5) for even exponents.
Finally, let us integrate by parts the rhs of (17).

Corollary 3.3. Forn=1,2,...

(20) L(2n) = (_)"% /000 Cfr_m (sech x)(2n71)
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Proof. A first integration by parts of (17) gives

22n
L(2n)

O

oo (1) n—1
-1 _ B ok
/0 dx ((Qn — 1):1:2"1) <secha: Z (%)!x )

k=0

1 1 B i\
@1 l— (sechw— > Gy >]

k=0
1 < dx “ E
(1) _ 2k 2k—1
Tan 1)/0 z2n—1 (“ecm) z:: 2k —1)!° )

As before, the integrated term vanishes at infinity. On the other hand, the Taylor expansion
of sech z for |z| < /2 (Eq. (18)) shows that this term behaves near the origin as

-1 Es, Eopts 5 _
@n—1) ((Qn)!“ @n ++2)!”3 + ) = 0(@)

so that it also vanishes at the lower limit x = 0.
Integrate a second time by parts,

22n
L(2n)

O

1 o0 -1 @) R
= @ /0 dx <7(2n — 2)w2"—2> ((sechg:)( ) — Z o _kl)_!g; k )

k=1

1 1 = SN Y
= (Qn — 1)(2n — 2) [.7:271_2 ((sechx)( ) _ 2:: (2k _kl)_!x k )]0

1 *° dz R
hz)® — 2k 2k—2
T en—DEn—2) /0 722 <(sec ?) 2k —2)1"

Since y = sech z has the flat asymptote y = 0 at infinity, lim, o, (sech :r)(”) = 0 for all
v = 1,2, ..., so that the integrated term vanishes at infinity. As for the lower limit, if
|z| < m/2

1 “— E
(1) _ 2k 2k—1
o ((secha:) Z Ok - 1)'33 )
1

k=1
_ 1 — Esr 2k—1 (S Ea 2k—1
= e <Z 2k -1 2k -1
k=1 k=1
_ 1 - Esp, 2k—1 | _
T (; 2k — 11" =0

and, consequently, it also vanishes.
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Following in this way, after 2n—2 integrations by parts one arrives at the final expression

22n
(—)nm[f@”)
n—1
1 e dz E. k

= et h (2n—-2) _ P2 2k—2n+42

2n — 1) /0 22 <(sec ?) kzzn_l 2k —2n+2)1"

1 o =1\

T @ / o (—> (sechia) 272 — o)
= _71 |:l ((Sechl‘)(Qn_Q) - E2 2):| h

2n-1)! |z 0

1 * dx
- hated (2n—1)
Tan = 1)!/0 z ((seChw) )
The claim follows since
Esn
(sech x)(2"72) — FEop_o = 2—2|:r2
near the origin. a
Observe that by L’Hopital,
h (2n—1)
lim (secha) ™77 = (sech )" = B>,
z—0 xr =0

i.e. the integrand in (20) has no singularity at the origin.
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