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Abstract. The unique existence of the solution of the Cauchy problem for PDE of the

form

@1u(t; x) = f(t; x; u(t; x); @2u(t; x); @
p

2
u(�(t)t; x); @

q

2
u(t; �(t; x)x))

is proved. t is in R, x is in C and u(t; x) is in C . p and q are positive integers. @1
and @2 denote di�erentiations with respect to the 1st and 2nd variables, respectively.

f(t; x; u1; � � � ; u4) is assumed to be holomorphic in (x; u1; � � � ; u4). � and � are called

shrinking functions. It is assumed that sup j�(t)j < 1 and sup j�(t; x)j < 1.

1. Introduction

In the preceding note [4] the author studied the following two types of Cauchy problems:

@1u(t; x) = f(t; x; u(t; x); @q
2
u(t; �(t; x)x)); u(0; x) = 0;(1.1)

@1u(t; x) = f(t; x; u(t; x); @p
2
u(�(t)t; x)); u(0; x) = 0:(1.2)

In (1.1) and (1.2) u(t; x) denotes a complex valued unknown function of the variable (t; x) 2
R�C . @i denotes partial di�erentiation with respect to the ith variable. p and q are positive
integers. f , � and � are given continuous functions. It is assumed that f(t; x; u1; u2) is
holomorphic in (x; u1; u2). The functions �; � are called shrinkings. The reason for the

use of this term is that they satisfy the conditions sup j�(t)j < 1 and sup j�(t; x)j < 1,

respectively. It is assumed that �(t; x) is holomorphic in x. Under these conditions the

Cauchy problems (1.1) and (1.2) were solved in [4]. The results in [4] are regarded as

generalizations of those by Augustynowicz et al.[2], [3] for linear PDEs.

In the present note the author intends to unify and generalize the theories in [4] for two

PDEs (1.1) and (1.2). The di�erential equation we consider here is of the form

@1u(t; x) = f(t; x; u(t; x); @2u(t; x); @
p

2
u(�(t)t; x); @q

2
u(t; �(t; x)x)):(1.3)

It is obvious that the di�erential equations in (1.1) and (1.2) are special cases of the equation

(1.3). Note, however, that on the right-hand side of the equation (1.3) there appears the

�rst order partial derivative @2u(t; x) of u(t; x) with respect to the `space variable' x, while it
doesn't in (1.1) nor in (1.2). For this reason the result given in the present note is regarded

as a generalization of the theorem of Cauchy-Kovalevskaja-Nagumo [1] (in the case where

dim(x) = dim(u(t; x)) = 1). Since @2u(t; x) does not appear in (1.1) nor in (1.2), the results

in [4] cannot be regarded as generalizations of the C-K-N theorem, although they are not

included in the C-K-N theorem. It is not diÆcult to generalize the result of this note to the

multi-dimensional case. We omit it here, however, for the sake of simplicity of notation.
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Now we want to solve the di�erential equation (1.3) under the initial condition

(1.4) u(0; x) = 0:

In order to solve the Cauchy problem (1.3)-(1.4), we �rst transform this problem into some

kind of integral equation, that is in the same manner as in [4]. But we do not use the principle

of the contraction mapping in order to solve the integral equation as in [4]. We shall use

in this note Tychono�'s �xed point theorem. This follows Nagumo[1]'s method who used

Schauder's �xed point theorem. It may be possible to use the principle of the contraction

mapping for the present case, too. In that way, however, much more complex calculation

is expected to be needed. In order to use Schauder's theorem, Nagumo introduced in [1] a

famous trick called Nagumo's lemma. We use a similar trick, too.

In order to state the result of this note we need to make some notational preparation. If

T;R and S are positive constants, we write

A(T;R) = f(t; x) 2 R � C ; jtj < T; jxj < Rg;
B(T;R; S) = f(t; x; u1; : : : ; u4) 2 R � C

5 ;

(t; x) 2 A(T;R); juij < S (i = 1; : : : ; 4)g:

Put

r = p+ q:

We �x the value of r at this value throughout this note. By means of this value of r we

de�ne the domain 
(T;R) by


(T;R) = f(t; x) 2 R � C ; jtj < T; R� jxj � jtj1=(r+1) > 0g:

The main purpose of this note is to prove the following theorem.

Theorem 1.1. Let T , R, S, m and n be positive constants. Assume that m and n are less

than 1. Let p and q be positive integers. In the partial di�erential equation (1.3) assume

that

(i) f(t; x; u1; : : : ; u4) is a complex valued bounded continuous function of (t; x; u1;
: : : ; u4) 2 B(T;R; S),

(ii) f(t; x; u1; : : : ; u4) is holomorphic in (x; u1; : : : ; u4),
(iii) @if(t; x; u1; : : : ; u4) (i = 2; : : : ; 5) is bounded in B(T;R; S) ,
(iv) �(t) is a real valued continuous function of t 2 [�T; T ] satisfying the inequality

j�(t)j � m;

(v) �(t; x) is a complex valued continuous function of (t; x) 2 A(T;R) that is holomorphic

in x and satis�es the inequality

j�(t; x)j � n:

Then there is a positive constant a such that the Cauchy problem (1.3)-(1.4) has a unique

C1
solution u : 
(a;R)! C .

The `existence part' of the theorem will be proved in x2. The `uniqueness part' of the

theorem will be proved in x3.
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2. Existence of a solution

In this section we prove the `existence part' of the assertion of Theorem 1.1. Solving the

Cauchy problem (1.3)-(1.4) is equivalent to solving the integral equation

(2.1) w(t; x) = f(t; x;

Z
t

0

w(�; x)d�;

Z
t

0

@2w(�; x)d�;Z
�(t)t

0

@p
2
w(�; x)d�;

Z
t

0

@q
2
w(�; �(t; x)x)d�):

We want to solve the integral equation (2.1) by Tychono�'s �xed point theorem. For this

purpose we �rst de�ne the following function spaces. Write

C(a) = fw : 
(a;R)! C ; w is bounded and continuousg;
D(a) = fw 2 C(a) ; w(t; x) is holomorphic in xg:

We de�ne the positive constant K by

(2.2) K = supfjf(t; x; u1; : : : ; u4)j; j@if(t; x; u1; : : : ; u4)j (i = 2; : : : ; 6) ;

(t; x; u1; : : : ; u4) 2 B(T;R; S)g;
and put

(2.3) M = K(1 + 4
p
R):

Next we de�ne the set of functions E(a) by

E(a) = fw 2 D(a) ; jw(t; x)j �M;

j@2w(t; x)j �M=

q
R� jxj � jtj1=(r+1) for all (t; x) 2 
(a;R)g:

We de�ne the topology in D(a) by the uniform convergence on each compact sets of the

domain 
(a;R). Then D(a) becomes a complete locally convex linear topological space and

E(a) is a closed convex set of D(a).
The following lemma given in Nagumo[1] is very important for the present note.

Lemma 2.1 (Nagumo's lemma). Let D be a bounded open domain in C . For each element

x of D, we denote by �(x) the distance from x to the boundary of D. If f is a holomorphic

function in D such that

jf(x)j � C

�(x)�

where C and � are given positive constants. Then the inequality���� dfdx (x)
���� � (� + 1)�+1

��
C

�(x)�+1

holds.

From this lemma follows the following Corollary.

Corollary 2.1.1. Let w be an element of E(a) and l an integer � 1. Then @l
2
w(t; x) satis�es

the inequality

j@l
2
w(t; x)j �

p
2(l � 1=2)l�1=2

M

(R� jxj � jtj1=(r+1))l�1=2 :(2.4)

Further the inequality

j@l
2
w(mt; x)j �

p
2(l � 1=2)l�1=2

~ml�1=2

M

jtj(l�1=2)=(r+1)(2.5)
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holds, where

(2.6) ~m = 1�m1=(r+1):

Next write

(2.7) ~n = R(1� n)=2

and let a be a constant satisfying

(2.8) 0 < a � ~nr+1;

then, if (�; x) 2 
(a;R) and jtj < T , the inequality

(2.9) j@l
2
w(�; �(t; x)x)j �

p
2(l � 1=2)l�1=2

~nl�1=2
M

holds.

Proof. If w 2 E(a), then the inequality

j@2w(t; x)j �
Mp

R� jxj � jtj1=(r+1)

holds. So we have (2.4) by the Lemma 2:1. If (t; x) 2 
(a;R), then from the inequality

R � jxj � jmtj1=(r+1) = (R � jxj � jtj1=(r+1)) + (1�m1=(r+1))jtj1=(r+1)

� ~mjtj1=(r+1);
we see that

j@l
2
w(mt; x)j �

p
2(l � 1=2)l�1=2

M

(R � jxj � jmtj1=(r+1))l�1=2

�
p
2(l � 1=2)l�1=2

~ml�1=2

M

jtj(l�1=2)=(r+1)

holds, which shows (2.5). Next suppose 0 < a � ~nr+1. Then we have

R� j�(t; x)xj � j� j1=(r+1) � R� nR� ~n = ~n

for each (�; x) 2 
(a;R) and each t 2 [�T; T ]. Hence we obtain the inequality

j@l
2
w(�; �(t; x)x)j �

p
2(l � 1=2)l�1=2

M

(R� j�(t; x)xj � j� j1=(r+1))l�1=2

�
p
2(l � 1=2)l�1=2

~nl�1=2
M:

This shows that (2.9) holds.

Here we prepare a list of the estimates of the integrals appearing in the equation (2.1).

Lemma 2.2. Let ~m; ~n be the positive constants de�ned by (2.6) and (2.7), respectively. For

each w 2 E(a) and (t; x) 2 
(a;R) the following three inequalities hold:����
Z

t

0

w(�; x)d�

���� �M jtj;(2.10) ����
Z t

0

@2w(�; x)d�

���� � 2(r + 1)M
p
Rjtjr=(r+1);(2.11) ����

Z t

0

@2
2
w(�; x)d�

���� � 3
p
3(r + 1)M

jtjr=(r+1)p
R� jxj � jtj1=(r+1)

:(2.12)
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If l = p or l = p+ 1, then

(2.13)

�����
Z

�(t)t

0

@l
2
w(�; x)d�

����� � m
p
2(l � 1=2)l�1=2(r + 1)

~ml�1=2(r � l + 3=2)
M jtj(r�l+3=2)=(r+1):

Further, if 0 < a � ~nr+1, then the inequality

(2.14)

����
Z

t

0

@l
2
w(�; �(t; x)x)d�

���� �
p
2(l � 1=2)l�1=2

~nl�1=2
M jtj

holds for each (t; x) 2 
(a;R) and any nonnegative integer l.

Proof. (2.10) is clear. (2.11) also holds, since����
Z t

0

@2w(�; x)d�

���� �
Z

jtj

0

Mp
R� jxj � �1=(r+1)

d�

=

Z
jtj

1=(r+1)

0

(r + 1)srMp
R� jxj � s

ds

� (r + 1)M jtjr=(r+1)
Z

jtj
1=(r+1)

0

1p
R� jxj � s

ds

� 2(r + 1)M
p
Rjtjr=(r+1):

Next, by (2.4) of the Corollary 2:1:1, the inequality

j@2
2
w(t; x)j � 3

p
3

2

M

(R� jxj � jtj1=(r+1))3=2

holds. Therefore, we have����
Z

t

0

@2
2
w(�; x)d�

���� � 3
p
3

2
M

Z
jtj

0

1

(R� jxj � �1=(r+1))3=2
d�

� 3
p
3

2
(r + 1)M jtjr=(r+1)

Z
jtj

1=(r+1)

0

1

(R� jxj � s)3=2
ds

� 3
p
3(r + 1)M jtjr=(r+1) 1p

R� jxj � jtj1=(r+1)
;

which shows (2.12). If l = p or l = p+ 1, then l � 1=2 � p+ 1=2 < r + 1. Hence, by (2.5)

of the Corollary 2:1:1, we have�����
Z �(t)t

0

@l
2
w(�; x)d�

����� �
Z mjtj

0

j@l
2
w(�; x)jd�

= m

Z
jtj

0

j@l
2
w(ms; x)jds

� m
p
2(l � 1=2)l�1=2

~ml�1=2
M

Z
jtj

0

1

s(l�1=2)=(r+1)
ds

=
m
p
2(l � 1=2)l�1=2

~ml�1=2
M

r + 1

r � l + 3=2
jtj(r�l+3=2)=(r+1);

which shows (2.13). It is easy to see that (2.14) holds, in virtue of (2.9) of the Corollary

2:1:1.
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Now we suppose that a is a number that satis�es (2.8) and the following inequality:

(2.15) max

(
Ma; 2(r + 1)M

p
Rar=(r+1);

m
p
2(p� 1=2)p�1=2

~mp�1=2

r + 1

r � p+ 3=2
Ma(r�p+3=2)=(r+1);

p
2(q � 1=2)q�1=2

~nq�1=2
Ma

)
� S

2
:

Then, by the list of the estimates of integrals in Lemma 2:2, for each element w in E(a), an
element ~w in D(a) is de�ned by

~w(t; x) = f(t; x;

Z
t

0

w(�; x)d�;

Z
t

0

@2w(�; x)d�;Z
�(t)t

0

@p
2
w(�; x)d�;

Z
t

0

@q
2
w(�; �(t; x)x)d�):

We denote the map w 7! ~w by �. We shall show that there is a positive number a such

that

�(E(a)) � E(a):
This is true, if the inequality

(2.16) j@2�(w)(t; x)j �
Mp

R� jxj � jtj1=(r+1)

holds for all (t; x) 2 
(a;R) whenever w is in E(a). In order to check if the inequality (2.16)

holds write ~w(t; x) = �(w)(t; x). Then we have

@2 ~w(t; x) = @2f(t; x;

Z t

0

w(�; x)d�; � � � )

+ @3f(� � � )
Z t

0

@2w(�; x)d�

+ @4f(� � � )
Z t

0

@2
2
w(�; x)d�

+ @5f(� � � )
Z �(t)t

0

@p+1
2

w(�; x)d�

+ @6f(� � � )
Z t

0

@xf@q2w(�; �(t; x)x)gd�;

where @x denotes the partial di�erentiation with respect to x. It follows from the above

expression of @2 ~w(t; x) that

(2.17) j@2 ~w(t; x)j � K

(
1 +

����
Z

t

0

@2w(�; x)d�

���� +
����
Z

t

0

@2
2
w(�; x)d�

����
+

�����
Z �(t)t

0

@p+1
2

w(�; x)d�

����� +
����
Z t

0

@xf@q2w(�; �(t; x)x)gd�
����
)
;
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where K is the positive constant de�ned by (2.2). By the inequalities from (2.11) to (2.13)

in Lemma 2:2 we see that the inequalities����
Z

t

0

@2w(�; x)d�

���� � 2(r + 1)M
p
Rar=(r+1);����

Z
t

0

@2
2
w(�; x)d�

���� � 3
p
3(r + 1)M

ar=(r+1)p
R� jxj � jtj1=(r+1)

;

�����
Z

�(t)t

0

@p+1
2

w(�; x)d�

����� � m
p
2(p+ 1=2)p+1=2

~mp+1=2

r + 1

r � p+ 1=2
Ma(r�p+1=2)=(r+1)

hold for (t; x) 2 
(a;R). As for the fourth integral in (2.17) note that the inequality

j@q
2
w(�; �(t; x)x)j �

p
2(q � 1=2)q�1=2

~nq�1=2
M

�
p
2(q � 1=2)q�1=2

~nq�1=2
M
p
Rp

R� jxj � j� j1=(r+1)

holds in virtue of (2.9). It follows, by Lemma 2:1, that

j@xf@q2w(�; �(t; x)x)gj �
3
p
3p
2

(q � 1=2)q�1=2

~nq�1=2
M
p
R

(R� jxj � j� j1=(r+1))3=2 :

Therefore, we see that the inequality����
Z

t

0

@xf@q2w(�; �(t; x)x)gd�
����

� 3
p
3p
2

(q � 1=2)q�1=2M
p
R

~nq�1=2

Z
jtj

0

1

(R � jxj � �1=(r+1))3=2
d�

� 3
p
6
(q � 1=2)q�1=2M

p
R(r + 1)

~nq�1=2
ar=(r+1)p

R� jxj � jtj1=(r+1)

holds. Now take a number a > 0 such that

2(r + 1)M
p
Rar=(r+1)(2.18)

+
m
p
2(p+ 1=2)p+1=2

~mp+1=2

r + 1

r � p+ 1=2
Ma(r�p+1=2)=(r+1) � 1;

and (
3
p
3(r + 1)M + 3

p
6
(q � 1=2)q�1=2M

p
R(r + 1)

~nq�1=2

)
ar=(r+1) � M

2K
:(2.19)

Then, by (2.17) and (2.3), we have

j@2 ~w(t; x)j � 2K +
M

2

1p
R� jxj � jtj1=(r+1)

�
�
2K

p
R+

M

2

�
1p

R� jxj � jtj1=(r+1)

� Mp
R� jxj � jtj1=(r+1)

;

which shows that (2.16) holds and that �(E(a)) is included by E(a).
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By the above discussion we see also that the map �: E(a) ! E(a) is continuous with

respect to the relative topology induced by the locally convex topology of D(a). The

following lemma summarizes the results obtained so far.

Lemma 2.3. If a > 0 satis�es (2.8), (2.15), (2.18) and (2.19), then the relation

�(E(a)) � E(a)
holds and the map

�: E(a) ! E(a)
is continuous.

We want now to solve the integral equation (2.1) by applying Tychono�'s �xed point

theorem to the map �: E(a) ! E(a). Tychono�'s �xed point theorem says that, if G is a

compact convex set of a locally convex topological linear space E, then the given continuous

map � : G ! G has a �xed point. But it is diÆcult to apply this theorem directly to the

map � : E(a) ! E(a) itself, since E(a) is not compact in D(a), in general. In order to use

Tychono�'s theorem, we need some preparations. We shall prove that the closed convex

hull of the set �(E(a)) is compact in D(a). For this purpose we prepare �rst a lemma.

Lemma 2.4. Let l be a non-negative integer. Then the set of functions�

(a;R) 3 (t; x) 7!

Z t

0

@l
2
w(�; x)d� 2 C ; w 2 E(a)

�
de�ned on 
(a;R) is equicontinuous at each point of 
(a;R).

Proof. Take an arbitrary element (t0; x0) of 
(a;R) and �x it. Let Æ0 be a positive constant
such that, if jt� t0j � Æ0; jx� x0j � Æ0, then (t; x) belongs to 
(a;R). We assume that the

variables t; �; x appearing in this proof always satisfy the inequalities jt� t0j � Æ0; j�� t0j �
Æ0 and jx � x0j � Æ0, respectively. If w 2 E(a), then by the Cauchy's integral formula we

have

j@l
2
w(�; x) � @l

2
w(�; x0)j �

l!M

2�

Z
j�j=R�j� j1=(r+1)

���� 1

(� � x)l+1
� 1

(� � x0)l+1

���� jd�j
� l!M

2�

1

(R� jx0j � Æ0 � j� j1=(r+1))2(l+1)

�
Z
j�j=R�j� j1=(r+1)

j(� � x)l+1 � (� � x0)
l+1j jd�j :

On the other hand the inequality

j(� � x)l+1 � (� � x0)
l+1j � (l + 1)(2R)ljx� x0j

holds. Hence we have

j@l
2
w(�; x) � @l

2
w(�; x0)j �

(l + 1)!(2R)lMR

(R � jx0j � Æ0 � j� j1=(r+1))2(l+1) jx� x0j

and

(2.20)

����
Z t

0

@l
2
(w(�; x) � w(�; x0))d�

����
� (l + 1)!(2R)lMR(jt0j+ Æ0)

(R� jx0j � Æ0 � (jt0j+ Æ0)1=(r+1))2(l+1)
jx� x0j:

Next, using the Cauchy's integral formula again, we obtain

j@l
2
w(�; x0)j �

l!MR

(R� jx0j � j� j1=(r+1))l+1 :
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Therefore the inequality

(2.21)

����
Z

t

t0

@l
2
w(�; x0)d�

���� � l!MR

(R � jx0j � (jt0j+ Æ0)1=(r+1))l+1
jt� t0j

holds. It follows from (2.20) and (2.21) that we have����
Z t

0

@l
2
w(�; x)d� �

Z t0

0

@l
2
w(�; x0)d�

����
�
����
Z

t

0

@l
2
w(�; x)d� �

Z
t

0

@l
2
w(�; x0)d�

���� +
����
Z

t

0

@l
2
w(�; x0)d� �

Z
t0

0

@l
2
w(�; x0)d�

����
� (l + 1)!(2R)lMR(jt0j+ Æ0)

(R � jx0j � Æ0 � (jt0j+ Æ0)1=(r+1))2(l+1)
jx� x0j

+
l!MR

(R � jx0j � (jt0j+ Æ0)1=(r+1))l+1
jt� t0j;

which shows that the set of functions of the lemma is equicontinuous at the point (t0; x0).

Corollary 2.4.1. Let l be a non-negative integer. Then the set of functions(

(a;R) 3 (t; x) 7!

Z
�(t)t

0

@l
2
w(�; x)d� 2 C ; w 2 E(a)

)
;

and �

(a;R) 3 (t; x) 7!

Z t

0

@l
2
w(�; �(t; x)x)d� 2 C ; w 2 E(a)

�
are equicontinuous at each point of 
(a;R).

From these results follows the next lemma.

Lemma 2.5. If a is a positive constant such that (2.8), (2.15), (2.18) and (2.19) hold, then

the closed convex hull of �(E(a)) is compact in D(a).
Proof. Since f is bounded, the set of functions �(E(a)) is uniformly bounded. Further,

since f is continuous, �(E(a)) is equicontinuous at each point of 
(a;R) by Lemma 2:4
and Corollary 2:4:1. Let h�(E(a))i be the convex hull of �(E(a)). Then any element w of

h�(E(a))i is written as

w = �1w1 + � � �+ �kwk;

where �1; : : : ; �k are non negative numbers such that
P

�i � 1 and w1; : : : ; wk are elements

of �(E(a)). Therefore we see that h�(E(a))i is uniformly bounded as a set of functions and

equicontinuous at each point of 
(a;R). It follows by the theorem of Ascoli-Arzel�a that the

closure h�(E(a))i of the set h�(E(a))i in D(a) is compact.

Since

�(h�(E(a))i) � �(E(a)) � h�(E(a))i;
we obtain the continuous map

�: h�(E(a))i ! h�(E(a))i:
Therefore we can apply Tychono�'s �xed point theorem to the above map and we con-

clude that the integral equation (2.1) has a solution. Thus we have proved the following

proposition.

Proposition 2.1. If the number a satis�es (2.8), (2.15), (2.18) and (2.19), then the Cauchy

problem (1.3)-(1.4) has a C1
solution in 
(a;R).
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3. Uniqueness of the solution

In this section we prove the `uniqueness part' of Theorem 1.1. For this purpose we �rst

prepare a simple lemma.

Lemma 3.1. If (t; x; u1; : : : ; u4); (t; x; v1; : : : ; v4) 2 B(T;R; S) , then we have

jf(t; x; u1; : : : ; u4)� f(t; x; v1; : : : ; v4)j � Kfju1 � v1j+ � � �+ ju4 � v4jg;
where K is the positive constant de�ned by (2.2).

Proof. Omitted.

Let a be a positive number and u1; u2 : 
(a;R) ! C be C1solutions of the Cauchy

problem (1.3)-(1.4). We want to show that, if a is small enough, then u1(t; x) = u2(t; x)
holds for each (t; x) 2 
(a;R). To do so it is enough to show that

w(t; x) := u1(t; x)� u2(t; x)

is equal to 0 for (t; x) 2 
(a;R).
For the moment take a positive number a arbitrarily and de�ne the constant M0 by

(3.1) M0 = supf(R� jxj � jtj1=(r+1))jw(t; x)j ; (t; x) 2 
(a;R)g:
Then, for each (t; x) 2 
(a;R), the inequality

jw(t; x)j � M0

R� jxj � jtj1=(r+1)
holds. By Lemma 2:1, the above inequality leads to the following inequality

(3.2) j@l
2
w(t; x)j � (l + 1)l+1

M0

(R� jxj � jtj1=(r+1))l+1 ;

where l is an arbitrary non-negative integer and (t; x) 2 
(a;R).
Since w = u1 � u2, we have, by Lemma 3:1 and (3.2),

j@1w(t; x)j = j@1u1(t; x)� @1u2(t; x)j(3.3)

� Kfjw(t; x)j+ j@2w(t; x)j + j@p
2
w(�(t)t; x)j + j@q

2
w(t; �(t; x)x)jg

� KM0

�
1

R� jxj � jtj1=(r+1) +
4

(R� jxj � jtj1=(r+1))2

+
(p+ 1)p+1

(R � jxj � j�(t)tj1=(r+1))p+1 +
(q + 1)q+1

(R� j�(t; x)xj � jtj1=(r+1))q+1
�

for (t; x) 2 
(a;R).
In the right-hand side of the above inequality note that

R� jxj � j�(t)tj1=(r+1) � R � jxj �m1=(r+1)jtj1=(r+1)

for (t; x) 2 
(a;R). Note further that, if a satis�es (2.8), then

R� j�(t; x)xj � jtj1=(r+1) � R� nR� jtj1=(r+1) � ~n:

Hence, by (3.3), we have

j@1w(t; x)j � KM0

�
1

R� jxj � jtj1=(r+1) +
4

(R� jxj � jtj1=(r+1))2

+
(p+ 1)p+1

(R� jxj �m1=(r+1)jtj1=(r+1))p+1 +
(q + 1)q+1

~nq+1

�

for (t; x) 2 
(a;R).
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If we integrate both sides of the above inequality with respect to t, we obtain

jw(t; x)j �
����
Z

t

0

j@1w(�; x)jd�
����(3.4)

� KM0

(Z
jtj

0

1

R� jxj � �1=(r+1)
d� +

Z
jtj

0

4

(R � jxj � �1=(r+1))2
d�

+

Z
jtj

0

(p+ 1)p+1

(R � jxj �m1=(r+1)�1=(r+1))p+1
d� +

(q + 1)q+1

~nq+1

Z
jtj

0

d�

)
:

As for the �rst three integrals among the last four ones appearing in (3.4) we have the

following estimation: Z
jtj

0

1

R� jxj � �1=(r+1)
d� � jtj

R� jxj � jtj1=(r+1) ;Z
jtj

0

1

(R� jxj � �1=(r+1))2
d� =

Z
jtj

1=(r+1)

0

(r + 1)sr

(R � jxj � s)2
ds

� (r + 1)jtjr=(r+1)
R� jxj � jtj1=(r+1) ;Z

jtj

0

1

(R� jxj �m1=(r+1)�1=(r+1))p+1
d� � jtj

(R� jxj �m1=(r+1)jtj1=(r+1))p+1

� 1

(1�m1=(r+1))p+1
jtj(r�p)=(r+1)

� R

~mp+1

jtj(r�p)=(r+1)
R� jxj � jtj1=(r+1) :

As for the last integral on the right-hand side of (3.4) note that the inequalityZ
jtj

0

d� = jtj � R
jtj

R� jxj � jtj1=(r+1)

holds. These estimations lead, by (3.4), to the inequality

(3.5) jw(t; x)j � KM0

�
jtj+ 4(r + 1)jtjr=(r+1) + (p+ 1)p+1R

~mp+1
jtj(r�p)=(r+1)

+
(q + 1)q+1R

~nq+1
jtj
�

1

R� jxj � jtj1=(r+1) :

We see therefore that, if the constant a satis�es (2.8) and

(3.6)

�
a+ 4(r + 1)ar=(r+1) +

(p+ 1)p+1R

~mp+1
a(r�p)=(r+1) +

(q + 1)q+1R

~nq+1
a

�
� 1

2K
;

then, by (3.5), the inequality

(3.7) supf(R� jxj � jtj1=(r+1))jw(t; x)j ; (t; x) 2 
(a;R)g � M0

2

holds.

In order that (3.1) and (3.7) hold simultaneously the constant M0 must be equal to 0.

Thus we have proved the following proposition.

Proposition 3.1. If the number a satis�es (2.8) and (3.6), then there is at most one

C1
solution in 
(a;R) of the Cauchy problem (1.3)-(1.4).
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Combining the results of Propositions 2.1 and 3.1 we see that, if the number a satis�es

(2.8), (2.15), (2.18), (2.19) and (3.6), then the Cauchy problem (1.3)-(1.4) has a unique

C1solution in 
(a;R). This completes the proof of Theorem 1.1.
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