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CONTINUOUS SELECTIONS ON ALMOST COMPACT SPACES
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Abstract. We prove that (1) for a Tychono� space X with pseudocompactness of X2,

�X is orderable if and only if X has a weak selection. (2) Let X be an almost compact

space. Then the following are equivalent: (i)X is orderable, (ii) X has a continuous

selection, (iii) X has a weak selection. (3) For a connected Tychono� space X with a

continuous selection, X2 is pseudocompact then X is either compact or almost compact.

1. Introduction

In this paper all topological spaces are assumed to be Tychono�. In what follows �X

denotes the �Cech-Stone compacti�cation of a space X . Let X be a topological space, and

let F(X) be the set of all non-empty closed subsets of X . Let us recall the de�nition of the

Vietoris topology �V on F(X) [7]. The base for �V is de�ned by the collection of sets

hVi = fF 2 F(X) : F � [V and F \ V 6= ; for V 2 Vg;

where V runs over all �nite families of non-empty open subsets of X . Let E � F(X). A

map � : E ! X is a selection for E if �(F ) 2 F for every F 2 E . A continuous selection on

X is a selection for F(X) that is continuous with respect to the Vietoris topology �V on

F(X). Let F2(X) be the set of all non-empty closed subsets of X containing at most two

points. It is clear that F2(X) is a closed subset of F(X), the latter set being equipped with

the Vietoris topology. A map � : F2(X) ! X will be called a weak selection on X if it is

a selection for F2(X) that is continuous with respect to the subspace topology on F2(X)

induced by �V . The following result is folklore:

Theorem 1.1. A space X has a weak selection if and only if there exists a continuous map

� : X2 ! X such that, for all x; y 2 X, one has

(i) �(x; y) = �(y; x) and

(ii) �(x; y) 2 fx; yg.

It is obvious that a space having a continuous selection also has a weak selection. A space

X is weakly orderable if there exists a linear order < on X such that all sets of the form

(�1; p) = fx 2 X : x < pg and (p;+1) = fx 2 X : x > pg are open in X . It is well-known

(and easy to see) that a weakly orderable space has a weak selection, and moreover, if a

space X is weakly orderable via < in such a way that every non-empty closed subset of X

has a <-minimal element, then X has a continuous selection. Furthermore, the converse is

true for connected spaces: if X is a connected space which has a continuous selection, then

X must be weakly orderable via some order < so that every non-empty closed subset of X

has a <-minimal element [7]. It is interesting to look for conditions that are equivalent to

the existence of a continuous selection on a given space. The following well known result

gives such an equivalent condition in the class of compact spaces [8]:
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Theorem 1.2. Let X be a compact Hausdor� space. Then the following conditions are

equivalent.

(i) X is orderable.

(ii) X has a continuous selection.

(iii)X has a weak selection.

This theorem is no longer valid for a wider class of Lindel�of spaces: for example, that

real line R has no continuous selection [3]. There exists also a scattered linearly ordered

space without a continuous selection [4]. The above theorem cannot be easily generalized

to locally compact spaces. In fact, no equivalent condition for the existence of a continuous

selection is known even for a space obtained by removing a single point from a compact

space. A non-compact Tychono� space X is almost compact if �X � X has exactly one

point. Note that, given any two disjoint zero-sets of an almost compact spaceX , at least one

of them must be compact, and if in addition one assumes that X is normal, then \zero-sets"

can be weakened to \closed sets" [1]. In section 2 we generalize Theorem 1.2 by showing

that a Tychono� space X with X �X pseudocompact has a weak selection if and only if

�X is orderable. This implies that a pseudocompact locally compact space with a weak

selection must be is orderable. In section 3 we will prove that Theorem 1.2 remains valid if

one replaces \compact" by \almost compact". In section 4 we use results of section 2 and

[6] to show that a connected space with a continuous selection X2 is pseudocompact if and

only if it is either compact or almost compact.

2. selections on pseudcompact spaces

Theorem 2.1. Let X be a space such that X2 is pseudocompact. Then the following con-

ditions are equivalent.

(1) X is weakly orderable.

(2) X has a weak selection.

(3) �X has a weak selection.

(4) �X has a continuous selection.

(5) �X is orderable.

Proof. Implication (1) ! (2) is trivial. Implications (3) ! (4) and (4) ! (5) follow from

Theorem 1.2. Implication (5) ! (1) holds because a subspace of an orderable space is

weakly orderable. So it remains only to prove that (2) ! (3). Assume that X has a weak

selection. Let � : X2 ! X be a continuous map satisfying conditions (i) and (ii) of Theorem

1.1. Without loss of generality � can be assumed to be a map into �X , so there exists a

continuous extension ' : �X2 ! �X of �. Since X2 is pseudocompact, �X2 = �X � �X

[5], i.e. ' is a continuous map from �X��X to �X: We are going to show that ' is a weak

selection on �X by checking that ' satis�es conditions (i) and (ii) of Theorem 1.1 (with

� replaced by '). Let x; y 2 �X . Due to symmetry of x and y, it suÆces to consider two

cases.

Case 1: x; y 2 X . In this case (i) and (ii) hold for ' because they hold for � and ' is an

extension of �.

Case 2: x 2 X and y 2 �X�X . There is a net fy�g�2� � X converging to y in �X: Then

f(x; y�)g�2� is a net contained in X2 converging to (x; y) in (�X)2 and '(x; y�) 2 fx; y�g:

Assume that '(x; y) = z for some z 2 �X such that x 6= z 6= y: Choose disjoint open

sets Ux; Uy; Uz containing x; y; z respectively in �X: By z = lim'(x; y�), there exists

� 2 � such that '(x; y�0) 2 Uz for every �0 � �: On the other hand by (x; y) = lim(x; y�)

there exists � 2 � such that (x; y�0) 2 Ux � Uy for every �0 � � i.e. '(x; y�0) 2 Ux or Uy:

Then for 
 � �; � one has '(x; y
) 2 (Ux \ Uz) [ (Uy \ Uz); a contradiction with the
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choice of Ux; Uy; Uz. This contradicition implies that '(x; y) 2 fx; yg. Finally, '(x; y) =

lim'(x; y�) = lim'(y�; x) = '(y; x):

Case 3: x; y 2 �X �X . It is possible to show as the similar way of Case 2.

An orderable space is hereditarily collectionwise normal and hereditarily countably para-

compact. Together with Theorem 2.1 this implies the following.

Corollary 2.2. If X2 is pseudocompact and X has a weak selection, then X is hereditarily

collectionwise normal, hereditarily countably paracompact and countably compact.

For an orderable space pseudocompactness, countably compactness and sequentially com-

pactness are equivalent [6]. If X is a pseudocompact k-space then X2 is pseudocompact [2].

Moreover each open subset of an orderable space is orderable, therefore;

Corollary 2.3. Let X be a pseudocompact locally compact space with a weak selection.

Then X is orderable and sequentially compact.

Remark 2.4. If one glues together the �rst point 0 of two copies of the long line, then the

resulting space L is a linearly ordered and L2 is pseudocompact, so has a weak selection.

However it does not have a continuous selection [9]. Note that j�L�Lj = 2. We will discuss

the case j�X �X j = 1 in the next section.

3. selections on almost compact spaces

Let < be a linear order on X . For every p; q 2 X de�ne (p; q)< = fr 2 X : p < r <

qg; [ p; q)< = fr 2 X : p � r < qg; (p; q ]< = fr 2 X : p < r � qg; (�1; q)< = fr 2 X : r <

qg; [ p;1)< = fr 2 X : p < rg.

Lemma 3.1. Let X be an almost compact space with fxg = �X �X. Assume that �X is

orderable. Then the topology of �X can be generated by a (possibly di�erent) linear order

� such that x is a �-maximal element of �X.

Proof. Let < be a linear order on �X generating its topology. We will assume, without

loss of generality, that x is not a maximal element of (�X;<). If x is a minimal element

of (�X;<), then we can de�ne � to be the reverse order of <. So we may assume from

now on that x is not a minimal element of (�X;<). Therefore X = (�1; x)< [ (x;1)<.

Clearly A = (�1; x)< and B = (x;1)< are zero-sets in X with X = A � B. Since X

is almost compact, one of A or B, say A, must be compact. Obviously, x is a <-maximal

element of A [ fxg; and a <-minimal element of fxg [ B. Since A is compact, B [ fxg is

clopen in �X . De�ne new order � on �X as follows. For every p; q 2 �X

p� q ,

8
><
>:

p < q; p; q 2 A;

p > q; p; q 2 B [ fxg;

p 2 A; q 2 B [ fxg

Since B [ fxg and A form a clopen cover of �X , the order topology of � is equal to the

order topology of <.

Lemma 3.1 implies the following.

Lemma 3.2. Let X be an almost compact space with fxg = �X �X. Assume that �X is

orderable. Then X can be ordered via a linear order < as follows. (i) Every closed subset

of X has a <-minimal element. (ii)(�1; q ]< is compact for every q 2 X:

Our next result demonstrates that Theorem 1.2 remains valid if one replaces \compact"

by \almost compact".
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Theorem 3.3. For an almost compact space X the following conditions are equivalent.

(1) �X has a weak selection.

(2) �X has a continuous selection.

(3) �X is orderable.

(4) X is orderable.

(5) X is orderable via < in such a way that every closed subset of X has a <-minimal

element.

(6) X is weakly orderable via < so that every closed subset of X has a <- minimal element.

(7) X has a continuous selection.

(8) X has a weak selection.

(9) X is weakly orderable.

Proof. Almost compact spaces are pseudocompact and locally compact. Equivalence (1),

(2) , (3) , (8) , (9) follows from Theorem 2.1. Implication (3) ) (5) follows from

Lemma 3.1. Finally, implications (5) ) (6) ) (7) ) (8), and (3) ) (4) ) (9) are

trivial.

We now prove an anologue of Theorem 3.3 for the Fell topology on F(X). Recall that a

base for the Fell topology �F on F(X) is the family of all sets

hVi = fF 2 F(X) : F � [V and F \ V 6= ; for each ; V 2 Vg

where V runs over all �nite families of non-empty open subsets of X such that X � [V

is compact. The Fell topology is coarser than the Vietoris topology on F(X) and if X is

compact then the Fell topology coincides with the Vietoris topology. A Fell continuous

selection is a selection for F(X) that is continuous with respect to the Fell topology �F on

F(X). A weak Fell selection is de�ned similarly to the weak selection.

Theorem 3.4. For an almost compact space X the following conditions are equivalent.

(1) �X has a weak selection.

(2) �X has a continuous selection.

(3) �X has a Fell continuous selection.

(4) �X is orderable.

(5) X is orderable.

(6) X is orderable via < in such a way that every closed subset of X has a minimal element.

(7) X has a Fell continuous selection.

(8) X has a weak Fell selection.

(9) X has a weak selection.

(10) X is weakly orderable.

Proof. Theorem 3.3 implies (1) , (2) , (3) , (4) , (5) , (6) , (9) , (10). (4) ) (7)

holds by Lemma 3.2. (7)) (8)) (9) is trivial.

The following two examples demonstrate that our results are �nal to various degrees.

Example 3.5. (a) Both the Tychono� plank T [2] and �N �fpg, where p 2 �N �N; N

is natural numbers have no weak (continuous) selection. These spaces are known to

be almost compact and non-normal [2].

(b) X = [0; !1)�[0; !0] has no weak (continuous) selection (c.f. [4]). Since [0; !1)�[0; !0]

is pseudocompact, �X = [0; !1] � [0; !0]: Since �X contains non-normal subspace

T , �X is not orderable.
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4. selections on orderable connected spaces

A locally compact pseudocompact space with a continuous selection need not be almost

compact or compact; [0; !1)� [0; !1) is neither almost compact nor compact but is locally

compact and pseudocompact with a continuous selection. We are going to prove in Corollary

4.5 that for connected spaces this becomes true.

For an orderable space X there exist a minimal orderable compacti�cation X0 and a

maximal orderable compacti�cation X1 of X . (Recall that an ordered space (X 0; <0)

is an orderable compacti�cation of (X;<) provided that X is dense subset in X 0 and <0

coincides with < on X .) The order of orderable compacti�cations of X coincides with one of

compacti�cations ofX;X1 andX0 correspond to �X and the Alexandoro� compacti�cation

�X of X respectively. The following propositions are known [6].

Proposition 4.1. Let X be an orderable space.

1. If X is connected, then X1 = X0.

2. If X is connected and pseudocompact, then �X = X1 = X0.

Proposition 4.2. Let X be a non-compact connected orderable space. Let A = fa; bg be

the set of a minimal and a maximal elements of X0.

1. If a 2 X, then X0 = X [ fbg.

2. X \ A = ;, then X0 = X [ fa; bg.

These propositions and Corollary 2.3 imply the following.

Lemma 4.3. Let X be orderable, connected and pseudocompact.

1. If X has either a minimal or a maximal element, then X is either compact or almost

compact.

2. If X has neither minimal nor maximal element, then �X = X [ fa; bg, where fa; bg

is the set of a minimal and a maximal elements of �X:

An orderable connected space is locally compact. The next result follows:

Theorem 4.4. For an orderable connected space X the following conditions are equivalent.

(1) X has a continuous selection.

(2) X has either a minimal or a maximal element.

Proof. We only need to consider the case when that X is not compact. If X has either a

minimal or a maximal element a, then X0 = X [ fbg, where fa; bg is the set of a minimal

and a maximal elements of X0: Then X0 is homeomorphic to �X , and �X has a continuous

selection because it is orderable. Therefore X has a continuous selection. The converse

follows from [9].

A connected GO-space is orderable. Therefore;

Corollary 4.5. For a connected space X which has a continuous selection the following

conditions are equivalent.

(1) X2 is pseudocompact.

(2) X is either compact or almost compact.

The author thanks Professors T. Nogura and D. Shakhmatov for their many helpful sug-

gestions. And she also thanks the referee for his/her useful comments.

Added in proof : The equivalence (1) and (2) in Theorem 2.1 was independently obtained

by G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko, and was announced in

Topology Atlas.
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