CONTINUOUS SELECTIONS ON ALMOST COMPACT SPACES

KAZUMI MIYAZAKI

Received September 21, 2000; revised September 28, 2000

ABSTRACT. We prove that (1) for a Tychonoff space X with pseudocompactness of X^2 , βX is orderable if and only if X has a weak selection. (2) Let X be an almost compact space. Then the following are equivalent: (i)X is orderable, (ii) X has a continuous selection, (iii) X has a weak selection. (3) For a connected Tychonoff space X with a continuous selection, X^2 is pseudocompact then X is either compact or almost compact.

1. INTRODUCTION

In this paper all topological spaces are assumed to be Tychonoff. In what follows βX denotes the Čech-Stone compactification of a space X. Let X be a topological space, and let $\mathcal{F}(X)$ be the set of all non-empty closed subsets of X. Let us recall the definition of the *Vietoris topology* τ_V on $\mathcal{F}(X)$ [7]. The base for τ_V is defined by the collection of sets

 $\langle \mathcal{V} \rangle = \{ F \in \mathcal{F}(X) : F \subset \cup \mathcal{V} \text{ and } F \cap V \neq \emptyset \text{ for } V \in \mathcal{V} \},\$

where \mathcal{V} runs over all finite families of non-empty open subsets of X. Let $\mathcal{E} \subset \mathcal{F}(X)$. A map $\sigma : \mathcal{E} \to X$ is a selection for \mathcal{E} if $\sigma(F) \in F$ for every $F \in \mathcal{E}$. A continuous selection on X is a selection for $\mathcal{F}(X)$ that is continuous with respect to the Vietoris topology τ_V on $\mathcal{F}(X)$. Let $\mathcal{F}_2(X)$ be the set of all non-empty closed subsets of X containing at most two points. It is clear that $\mathcal{F}_2(X)$ is a closed subset of $\mathcal{F}(X)$, the latter set being equipped with the Vietoris topology. A map $\sigma : \mathcal{F}_2(X) \to X$ will be called a *weak selection on* X if it is a selection for $\mathcal{F}_2(X)$ that is continuous with respect to the subspace topology on $\mathcal{F}_2(X)$ induced by τ_V . The following result is folklore:

Theorem 1.1. A space X has a weak selection if and only if there exists a continuous map $\sigma: X^2 \to X$ such that, for all $x, y \in X$, one has

- (i) $\sigma(x, y) = \sigma(y, x)$ and
- (ii) $\sigma(x, y) \in \{x, y\}.$

It is obvious that a space having a continuous selection also has a weak selection. A space X is weakly orderable if there exists a linear order < on X such that all sets of the form $(-\infty, p) = \{x \in X : x < p\}$ and $(p, +\infty) = \{x \in X : x > p\}$ are open in X. It is well-known (and easy to see) that a weakly orderable space has a weak selection, and moreover, if a space X is weakly orderable via < in such a way that every non-empty closed subset of X has a <-minimal element, then X has a continuous selection. Furthermore, the converse is true for connected spaces: if X is a connected space which has a continuous selection, then X must be weakly orderable via some order < so that every non-empty closed subset of X has a <-minimal element [7]. It is interesting to look for conditions that are equivalent to the existence of a continuous selection on a given space. The following well known result gives such an equivalent condition in the class of compact spaces [8]:

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C65; Secondary 54B20.

Key words and phrases. compactification, pseudocompact, almost compact, hyperspace, ordered space, weak selection, selection.

KAZUMI MIYAZAKI

Theorem 1.2. Let X be a compact Hausdorff space. Then the following conditions are equivalent.

(i) X is orderable.

(ii) X has a continuous selection.

(iii)X has a weak selection.

This theorem is no longer valid for a wider class of Lindelöf spaces: for example, that real line **R** has no continuous selection [3]. There exists also a scattered linearly ordered space without a continuous selection [4]. The above theorem cannot be easily generalized to locally compact spaces. In fact, no equivalent condition for the existence of a continuous selection is known even for a space obtained by removing a single point from a compact space. A non-compact Tychonoff space X is almost compact if $\beta X - X$ has exactly one point. Note that, given any two disjoint zero-sets of an almost compact space X, at least one of them must be compact, and if in addition one assumes that X is normal, then "zero-sets" can be weakened to "closed sets" [1]. In section 2 we generalize Theorem 1.2 by showing that a Tychonoff space X with $X \times X$ pseudocompact locally compact space with a weak selection must be is orderable. In section 3 we will prove that Theorem 1.2 remains valid if one replaces "compact" by "almost compact". In section 4 we use results of section 2 and [6] to show that a connected space with a continuous selection X^2 is pseudocompact if and only if it is either compact or almost compact.

2. Selections on pseudcompact spaces

Theorem 2.1. Let X be a space such that X^2 is pseudocompact. Then the following conditions are equivalent.

- (1) X is weakly orderable.
- (2) X has a weak selection.
- (3) βX has a weak selection.
- (4) βX has a continuous selection.
- (5) βX is orderable.

Proof. Implication $(1) \rightarrow (2)$ is trivial. Implications $(3) \rightarrow (4)$ and $(4) \rightarrow (5)$ follow from Theorem 1.2. Implication $(5) \rightarrow (1)$ holds because a subspace of an orderable space is weakly orderable. So it remains only to prove that $(2) \rightarrow (3)$. Assume that X has a weak selection. Let $\sigma : X^2 \rightarrow X$ be a continuous map satisfying conditions (i) and (ii) of Theorem 1.1. Without loss of generality σ can be assumed to be a map into βX , so there exists a continuous extension $\varphi : \beta X^2 \rightarrow \beta X$ of σ . Since X^2 is pseudocompact, $\beta X^2 = \beta X \times \beta X$ [5], i.e. φ is a continuous map from $\beta X \times \beta X$ to βX . We are going to show that φ is a weak selection on βX by checking that φ satisfies conditions (i) and (ii) of Theorem 1.1 (with σ replaced by φ). Let $x, y \in \beta X$. Due to symmetry of x and y, it suffices to consider two cases.

Case 1: $x, y \in X$. In this case (i) and (ii) hold for φ because they hold for σ and φ is an extension of σ .

Case 2: $x \in X$ and $y \in \beta X - X$. There is a net $\{y_{\alpha}\}_{\alpha \in \Gamma} \subset X$ converging to y in βX . Then $\{(x, y_{\alpha})\}_{\alpha \in \Gamma}$ is a net contained in X^2 converging to (x, y) in $(\beta X)^2$ and $\varphi(x, y_{\alpha}) \in \{x, y_{\alpha}\}$. Assume that $\varphi(x, y) = z$ for some $z \in \beta X$ such that $x \neq z \neq y$. Choose disjoint open sets U_x , U_y , U_z containing x, y, z respectively in βX . By $z = \lim \varphi(x, y_{\alpha})$, there exists $\alpha \in \Gamma$ such that $\varphi(x, y_{\alpha'}) \in U_z$ for every $\alpha' \geq \alpha$. On the other hand by $(x, y) = \lim (x, y_{\alpha})$ there exists $\beta \in \Gamma$ such that $(x, y_{\beta'}) \in U_x \times U_y$ for every $\beta' \geq \beta$ i.e. $\varphi(x, y_{\beta'}) \in U_x$ or U_y . Then for $\gamma \geq \alpha, \beta$ one has $\varphi(x, y_{\gamma}) \in (U_x \cap U_z) \cup (U_y \cap U_z)$, a contradiction with the

356

choice of U_x , U_y , U_z . This contradiction implies that $\varphi(x,y) \in \{x,y\}$. Finally, $\varphi(x,y) =$ $\lim \varphi(x, y_{\alpha}) = \lim \varphi(y_{\alpha}, x) = \varphi(y, x).$

Case 3: $x, y \in \beta X - X$. It is possible to show as the similar way of Case 2.

An orderable space is hereditarily collectionwise normal and hereditarily countably paracompact. Together with Theorem 2.1 this implies the following.

Corollary 2.2. If X^2 is pseudocompact and X has a weak selection, then X is hereditarily collectionwise normal, hereditarily countably paracompact and countably compact.

For an orderable space pseudocompactness, countably compactness and sequentially compactness are equivalent [6]. If X is a pseudocompact k-space then X^2 is pseudocompact [2]. Moreover each open subset of an orderable space is orderable, therefore;

Corollary 2.3. Let X be a pseudocompact locally compact space with a weak selection. Then X is orderable and sequentially compact.

Remark 2.4. If one glues together the first point 0 of two copies of the long line, then the resulting space L is a linearly ordered and L^2 is pseudocompact, so has a weak selection. However it does not have a continuous selection [9]. Note that $|\beta L - L| = 2$. We will discuss the case $|\beta X - X| = 1$ in the next section.

3. Selections on almost compact spaces

 $q\}, [p,q)_{<} = \{r \in X : p \leq r < q\}, (p,q)_{<} = \{r \in X : p < r \leq q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r \in X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r < q\}, (-\infty,q)_{<} = \{r < X : r$ $q\}, [p, \infty)_{<} = \{r \in X : p < r\}.$

Lemma 3.1. Let X be an almost compact space with $\{x\} = \beta X - X$. Assume that βX is orderable. Then the topology of βX can be generated by a (possibly different) linear order \ll such that x is a \ll -maximal element of βX .

Proof. Let < be a linear order on βX generating its topology. We will assume, without loss of generality, that x is not a maximal element of $(\beta X, <)$. If x is a minimal element of $(\beta X, <)$, then we can define \ll to be the reverse order of <. So we may assume from now on that x is not a minimal element of $(\beta X, <)$. Therefore $X = (-\infty, x)_{\leq} \cup (x, \infty)_{\leq}$. Clearly $A = (-\infty, x)_{\leq}$ and $B = (x, \infty)_{\leq}$ are zero-sets in X with $X = A \oplus B$. Since X is almost compact, one of A or B, say A, must be compact. Obviously, x is a <-maximal element of $A \cup \{x\}$, and a <-minimal element of $\{x\} \cup B$. Since A is compact, $B \cup \{x\}$ is clopen in βX . Define new order \ll on βX as follows. For every $p, q \in \beta X$

$$p \ll q \Leftrightarrow \begin{cases} p < q, & p, q \in A, \\ p > q, & p, q \in B \cup \{x\}, \\ p \in A, & q \in B \cup \{x\} \end{cases}$$

Since $B \cup \{x\}$ and A form a clopen cover of βX , the order topology of \ll is equal to the order topology of <.

Lemma 3.1 implies the following.

Lemma 3.2. Let X be an almost compact space with $\{x\} = \beta X - X$. Assume that βX is orderable. Then X can be ordered via a linear order < as follows. (i) Every closed subset of X has a <-minimal element. (ii) $(-\infty, q]_{\leq}$ is compact for every $q \in X$.

Our next result demonstrates that Theorem 1.2 remains valid if one replaces "compact" by "almost compact".

Theorem 3.3. For an almost compact space X the following conditions are equivalent.

- (1) βX has a weak selection.
- (2) βX has a continuous selection.
- (3) βX is orderable.
- (4) X is orderable.
- (5) X is orderable via < in such a way that every closed subset of X has a <-minimal element.
- (6) X is weakly orderable via < so that every closed subset of X has a <- minimal element.
- (7) X has a continuous selection.
- (8) X has a weak selection.
- (9) X is weakly orderable.

Proof. Almost compact spaces are pseudocompact and locally compact. Equivalence (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (8) \Leftrightarrow (9) follows from Theorem 2.1. Implication (3) \Rightarrow (5) follows from Lemma 3.1. Finally, implications (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8), and (3) \Rightarrow (4) \Rightarrow (9) are trivial.

We now prove an anologue of Theorem 3.3 for the Fell topology on $\mathcal{F}(X)$. Recall that a base for the *Fell topology* τ_F on $\mathcal{F}(X)$ is the family of all sets

$$\langle \mathcal{V} \rangle = \{ F \in \mathcal{F}(X) : F \subset \cup \mathcal{V} \text{ and } F \cap V \neq \emptyset \text{ for each }, V \in \mathcal{V} \}$$

where \mathcal{V} runs over all finite families of non-empty open subsets of X such that $X - \cup \mathcal{V}$ is compact. The Fell topology is coarser than the Vietoris topology on $\mathcal{F}(X)$ and if X is compact then the Fell topology coincides with the Vietoris topology. A *Fell continuous selection* is a selection for $\mathcal{F}(X)$ that is continuous with respect to the Fell topology τ_F on $\mathcal{F}(X)$. A weak *Fell selection* is defined similarly to the weak selection.

Theorem 3.4. For an almost compact space X the following conditions are equivalent.

- (1) βX has a weak selection.
- (2) βX has a continuous selection.
- (3) βX has a Fell continuous selection.
- (4) βX is orderable.
- (5) X is orderable.
- (6) X is orderable via < in such a way that every closed subset of X has a minimal element.
- (7) X has a Fell continuous selection.
- (8) X has a weak Fell selection.
- (9) X has a weak selection.

(10) X is weakly orderable.

Proof. Theorem 3.3 implies $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (9) \Leftrightarrow (10)$. $(4) \Rightarrow (7)$ holds by Lemma 3.2. $(7) \Rightarrow (8) \Rightarrow (9)$ is trivial.

The following two examples demonstrate that our results are final to various degrees.

- **Example 3.5.** (a) Both the Tychonoff plank T [2] and $\beta N \{p\}$, where $p \in \beta N N$, N is natural numbers have no weak (continuous) selection. These spaces are known to be almost compact and non-normal [2].
 - (b) $X = [0, \omega_1) \times [0, \omega_0]$ has no weak (continuous) selection (c.f. [4]). Since $[0, \omega_1) \times [0, \omega_0]$ is pseudocompact, $\beta X = [0, \omega_1] \times [0, \omega_0]$. Since βX contains non-normal subspace $T, \beta X$ is not orderable.

4. Selections on orderable connected spaces

A locally compact pseudocompact space with a continuous selection need not be almost compact or compact; $[0, \omega_1) \oplus [0, \omega_1)$ is neither almost compact nor compact but is locally compact and pseudocompact with a continuous selection. We are going to prove in Corollary 4.5 that for connected spaces this becomes true.

For an orderable space X there exist a minimal orderable compactification X_0 and a maximal orderable compactification X_{∞} of X. (Recall that an ordered space (X', <') is an *orderable compactification* of (X, <) provided that X is dense subset in X' and <' coincides with < on X.) The order of orderable compactifications of X coincides with one of compactifications of X, X_{∞} and X_0 correspond to βX and the Alexandoroff compactification αX of X respectively. The following propositions are known [6].

Proposition 4.1. Let X be an orderable space.

- 1. If X is connected, then $X_{\infty} = X_0$.
- 2. If X is connected and pseudocompact, then $\beta X = X_{\infty} = X_0$.

Proposition 4.2. Let X be a non-compact connected orderable space. Let $A = \{a, b\}$ be the set of a minimal and a maximal elements of X_0 .

- 1. If $a \in X$, then $X_0 = X \cup \{b\}$.
- 2. $X \cap A = \emptyset$, then $X_0 = X \cup \{a, b\}$.

These propositions and Corollary 2.3 imply the following.

Lemma 4.3. Let X be orderable, connected and pseudocompact.

- 1. If X has either a minimal or a maximal element, then X is either compact or almost compact.
- 2. If X has neither minimal nor maximal element, then $\beta X = X \cup \{a, b\}$, where $\{a, b\}$ is the set of a minimal and a maximal elements of βX .

An orderable connected space is locally compact. The next result follows:

Theorem 4.4. For an orderable connected space X the following conditions are equivalent.

- (1) X has a continuous selection.
- (2) X has either a minimal or a maximal element.

Proof. We only need to consider the case when that X is not compact. If X has either a minimal or a maximal element a, then $X_0 = X \cup \{b\}$, where $\{a, b\}$ is the set of a minimal and a maximal elements of X_0 . Then X_0 is homeomorphic to αX , and αX has a continuous selection because it is orderable. Therefore X has a continuous selection. The converse follows from [9].

A connected GO-space is orderable. Therefore;

Corollary 4.5. For a connected space X which has a continuous selection the following conditions are equivalent.

- (1) X^2 is pseudocompact.
- (2) X is either compact or almost compact.

The author thanks Professors T. Nogura and D. Shakhmatov for their many helpful suggestions. And she also thanks the referee for his/her useful comments.

Added in proof : The equivalence (1) and (2) in Theorem 2.1 was independently obtained by G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko, and was announced in Topology Atlas.

KAZUMI MIYAZAKI

References

- R. Blair and A. W. Hager, Extensions of zero-sets and of real-valued functions, Math. Z, 136 (1974), 41-52.
- [2] R. Engelking, General Topology, Heldermann, Berlin, revised ed. 1989.
- [3] R. Engelking, R. W. Heath and E. Michael, Topological well ordering and continuous selections, Invent. Math. 6 (1968), 150-158.
- [4] S. Fujii, K. Miyazaki and T. Nogura, Vietoris continuous selections on scattered spaces, preprint
- [5] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369-382.
- [6] R. Kaufman, Ordered sets and compact spaces, Coll. Math. 17 (1967), 35-39.
- [7] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
- [8] J. van Mill and E. Wattel, Selections and orderability, Proc. Amer. Math. Soc. 83 (1981), 601-605.
- [9] T. Nogura and D. Shakhmatov, Characterizations of intervals via continuous selections, Rend. Circ. Mat. Pal. (1997), 317-328.

Miyazaki: Department of Mathematical Sciences, Faculty of Sciences, Ehime University, Matsuyama 790-8577, Japan

E-mail address: BZQ22206@nifty.ne.jp