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ABSTRACT. We give a partial representation of ring homomorphisms between two com-
mutative Banach algebras. To this end, we characterize non-zero ring homomorphisms
whose kernels are regular maximal ideals.

1. INTRODUCTION

We say that a map between two algebras is a ring homomorphism, if the map preserves
both addition and multiplication. By definition, ring homomorphisms need not preserve
scalar multiplication. Homomorphisms are ring homomorphisms which also preserve scalar
multiplication.

In this paper, we consider ring homomorphisms between two commutative Banach alge-
bras (not necessarily unital). Let A and B be unital commutative Banach algebras, M4
and Mp the maximal ideal spaces of A and B, respectively. It is well-known that each
homomorphism ¢ on A into B is induced by a continuous map between two maximal ideal
spaces: there exist a closed and open subset My of Mp and a continuous map ® on Mp\ My
into M4 so that o(f)" =0 on My and o(f)" = fo® on Mp\ M, for every f € A, where
denotes the Gelfand transform (cf. [2, 4, 12]). In this paper, we will use the same symbol
* for the Gelfand transform on A and B. It seems natural to predict that a similar result
holds for ring homomorphisms between unital commutative Banach algebras, while in the
simplest case where A = B = C, the complex number field, ring homomorphisms on C into
C are very complicated. For ring homomorphisms on C into C, we simply say ring homo-
morphisms on C. Typical examples of ring homomorphisms on C are p(z) = 0, p(z) = 2
and p(z) = z for every z € C, where ~ denotes the complex conjugate. We call them trivial
ring homomorphisms on C, or simply trivial. Other ring homomorphisms on C are called
non-trivial. Indeed, there exists a non-trivial ring homomorphism on C (cf. [7]) and it is
well-known that the cardinal number of the set of all automorphisms of C is 2°, where ¢
denotes the cardinal number of continuum. In fact, Charnow [3] proved that every alge-
braically closed field F has 2/¥'l automorphisms, where |F’| denotes the cardinal number of
the set F'. On the other hand, with some additional condition ring homomorphisms happen
to be linear or conjugate linear. Indeed, Arnold [1] proved that a ring isomorphism between
two Banach algebras of all bounded operators on infinite dimensional Banach spaces is linear
or conjugate linear. It is generalized by Kaplansky [6] as follows: if p is a ring isomorphism
from one semisimple Banach algebra A onto another, then A is a direct sum A; & A; @ As
with As finite-dimensional, p linear on A; and p conjugate linear on A,. Therefore, we are
interested in ring homomorphisms which need not be bijective. One of such examples is a
*-ring homomorphism on an involutive Banach algebra into another. The author [8] proved
that if p is a *-ring homomorphism on an involutive commutative Banach algebra A into a
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symmetrically involutive commutative Banach algebra B, then there exist a decomposition
{M_y, My, M1} of Mp, the maximal ideal space of B, and a continuous map ® on M_; UM;

into M4 such that p(f)" = fo® on M_y, p(f)" =0 on My and p(f)" = f o ® on M, for
every f € A (cf. [10]).

Takahasi and Hatori [11] proved the following result for a ring homomorphism p on a
regular commutative Banach algebra A into a commutative Banach algebra B. Let M4
and Mp be the maximal ideal spaces of A and B, respectively. If {p(f)"(¢): f € A} =C
holds for every ¢ € Mp, then there exist a decomposition {M_;, M1, My} of Mp and a

continuous map ¢ on Mp into M4 with the following properties: (i) p(f)" = fodon M_;
and p(f)" = f o ® on M, for every f € A. (ii) For each ¢ € M, there corresponds a

non-trivial ring homomorphism 7, on C so that p(f)"(¢) = 7. (f(®(p))) for every f € A
(cf. 9]).

In this paper, we consider a ring homomorphism between two commutative Banach
algebras, which satisfies a certain condition, say (m). Many ring homomorphisms satisfy
the condition (m), for instance, *-ring homomorphisms between involutive algebras and a
ring homomorphism p : A — B satisfying p(A)"(¢) = C for every ¢ € Mp. Applying the
methods used in [5], we show that if p is a ring homomorphism between two commutative
Banach algebras, then p is induced by a continuous map between the maximal ideal spaces.
As a corollary, Theorem 2.1 in [8] and Theorem 1 in [11] are proved. Moreover if we consider
a ring isomorphism, then two maximal ideal spaces are homeomorphic.

Finally we note that if p is a ring homomorphism on C, then the following are equivalent:
(i) p is non-trivial. (ii) p is unbounded. (iii) p is discontinuous. (iv) There exists a sequence
{w, }22, C C so that w,, converges to 0, while |p(w,)| tends to infinity as n — oo.

2. MAIN RESULTS

Let A be a commutative Banach algebra. We say that A is a radical algebra, if there is
no non-zero complex-valued homomorphism on A. Then we define the radical of A to be
A. Unless A is a radical algebra, we say that A is non-radical for the convenience, then M 4
denotes the maximal ideal space of A. In this case, we define the radical of A to be the
intersection of all the regular maximal ideals in A.

It is well-known that the kernels of non-zero complex homomorphisms on a non-radical
commutative Banach algebra are regular maximal ideals. On the other hand, the kernels
of complex ring homomorphisms need not be maximal (cf. [10, Example 5.4]). We give a
characterization of ring homomorphisms whose kernels are regular maximal ideals.

Lemma 2.1. Let A be a non-radical commutative Banach algebra, B a commutative Ba-
nach algebra and p a non-zero ring homomorphism on A into B. Then the following con-
ditions are equivalent.

(i) The kernel kerp={f € A: p(f) =0} is a reqular mazimal ideal in A.

(ii) There exists a ring homomorphism p on A, into B such that pla = p and p(Ce) =
p(A), where A, denotes the commutative Banach algebra obtained by adjunction of a
unit e to A.

(iii) There ezist a unique ring isomorphism 7 on C onto p(A) and a unique 1» € M4 such
that p =T o 1.

Proof. (i) = (ii) There exists a ¢ € M4 such that kerp = kerp, by hypothesis. Since
p(A) = C, for every X\ € C there exists a gx» € A such that A = p(g»). We define p on A,
into B as

p((f; M) = p(f) +p(gr),  ((f;A) € Ao).
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Then p is well-defined. In fact, let g and hy be elements of A so that p(gx) = X = p(hy),
hence gy — hy € kerp. Since ker p = ker ¢, we have p(gx) = p(hy) and this implies that
p is well-defined. By definition p is an extension of p. We show that the map p is a ring
homomorphism on A, into B. In fact, let (f;, A;) be any element of A. and g; an element
of A so that ¢(g;) = A; for j = 1,2. By a simple calculation we have

A((f1, A1) + (f2,A2)) = A((f1, A1) + B((f2, A2)).-
Next we show that p is multiplicative. To do this, note that the equality

p(A2f1) = p(g2f1) = p(f1)p(g2)
holds, since A f1 — g2 f1 € ker p = ker p. Therefore,

p((f1,M)(f2,A2)) = p((fifz + Xefi + M f2, A A2))
= p(f1)p(f2) + p(X2f1)
+ p(Af2) + p(g1)p(g2)
= {p(f1) + p(g))Hp(f2) + p(g2)}
= p((f1, A1) p((f2, A2))-

That is, p is a ring homomorphism on A, into B. Finally, we show that p(Ce) = p(A4). It
is easy to see that p(Ce) = p((0,C)) C p(A), by the definition of p. Conversely, for every
feAi
p(f) = p(0,0(f)) = p(e(f)e) € p(Ce).
Thus, we proved that p(Ce) = p(A).
(ii) = (iii) Let p be a ring homomorphism on A, into B so that 5|4 = p and p(Ce) = p(A).
Let 7 be a restriction of g to Ce. That is,

T(A) =p(e), (AeC).

Then we show that 7 is a ring isomorphism on C onto p(A4). In fact, 7 is surjective, since
p(Ce) = p(A). Suppose that 7 is not injective. Then there exist A;, A2 € C such that
A1 # A2 and 7(A;) = 7(A2). Put A3 = A\ — A\a. Since p is an extension of p, we have

) =70 e (L) =0

for every f € A. Since p is non-zero, we arrived at a contradiction. That is, we proved that 7
is a ring isomorphism on C onto p(A). Therefore, 7~! is a ring isomorphism on p(A) onto C.
Put ¥ = 77! o3, then it is easy to see that ¥ is a non-zero complex homomorphism on A..
In this case, p = 7 o ¥ holds. Put ¢ = ¥|y, then ¢ is a non-zero complex homomorphism
on A since p is non-zero. Hence, ¢ € M4 and p = 7 o1 holds. Finally we show that both 7
and v are unique. In fact, suppose that 7 o = p = 73 o 12 holds for ring isomorphisms
7; on C onto p(A) and ¢p; € M4 for j = 1,2. Since both 7 and 7 are injective, it follows
that ker¢n = kert,. By a simple calculation we see that ¢; = ¢, then 7 = 75 is trivial
since ¢;(4) = C.

(iii) = (i) If 7 is a ring isomorphism on C onto p(A) and ¢ is an element of M 4 such that
p = 1o, then ker p = kertp. Hence, ker p is a regular maximal ideal in A. This completes
the proof. O

Definition 2.1. Let A be a commutative Banach algebra, B a non-radical commutative
Banach algebra and p a ring homomorphism on A into B. For every element ¢ of Mp we
define the induced ring homomorphism p, on A into C as

pe(f) =p(f)(0), (f €A).



394 TAKESHI MIURA

Definition 2.2. Let A be a commutative Banach algebra, B a non-radical commutative
Banach algebra and p a ring homomorphism on A into B. We say that p satisfies the
condition (m), if ker p,, is a regular mazimal ideal in A or ker p, = A for every p € Mp.

Definition 2.3. Let A be a commutative Banach algebra, B a non-radical commutative
Banach algebra and p a ring homomorphism on A into B, which satisfies the condition
(m). We denote

Mo ={p € Mp : kerp, = A}.
If A is non-radical, for every ¢ € Mp \ My we can write p, = T, o, for a unique ring
homomorphism 7, on C and a unique b, € M4, by Lemma 2.1. Then we define the subsets
M_q, My and My of Mp as

M_, = {(PEMB\MO:Tgo(Z):Z, (ZE(C)},
M, = {(PEMB\MO:Tgo(Z):Z, (ZE(C)},
My = {pe M\ My:T, is non-trivial }.

It is easy to see that M_;, My, M; and My are mutually disjoint and Mp = M_; U My U
M; U M, holds. Thus, {M_y, My, My, My} is a decomposition of Mp.

Definition 2.4. Let {M_1, My, M1, My} be the decomposition of Mg as in Definition 2.3.
We define the map ® on Mp \ My into M4 as

() =thy, (v € Mp\ Mo),

where 1, is a unique element of M4 so that p, = 7, 0%, for a unique ring homomorphism
7, on C.

Note that for every ¢ € Mp \ My we have
p(F) () = (T 0 ¥) (f) = T (F(2(¢0)))

for every f € A. Under the assumptions above, we show the following lemmas on topological
structures of M_y, My, My and M.

Lemma 2.2. M is a closed subset of Mp.

Proof. Let {va} be any net in My converging to ¢. By definition p(f)"(¢a) = 0 holds for
every f € A. Since p(f)" is continuous on Mg, we have p(f)"(¢) =0 for every f € A. This
implies ¢ € My, hence My is a closed subset of Mp. O

Lemma 2.3. M_; U My and Mg U My are closed subsets of Mp.

Proof. Since M is closed, it is enough to show that Mj C MpU M; for j = —1,1, where ~
denotes the closure in Mp. For this end, let ¢ be any point of M; and {p.} a net in M;
converging to ¢. We show that ¢ belongs to My U M;. Since M_;, My, M; and My are
mutually disjoint, it sufficies to show that ¢ € M_; U My4. Suppose that ¢ is an element
of Mg, then there exist a non-trivial ring homomorphism 7, on C and a ®(¢) € M4 such

that p(f)"(¢) = 7.(f(®(p))) holds for every f € A. Choose an element f; € A with
fo(®(¢)) = 1, and since 7, is non-trivial, there exists a non-zero sequence {\,} in C such
that |\,| < 1/n and |7,(A.)| > n for every n € N, the space of all natural numbers. On
one hand

P fo) (9a)l = Pafo(@(0a))l < llfolloo /s

since ¢, € M;, where || - ||~ denotes the supremum norm on M 4. On the other hand, we
have

[p(Anfo) (P) = |7 (An)] > n
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for every n € N. This contradicts with the continuity of the function p(A, fo)” on Mp, for
a sufficiently large n € N. Therefore, ¢ does not belong to M.

Suppose that ¢ is an element of M_;. As a first step, we consider the case where ®(p,)
converges to ®(p). In this case f(®(pa)) converges to f(®(p)) for every f € A, since f
is continuous on My. Choose an element f; of A so that fi(®(p)) = 4, then fi(®(pa))
converges to i, since ®(p,) — P®(p). Therefore, p(f1) (¢o) converges to ji. On the other
hand, p(f1)"(¢a) converges to —ji, since p(fi)" is continuous and since ¢ € M_;. We
arrived at a contradiction, hence we proved that ¢ does not belong to M _;, in case where
®(py) converges to ().

Next we consider the case where ®(p,) does not converge to ®(p) (as we will prove later,
such a case does not occur). Hence, there exists an f, € A such that fo(®(pa)) does not

converge to f(®(¢)). In particular, fo(®(p)) # fo(®(p)), since p(fz)" is continuous on
MB. Put

_RE@) ,
= e 2

then we obtain f3(®(p)) = fs(®(p)). Therefore, f3(®(pq)) converges to fs(®(p)), since
p(f3)" is continuous on Mpg. On the other hand, the equality

|f3(2(9a)) = F3(2(0))] = | f2(2(0a)) = f2(B(p))]
holds, and this contradicts with the assumption that fi(®(¢s)) does not converge to

f2(®(p)). Hence, we proved that ¢ does not belong to M_; in case where ®(p,) does
not converge to ®(p). This implies M; C My U M; for j = —1, 1. O

Lemma 2.4. The range ®(My) is at most finite subset of My.

Proof. Assume to the contrary that the range ®(M,) is not a finite set. Then ®(M,) has a
countable subset {1, }52, so that v, # 1., if n # m. By definition, for every n € N there
exists a p, € My such that ¢, = ®(p,), then ¢, # @m if n # m. Since ¢, is an element
of My, there corresponds a non-trivial ring homomorphism 7,, on C such that

holds for every f € A. Since 71 is non-trivial, there exists an f; € A so that

111l < 1/2, [m (fi ()] > 2-
Inductively we can find an f,, € A such that

1 £all <277, [7a(fa(n))] > 27 +

n—1
k=1
and also

Fa(th1) = fa(ths) = -+ = fu(tn_1) = 0.

Therefore, > 7, f, converges to some element fo € A. Note that, for every k € N,

fj(z/Jk) =0if j > k, then fo(¢r) = Eizl fn(r), since the Banach norm on A dominates
the supremum norm on M 4. Thus we have the inequality

k

and this implies that p(fo)" is unbounded on Mp. We arrived at a contradiction, hence we
proved that the range ®(M,) is at most finite subset of My. O

Ip(fo) (pi)l = Imi(fo(wr))| = > 2%,
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Lemma 2.5. Put ®(My) = {¢1,%2, - ,¥n}. For every j € {1,2,--- ,n} the set My ; =
{p € My:®(p) =1;} is open in Mg.

Proof. For each j € {1,2,---,n} we can find an f; € A such that
fiti) =1, f(e) =0, (k# ).

Suppose that My, ; is not an open subset of Mp, then there exist an element ¢; of My ;
and a net {¢o} in Mp \ My, ; such that ¢, converges to ¢;. Since M_; U My U M; is
closed in Mg, by Lemma 2.3, My = Mp \ (M_1 U My U M;) is an open subset of Mp.
Therefore, without loss of generality we may assume that the net {¢,} consists of elements
of Mg\ My ;. Then ®(p,) # 1;, hence we have f;(®(¢4)) = 0 by definition. On the other
hand, we have p(f;)"(¢;) = 7, (fi(®(g;))) = 1 and p(f;) (¢a) = 7o, (fi(®(0a))) = 0,
where 7,, denotes the non-trivial ring homomorphism on C corresponding to n € My. This
is a contradiction, since p(f;)" is continuous on Mp. This completes the proof. O

Theorem 2.6. Let A be a commutative Banach algebra, B a non-radical commutative Ba-
nach algebra and p a ring homomorphism on A into B, which satisfies the condition (m).
Then the radical of A is mapped into the radical of B. Moreover if A is non-radical, let
{M_y, My, My, My} be the decomposition of Mp as in Definition 2.3. Then the map ®
is continuous on Mp \ My into M, with the following property: for every ¢ € My there
corresponds a non-trivial ring homomorphism on C so that the equality

~

f@),  peM,

~ _ 0; <P€M0;
O Fan,  pein,
m(f(®(9), ¢ €M

holds for every f € A.

Proof. If A is a radical algebra, we have Mp = My by the condition (m). Therefore, p,
is identically zero for every ¢ € Mp. By definition, the radical of A is mapped into the
radical of B, if A is a radical algebra.

If A is non-radical, we have the equality

N 07 "2 € MO:
APLE) {w(f@(«,a))), o€ Mg\ Mo
f((ﬁ(@)), LPEMfl;
_ 0, p e Mo,
F(@(9)), p e M,

A

7o (f(2(9), ¢ € My

for every f € A. In particular, for every f € rad A we have p(f)"(¢) = 0 for every ¢ € Mp.
That is, we proved that the radical of A is mapped into the radical of B.

We show that the map ® on Mp \ M, into M, is continuous. By Lemma 2.4 we can
write ®(My) = {¢1,%2, - ,¥n}. As a first step, we show that ® is continuous at each
point of My. For every @o € My there exists a 1p; € ®(My) such that ®(pg) = 1;. Since
Mq;j={p € My: ®(p) =1;}is open in Mp, by Lemma 2.5, we see that ® is continuous
at ¢o € M,.

Next we show that @ is continuous on M; for j = —1,1. Let ¢; be any point of M; and
{@a}aer any net in Mg\ My converging to ¢;. Since MoUM_; is closed in Mg, by Lemma
2.3, we see that M; UMy = Mp\ (MoUDM_;) is an open subset of Mp. Hence, without loss
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of generality we may assume that the net {4 }aer consists of elements of M; U My. Then
we show that there exists an ag € I such that ¢, belongs to M; U{y € My : ®(p) = ®(p;)}
for every a € I with a > ag. In fact, since ®(M,) is at most finite, we can find an element
fo of A so that fo(®(¢;)) = 1 and fo(ir) = 0 for every element 1y, of ®(My)\ {®(¢;)}. By
the continuity of p(fo)” there exists an ag € I such that |p(fo) (¢a) — 1| < 1/2 holds for
every element a of I with a > ag. In particular we have fo(®(a)) # 0, hence ®(p,) does
not belong to ®(Mg) \ {®(p;)} if @ > ap, since fo = 0 on ®(My) \ {®(p;)}. Therefore,
we proved that ¢, is an element of M; U {p € My : ®(p) = ®(p;)} for every a € I with
a > ag. Hence, we have the inequality

1/(2(pa)) = F(@(e))] < 1p(F) (9a) = p(F) ()]

for every element f of A, if @ > ao. We conclude that ®(¢.) converges to ®(p;), hence
® is continuous on M; for j = —1,1. Thus we proved that the map @ is continuous on
Mpg \ My and this completes the proof. O

As a corollary, we have the following results.

Corollary 2.7. [8, Theorem 2.1] Let A be a commutative Banach algebra with an involution
x, B a non-radical commutative Banach algebra with a symmetric involution x. If p is a
x-ring homomorphism on A into B, then the radical of A is mapped into the radical of B.
Therefore
p(f) =0 (fed

holds on Mg, if A is a radical algebra. If A is mon-radical, there exist a decomposition
{M_y, My, M1} of Mp and a continuous map ® on M_y U M; into My such that the
equality

f(2(p), ¢e My,
p(f) () =40, ¢ € My,
f(2(p), ¢e€M
holds for every f € A.

Proof. We consider the case where A is non-radical. If A is unital, then we define the ring
homomorphism p, . on C as

Po,e(A) = pp(Ne), (A€ ),
for each ¢ € Mp. Since p preserves the involution, we see that p, . is trivial. Thus,
po € My or p, € My or p, =0.
If A has no unit, then we consider the commutative Banach algebra A, obtained by

adjunction of a unit e to A. Unless p, is identically zero, there exists a g € A so that
p,(g9) # 0. Then we define 5, on A. to C by

By B Po(Ag)
P ((F;N) = po(f) + 29 ((f,\) € A.).

Then it is easy to see that f, is a *-ring homomorphism on A. with respect to the involution
(f,\) = (f*,\) on A.. Thus, we have the conclusion by Theorem 2.6. O

Takahasi and Hatori [11] proved the following result in case where A is regular and
satisfies a certain condition, while we can prove the result without such assumptions.

Corollary 2.8. Let A and B be non-radical commutative Banach algebras, p a ring homo-
morphism on A into B so that

{o(f)(p): feA}=C,
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for every ¢ € Mp. Then there exist a decomposition {M_1, My, M4} of Mp and a contin-
uous map ® on Mp into M4 with the following property: for every ¢ € My there exists a
non-trivial ring homomorphism 1, on C such that

F(@(p)), p €M,
p(f) () = { F(@(9)), p € M,
7o (f(2(9)), ¢ € Ma
holds for every f € A.

Proof. By Theorem 2.6, it is enough to show that ker p,, is a regular maximal ideal in A for
every ¢ € Mp. As a first step, we consider the case where A has a unit element e. Since
ker p,, is a proper algebra ideal, there exists a ¢ € M4 so that ker p, C kert. Suppose that
g does not belong to ker p,, then there corresponds an h € A such that p,(g) p,(h) = 1
since {p(f)"(¢) : f € A} = C. Therefore p,(gh —e) = 0. Since ker p,, is contained in ker e,
we have ¢(gh) = 1 hence 9(g) # 0. Thus, we proved that ker p,, is a maximal ideal in A.

Next we consider the case where A does not have a unit element. Let A. be the commuta-
tive Banach algebra obtained by adjunction of a unit e to A. Since {p(f)*(¢) : f € A} =C,
there exists a g, € A such that p,(g,) = 1. Define the map p, on A, to C by

Po((fs0) = po(f) + pp(Age),  ((f,A) € Ae).

Then it is easy to see that p, is a ring homomorphism on A. onto C. As proved above,
ker p,, is a maximal ideal in A.. Since f,, is an extension of p,, we have that p, is a regular
maximal ideal in A. O

Corollary 2.9. Let A and B be non-radical commutative Banach algebras with the maximal
ideal spaces M o and Mp, respectively. If p is a ring isomorphism on A onto B, then M4
is homeomorphic to Mp.

Proof. Since p is surjective, {p(f)"(¢) : f € A} = C holds for every ¢ € Mp. By Corollary
2.8, there exists a continuous map ® on Mp into M4 with the following property: for every
¢ € Mp there corresponds a non-zero ring homomorphism 7, on C so that p(f) (¢) =
ﬂp(f(@(cp))) for every f € A. Since p is a ring isomorphism, we can write p~1(z)" () =
1y (£(¥(y))) for every € B and every ¢ € M4, where ¥ is the continuous map on M4
into Mp and 7y is a non-zero ring homomorphism on C. Put x = p(f) for each f € A and
1 = ®(yp) for each ¢ € Mp. Then we have the equality

Be) = p(f)(p) =T (f(2(9)))
7o (P~ (2)"(¥))
7o (10 (2(¥ (1))

If 2(¥(y)) = 0, we have &(p) = 0. Unless (¥ (¢p)) = 0, put y = /(¥ (¢)). Then we
obtain the equality

9(p) = Tonu (9(T(¥))) = 1,
that is, () = Z(¥(¢))). Therefore, ¢ = V() = ¥ o &(p) holds for every ¢ € Mp. In a
way similar to the above, we have ¢y = ® o ¥()) holds for every ) € M4. Hence M4 is
homeomorphic to Mp and this completes the proof. O
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