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OPTIMAL FEEDBACK CONTROLS FOR KELLER-SEGEL EQUATIONS

SANG-UK RYU AND ATSUSHI YAGI

Received August 2, 2000

ABSTRACT. We continue the optimal control problem governed by the Keller-Segel equations.
In the previous paper [16], we have proved existence of the optimal controls and the first order
necessary condition. Here we will show that the optimal controls satisfy the feedback law
expressed by the value function and the value function is a solution to the Hamilton-Jacobi
equation in a weak sense.

1. INTRODUCTION

This paper is concerned with the optimal feedback control for the following problem:

(P) Minimize J(u)

u

with the cost functional J(u) of the form

1 T T
70 =5 [l =il + [ luldr, () € 20,73 ),

where y = y(u) is governed by the Keller-Segel equations

(
% — aly—bV{yVp} in Qx (0,T],
op .
(KS) 5 —d4p+fy—gptvu  in Q@x(0,T],
dy Op _
6—n_a—n_0 on 90 x (0,71,
\ y(z,0) = yo(z), p(z,0) = po(z) in Q.

Here, (2 is a bounded region in R? of C? class. a, b, d, f, g > 0 are given positive numbers
and v, v > 0 are given non negative numbers. u(t) > 0 is a control function in some bounded
convex subset E,q of E = H'(Q), 0 < e < . n = n(z) is the outer normal vector at a
boundary point z € 9 and Bin denotes differentiation along a vector n. yo(x), po(z) >0
are non negative initial functions in L%(2) and in H'*%(Q), respectively. y, p are unknown
functions of the Cauchy problem (K-S).

The Keller-Segel equations were introduced in [11] to describe the aggregation process
of the cellular slime mold by the chemical attraction. y = y(z, ) denotes the concentration
of amoebae in 2 at the time ¢, and p = p(z,t) the concentration of chemical substance in
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2 at the time ¢. The chemotactic term —bV - {yVp} indicates that the cells are sensitive
to chemicals and are attracted by them, and the production term fy indicates that the
chemical substance is itself emitted by cells. (K-S) is then a strongly coupled reaction
diffusion system.

Several authors have already been interested in the equations, the existence and unique-
ness of solution and the asymptotic behavior of solution were studied by them in the case
when (K-S) has no control term, u = 0 (see e.g. [10, 15, 19]). In the previous paper [16] of
the present authors, we have already shown the existence and uniqueness of non negative
local weak solutions by using the Galerkin method and the classical compact method (see
[12, Chap. 1] and [7, Chap. III]), and have studied the existence of optimal controls and
the necessary conditions of optimality for (P) with a sufficiently small T' > 0.

Aggregation of cellular slime mold is known as a model of the self-organization by cell in-
teraction mediated by the chemical substance called cAMP. In this paper, we are concerned
with the question of whether the optimal control at the time ¢ can be determined by the
concentration of amoebae and the concentration of cAMP at the same time t or not. For
simplicity we shall show that the optimal control is a feedback optimal control expressed
by the value function and the value function is a solution to the Hamilton-Jacobi equation
(H-J equation).

According to the classical Hamilton-Jacobi theory, if the value function is smooth, then
it is a solution of the H-J equation, see e.g. [8, 13]. In general, however, this is not the case
and therefore the value function can not satisfy the H-J equation in the classical sense. In
the control theory, several devices have been developed to overcome this difficulty, see [1, 2,
3, 5, 6]. In this paper, we will follow the method developed in Barbu [1] (see [2]) in which
semilinear equations of monotone type were dealt. Although (K-S) contains an unbounded
non-monotone term, the present work may also be considered as a generalization of [1].

This paper is organized as follows. In section 3, we recall some known results on local so-
lutions of (K-S) together with their regularity properties. Section 4 is devoted to presenting
a pointwise necessary condition for optimality. In Section 5, it is proved that every optimal
control u for the problem (P) is a feedback optimal control. Furthermore, it is shown that
the value function is a solution of the H-J equation in a certain weak sense.

Notations. N and R denote the sets of natural numbers and real numbers respectively,
and Ry = {z € R;z > 0}. For a region Q C R?, the usual L? space of real valued functions
in Q is denoted by LP(Q2), 1 < p < 0o. The real Sobolev space in { with an exponent s > 0
is denoted by H*(Q). C(Q) denotes the space of continuous functions on Q. Let I be an
interval in R. LP(I;H), 1 < p < oo, denotes the LP space of measurable functions in I with
values in a Hilber space H. C(I;H) denotes the space of continuous functions in I with
values in H. For simplicity, we shall use a universal constant C' to denote various constants
which are determined in each occurrence in a specific way by Q,a,b,d, f,g,¢,v,6, M, and
so forth. In a case when C' depends also on some parameter, say #, it will be denoted by

Cy.
2. PRELIMINARY

We shall state some well known results on the Sobolev spaces and on the fractional
powers of Laplacian which will be used in this paper. For the proof, we refer the reader to
Brezis [4], Friedman [9], Lions & Magenes [14], and Triebel [18].

Let 0 < so < s1 < oo. For sp < s < s1, H*(Q) = [H*(Q),H* (N)]y with s =
(1 —6)sg + 651, and the following estimate holds:

1-6 0
(2.1) [ lere < Coosall - lrso - pren -
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When 0 < s < 1, H*(Q2) C L?(Q) for 119 = 15% with the estimate

(2.2) - llze < Csll - Nl

When s =1, H*(Q) C L4(Q) for any finite 1 < ¢ < oo with the estimate
(2:3) I-llze < Cypll - Mg 1127,
where 1 < p < ¢. When s > 1, H*(Q) C C(Q) with the estimate

(2.4) I-lle < Call- Nl

Furthermore, we shall use the following estimates which are easily obtained by utilitizing
(2.1) ~ (2.4).
Let 0 <e <1 Forany0<6<1,

(2.5) { luvllgs < Cellullmsellvllme, — uwe H'™(Q), ve H(Q),

Juvllge < Cellullplfvllgese, — uwe HY(Q), ve HT(Q).

In fact, when 8 = 0 or # = 1, these estimates are verified directly from (2.2), (2.3) and (2.4).
For 0 < 8 < 1, the estimates are then obtained by the interpolation theorem applied to the
operator of multiplication v — wv and by (2.1). In particular, it follows that

(2.6)

luvllae < Cellullgeellvllgs,  we H™(Q), v e H (Q),
[|luv]| e < Cellull g ||v]] gr2-, u € HY(Q), ve H*(Q).

Applying these we observe also that

IV{uVpHic: < Cellullpsellpllaz,  we HT(Q), p € H* (),
(2.7) IV{uVpHic: < Cellullmllpllpz+e,  we HY(Q), p € H* (),
IN{uVpllm < Cllullmellpllas,  u € HX(Q), p e H(Q).

Let L = —A + 1 be the Laplace operator equipped with the Neumann boundary con-
ditions, L is an isomorphism from H'(Q) to (H'(Q))". The part of L in L?(f2) is denoted
by L, L is a positive definite self-adjoint operator in L?(Q2) with the domain D(L) = {y €
H2(Q) %4 = 0 on 9N}. It is known that

D(LY) = H* (), 0<6< 3
4’

(2.8) 3 3

D(L’) = H(Q) = {y € H*(Q); 6—y =0ond0), [<O<3
with norm equivalence. In fact, (2.8) is well known for 0 < 6§ < 1 (even for = 3, a
characterization of D(L?/*) is known). Since Q is of C* class, D(L?/?) = L~Y(H'(Q)) =
H3(Q); then, for 1 < 6 < 2, (2.8) is verfied from the fact that D(L?) = [D ( ), D(L3/?)],,
with § = 1+ 4. Clearly, L is a linear isomorphism from D(L’**) to D(L?) for § > 0.
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3. THE WEAK FORMULATION OF PROBLEM AND THE KNOWN RESULTS

Let us briefly recall the way how to formulate (K-S) as a semilinear abstract differential
equation in a Hilbert space. Let 4] = —aA+a and Ay = —dA + g be the Laplace operators
equipped with the Neumann boundary conditions, 4;(i = 1, 2) are linear isomorphisms from
H'(Q) to (H'(Q))". The part of A; in L?(Q) is denoted by A;, A;(i = 1,2) is a positive
definite self-adjoint operator in L?()) with the domain D(A;) = H2(Q). As noticed in
(2.8), D(A?) = H**(Q) for 0 < 0 < 3, and D(AY) = H2(Q) for 2 < 6 < 3.

We introduce two product Hilbert spaces V C H as

V= HYQ) x D(A;+e/2) and H = L2(Q) x D(AQ“)/Q),

respectively, where ¢ is some fixed exponent ¢ € (0, 3). By the identification of % and its
dual H’, we have: V C H =H' C V'. It is then seen that

V= (H'(Q) x D(4?)

with the duality product
(@Y v = Gy + (477045 %) s 0= () v, v = (V) ev.

We denote the scalar product of A by (-,-) and the norm by | -|. The duality product
between V' and V which coincides with the scalar product of # on H x H is denoted by
(*,+), and the norms of V and V' by || - || and || - ||«, respectively.

We set also a symmetric sesquilinear form on V x V:

oY, V) = (A}/Qy,A}/Qg)L2 i (A;+E/2p,A§+E/2ﬁ)L2a Y = <y>,ff = <y> eV.

Obviously, the form satisfies:

(a.d) a(V, V) < M|Y|IIIY], Y,V eV,
(a.id) aY,Y) > 0|[Y|2, Yev

with some constants M > 0 and § > 0. This form then defines a linear isomorphism

A= </(1)1 2 ) from V to V', and the part A of A in H is a positive definite self-adjoint
2

operator in H with the domain D(A) = D(4;) x D(Ag3+5)/2).
(K-S) is, then, formulated as an abstract equation

y —
_ = <
) o PAY =FY)+U®), 0<t<T,
Y(0) = Yy

in the space V'. Here, F(-) : V — V' is the mapping

F(Y) = (‘bV{y]Yyp}”y) . v = <’;) ev.

U(t) and Yy are defined by U(t) = (., ) and Y = (go), respectively.

Vu(t) 0
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As verified in [16, Sec. 2], F(-) satisfies the following conditions.

(f.i)

IEX) <nllYll+ o5V, Y eV,
[FYV) < allYlipay + oq (1Y), Y € D(A)

for each n > 0 with some increasing continuous function ¢, ().

IF(YV)=F(Y)|l. <nllY = Y|
+ (V[ + IV + Dy (Y + VDY = Y], Y,V eV,
|F(YV)=F(Y)] <nllY = Y]lp(a)
+ (IVlpcay + IV llpcay + D (VI + [[YIDIY = Y, Y, Y € D(A)

(i)

for each n > 0 with some increasing continuous function ,,(-).
Furthermore, F'(Y) is Fréchet differentiable with the derivative

F'(Y)Z = <_W{yv“’} _fZV{ZV”}*“Z) L V= (i) Z= <Z> ev.

F'(-) satisfies the following estimates.

nllZIIPN+ G AV I+ DiZliiel, Y, Z,PeV,

f.iii F'(Y)Z,P)| <
() z e {nnznupnwn(unu1>||Z|||P|, Y.Z,PeV

for each 7 > 0 with some constant C,,, and

(£iv) IF'() 2y < nlZl+m(YDIZIlL,  Y,ZeV

for each n > 0 with some increasing continuous function p,(-). Furthermore,
(f.v) IF'(V)Z - F'(Y)Z|l. < ClIZ|IIY =Y|, Y,Y,ZeV.

Indeed, (f.iii) and (f.v) were also verified in [16, Sec. 5]. So we have only to verify (f.iv). Let
y € HY(Q) and w € H2™(Q). Then, since yVw € H!(Q), it follows from (2.1) and (2.2)
that

IV{yVw}||(pa,)y = sup I/QwaVvdﬂ

lvllpea,y<t
< sup |yllezlIVwllsre-ol[Voll e < Cllyllzelwl|geroe
lvllpeay <1
1—e/2 2 2
< Cllylle=lfwll= 2wl < nllwllgess + Cyllyll3a wllre
where 7 > 0 is arbitrary. On the other hand, let 2 € H'(Q) and p € H2t¢(Q). Then, it
follows from (2.5) and (2.6) that

V{2V i) = Wl (V{2V}, 0)(p(an)y xp(ay)]
VDA >
= sup |<Z,VP‘vv>(D(Af/2))rXD(Af/2)| < sup CHZ“(D(Af“))r“vP‘VUHHE

[lvllpa; )<t lollpea,y<t

_F 5 1
< Ol oy Mollmrscss < llzllzs + Collollfse el ore
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where 1 > 0 is arbitrary. Then, (f.iv) is an immediate consequence of these estimates.
According to [16, Theorem 2.1], for U € L?(0,T;V’) and Yy € H, there exists a unique
solution to (E) on an interval [0,T(Yy, U)] such that

(3.1) Y € L?(0,T(Yy,U); V)N C([0,T (Yo, U)]; H) N H(0,T(Yo,U); V'),

the number T'(Yo,U) > 0 being determined by the norms ||U||zz2(o, ;1) and [Yp].

Furthermore, if we handle (E) in the spaces D(A) C V C H, then (f.i) and (f.ii) yield the
following reguality result. For Yy € V and U € L?(0,T;H), there exists a unique solution
to (E) on an interval [0,T(Yp,U)] such that

(3.2) Y € H'(0,T(Yo,U);H) N C([0,T (Yo, U)]; V) N L*(0,T (Yo, U); D(A)),

the number T'(Yp, U) > 0 being determined by the norms [|U||2(0,7;2) and [|Yo]|-

Similarly, handling (E) in the spaces D(A%) C D(A) C V, we verify the following result.
For Yy € D(A) and U € L?(0,T;V), there exists a unique solution to (E) on an interval
[0,T(Yy,U)] such that

(33) Y eH'(0,T(¥o,U);V)NC(0,T(Yo,U);D(4) N L*(0,T(Yo, U); D(A*?)),

the number T'(Yo,U) > 0 being determined by the norms ||U||z2(0,7;v) and [|Yol|p(a)-
Finally we present some uniform estimate for the solutions to (E) which was essentially
established in the proof of [16, Theorem 2.1].

Theorem 3.1. Let ro > 0 and R > 0, then there exists a number S > 0 and an increasing

continuous function r(t) defined on [0,S] such that the following statement is true. If

Yo € H and U € L*(0,T;V') satisfy |Yp|? < ro and ess.sup ||U(t)||« < R, respectively, then
0<t<T

the number T (Yy,U) in (3.1) is larger than S and the estimate |Y (t)|*> < r(t) holds for every
t€10,5]

Proof. Let Yy € H and U € L*(0,T;V') satisfy |Yo|> < ro and ess.sup [|[U(t)||. < R,
0<t<T
respectively, and let Y(¢) be the solution of (E). As shown in the proof of [16, Theorem

2.1], Y (t) satisfies the following estimate

%%Y(tn? <Y (B)F) + CIIU @)

with some increasing, locally Lipschitz continuous function ¢: [0, 00) — [0,00) determined

by ¢,.
Then, let r(-) be the solution to the following differential equation:

dr ~

R <
(3.4) o 2¢(r) + 2CR, 0<t<T,

r(0) = ro.

7r(+) is then defined on an interval [0, S], S < T', determined by ryg, ¢ and R. The comparision
theorem then yields that the solution Y (¢) exists at least on [0, S] and the estimate |Y (¢)|* <
r(t) holds for 0 <t < S. O



OPTIMAL FEEDBACK CONTROLS 447
4. OPTIMALITY CONDITIONS

Let H be the Hilbert space defined in Section 3. In H, we consider an optimal control
problem

(P) Mlljnelglralize J(U)

with the cost functional
s s
1) =5 [ W) -YaPar+o [ UPa,
0 0
where Yy € H and Yy = (%) € L*(0,T;H) are given and

U € Uya ={U € L*(0,T;H); U(t) € C ae.},

C C H being a closed, bounded and convex set containing the orign, and where Y (U), U €
Ugd, is the solution to (E) on [0,S]. In view of Theorem 3.1, we know that there exists a
solution Y (¢) of (E) on [0, S] such that the estimate |V (¢)|?> < r(¢) holds. Here, r(¢) is an
increasing continuous solution r(t) of (3.4) on [0,S]. We consider the increasing open set
By ={¢ e H;[{]> <r(t), 0<t < S}

For each 0 <t < S and £ € B;, we consider an auxiliary optimal control problem:

? M. . .
(Pre) inimize Ji¢(U)
with the cost functional

1

S S
TeW) =3 [ (st & 0) = Yads 4o [ 0P
t t

where Y (s;¢,&,U) is the solution to the following equation

dy —
(Ete) ds (Y)+U(s), <s<S8,

Y(t) = €.

As before, for 0 < ¢t < S and £ € By, there exists the solution 7(s) on [t,S] to (3.4) with
initial condition r(t) = r(¢;0,70) > |£|?. Therefore, for 0 <t < S, U € U,q and £ € By, there
exists a unique solution Y (s) = Y (s;t,&,U) to (E.¢) on [t,S] such that Y € L2(¢,S;V) N
C(t,S];H) N H'(t,S;V") and the estimate |Y(s)| < r(s), s € [t,S], holds. Moreover, in
the same way as in [16, Sec. 5], the differntiability of Y (U) with respect to U and the
optimality condition are verified. Therefore, the following necessary condition is true.

Let U be an optimal control of (P;¢) and let Y € L2(t,S;V)NC([t, S|;H) N H'(t,S;V")
be the optimal state, that is Y (s) = Y (s;t,£,U) is the solution to (E;¢) with the control
U. Then, there exists a unique solution P € L2(t,S;V) N C([t, S];H) N H'(¢,S;V") to the
linear problem

P — -
—_ = —_ <

1) AP+ F(Y)P=Y-Ys, t<s<5§,
P(S) =0,

and U and P satisfy the inequality
s
(4.2) / (=P +2yU,V =U)dt >0 for all V' € Uyq.
t

Moreover, the following pointwise necessary condition for optimality is also deduced.
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Theorem 4.1. Let U be an optimal control of (P ¢) and let Y € L?(t,S;V)NC([t,S]; H)N
H(t,S;V'") be the optimal state. Then,

(4.3) U(s) = Pe(P(s)), a.e. s €[t 5],

where P(s) = P(s;t,£) is given by (4.1). Here, Pc = (2y1 + 0I¢) ™! denotes the projection
of H onto C and 0l is the subdifferential of the indicator function I of C:

{ 0 ifWec

W)=\, i#wec

Proof. Let se I =1t,S], 0<e < S —s. Let W € C be arbitrary and define

_ U(r) if rel—1Js,s+¢],
VE(S)_{W if 7€ (s,s+¢).

Clearly, V. € U,q. Substituting V. for V in (4.2) and dividing the resulting inequality by e,
we see that

1 s+e . .
(4.4) : / (—P(r) + 29T(r), W — T(r))dr > 0.
Since all the integrands in (4.4) are Lebesgue integrable on I, the Lebesgue density theorem
[17, p. 17] is available. Then, by letting ¢ — 0 in (4.4), we have:

(= P(s) +2yU(s),W = U(s)) >0, ae s€el.
Since W € C is arbitrary, we see that

P(s) —2yU(s) € 0Ic(U(s)), a.e. sel,

that is, P(s) € (0lc + 2v1)(U(s)), a.e. s € I. Hence, we prove the desired result (4.3). O

Remark 4.2. Let C = {U € H : |U| < R} be a ball, where R is given constant. Then, we
have:
U if U <R,
]Pc(U) = U

R—  if |U|>R.
U]

5. OPTIMAL FEEDBACK CONTROL

In this section we shall investigate properties of the value function and consider the
feedback problem. The main result is that the value function 1 satisfies a Hamilton-Jacobi
equation in a generalized sense. For simplicity, we shall assume in this section that Y; =0
and v = 1.

As noticed in Section 4, the value function (¢, €) is defined for (¢,&) € [0, S] x B; by

llj(t) E) = Uierll/fad Jt,E(U)'

We begin with a series of lemmas showing regularity properties of the trajectory Y and the
value function 1.
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Lemma 5.1. Let £,( € B, and U € U,4. Then we have:
G Wt 6U) = V(s GOP + [ IV (rst,60) = Vit ¢0)|Pr
t <ClE—¢?, t<s<S.

Proof. Let Y and Y be solutions of (Ete) and (Ey ), respectively. Then it is seen that
W =Y —Y satisfies:

ds
W(t)=¢-¢.

Taking the scalar product of the equation of (5.2) with W, we have:

(5.2) {ﬂ”$+ZW@=F&@»—mY@» t<s<S,

S W) + (AT (3), W(5)) = (F(7(5)) ~ F(¥ (5)), W(5))-.
From (a.ii) and (f.ii), it follows that
(53) 5 W)+ (s)]?
<AlW I + WY G+ Y S+ Dy (Y ()] + Y () DI ()T ()]
< gIIW(S)II2 +CUY )P+ 1Y S + Dobs (1Y ()] + [V (5))* W ().
Therefore, by Gronwall’s lemma,
W ()2 < [W(b)[2e JECUY GIPHIY ()P +D)w s (1Y (s Y ())?ds

Using this result in (5.3) and integrating from ¢ to s, we obtain the estimate for

/Wymuam—yvmawww.m

Lemma 5.2. For each t € [0,S], ¥(t,-) is Lipschitz continuous in { € B;.
Proof. Let & (i =1,2) € B, and let U € U,q be an optimal control for (P;¢,) such that

1 /3 1
w.6) =3 [ Wt e Dl ) [ TR
t
By the definition of 1,

llj(t) El) - ¢(t> 62)

1

S
3| WEta P - ¥ (it 6,0)Pds
t

IN

1

S
= 5/ (Y(S7t7€17U) - Y(S;taé.QaU):Y(s;t:gl:U) + Y(87t7£27U))d8

By using (5.1), we have:
WJ(tafl) t 52 | <C/ 3 t 517 Y(S;taé.?:U”ds
<C|&1 — &, V&1, &€ By, O
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Lemma 5.3. For each £ € D(A) N By, (-, ) is Lipschitz continuous in 7 € [t, S].

Proof. From (3.3), there exists some 75 € (11, S] such that Y (s;71,&,0) € C([r1, 72]; D(A)).
Define a control U(+) € U,q as

0 if s €[r,m],
(5.4) U(s) = {U(s) if s € (m,5],

here, U = U(s;,&) is an optimal control to (P.,¢). Then, since Y (s;m2,&,U) is the
optimal state on [12,S] and Y (s;71,£,U) is not, we have:

¥ (71,€)=¢(72, )|

1 [ — — 1 [m

<3 [ IV OF = Flsm, 6D lds+ 5 [ Vs 0)Pds
1 25 — — 1_ —
<5 [ I EmE0) = Vs € ),V (571, 6.U) + Vs, 6. D)l ds

1 [
+—/ ¥ (sim1,6,0)ds = Iy + L.

1

From (3.3),

™ dY(s;71,¢,0)

15 ds

Y(r;m,8,0) — €=

T1

_ / —AY (5;71,€,0) + F(Y (5371, €, 0))ds.

1

From (3.2), (3.3) and (f.i), it follows that
T2

|Y(T2;7_17€)0) - £| S / |AY(5)7_1>£70)| + |F(Y(S,T1,£,0))|d8

T1

< / (L4 ) AY (5371, €,0)] + by (I (5171, €,0)])dis

1

< Ce(rp —11).
Therefore, by (5.1),
I < CelY (5;7,6,U) =Y (57,6, U)
< CelY (5572, Y (12571, €,0),U) = Y(s;72,€,0)
< CelY (12;71,€,0) — & < Ce(me — 11).
Since Y (s;71,£,0) € C(m1,S;H), we have:

[2 S CE(TQ —7'1).

Hence,
|¢(Tla€)_1/}(7-27§)| SCE(TQ_Tl)a OStSTl <TQSS-

On the other hand, if 7y > 72, then instead of (5.4) we define U(s) = U(s), s € (11, 9]
and repeating the same argument as above to obtain that

WJ(TQaf) _I/J(T17§)| S CE(Tl _T2)7 0 S t S T2 < T1 S S.

Hence we have proved the desired result. O

The following lemma is seen in Barbu [1, Lemma 6.1.3].
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Lemma 5.4, For 0 <t <7< S and £ € By,

Uelyq

Y(t, &) = inf {%/tT|Y(s;t,§,U)|2ds+%[|U|2ds+z/;(r,Y(r;t,§,U))}.

Lemma 5.5. For every (t,&) € [0, S] x B, we have:
—P(t) € DS (t, &)
Here, the superdifferential Dg_i/l is defined as follows (see [5]):

1/](t)£) — 1/J(t)£0) — (E - £0>P)

Df =3P ; Li .
fU(t, &) = {P € H; im sup Ty <0}
Proof. By the definition of v,
1 /3 — —
vl6) =066 <5 [ 1Vt 6. DF = Vs, 60,0 Pds
1 [ _ _
:i/t Y (558,61, U) = Y(s;t,&,0) [ ds
s
(55) + / (Y(S)t>£17U) —Y(S;t,fg,U),Y(S;t,fmﬁ)))dS,
t

where U € Uy,q is an optimal control to (P, ¢,) such that

19 — R -
vi&) =3 [ IWsteDPas+ g [ TP
t t

We have consider a Cauchy problem

ds
W(t) =& — &

aw _
(5.6) {JZ+AW—FWW&L&ﬂﬁW=0, t<s<S,

It is easily verified from (a.i), (a.ii), (f.i), (£ii), (f.iii) and (f.v) that (5.6) possesses a unique
weak solution W € H'(t,S;V')nC([t,S]; H)NL?(t,S;V) on [t,S]. Then we will verify that

|Y(5;t)£17U) - Y(S;t>£2)U) - W| S 0(|£1 - £2|)) Vs € [t)S])

where o(|& — &1])/|& — & = 0 as & — &. In fact, let Y (s;t,&,U) and Y (s;t,&2,U)
be denoted by Y; and Y3, respectively. First, we regard Y; — Yo — W as a solution of the
following problem:

dYi - Yy = W) —
iiﬁﬁ——hmm—n—W)

:F(Yl)—F(Y2)—FI(Y2)W, t<5§5,
(Y1 =Y> = W)(t) =0.
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Taking the scalar product with Y7 — Y5 — W, we obtain that

1d

575/ = Y2 = W)()” + (AL =Yz = W)(s), (V1 = Ya = W)(s))

:4AFﬂ%ﬂ%—mmwm—n—WmMm—%—Wm»
+d%wuww%—m»— '(¥2) YOV (5), (¥ — Y — TW)(s)).
From (a.ii), (f.iii), and (f.v),

Sl = Yo = W))P + 81l (¥: — Y5~ W)(s)]”
5
<3

2
(Y1 = Y2 = W)()[I* + C{IIYi (s)]I* + [IY2(s )||2+1)|(Y1—Y2—W)(8)|2

+[Yi(s) = Ya(s)P[IW (s)]1% }-
Therefore, integrating this inequality from ¢ to s, t < s < S, we get

1 2 o ° 2
3105 =% =M@ +5 [ 1105 =2 = W)o)Par

<f /ts(llyl(T)ll2 +V2(D* + DI = Yo = W)(7)|*dr

S
+m—mm&m[ummmﬁ
Since [|[W{|z2@,s;v) < Cl& — &| by the definition (5.6) of W,
M=% = WP + [ 10 - Y - W) |Pdr
t

S 2 2
< CIYs = Yilr.sja0 Wl spyele CIMOIHEDILIT < Olg — 6!
for any s € [t, S]. Therefore, from (5.5),
P(t, 1) — (¢, &)

1 [ s s
= 5/ Y1 —Y2|2ds+/ Y1 -V, —W,Yg)ds+/ (W, Y2)ds
t t t

s
<Ol —&)? +/ (W,Ys)ds
t

In addition, using the adjoint equation (4.1), the integral is written as

/S(W, Yy)ds = /S(W, Cfl—f ~ AP + F'(Ya(s))"P)ds

/d W, P) /<—%—ZW+F’(Y2(8))W,P>dS
= (& =&, P(t)).

Thus, we conclude that

1/J(t)£1) - 1/1(75;52) - (61 - 627 _P(t)) < O(|£2 - £1|) g

We can now prove the main result of the paper.
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Theorem 5.6. For0 <t < S and¢{ € D(A)NBy, ¥(-, ) is Lipschitz continuous in T € [t, S]
and (1, &) satisfies

Yr(r,) = 3 (PO = [Pe(P(r)) = P(O)P) + (A€ ~ F(©), P(r) + ]€l” =0
forae. T €[t,S). For0<t < S and £ € By, Dgz/;(t,f) # @; in fact,

_P(t) € D;ﬂ’(t;f),
where P(t) is given by (4.1).

Proof. Lemma 5.3 yields that, for £ € D(A) N By, ¥(+,€) is Lipschitz continuous on [t, S].
Hence, ¢(-,§) is differentiable almost everywhere in [t,S]. Let 7 € [t, S] be such a point.
Let U(:) be an optimal control of (P, ¢). From the definition of the value function,

1;[](7_ +¢&, E) - 1/1(7_7 6)

S
< / V(57 +2,6T) —Y(si7,6,0),Y(si7+ 2, £, T))ds
T+e

(5.7) _ {%/+ |Y(s;r,§,U)|2ds+%/T+8 |U(s)|2ds}.

Dividing (5.7) by €, we observe that
(T +¢,§) —¥(1,§)

9

g/s YT +e s Ug —YSTOD) 0 Vst +e,,T))ds
T+ES o 1 T4¢ o
+ /T+8(Z(s),Y(s;T+€,£,U))ds — Q_E/T Y (s;7,6,U)ds
1 T+€ .
5 [ s,

where Z is a solution of the Cauchy problem

(5.8) ds o

{d_Z +AZ-F(V(s660)Z=0, 7<s<5,
Z(1) = A& = F(§) = U(7).

We can easily verify from (a.i), (a.ii) and Lemma 2.1 that (5.8) possesses a unique weak
solution Z € H*(r,S; V') N C([r, S}; H) N L*(7, S;V) on [r,S]. Then we have:

lim 'QZ}(T +57§) — ¢(T7 5) <

e—0 g

s — oo L— 0
/ (Z(S),Y(S;T,f,U))ds—{§|€| +51U(7)] }

with the aid of the Lemma 5.7 below. Hence, by the use of (4.1) and (5.8), we conclude
that

b (r,8) <~ (2(r), P(r)) — 56> ~ ST

(5.9) =~ (A= F(§) - U(),P(r)) - 5 - %IU(T)IZ’-

1
2
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On the other hand, let U be the optimal control of (?TJFE,E). Then, setting

. U(s) if se€(r+¢,9],
() = Ult+e) if s€ (1,7 +¢],

we have:
(1 +,8)=(r,8)
%/ {'Y (57 +& UG = V(57 U)|2}ds
{% (7,6 U(T +¢))| ds+;/:+5 |U(T+8)|2d8}
> [ i e D) - Vim0 s Ui

1 T+e - ) 1 T+4¢€ - )
13 Y (s;7,&U(T +¢))| ds+§ |U(T +¢)|"ds ;.

By the similar arguments as above, we can observe that

lim 1/1(7' + 576) - 1/1(7', E)

e—0 3

Therefore,

Yr(r,) >~ (2(r), P(r) = 3 €l = 5[0
(510) =~ (A6~ F(&) ~T(r), P(r)) — 5

Hence, it follows from (5.9) and (5.10) that

j€1” - —IU( ).

S
> [ (209, Y (sim € Dyas - %{W + |U(r>|2}.

Y (1) + (A€ ~ F(€), P(r) ~ (T(r), P()) + 3 [T(r)P + € =0.

Using Lemma, 5.5 and U(1) = P¢(P(7)), we also verify that
1 1
¥r(r,€) = S (IP(NIP = [Be(P(M)I*) + (A = F(&), P(7)) + 51¢]* =0,
with —P(7) € Dfy(r,¢). O

Lemma 5.7.

S

(5.11) lim |V (s;7 +6,&U) = Y(s;1,6,U)|%ds = 0,
e—0 e
S — —
Y(s: —Y(s:
(512) lim | (SvT + 5557 U) (877—’57 U) _ Z|2d8 =0.
e—0 e g

a.e. T € [t, 5]
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Proof. Let Y (s;7 4+ ¢,£,U) and Y (s;7,&,U) be denoted by Y;,. and Y;. Arguing in a
similar way as in Lemma 5.1, we have:

Since Y (s;7,&,U) € C([r,S];H), we get (5.11). On the other hand, let W= LYT - Z.
We regard W as a solution of the problem:

Ay = B 2 FOD) _piy 7 rhecs<s,
(5.13) s YrtereD
W(T+5):£_ (T+€6,T,§, )_Z(T+5)

in the space (D(A))'. Taking the scalar product of the equation in (5.13) with A='W in H
and using F(Y,1.) — F(Yy) = [} F'(Y; +6(Y; — Yr4.))d(Yr1. — Y7), we obtain that

S SLAT T ()P 4 (AT (s), AT (s))
= ([ 0400 Yo )07 (), 4T ()
(P05 400 = Y200) = P09 Ja0209), A7 T )
From (£iv) and (£.v), it follows that
(614) [T () + ()P
< ST + Oul(Yrae )] + V- )N ()2

+Veie(s) = Yo (s)PN1Z ()17}

Integrating (5.14) from 7 + € to s, we obtain that

SIT@IE+1-3) [ TP

<O MV eselo) + T e

S
1 —
#Voese =Vl [ 1200} + 5T+

Therefore,

S

(5.15) |[W(s)I? + / W (0)[2do

+&

_C{|Yr+s Yelo(frse.si: 7-£)+||W(7'+8)||2} e Onl[Yrte (@) [+ |Y7(0))*do

for all s € [T +¢,S5]. Since ¢ € D(A), there exists e > 0 such that Y (s;7,£,U) € C([r,7 +
e]; V). Since A € L(V,V') and U(s) € C([r, S];H), we see that Y (s;7,£,U) € C([r,7 +
el; V') and
Yiie(r+e) =Y (T +¢)
€

— Z(1) in V' ase — 0.
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Moreover, since Z(s) € C([r, S]; H), we obtain also that

Z(t+e) = Z(1) inV  ase—0.
Thus, it follows from the definition (5.13) of W that

W +e)|2 =0 ase—0.

Since Y (s, 7;&;U) € C([r, S;H]), it is also clear that

Y = Yeield(riespay) =0 as e—=0.
Then, letting ¢ tend to zero in (5.15), we conclude (5.12). O

Concerning the optimal feedback controllers, we verify the following result.

Theorem 5.8. Every optimal control U of (P) is expressed as a function of the optimal
state Y by the feedback law

U(t) € Pc(—D;’L/}(t,?(t))), Vt € [0> S]

Proof. Let (Y,U) be any optimal pair of the problem (P). Then, by Lemma 5.4, we see
that, for every ¢ € (0,5), (Y,U) is also optimal for the problem

N o, 1[5
ﬁid§[|YWH@+§[|wds,

where Y'(U) is a solution of (E, y ). From Theorem 4.1, we have:
U(s) = Pe(P(s)), a.e. s € [t,S],

where P is a solution to the system (4.1) with Y =Y. Then, by Lemma 5.5, we conclude
that U(t) € Pc(—D{(t,Y (1)), Vt € [0, 5], as claimed. O
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