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COMPLEX ROTUNDITY OF MUSIELAK-ORLICZ SEQUENCE SPACES
EQUIPPED WITH THE ORLICZ NORM

LIFANG LIU
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ABSTRACT. The criteria for complex rotundity, complex local uniformly rotund points,
complex local uniform rotundity or complex uniform rotundity in complex Musielak-
Orlicz sequence spaces equipped with the Orlicz norm are given.

0. Introduction

In the recent years, many mathematicians have developed the investigations concerning
the geometric theory of complex Banach spaces, because its applications are irreplaceable
by the geometric theory of real Banach spaces. In 1967, E. Thorp and R. Whitley (see
[13]) first investigated the structure of complex extreme points. In 1975, J. Globevnik
(see [6]) investigated complex rotundity and complex uniform rotundity, and pointed out
that L1[0,1] is complex uniformly rotund (real space L1]0,1] is not even rotund). Many
mathematicians discussed complex convexity in general Banach spaces (see [1]-[2], [4]-[6],
[8], [10], [12], [14]). It is well known that into the class of Musielak-Orlicz spaces include a
lot of classical spaces such as Ly(1 < p < o0), Orlicz spaces ete.. At the end of 1980’s, H.
Sun and C. Wu discussed complex extreme points, complex rotundity and complex uniform
rotundity (see [15]-[19]) in Musielak-orlicz spaces. Next T. Wang introduced the concepts of
complex locally uniformly rotund points and complex local uniform rotundity, and obtained
criteria for them in Musielak-Orlicz spaces. But the above discussion in Musielak-Orlicz
spaces was proceeded in the case of the Luxemburg norm. For the Orlicz norm, only one
result on complex extreme points in Musielak-Orlicz sequence spaces was given by C. Wu
and H. Sun (see [15]) in 1991. In this paper, we discuss complex rotundity, complex locally
uniformly rotund points, complex local uniform rotundity and complex uniform rotundity
in Musielak-Orlicz sequence spaces equipped with the Orlicz norm. The conclusions that we
get seem to be clear and they are much different from the corresponding results concerning
the Luxemburg norm.

Let N denote the set of natural numbers, R, Ry and € denote the sets of real, nonnegative
real and complex numbers, respectively. Let (X, ||-||) be a complex Banach space and S(X)
be the unit sphere of X. Let [0, [° be the space of all real or complex sequences, respectively.

A point z in S(X) is called a complex extreme point if for any y € X with y # 0 there
holds max|yj<q ||z + Ay|| > 1. A complex Banach space X is called complex rotund (CR
for short) if every point « in S(X) is a complex extreme point. A point = in S(X) is called
a complex locally uniformly rotund point (CLUR point for short) if for any ¢ > 0 there
exists a positive constant § = §(x, ¢) such that for all y in X satisfying ||y|| > ¢, there holds
max|y <1 ||z + Ay|| > 14, A complex Banach space X is called complex locally uniformly
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rotund (CLUR for short) if every point z in S(X) is a CLUR point. A complex Banach
space X is called complex uniformly rotund (CUR for short) if for any ¢ > 0 there exists a
positive constant § = §(¢) such that max|yj<q ||z + Ay|| > 14 6 holds for all z in S(X) and
y in X satisfying ||y|| > e.

A mapping M = (M;)2; : R x N — [0, 400] is called a Musielak-Orlicz function if for
every ¢ € N, M; is an Orlicz function, i.e. M; : R — [0, 400] is even, convex, vanishing at
zero, left continuous on Ry, M;(oc) = 400 and not identical equal to zero and infinity.

For any Musielak-Orlicz M = (M;)%2,, we define the complementary function N =
(N;)2, of M by

N;(v) = sup{ulv| — M;(u)} (Vi €N, Vv € R).
u>0
N is also a Musielak-Orlicz function (see [3] and [11]).

For any ¢ € N, we denote by p_ ;(-) and p;(-) the left and right derivatives of M;(-) on R4,
denote by ¢_ () and ¢;(-) the left and right derivatives of N;(-) on Ry, respectively. It is
known that there holds the Young inequality |uv| < M;(u)+N;(v) and |uv| = M;(u)+N;(v)
if and only if p_ ;(u) < |v| < pi(u) or g— ;(v) < Ju| < gi(v) (Vi € N, Vu,v € R). For the
convenience, we write

(P o u)(i) = p-i(u(z)), (pou)(i) = pi(u(d)),
(g- 0 v)(1) = g-i(v(7)), (gov)(1) = qi(u(0))

for any u,v € [° and i € N. For every 7 in N, define

e(1) =sup{u > 0: M;(u) = 0},
E(i) =sup{u > 0: M;(u) < oo},
a(i) = sup{v > 0: N;(v) = 0},
A(i) = sup{v > 0: N;(v) < oo},
(po E)(1) =00, (p=ou)(i) = o0 for u> E(i),

(qo A)(i) = 00, (g— ow)(i) = oo for v > A(i).

Given a Musielak-Orlicz function M = (M;)2,, if we define the convex modular pps on [¢
by par(z) = > ;2 Mi(]x(4)]), then the linear space {z € I°: par(Az) < oo for some X > 0}
equipped with the Luxemburg norm

. x
lellar = int{3 > 0 par(5) < 1}
or with the Amemiya-Orlicz norm
1
213 = inf (1 + par(ka)),

is a complex Banach space (see [3], [9] and [11]). We denote it by Iy or 19;, respectively.

Note that if there exists M such that M;(u) = M(u) for any v € R and i € N, then
Iy becomes an Orlicz space (see [3], [9] and [11]). It is known that ||z]|S, = sup{{|z|,|y]) :
pn(y) < 1} which is called the Orlicz norm for any @ € ly7, where (|z|, |y|) = >:2, [2(¢)y(i)]
(see [3]).

The linear subspace hys of Iy defined by

hayr ={x = (2(2)) €1°: Vasodiyen Z M;(Ma(i)]) < oo}

ll)
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equipped with the Luxemburg norm or with the Orlicz norm is also a complex Banach
space. We denote it by hy; or hY,, respectively.

Let Ny be any infinite subset of N. We say that a Musielak-Orlicz function M satisfies
the condition 53% (M € 53% for short) if for any h > 1, there exist a > 0, k > 1,45 € N
and a nonnegative sequence (¢;) (¢ € Ny, > ig) with ZieNo,i>io ¢; < oo such that

J\/L-(hu) < kA/L-(u) +c;

holds whenever ¢ € Ny, i > ip and M;(u) <a. If M € 5;“, we write simply M € .
For any z € 1§, we define

|2 (1)

En(z) =inf{A > 0: Jien > M |

i=ix
Ery =inf{k > 0:pn(polkz|) > 1},
B = suplk > 0: pu(po [ke) < 1.

) < oo},

It is known that |[2||%, = £(1 4+ pa(ka)) if and only if kX <k < kX* and 0 < k < oo (see
[3])-

The following results will play a leading role in this paper.

Lemma 0.1 (see [19], Proposition 5.17). Let i be a complez number satisfying i = —1.
For any € > 0 there exists a positive constant § € (0,%) such that if u,v € € with

19 .
ol > g macu + ol

then

1-2¢6
ful < == _lu+jol.
J

where

Z|u+jv|:: |u 4o+ |u — v + |u+iv] + |u —iv|,
J

Ju+ o], fu —dv|}.

max |u + jv| := max{|u + v|,|u — v
J

Lemma 0.2 (see [15], Theorem 1). Let 0 # « € 15,.

(1) 1 px(Axs,) > 1, then the only form for 2% is [ = H(L+ par(ka)),

(2) If pn(Axs,) < 1, then ||z]|%, = (Jz|, A) and if pn(Axs,) < 1, then it is the only
form for ||z||S;, where Sy = {i € N : x(i) # 0} and xs, is the characteristic function on
Sy

1. Results

Theorem 1.1. The space IS, is complez rotund if and only if e(j) > 0 implies

pn(Axagy) <1 or pn(Axagy) =1 and pa(g- o Axngjy) = oc.

Proof. Necessity. Let first e(j) > 0 and py(Axa\gj3) > 1. We can find = € S(1,) with
Se={i € N:i# j}. By Lemma 0.2, there exists k& > 0 such that |z]|3, = +(1 + pum(ka)).
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But k|2(j)| = 0 < e(j). So x is not a complex extreme point (see Theorem 2 in [15]), i.e. if
19, is CR and e(j) > 0, then

(1) P (Axagy) < 1.

Assume that e(j) > 0, py(Axn ) = 1 and par(g— o Axngy3) < oo. Define z with
coordinates

2(i) = (g= 0 A)(i) for N\{j} and 2(j) = 0.

Then = € [3,. From the Young inequality, we have

2% < 1+ pa(z) = pnv(Axagsy) + pmla— o Axagy) = (2l Axangy) < llell-

So, [|z]|% = 1 + pm(x) and 1 € K(z). But 2(j) = 0 < ¢(j). Hence x is not a complex
extreme point, which means that if [9, is CR and e(j) > 0, then

(2) pN(Axagy) F 1 or pa(g— o Axagjy) = 0.

So the necessity is proved, which follows by inequalities (1) and (2).

Sufficiency. Let z € S(19,) and ||z||%, = %(1 + pa(ka)). If there exists a natural number
j (without loss of generality we assume that j = 1) such that 0 < k|z(1)] < e(1), then
there exists a positive constant & such that the inequality k(1 +n)|z(1)| < (1) holds for all
0 <n<e. Then

1< pn(po (M +n)kle]) = pn(po (T +nklzlxagy) < pv(Axagy) < 1.

So pn(Axn\f1y) = Land po(14+n)k|z])(7) = A(i) (i € N\{1}). Since n € (0,1) is arbitrary
and p;(+) is right continuous, we get po k|z|(i) = A(¢) (i € N\{1}). Therefore,

00 = par(g— 0 Axa1y) = par(a— o (p o klz[)xayj1y)
= pm(Elzlxnq1y) = pm(br) =k — 1,

which is a contradiction. This completes the proof. O

Theorem 1.2. The following assertions are equivalent:
(1) 1§, 1s CUR,
(2) 13, is CLUR,
(8) 18, is CR and if py(A) > 1, then M € §5.

Proof.  The implications (1) = (2) and (2) =" 1Y, is CR” are trivial. Assume that
19, is CLUR and pn(A) > 1 but M ¢ 6.
Take 7o large enough such that pn(Ax{i<i,y) > 1. Take x with coordinates

z(1) > 0 for 1 <i < iy and x() =0 for i > iy

such that « € S(I9;). By Lemma 0.2, there exists a constant k > 1 such that ||z]|}, =
%(1 +pm(ka)). Since M ¢ &, there exists a real sequence z € 19, such that py(z) < 1 and
Em(z) =1 (see [7]). Define y,, with

z(i)

yn(i):()forlSignand1n(i):Tf0ri>n(VnGN).
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Then for n > 1p, there holds

1
2 + Ay |5 < Z (1 +pm(k(e+Ayn))) = (14 par(kexqicny) + pr(2X (im0} )

= H‘L”?W + EpM(ZX{i>n}) —+1

But ||lyx[|% > + - €m(2) = £ (Vn € N). This means that  is not a CLUR point. So the
implication (2) = (3) is proved.

(8) = (1). Otherwise, there exist two sequences (z,,) and (y,,) in IS, satisfying ||2,[|}; =
1 and [ly,]|9; > > 0, but

1
|n + tyn|| <1+ = (n € N, [t < 1).
n

If
By = {i € N: lya()] 2 2 maxclan (i) + tya (i)},

then by Lemma 0.1, for ¢« € E,, there holds
|zn ()] < (1 —26) le‘n )+ tyn(i)]-

Similarly, we can prove that [[ynxa\ &, |3 < %6 and |ynx £,

maining part of the proof we discuss three cases.

L H(i21|xn +tyn|)HO = <izf |$n+tyn s 4

% > 5 (n > 3). In the re-

} (n € N). Then for n large enough, there

holds
1= 2allSs < (l2al, A) = (2al, Axag, ) + (al, Axs,)
—<%Z|$"+ty"" ‘n>-|-(1—25)<%Z|xn+tyn\7AXEn>
i 1
= (Y b+ 1], 4) —zaéz [0 + tyal, Axs, )
t
(3) Si-4(1+1)725||yn>w 13 <1+—*°5

This is a contradiction.

IL (3 S0 len +tyaDlS = 72 (14 par(5 4 len +tyal)) (n € N) and ky — co. Then

for n large enough, there holds

1
1= |leallf < k. —(I+ pm(knznxng,) + pu(knznxe,))

1 En kn
k—(1+ﬂM 1 ZL’%+tyn\XN\En)+(1—25)pM(ZZIxn+tyn\XEn))
2§ ko 26
§H(ZZ|%+tyn|)H%f—kf(l+PM(zZ|$n+fyn\XEn))+k—
+ n
2§ e 20
@ =<l letznnuM 20y, o + 3 <1+__25 st <L

which is a contradiction.

L |[(3 35, loa + tyn DS, = ]g—n(l —&—pM(kT” Yoilen 4+ tynl)) (n € N) and kyp — k < oc.



582 LIFANG 11U

If pn(A) < 1, the proof can be proceeded in the same way as the proof in case I.
If pv(A) > 1, then M € 3. So, there exist D > 1 and a > 0, ig € N and a nonnegative
(¢;) (i > ig) with Zi>io c < % such that

sequence
Nfi(i—:u) < DMi(u) + ¢; (i > iv, Mi(u) < a).
Take 6 > 0 such that the sequence x with coordinates
z(1) =6 for 1 <1< ipand z(:) =0 for ¢ > g

satisfies |[z||9, < &. Then for any z € I, there holds |[zx 7|3, < §. where F = {i € N :
1< <ig,|z(i)| < 6}. Define

F,={ieN:1<i<igand |y,(i)] > 8 ori>ip and |y, ()] > %mgxk}cn(i) + tyn(4)]}-

Then E,\F, = {i: 1 <@ <ig and |y,(i)| < 0} and |[ynxp,\F, 1% < o lynxr, IS > & for
any n > 3. By (4), there holds

1 26 k
a8 < Z - T ou(=2 i+ U )
) el <1+ = ouy T e+t
If {i: 1 <i<ig,e(i) =0} #0, denote d; = min{M;(£2): 1 <i <ig,e(i) = 0} and
if {i:1<i<ig,e(i) >0} #0, denotedz—mln{ﬂf(e(l)) 1<i<ig,e(i) >0} Itis

obvious that dy,dy > 0. Notice that F, # () for any n € N. Define

N1 ={neN: M (kn|lyn(in)|) > a for some i,, € F,, },

Ny ={neN: M (k,ly.(i,)]) < a (Vi, € F,) and i,, > ig for some i,, € F,},
Ny ={neN:i, <iy (Vi, € F,) and e(i,,) = 0 for some i, € Fy},
Nye={neN:i, <igande(i,) >0 (Vi, € F,)}.

If n € Ny, then there exists i, € F,, such that M;_(k,|yn(in)]) > a. So

(6) pu( Z | + tyn|xF,) > Mi, (kalya(in)]) > a.

£

If n € Ny, then from ||y x £, || > %HynXFn 1%, > i3 (see [3]), we have pM( YnXF,) > 1.
For n large enough, we get

12 24
L< par(ynxr,) < pu(pknynxr, )

ck
1
< Dpni(knyuxr,) + Y ci < Dpns(kuynxr,) + 5
1€ Fy, -
Therefore,
kn n
(7) put(knynxr,) > 555

If n € N3, then there exists ip, € F, satisfying ¢ < iy and e(i,) = 0. So

kn ko
(8) pu( ; |7+ tynlxF,) 2 Mi, (knf) 2 Mi, () 2 di.
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Consider the case n € Ny. Without loss of generality we assume that Ny is an infinite
subset of N and i,, € F,, (n € Ny). For the convenience, we assume that Ny = N. Write
i = = 1,. Now, we prove that

1

(9) liminf k|2, (i )] > e(i).
n—r00
From
11 1 o
Lt+—>— 1+pM Z [n + tyal)) 2 7= (14 paa (knen)) = flanllfy = 1.

we have

n—oo K

lim k—(l + py(knay,)) = 1.

Let ||z, |9 = ,%(1 + par(hnay)) for some hy, > 0 (we write hy, = oo if ||:z:n\|?U = (|zn|, A)).
If (9) does not hold, then there exists i > 0 such that (1 + n)k |, (2 )| < e(z'l). Since
19, is CR, so x, is a complex extreme point (n € N). Therefore e(i') < hy|x,(i')]. Thus

L > i(1 + pm(knan)) — hi(l + pm(hnan))

n n

o
=3

1 |
= ~ g (el k)

T fn)kn(l - 1;77(%((1 +n)kazn) — prr(kaza)) + par((L+0)kne,))
- (1 +7’/n)kn(1 - L inknlzal,p o (14 nkaleal) + par(1+m)knta)
= o L oo (L nkaleal)

In virtue of k, — k < 00, we get pn(p o (1 4+ n)kn|zn]) = 1. From
1> pn(Axangy) 2 en(po (L4 n)kalzalxagiry) = pn(p o (14 n)knlzn]) = 1

we get pn(Axy(iy) = 1 and (po (1 +n)kalzal)(i) — A(i) (i € N\{i'}). Moreover,

1 1

Z L4 par((1 4 n)knn)).

EE
Therefore
par((1+mknwn) > prr((1+0)knraXan iy) = pulg- 0 Axypn (i1y) = 00
and )
prr((1+mknen) < (14 —)kn(1+n) =1 = k(1 +n) — 1.
This is a contradiction. So, by (9) we have for n la,rge enough,

_25 )ZA/[i'(e

(10) pum(— Z\Tn+fyn|XF) > My (=

) > ds.

Combining (5), (6), (7), (8), (10) and N = U{_,N;, we get for n large enough

1 24 1
1<14 — — —min{a,dy,ds, —
n  kp 2

1
D}<7
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which is a contradiction finishing the proof.
Theorem 1.3. If @ € S(IY,), then @ is a CLUR point if and only if for k > 0 satis-

fying ||2|%, = +(1 + par(ka)) there holds
(1) {i eN:k|z()| <e(i)} =0,
(2) If there emist s € (0,1) and an infinite subset Ny of N satisfying PM(lkaSXNo) < o0,

then M € 53%.
Proof. Necessity. The implications that "z is a CLUR point” = “z is a complex ex-

treme point” and " is a complex extreme point” = (1) are trivial.
Assume now that (2) does not hold, i.e. there exist s € (0,1) and an infinite subset Ny

< oo and M ¢ 5?“. So there exists a sequence z € [9, with S, = N

of N with par( £ x,)
satisfying pas(z) < 1 and &p(2) = 1 (see [7]). Define y,, with coordinates

yn(i) = ~2(i) (i € Noyi >n), ya(i) =0 (i < n)

k

Then
1
e+ tynll§ < £ (1+ parlkle + tyn))
1
< E(l + pa(ka) + par(kax (isny) + par(52X {i>n})
1 kx ,
<1+ E(‘(l — S)pM(EX{Dn}) +spu (2xqiny)) = 1.

But HynH?W > 7 Envl(z) = 7, a contradiction.
Sufficiency. Otherwise, there exists a sequence (y,,) in 19, with [|y,[|%; > >0 (n € N)
satisfying
1
o+ tyn S <1+ ~ (neN, | <1).

By = {i € Nt ya(i)] 2 5 maxa(i) + tya(i)[}.
(n>3). Ifi € E,,

wlo

Denote

Then HynXT\En”(?)w < %(1 + %) < % (n > 3). Therefore ||y, XE, ”(7]\4 >
. 1 . .
e(@)] < (1 -20) > 2 (i) + tyn (i),
1

where § € (0, 1). The remaining part of the proof will be discussed in three cases.
LI, e+t = |z + tyn], A) (n € N). Then in virtue of (1) for n large

1 26¢
L= el <1 28l < o

then

enough, we conclude that

This is a contradiction.
1I. H(i Soole +tya DS, = ﬁ(l + pM(% Sl 4+ tyn])) (n € N) and ky, — oo. In virtue
of (2) for n large enough, we obtain
1 26 k 1 26
— ||| - == on —
1=|lzf3 <1+ - kan( 7 zt: |z +tynlxe,) <1+ - kan(knynXEn)
26 26¢

<1+£_25||1/nXE 1+ = <1-—,
= n . Lo [ kn_ 3
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which is a contradiction.
L [|(5 3, e+ tyn DS = kIT(l—&—pM(% Yo le+tyn])) (n € N)and ky, — k < oo. From

1 1 1 kn
1+;2HKZ§:M+¢MDH4:E%1+0M@Z§:W+¢%D)
t n t
1
> (14 pulkne)) 2 )% =1,

n

taking n — oo, we get 1 = ||z]|3; = (1 + pum(kx)).
III-1. inf, PM(lkagXEn) =a > 0. Then in virtue of (2), we get for n large enough,
1 26 kx 1 26 26a

O _— — e — -
el <145 = oy pun) <14 - Ca<1- 20

which is a contradiction.

I11-2. infan(IkTréXpn) = 0. Passing to a subsequence of (E,) if necessary we can
assume that

i (L) < oo
mﬂpM'1_5XEn .

Denote E = U2, Ey,. Then PM(%XE) < 00. By the assumption, we have M € §F. The
remaining part of the proof is similar to the proof of case IIl in Theorem 1.2, so we omit it
here. The proof is finished. a
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