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Abstract. We introduce several restricted versions of Gentzen's structural and logi-

cal rules, and investigate cut-elimination property, theorem-equivalence, Ackermann's

property, decidability and variable sharing property among implicational sequent cal-

culi having the rules. These results include new cut-elimination theorems for the

implicational fragments of the following: relevant logic E of entailment, EW, strict

implication S4, S4W and full Lambek logic FL. Next we give Kripke type seman-

tics for the implicational fragments of EW, S4W and related logics (e.g., BCK, BCI

and BB0I). Further we prove the completeness theorems for the semantics by using

Ishihara's canonical model construction method.

1. Introduction.

Examples of substructural logics are as follows. Relevant logics R, E, T, RW, EW, TW

and strict implication S4 are studied in the area of philosophical logic and of arti�cial

intelligence. BCK-logic is closely related to the theory of BCK-algebras in mathematics.

Linear logics are discussed in computer science. Lambek calculi are important in linguistics.

(See, e.g., [4], [1]).

These substructural logics are de�ned by Gentzen-type sequent calculi in which ap-

plications of structural rules are restricted. These structural rules alone correspond to

Hilbert-style axiom schemes which consist of the implication connective. Thus the essen-

tial parts of these logics are their implicational fragments, which are called implicational

substructural logics. Hence these implicational substructural logics are very important for

essential discussion.

Examples of these implicational substructural logics are as follows. BCIW(or R!), E!,

BB0IW(or T!), BCK, BCI(or R!�W), E!�W, BB0I(or T!�W), S4! or FL! is the

implicational fragment of R, E, T, BCK-logic, linear logic, EW, TW, S4 or FL(full Lambek

logic) respectively. In the area of relevant logic, R!, E!, T!, R!�W, E!�W, T!�W,

S4! are important in formalizing "relevant (or strict) implication" in pure human reasoning.

To evaluate the notion "relevant implication", some interesting properties such as variable

sharing property and Ackermann's property were proposed. Furthermore, studies of decision

problem and of other problems for these logics are still active. For example, the decision

problem for T! remains open, and P�W problem for T!�W has been studied. (See, e.g.,

[1], [4]). BCK and BCI are important in type-assignment to �-term and in combinatory
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logic. Typability for BCK �-term and BCI �-term, and some results for uniquness of normal

proof in BCK are interesting results. Also, proof �nding algorithms for many implicational

substructural logics are studied in theoretical computer science. (See, e.g., [6], [2]).

To discuss or to solve some of the properties or the problems, various sequent calculi

and di�erent de�nitions of semantics have been proposed for these logics. In particular,

various kinds of sequent calculi with cut-elimination property have been introduced. The

calculi with the property are useful to show the fundamental properties such as decidability,

variable sharing property and interpolation property.

This paper is intended to investigate the cut-elimination theorems (for new sequent

calculi) and a canonical model construction method (with respect to Kripke-type semantics)

for the implicational substructural logics mentioned above. As a result, we can derive

Ackermann's property, decidability, variable sharing property and completeness result for

many logics.

Prior to the precise discussion, we introduce our language. Formulas are constructed

from propositional variables and !(implication). Small letters p; q; ::: are used for proposi-

tional variables, Greek small letters �; �; ::: are used for formulas, and Greek capital letters

�;�; ::: are used for �nite (possibly empty) sequences of formulas. A sequent is an expres-

sion of the form �) �. If a formula � is of the form �1!�2, then � is said to be an

implication and denoted by �!� . If � is a (possibly empty) sequence of implications, then

� is often denoted by
�!
�. Moreover,

����!
�) � means that � must be an implication if � is

empty. If a sequent S is provable in a system L, then we write L ` S.

In this paper, the notion of "cut-elimination theorem" is precisely de�ned as follows.

De�nition. (Admissible Rule, Derivable Rule and Cut-Elimination Theorem)

A rule R is said to be admissible in a system L if the following condition is satis�ed: for

any instance
S1 S2
S

of R, if L ` Si for any i 2 f1; 2g, then L ` S. Moreover, R is said to be derivable in L if

there is a derivation from S1 and S2 to S in L. Note that derivability implies

admissibility. By "the cut-elimination theorem for a system L", we mean that the rule cut:

�) � �; �;�) �

�;�;�) �
(cut)

(or a slight modi�cation of this form) is admissible in the cut-free part of L.

The cut-elimination theorem for a system L says that the rule cut in L is redundant in L

(i.e., for any sequent S in L, if L ` S, then S is provable in L without the rule cut).

We give a precise de�nition of the system FL!. The initial sequents of FL! are of the

form �) �: The rules of inferences of FL! are as follows.

�) � �; �;�) �

�;�;�) �
(cut)

�) � �; �;�) 


�; �!�;�;�) 

(!left)

�; �) �

�) �!�
(!right)

It is known that FL!+ (ex000), FL!+ (ex000)+ (we00), FL!+ (ex000)+ (co00) or

FL!+ (ex000)+ (we00)+ (co00) (LJ!) is a system for BCI(R!�W), BCK, BCIW(R!) or

H! respectively, where (ex000), (we00) and (co00) are usual structural rules:

�; �; �;�) 


�; �; �;�) 

(ex000)

�;�) 


�; �;�) 

(we00)

�; �; �;�) 


�; �;�) 
:
(co00)
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The cut-elimination theorems hold for the systems de�ned above.

In [10], Kashima and Kamide introduced systems GS4!,GE!,GS4!�W and GE!�W

for logics S4!, E!, S4!�W and E!�W respectively, which are de�ned by the following:

GS4! = FL!+ (ex110)+ (co00)+ (we01), GE! = GS4!� (we01), GS4!�W = GS4!�

(co00) and GE!�W = GS4!�W� (we01) where the rules (ex110) and (we01) are of the

forms:
�;�!� ;

�!
� ;�) 


�;
�!
� ;�!� ;�) 


(ex110)
�;
����!
�) 


�; �;
����!
�) 
:

(we01)

Further, Kashima and Kamide showed the following (except for the theorem of FL!).

Theorem 1. (Cut-Elimination Theorem) The cut-elimination theorems hold for

GS4!, GE!, GS4!�W, GE! �W and FL!.

By using the theorems, we can get the known fact: E!�W � BCI(R!�W), E!�W �

S4!�W � BCK, E!�W � E! � BCIW(R!), S4!�W � S4! � H! where � denotes

the proper inclusion between the sets of provable formulas.

Also Kashima and Kamide showed that the cut-elimination theorems hold for the fol-

lowing systems: FL!+ (we11), FL!+ (we01), FL!+ (ex110)+ (we11), FL!+ (ex110)+

(co10), FL!+ (ex110)+ (co10)+ (we11), FL!+ (ex110)+ (co10)+ (we01) and FL!+ (ex110)+

(co00)+ (we11) where (we11) and (co10) are

�;
����!
�) 


�;�!� ;
����!
�) 


(we11) �;�!� ;�!� ;�) 


�;�!� ;�) 
:
(co10)

The present paper is organized as follows.

In Sections 2 and 3, we introduce new restriction
�!
� for the systems de�ned above. The

advantages of introducing
�!
� are as follows: (1) we can formalize many of new cut-free

systems for S4!, E! and related logics, (2) the proofs of cut-elimination theorems for

some systems with
�!
� are simpler than those for the systems de�ned above, and (3) we can

derive Ackermann's property for some systems (we can �nd new logics having Ackermann's

property). Of course we can also derive decidability and variable sharing property for some

systems with
�!
�. The results in the sections 2 and 3 are based on the author's dissertation

[9].

In Section 4, we give Kripke type semantics for contraction-less logics such as E!�W,

T!�W, S4!�W, BCI and BCK. Further we prove the completeness theorems for the

semantics by using Ishihara's canonical model construction method.

2. Cut-elimination theorems.

In this section, we introduce new sequent systems LS4!, LE!, LS4!�W, LE!�W and

LFL!, and show theorem equivalence between cut-free parts of these systems and that of

GS4!, GE!, GS4!�W, GE!�W and FL! respectively. As a result, the cut-elimination

theorems hold for these new systems. Hence the systems LS4!, LE!, LS4!�W, LE!�W

and LFL! are another formulations of the systems for S4!, E!, S4!�W, E!�W and

FL! respectively. Moreover we show that there are many of cut-free systems for the logics.

Initial sequents of LFL! are of the form: �) �: The rules of inferences of LFL! are

as follows:
�) �

�!
� ; �;�) 


�!
� ;�;�) 
;

(cut*)
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�!
� ; �) �
�!
� ) �!�;

(!right*)
�) �

�!
� ; �;�) 


�!
� ; �!�;�;�) 
:

(!left*)

We consider the following structural rules:

�!
� ;�!� ;

�!
� ;�) 


�!
� ;

�!
� ;�!� ;�) 
;

(ex110*)

�!
� ;

����!
�) 


�!
� ; �;

����!
�) 
;

(we01*)

�!
� ; �; �;�) 

�!
� ; �;�) 
:

(co00*)

We de�ne the following systems: LS4! = LFL!+ (ex110�)+ (co00�)+ (we01�), LE! =

LS4!� (we01�), LS4!�W = LS4!� (co00�) and LE!�W = LE!� (co00�).

Obviously, LS4! �GS4!, LE! �GE!, LS4!�W�GS4!�W, LE!�W�GE!�W,

and LFL! � FL! ( � denotes the inclusion between the sets of provable sequents ). Next,

we show that the cut-free part of LS4!, LE!, LS4!�W, LE!�W or LFL!is theorem

equivalent to that of GS4!, GE!, GS4!�W, GE!�W or FL! respectively.

Before the proof, we must prove the following lemma.

Lemma 2. (Key Lemma). Let L = LS4!, LE!, LS4!�W, LE!�W or LFL. If there

is a cut-free proof P of �;	)  in L and if 	)  is an implication, then there are a

sequence �� and a proof P� which satisfy the following conditions. (1) P� is a cut-free

proof of ��;	)  in L. (2) �� is a (possibly empty) sequence of implications. (3) The

rule of inference
�!
� ;��;

����!
�) �

�!
� ;�;

����!
�) �

(D�
�

�
)

is cut-free derivable in L. (The sequence �, which is a component of the last sequent of

the given proof P , will be called a redex.)

PROOF The proof of the theorem is similar to that of the key lemma in [10]. Q.E.D.

Remark that this lemma does not hold for systems with (ex000) or (we00).

We can now prove the following theorem.

Theorem 3. (Cut-Free Equivalence). Let L� be the sequent system LS4! (LE!,

LS4!�W, LE!�W or LFL!) without (cut*), and L the system GS4! (GE!,

GS4!�W, GE!�W or FL! respectively) without (cut). Then L� is theorem equivalent

to L . That is, we have the following. L� ` �) � if and only if L ` �) �.

PROOF ()) Obvious. (() By induction on the proof P of �) � in L. We distinguish

cases according to the last inference in P . We show only the following case.

(Case (!left)): The last inference of P is

�) � �; �;�) 


�; �!�;�;�) 
:
(!left)

We show that (!left) is admissible in L�. We assume that �) � and �; �;�) 
 are

provable in L� and these proofs are of the forms

.... Q

�) �;

.... R

�; �;�) 
:
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We apply the Key Lemma 2 to R in which the redex is �; and we get a sequence �� of

implications, a proof R� and derivability of the rule D�
�

�
. Then ��; �;�) 
 is provable

in L� and
.... Q

�) �

.... R
�

��; �;�) 


��; �!�;�;�) 

(!left*)

�; �!�;�;�) 
:
(D�

�

�
)

Q.E.D.

We can prove the following cut-elimination theorems.

Theorem 4. (Cut-Elimination Theorem). The cut elimination theorems hold for

LS4!, LE!, LS4!�W, LE!�W and LFL!. That is, the rule (cut*) is admissible in

cut-free LS4!, LE!, LS4!�W, LE!�W and LFL!.

PROOF By using the fact that (cut*) is an instance of (cut), and using Theorem 1 (cut

elimination theorem for GS4! and its subsystems) and Theorem 3 (cut-free equivalence).

Q.E.D.

Moreover we note the following facts. Let IS4! (IE!, IS4!�W or IE!�W) be an ar-

bitrary system having an arbitrary combination of the restriction
�!
� and satisfying LS4! �

IS4! � GS4! ( LE! � IE! � GE!, LS4!�W � IS4!�W � GS4!�W or LE!�W �

IE!�W � GE!�W respectively) where � denotes the inclusion between the sets of prov-

able sequents. The cut elimination theorems hold for IS4!, IE!, IS4!�W and IE!�W.

Further, we consider the system KE! = FL!� (!right)+ (!right*)+ (ex110)+ (co00).

We introduce a rule (mix) which is of the form

�) � 	)  

	?
)  

(mix)

where 	? is a sequence of formulas obtained from 	 by replacing arbitrary occurrences of

� by �. By using (mix), we can directly prove the cut-elimination theorem for KE!, which

is proved without the key lemma. The proof is simple.

Finally, we mention traditional sequent systems for S4!. Kripke's system for S4! is

FL!� (!right)+ (!right*)+ (ex000)+ (co00)+ (we00), Anderson and Belnap's system for

S4! is de�ned by using \merge operation" and Do�sen's system for S4! is similar to GS4!
in the present paper. As for the details of the systems, see [10] [1].

3. Applications of the cut-elimination theorems.

We consider the following new structural rules:

�!
� ;

����!
�) 


�!
� ;�!� ;

����!
�) 
;

(we11*)

�!
� ;�!� ;�!� ;�) 

�!
� ;�!� ;�) 
:

(co10*)

We de�ne the following systems: LFLw00! = LFL!+ (we11�), LFLw0! = LFL!+

(we01�), LFLe00! = LFL!+ (ex110�) = LE!�W, LFLe00w00! = LFL!+ (ex110�)+ (we11�),

LFLe00w0! = LFL!+ (ex110�)+ (we01�) = LS4!�W, LFLe00c0! = LFL!+ (ex110�)+

(co10�), LFLe00c! = LFL!+ (ex110�)+ (co00�) = LE!, LFLe00c0w00! = LFL!+ (ex110�)+

(co10�)+ (we11�), LFLe00c0w0! = LFL!+ (ex110�)+ (co10�)+ (we01�), LFLe00cw00! = LFL!+

(ex110�)+ (co00�)+ (we11�) and LFLe00cw0! = LFL!+ (ex110�)+ (co00�)+ (we01�) = LS4!.

We have the following new results.
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Theorem 5. (Cut-Elimination Theorem). The cut elimination theorem holds for

LFLx! (x 2 fnull, w00; w0; e00; e00w00; e00w0; e00c0; e00c; e00c0w00; e00c0w0; e00cw00; e00cw0g).

By using Theorem 5, we can show the following.

Theorem 6. (Ackermann's Property). For any propositional variable p and formulas

� and �, the sequent p) �!� is not provable in LFLx! (x 2 fnull;w00; e00; e00w00, e00c0,

e00c, e00c0w00, e00cw00g).

Ackermann's property means that a non-necessitive proposition can never entail a necessi-

tive one. This avoids fallacies of modality. (As for the details of the property, see [1].) The

property does not hold for the other systems de�ned above. A counterexample for LFLw0
!

is p) q!q where p and q are propositional variables. (Failure of Ackermann's property for

R! is well-known.) Ackermann's property for E! is well-known, but the syntactical proof

is new and the results for the systems with restricted weakening are also new interesting

results. In the proof, the restriction
�!
� makes critical role.

Theorem 7. (Decidability and Variable Sharing Property). (1) LFLx! (x2fnull;

w00;w0, e00; e00w00, e00w0g) is decidable. (2) If �) � is provable in LFLx! (x 2 fnull; e00;

e00c0, e00cg), then there exists some propositional variable p that occur in both � and �.

We do not know the (direct)proofs of decidability for the other systems. The variable

sharing property does not hold for the other systems de�ned above. A counterexample for

LFLw00
!

is p!p) q!q where p and q are distinct propositional variables. Further we note

that there are logics without the variable sharing property and with Ackermann's property.

4. A canonical model construction.

In this section, we discuss Kripke type semantics for the implicational logics: E!�W,

S4!�W, BCK, R!�W(or BCI), T!�W(or BB0I) and E5!�W. The semantic framework

is due to Do�sen [3] and Ono and Komori [11]. The semantics for the logics (except for

S4!�W and E5!�W) are already discussed by Do�sen [3]. Ishihara [8] proposed that a

canonical model construction method for propositional intuitionistic substructural logics

including Corsi's logic F, FL-family and positive relevant logics. We apply the method to

the implicational logics above. The present paper's result is a slight re�nment of Do�sen [3],

Ishihara [7] (the manuscript shows completeness for logic BIs equivalent to the implicational

fragment of Lambek calculus L) and Ono [12] (the manuscript shows completeness for the

logic BB0I).

Traditionally, operational semantics for the logics E!, S4!, R! and T! (and E5!)

were given by Urquhart [13] in 1972 (the semantics for E5! is due to Fine [5]). These

results give us good semantics in the sense that these have optimal structures. But each

of the semantics has di�erent structure and canonical model construction method. Our

motivation is to give a uniform framework with a common structure and a common way of

constructing canonical model. This succseeds for the contraction-less logics but not yet for

the logics with contraction.

First, we introduce Hilbert-style systems for the logics (see [1][10][5]). E5!�W is the

contraction-less part of the logic E5I in [5]. A Hilbert-style system H which consists of

axiom schemes A1; :::; An and rules R1; :::; Rm will be denoted by hA1; :::; An; R1; :::; Rmi.

We adopt the convention of association to the right for omitting parentheses in the following.

Our system E!�W is hB,B0,I,mp,mp2i where the axiom schemes B, B0 and I are B:

(�!
)!(�!�)!�!
, B0: (�!�)!(�!
)!�!
, I: �!�, and the rules of inferences

(mp) and (mp2) are
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� �!�

�;
(mp) � �!�!


�!
: (mp2)

This axiomatization hB,B0,I,mp,mp2i of E!�W is theorem equivalent to the standard ax-

iomatization hB,C0,I,mpi of E!�W in [1] where C0 is (�!
�!
�!
)!

�!
�!�!
.

Further, we consider the following axiom schemes:

C: (�!�!
)!�!�!
, C00: (�!�!�!
 )!�!�!�!
 , K: �!�!� and F: �!�!�.

We can de�ne the following logics: S4!�W= E!�W+F, T!�W(or BB0I) = E!�W�

(mp2), R!�W(or BCI) = E!�W+C, BCK = S4!� W+K and E5!�W = E!�W+C00.

The axiomatization hB,B0,I,F,mp,mp2i of S4!�W is theorem equivalent to the axiom-

atization hB,C0,I,K0,mpi of S4!�W where K0 is
�!
�!
!

�!
� .

A Kripke frame for E!�W is a structure hM;�; �; "i satisfying the following conditions:

(1) hM;�i is a poset, (2) � is a binary operation on M and " 2M such that (C1) " � x = x

for all x 2M , (C2) x �" � x for all x 2M , (C3) x � y implies x �z � y �z for all x; y; z 2M ,

(C4) x � (y � z) � (x � y) � z for all x; y; z 2M , (C5) x � (y � z) � (y � x) � z for all x; y; z 2M .

A valuation j= on a Kripke frame hM;�; �; "i for E!�W is a mapping which assigns a

subset of M , to each propositional variables, such that x � y and x 2j= (p) imply y 2j= (p)

for all propositional variable p and all x; y 2 M . We will write x j= p for x 2j= (p). Each

valuation j= can be extended to a mapping from the set of all formulas to the power set of

M by x j= �!� if and only if y j= � implies x � y j= � for all y 2M .

By using the frame condition (C3), we can show the following.

Lemma 8. Let j= be a valuation on a Kripke frame hM;�; �; "i for E!�W and x; y 2M .

Then, x � y and x j= � imply y j= � for all formula �.

A Kripke model is a structure hM;�; �; "; j=i such that (1) hM;�; �; "i is a Kripke frame,

(2) j= is a valuation on hM;�; �; "i. A formula � is true in a Kripke model hM;�; �; "; j=i

if " j= �, and valid in a Kripke frame hM;�; �; "i if it is true for any valuation j= on the

Kripke frame.

By using Lemma 8 and the frame conditions (C1){(C5), we can show the following.

Theorem 9. (Soundness for E!�W). If a formula � is provable in E!�W, then it is

valid in any Kripke frame for E!�W.

Next we prove the completeness theorem. To prove the theorem, we introduce a notion

L-pretheory and construct a canonical model. The notion \L-pretheory" is due to Ono and

Komori [11]. Let L := f�j� is provable in E!�W g. An L-pretheory x is a subset of the

set of all formulas such that if � 2 x and �!� 2 L, then � 2 x. Æ is a binary operation on

the power set of all formulas, de�ned by x Æ y := f�j 9� 2 y (�!� 2 x)g.

Lemma 10. (L-pretheory). The following holds. (1) If x and y are L-pretheories, then

so is x Æ y, (2) L Æ f�g is an L-pretheory.

By using Lemma 10, we can show the following.

Lemma 11. (Canonical Frame). Let L := f�j� is provable in E!�Wg, and ML be

the set of all L-pretheories. Then hML;�; Æ; Li is a Kripke frame for E!�W, that is we

have the following: (1) hML;�i is a poset, (2) ML is closed under Æ, (3) L 2ML, (4)

L Æ x = x for all x 2ML, (5) x Æ L � x for all x 2ML, (6) x � y implies x Æ z � y Æ z for

all x; y; z 2ML, (7) xÆ(y Æ z)� (x Æ y )Æz for all x; y; z 2ML, (8) xÆ(y Æ z)� (y Æ x )Æz for

all x; y; z 2ML.
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Lemma 12. (Canonical Model). Let L := f�j� is provable in E! �W g and j=L be a

mapping from the set of all propositional variables to the set of all subsets of ML (ML is

the set of all L-pretheories) de�ned by x j=L p if and only if p 2 x. Then ML :=

hML;�; Æ; L; j=Li is a Kripke model for E!�W such that for any formula �, � 2 L if and

only if � is true in ML.

PROOF It is easy to see that j=L is a valuation on hML;�; Æ; Li, and hence ML is a

Kripke model for E!�W. It remains to show that for any formula �, L j=L � if and only

if � 2 L. For this, it is enough to prove the following. For any formula � and any x 2ML,

x j=L � if and only if � 2 x. We prove this by induction on the complexity of �. We show

the case � � �!� . ()) Suppose that x j=L �!� . We can show that L Æ f�g is

L-pretheory by Lemma 10 (2), and � 2 L Æ f�g. Then since L Æ f�g j=L � by the induction

hypothesis, x Æ (L Æ f�g) j=L � , and hence � 2 x Æ (L Æ f�g) by the induction hypothesis.

By using the frame conditions (C5) and (C1), we have x Æ (L Æ f�g) � (L Æ x) Æ f�g �

x Æ f�g. Thus � 2 x Æ f�g and hence �!� 2 x. (() Straightforward. Q.E.D.

By using Lemma 12, we can show the following.

Theorem 13. (Completeness for E!�W). If a formula � is valid in any Kripke frame

for E!�W, then it is provable in E!�W.

Let L be T!�W, R!�W, E5!�W, S4!�W or BCK. We say L-frame for Kripke

frame for L. A T!�W-frame is an E!�W-frame without (C2). An R!�W-frame is an

E!�W-frame with the frame condition: (C6) (x � y) � z � (x � z) � y for all x; y; z 2 M .

An E5!�W-frame is an E!�W-frame with the frame condition: (C7) ((x � y) � z) � w �

((x � z) � y) � w for all x; y; z; w 2 M . An S4!�W-frame (BCK-frame) is an E!�W-frame

(R!�W-frame respectively) with the frame condition: (C8) " � x for all x 2M .

By using similar method, we can show the following.

Theorem 14. (Completeness). Let L be T!�W, R!�W, E5!�W, S4!�W or BCK.

A formula � is valid in any L-frame if and only if it is provable in L.

To prove the theorems for S4!�W and BCK, we must add the condition \L-pretheory x

is nonempty" for the de�nition of L-pretheory.

Finally, we remark that the method for the completeness theorems works for HFL! =

E!�W�B0, HFLw0! = HFL!+F and HFLw!(also called BCC) = HFL!+K (these are

Hilbert-style axiomatizations for FL!, FL!+(we01) and FL!+(we00) respectively).
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