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ABSTRACT. Let R be aring such that every zero divisor is nilpotent. We call such a ring
a D-ring. We give the structure of periodic D-rings, weakly periodic D-rings, Artinian
D-rings, semiperfect D-rings, von Neumann regular D-rings, D-rings satisfying certain
polynomial identities, and semiprime D-rings. We also include some indecomposability

results.

1. INTRODUCTION

Throughout, R will represent an associative ring, N the set of nilpotent elements of R,
J the Jacobson radical, and C(R) the commutator ideal of R. For each integer n > 1,
we set E, = {# € R|z"™ = 2}. An element = in R is called potent if 2 € U2, E,. A
ring R is called periodic if for every = in R, 2™ = 2™ for some distinct positive integers
m = m(x),n = n(z). By a theorem of Chacron(see [4; Theorem 1]) R is periodic if and only
if for each € R, there exists a positive integer k = k(z) and a polynomial f(A) = f,(\)
with integer coefficients such that 2% = z**1 f(z). A ring R is called weakly periodic if every
element of R is expressible as a sum of a nilpotent element and a potent element of R.
Recall that a ring R is local [2; page 170] if and only if R/.J is a division ring. We study
rings in which every zero divisor (left or right) is nilpotent. We call such a ring a D-ring.
Clearly, every nil ring is a D-ring; every domain is a D-ring; and the ring of integers (mod
p*), p prime, is a D-ring. A less trivial example is Example 1.1 of [11].

2. STRUCTURAL RESULTS FOR VARIOUS CLASSES OF D-RINGS

We start by stating the following lemmas.
Lemma 1. Let R be D-ring. Then aR s a nil right ideal for all o € N.

Lemma 1 follows at once, since a* = 0, a*~1 #£ 0 implies a*~'(ax) = 0, and thus ax € N.
Lemma 2. Let R be a D-ring. If e is an idempotent element of R, then e =0 or e = 1.

Proof. Suppose €2 = e # 0, and x € R. Then e(ex —2) = 0 and hence ex —z = 0; otherwise,
e will be nilpotent (R is a D-ring) forcing e = 0. Similarly, xe — 2 = 0 for all  in R, and
thus e = 1.

Theorem 1. Let R be a D-ring such that N is an ideal of R. Then, either R= N or R/N

18 a domain.
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Proof. Suppose that R # N. Let T = 2 + N and § = y + N be two elements in R/N such
that 2y = 0. Then xy € N. This implies that (zy)™ = 0 and (2y)™ ! # 0 for some positive
integer m. Hence (xy)™ ' (zy) = 0. This implies that

y is a zero divisor or (:vy)m_l;v = 0;

therefore, y is a zero divisor or x is a zero divisor, since (zy)™™! # 0. Hence y € N or
z € N,soz=0ory=0, and thus R/N is a domain.

Corollary 1. Let R be a D-ring with N commutative. Then either R = N, or N is an
ideal and R/N is a domain.

Proof. If N is commutative, N is an additive subgroup of R, hence an ideal by Lemma 1.

Theorem 2. If R is a periodic D-ring, then R 1s esther nil or local. Further, of R has an
identity element, then N is an ideal and R/N is a field.

Proof. Since R is periodic, for each @ € R, there exists a positive integer k = k(x) such that
z* is idempotent [4]. Using Lemma 2, ¥ = 0 or 2% = 1, and hence z is either nilpotent or
invertible. Therefore, R is nil or local. If R has an identity element, then R is local, and
hence N is an ideal. Thus, R/N is a periodic division ring, and hence R/N is a field.

Theorem 3. Let R be an Artinian D-ring such that R # N. Then R has an identity and
R is a local ring. In fact, N = J and R/N is a division ring.

Proof. Let a be any element of N. Then by Lemma 1, aR is a nil right ideal of R. This
implies that aR C J for all a € N, hence a € J and thus N C J. Also, R being Artinian
implies that J is a nilpotent ideal and hence J C N. It follows that N = J is an ideal, and
hence by Theorem 1, R/N is a domain. Thus, R/N is an Artinian domain which can be
easily shown to be a division ring. Since N = J, we see that R is a local ring. Let e = e+ N
be the identity element of R/N. Then ¢ — e € N and hence there exists a positive integer
k such that e = e¥+1p(e) for some polynomial p(\) € Z[\]. From this equation, it is easy
to show that e*(p(e))¥ is a nonzero idempotent; hence 1 € R, by Lemma 2.

Now, we consider semiperfect D-rings. Recall that a ring R is semiperfect [2] if and only
if R/.J is semisimple (Artinian) and idempotents lift modulo J.

Theorem 4. A semiperfect D-ring R such that R # .J must be local.
Proof. Let R be a semiperfect D-ring such that R # J. Then R/.J is semisimple (Artinian)

with more than one element, and hence it is isomorphic to a finite direct product Ry x R x
-+ X R,, where each R; is a complete t; X t; matrix ring over a division ring D;. By Lemma
2, the only idempotents of R are 0 and 1. Since R is semiperfect, the idempotents of R/.J
lift to idempotents in R. Hence, 0 and 1 are the only idempotents of R/.J. If n > 1, then
the element (0,...,0,1;,0,...,0), where 1; is the identity of R;, is an idempotent of R/.J
other that 0 and 1; so n = 1 and R/.J & Ry, the complete #; x #; matrix ring over a division
ring Dy. Now, if #; > 1, then Eq; is an idempotent of R/.J other than 0 and 1; therefore
ty =1 and R/J = Dy. Hence, R is local.

Remark. Note that J need not be equal to N in Theorem 4, as a consideration of this local
(and hence semiperfect) ring shows:

a . .
L) = {g € Qb ¢ pZ, (a,b) =1, p prlme}.

Here, Z(p) is a D-ring, since it is a domain, and .J # N [2; p. 174].
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Recall that a ring R is reqular (von Neumann) if for each @ in R, there exists an element
z in R such that axa = a. A ring is said to be 7 — regular if for each a in R, there exists
a positive integer n, and an element = in R such that ¢"za™ = . A ring R is called
semaprimitive if J = {0}.

Theorem 5. Let R be a D-ring with R # N.
(i) If R has no nonzero nil ideals, then R is prime.

(i1) If R has no nonzero nil right ideals, then R 1s a domain.

(i) If R s semiprimitive, then R is a domain.

(iv) If R is regular, then R is a division ring.

(v) If R is m—regular, then N is an ideal and R/N is a division ring.
Proof.

(i) Let K be any nonzero right ideal. Then the right annihilator A, (K) is a nil ideal
and hence A, (I') = {0}. This implies that R is a prime ring [9; p. 44].

(ii) Let a,b € N. Then aR, bR are nil right ideals, by Lemma 1. Hence aR = bR = {0},
by hypothesis, so a* = 0 = ab = ba = b? for all a,b € N. Therefore, (a — b)* =0,
and a — b € N. Moreover, for all ¢ in N, aR C N (Lemma 1), and hence N is
a nil right ideal of R. Thus, N = {0} by hypothesis, and hence R is a domain by
Theorem 1.(Recall that, by hypothesis, R # N.)

(iii) This is an immediate consequence of (ii) (since .J = {0} and any nil right ideal of
R is contained in .J).

(iv) Let a be a nonzero element of R. Since R is regular, there exists an element # € R
such that aza = a. This implies that (ax)? = az, and thus az is an idempotent
element in R; hence, by Lemma 2, ar = 0 or ax = 1. If az = 0, then a = aza = 0.
This is not true since a # 0, so ax = 1. Similarly, za = 1. Hence, « is invertible and
thus R is a division ring.

(v) Suppose that R is m-regular, and let a € R. Then, a”za" = a" for some z € R and
some positive integer n. This implies that (a"2)* = a"z, so by Lemma 2, "z = 0
or "z = 1. Thus, a” = a"za” =0 or a"v =1, so ¢ € N or a has a right inverse.
Similarly, @ € N or a has a left inverse; hence for all @ € R, either « € N or
a is invertible, which readily implies that N is an ideal and R/N is a division ring.

3. D-RINGS AND COMMUTATIVITY CONDITIONS

In this section we study the structure of periodic D-rings, weakly periodic D-rings,
semiprime D-rings, and D-rings satisfying certain polynomial identities. We will begin
with the following lemmas which were proved in [7].

Lemma 3. Let R be a weakly periodic ring. Then the Jacobson radical J of R s nil. If,
furthermore, xR C N for all x € N, then N = J and R 1s periodic.

Lemma 4. If R s a weakly periodic division ring, then R 1s a field.
Theorem 6. If R is a periodic D-ring, then C(R) is nil.
Proof. If R is nil, there is nothing to prove. Suppose R # N, and let @ € R\N. Then

2" = 2™ for some integers n > m > 1. It is readily verified that =™("~™) is a nonzero
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idempotent, and hence by Lemma 2, 1 € R. By Theorem 2, R is local, N is an ideal, and
R/N is a field. Thus, C(R) is nil.

Theorem 7. If R is a weakly periodic D-ring, then R is periodic.

Proof. Since R is a D-ring, aR is a nil right ideal for all « € N, by Lemma 1. By Lemma
3, N = .J and R is periodic.

Theorem 8. Let R be a semiprime D-ring with commuting nilpotent elements, and suppose

R # N. Then R is a domain.

Proof. Let a € N with a™ = 0. By Lemma 1, aR C N. Moreover, since N is commutative,
it follows that (aR)” = {0}. Thus aR = {0}, since R is semiprime; hence ¢ = 0 and R has

no zero divisors.

Remark. The hypothesis that R is a D-ring in Theorem 8 cannot be dropped, as a consid-
eration of the ring of integers mod 6 shows.

Theorem 9. Let R be a semiprime D-ring with R # N. If R satisfies a polynomial identity,
then R is a domain.

Proof. Let a be any nilpotent element of R. Then, by Lemma 1, aR is nil right ideal of R.
Suppose aR # {0}. Since, by hypothesis, R satisfies a polynomial identity, aR is a nonzero
nil right ideal satisfying the same polynomial identity. Hence, by Lemma 2.1.1 of [8], R has
a nonzero nilpotent ideal, contradicting the fact that R is semiprime. Thus aR = {0} and
hence a = 0. Therefore, N = {0} and hence R is a domain.

A consequence of Theorem 9 is the following:

Theorem 10. Let f(x1,22,...,2,) be a polynomial in n noncommuting indeterminates
with relatively prime integer coefficients, such that for each prime p the indentity f = 0 s
not satisfied by the ring of 2 X 2 matrices over GF(p). Then every semiprime D-ring R in
which R # N and which satisfies the identity f =0 is a commutative domain.

Proof. That R is a domain follows from the previous theorem. That it is commutative
follows by a theorem of Kezlan [10].

Let [x1,22]1 = [x1,22] denote xyx9 — x9xy, and for k& > 1, let [xy,29,...,2441] =
[z1,...,2k],k41]- For @1 = 2 and 29 = 23 = -+ = 2441 = y, denote the extended
commutator [z,y,...,y] by [z, y]k. Next, we consider D-rings with a certain variable identity.

Theorem 11. Let R be a semiprime D-ring such that R # N. If for each x,y in R, there
exist positive integers m = m(z,y) < S, and n = n(z,y) < T, where S and T are fized
positive integers, such that [™,y"|r =0, k > 1 fized, then R is a domain.

Proof. Clearly R satisfies the polynomial identity
[17, y}k[l'vyz]k e [Ji, yT]k[$2,y]k T [1'27 yT]k e [1'57 y]k T [‘xsa yT]k =0.

The theorem now follows from Theorem 9.

3. INDECOMPOSABILITY CONSIDERATIONS

The following theorem is immediate from the definition of D-ring and known results on
direct-product decompositions of rings R in which (R,+) is a torsion group.
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Theorem 12. Let R be an arbitrary D-ring and T its ideal of torsion elements. Then R
is either nil or indecomposable. Moreover, either T is a nil ideal or (T,4) is a p-group for
some prime p.

This theorem, together with known results on direct-sum decomposition, provides struc-
tural dichotomy theorems for certain classes of D-rings. Our final two theorems provide a
sample of theorems of this type.

In [5] a ring R is defined to be guasi-Boolean if for each x € R there exists an integer
n = n(r) > 1 for which 2™ = 2"*'; and it is proved that a quasi-Boolean ring is a direct
sum of a Boolean ring and a nil ring if and only if it contains no subring isomorphic to Q9
or Qy', where Qq (resp. Q') denotes the ring of 2 x 2 matrices over GF(2) with second
row (resp. second column) zero. This result, together with Theorem 12, yields

Theorem 13. A quasi-Boolean D-ring 1s either GF(2) or a nil ring.

Proof. Let R be any quasi-Boolean D-ring. Clearly, @}2 and @)} are not D-rings, hence R is
a direct sum of a Boolean ring and a nil ring; and by Theorem 12, R is either Boolean or
nil. But by Lemma 2, the only Boolean D-ring is GF(2).

Theorem 14. Let R be a D-ring such that for each x,y € R there exists a polynomial
p(X,Y) in two noncommuting indeterminates, with integer coefficients, for which

(+) vy = (wy)*pl.y).
Then R is either a zero ring or a periodic field.

Proof. Theorem 1 of [6] states that any ring R satisfying () is a direct sum of a J-ring
(i.e. a ring in which every element is potent) and a zero ring. In view of Theorem 12, a
D-ring with () must be either a J-ring or a zero ring. By Lemma 2, D-rings which are also
J-rings must be periodic division rings; and J-rings are commutative by Jacobson’s famous

“a™ = a Theorem.”
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