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Abstract. In Convenient Topology semiuniform convergences spaces including �lter

spaces, uniform spaces and symmetric topological spaces as well as their generaliza-

tions are studied in detail. Higher separation axioms, paracompactness and dimension

theory pro�t from the better behaviour of subspaces of semiuniform convergence spaces

which results from their relation to nearness spaces. This has been demonstrated by

the author in an earlier paper [6]. In the present paper, subspaces of compact symmet-

ric topological spaces (resp. compact Hausdor� spaces) are characterized axiomatically

where the Herrlich completion of nearness spaces (resp. Hausdor� completion of uni-

form spaces) is needed.

0. Introduction

Convenient Topology consists essentially in the study of semiuniform convergence spaces and

their invariants, i.e. properties of semiuniform convergence spaces which are preserved by

isomorphisms. The construct SUConv of semiuniform convergence spaces (and uniformly

continuous maps) is a strong topological universe, i.e. a topological construct which is a

quasitopos in the sense of M.J. Penon [3] with the additional property that products of

quotients are quotients. Furthermore, in SUConv convergence structures and uniform

convergence structures are available such as topological structures and uniform structures,

and initial and �nal structures have an easy description! Via the subconstruct Fil of

�lter spaces, which form the link between convergence structures and uniform convergence

structures, SUConv is related to the construct Mer of merotopic spaces and via the

subconstruct SubTop of subtopological spaces to the construct Near of nearness spaces,

namely in both cases by means of bicore
ective embedding. Topological spaces behave badly

with respect to the formation of subspaces as the following example shows: Though there

is a di�erence of a topological nature between the removal of a point and the removal of the

closed unit interval [0,1] from the usual topological space IR of real numbers, the obtained

topological spaces are not distinguishable, i.e. they are homeomorphic. Much better results

are obtained by forming subspaces of (symmetric) topological spaces in SUConv (or Fil).

Then in the above example non{isomorphic spaces result, and subspaces of normal (resp.

paracompact) spaces are normal (resp. paracompact); even dimension theory (including

cohomological dimension theory) pro�ts from this better behaviour of subspaces (cf. [6]).

But the decisive step for obtaining these results is the above mentioned relation to nearness

spaces.

In this paper the question how the subspaces formed in Fil (resp. SUConv) of com-

pact symmetric topological spaces regarded as �lter spaces (resp. semiuniform convergence
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spaces), called subcompact spaces, can be characterized axiomatically and the correspond-

ing question for compact Hausdor� spaces are solved. For the proof of the characterization

of subcompact spaces the Herrlich completion of nearness spaces is used, whereas for the

proof of the corresponding characterization of the so{called sub{(compact Hausdor�) spaces

the Hausdor� completion of uniform spaces due to A. Weil [9] suÆces, since the construct

of sub{(compact Hausdor�) spaces is conretely isomorphic to the construct SepProx of

separated proximity spaces (separated proximity spaces are identi�ed with totally bounded

uniform spaces).

The terminology of this article corresponds to [1] and [4].

Convention. Subconstructs are always assumed to be full and isomorphism{closed.

1. Some basic de�nitions and results

1.1 De�nition. 1) A �lter space is pair (X;
), where X is a set and 
 a subset of the set

F (X) of all �lters on X such that the following are satis�ed:

(1) _x 2 
 for each x 2 X, where _x = fA � X : x 2 Ag,

(2) G 2 
 wheneverr F 2 
 and F � G.

If (X;
) is a �lter space, then the elements of 
 are called Cauchy �lters.
2) A map f : (X;
) ! (X 0; 
0) between �lter spaces is called Cauchy continuous provided

that f(F) 2 
0 for each F 2 
.

1.2 Remarks. 1) The construct Fil of �lter spaces (and Cauchy continuous maps) can

be embedded bire
ectively and bicore
ectively into the construct SUConv of semiuniform

convergence spaces (and uniformly continuous maps) as well as bicore
ectively into the

construct Mer of merotopic spaces (and uniformly continuous maps) [cf. [5] and [7]].

2) If (X;JX) 2 jSUConvj, then its bicore
ective Fil{modi�cation is (X;
JX ) with 
JX =

fF 2 F (X) : F �F 2 JXg; it is called the underlying �lter space of (X;JX).

3) According to 1) there is an alternative description of �lter spaces in the realm of merotopic

spaces. In particular, if (X;
) is a �lter space, then (X;�
 ) is the corresponding merotopic

space, where the set �
 of uniform covers is given by fA � P(X): for each F 2 
, there is

some A 2 A with A 2 Fg.

4) There is also an alternative description of symmetric topological spaces in the realm

of �lter spaces (cf. [8]). If (X;X ) is a symmetric topological space, then (X;
X ) is its

corresponding �lter space, where 
X = fF 2 F (X): F converges to some x 2 X w.r.t. the

topology X on Xg.

5) In order to characterize subspaces of symmetric topological spaces in SUConv it suÆces

to characterize subspaces of symmetric topological spaces in Fil (cf. 1) and 4)).

1.3 Theorem (cf. [8]). A �lter space (X;
) is subtopological, i.e. a subspace in Fil of

some symmetric topological space, i� each F 2 
 contains some G 2 
 with a 
{open base

B, i.e. each B 2 B is 
{open, where a subset O of X is 
{open i� for each x 2 X and each

F 2 F (X) with F \ _x 2 
;O 2 F .

1.4 Theorem [Bentley] (cf. e.g. [2;3.1.9]). A �lter space (X;
) is subtopological i� (X;�
 )

is a nearness space.

2. Subcompact spaces

2.1 De�niton A �lter space (X;
) is called m-contigual provided that (X;�
) is contigual,

i.e. each A 2 �
 is re�ned by some �nite B 2 �
 .
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2.2 Proposition. A �lter space (X;
) is m{contigual i� the following is satis�ed: If from

each F 2 
 some FF is chosen, then there are �nitely many F1; : : : ;Fn 2 
 such that for

each G 2 
 there is some i 2 f1; : : : ; ng with FFi 2 G.

2.3 Remark. If (X;�) is a contigual nearness space, then its Herrlich completion (=

canonical completion) (X�; ��) is a compact topological nearness space, i.e. a compact

symmetric topological space regarded as a nearness space (cf. e.g. [4; 6.2.11] and note that

if (X;X ) is a symmetric topological space, then (X;�X ) is a topological nearness space,

where �X consists of all covers of X which are re�ned by some open cover of X).

2.4 Theorem. Let (X;
) be a �lter space. Then the following are equivalent:

(1) (X;
) is subcompact, i.e. a subspace (in Fil) of a compact symmetric topological space

(regarded as a �lter space),

(2) (X;
) is a dense subspace (in Fil) of a compact symmetric topological space (regarded

as a �lter space),

(3) (X;
) is subtoplogical and m{contigual.

Proof. (3) ) (2). By 1.4, (X;�
 ) is a contigual nearness space and hence, by 2.3.,

(X�; ��
) is a compact topological nearness space. Since (X�; ��
) is topological, �
�


 = �X��

with the symmetric topology X��
 = fO � X : O = int��
Og. Put X � = X��
 . Hence,

�

X
�
= �X� = ��
 , i.e. (X�; ��
) is the corresponding merotopic space of the �lter space

(X�; 
X�). Consequently, since (X;�
 ) is a subspace in the construct Near of nearness

spaces (and uniformly continuous maps) of (X�; ��
); (X;
) is a subspace in Fil of (X
�; 
X�)

[note: 
�
 = 
 for each Fil{structure 
 on a set X, where 
�
 denotes the set of all Cauchy

�lters (cf. [4;3.2.3.8] for their de�nition) in (X;�
 ), where (X
�; 
X�) is a compact symmetric

topological space regarded as a �lter space. Furthermore, X is dense in (X�;X �), i.e. in

(X�; 
X�).

(2) ) (1). This implication is obvious.

(1) ) (3). Let (X;
) be a subspace in Fil of a compact topological �lter space (X 0; 
0),

i.e. there is a compact symmetric topological space (X 0;X 0) such that 
0 = 
X 0. Obviously,

(X;
) is subtopological. Furthermore, since �X 0 = �

X
0
= �
0 ; (X

0; �
0) is a contigual

nearness space and (X;�
) is a subspace of it in Mer. Thus, by [4;3.1.3.3.], (X;�
) is a

contigual nearness space (note that subspaces of nearness spaces are formed in Near as in

Mer). Hence, by de�nition, (X;
) is m{contigual.

2.5 Remark. It is easliy checked that subcompact �lter spaces form a bire
ective subcon-
struct of Fil, i.e. they are closed under formation subspaces and products and contain all

indiscrete Fil{objects.

3. Sub{(compact Hausdor�) spaces

3.1 Proposisition. Let (X;
) be a subtopological �lter space and (X;�
) its corresponding

nearness space. Then the topology X
 = fO � X : O is 
{openg coincides with the topology

X�
 = fO � X : int�
O = Og.

3.2 Corollary. Let (X;
) be a subtopological �lter space. Then (X;
) is T1 (i.e. (X;X
)

is T1) i� (X;�
 ) is T1 (i.e. (X;X�
 ) is T1).

3.3 De�nition. A �lter space (X;
) is called m-proximal provided that (X;�
 ) is a

proximity space (= totally bounded uniform space).

3.4 Theorem. Let (X;
) be a �lter space. Then the following are equivalent:

(1) (X;
) is sub{(compact Hausdor�), i.e. a subspace (in Fil) of a compact Hausdor� space
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(regarded as a �lter space),

(2) (X;
) is a dense subspace (in Fil) of a compact Hausdor� space (regarded as a �lter

space),

(3) (X;
) is m-proximal and T1.

Proof. (3) ) (2). Since (X;
) is T1 and m{proximal, (X;�
 ) is a separated proximity

space (cf. 3.2. and note that, since (X;�
) is a proximity space, it is a nearness space and

thus, by 1.4., (X;
) is subtopological). Consequently, the Hausdor� completion (X�; ��
)

of (X;�
 ) is compact (i.e. (X�;X �

�

) is compact) and contains (X;�
 ) as a dense subspace.

Put X��


= X �. It is easily checked that �X� = �


X
�
. Since furthermore a compact

Hausdor� space is uniquely uniformizable, ��
 = �X� = �

X
�
. Additionally, (X;
) is a

dense subspace of (X�; 
X�).

(2) ) (1) is obvoius.

(1) ) (3). Let (X;
) be a subspace (in Fil) of (X 0; 
0) with 
0 = 
X 0, where (X 0;X 0) is

a compact Hausdor� space. Then (X;
) is T1 as a subspace of a T1{space. Furthermore,

(X;
) is a subspace of (X 0; �
0) = (X;�X 0 ) in Mer. Since (X 0; �X 0) is contigual and

uniform, it follows that (X;�
) is contigual and uniform (`contigual' and `uniform' are

hereditary properties!), in other words: a proximity space, i.e. (X;
) is m{proximal.

3.6 Remarks. 1) It is easily veri�ed that sub-(compact Hausdor�) spaces form an epire-

ective subconstruct of Fil, i.e. they are closed under formation of subspaces and products

(in Fil).

2) Sub{(compact Hausdor�) spaces can also be described in the realm of semiuniform

convergence spaces since they are �lter spaces (cf. 1.2.1)). Using the de�nition of paracom-

pactness for semiuniform convergence spaces introduced in [6], the following implication

scheme in SUConv is obvious:

uniform
compact T2

topological
compact T2

>

>

separated proximity space

sub{(compact Hausdor�)

^

_

paracompact

3) The subconstructs (of SUConv) SubSUConvCompH of sub{(compact Hausdor�)

spaces and SepProx of separated proximity spaces are concretely isomorphic, but

jSubSUConvCompHj \ jSepProxj does not contain a space with more than one point.
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