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Abstract. We consider a di�erentiable map f from an open interval I to a uniformly

closed linear subspace A of C(X), the Banach space of all complex-valued bounded

continuous functions on a topological space X. Let " be a non-negative real number, �

a complex number so that Re� 6= 0. Then we show that f can be approximated by the

solution to A-valued di�erential equation x
0

(t) = �x(t), if kf
0

(t) � �f(t)k1 � " holds

for every t 2 I.

1. Introduction

In this paper, I denotes an open interval of the real number �eld R, unless the contrary is

explicitly stated. That is I = (a; b) for some �1 � a < b � +1. The letters " and � denote

a non-negative real number and a complex number, respectively. Let X be a topological

space, C(X) a Banach space of all complex-valued bounded continuous functions on X with

respect to the pointwise operations and the supremum norm k � k1 on X. Throughout this

paper, A denotes a uniformly closed linear subspace of C(X).

De�nition 1.1. Let B be a Banach spaceCf a map from I into B. We say that f is

di�erentiable, if for every t 2 I there exists an f
0

(t) 2 B so that

lim
s!0

f(t + s) � f(t)

s
� f

0

(t)


B

= 0;

where k � kB denotes the norm on B.

Let f be a di�erentiable function on I into R. Alsina and Ger [1] gave all the solutions to

the inequality jf
0

(t)�f(t)j � " for every t 2 I. Then they showed that each solution to the

inequality above was approximated by a solution to the di�erential equation x
0

(t) = x(t). In

accordance with [1], we de�ne the Hyers-Ulam stability of Banach space valued di�erentiable

map:

De�nition 1.2. Let B be a Banach space, f a di�erentiable map on I into B so that

kf
0

(t) � �f(t)kB � "; (t 2 I):

We say that the Hyers-Ulam stability holds for f , if there exist a k � 0 and a di�erentiable

map x on I into B such that

x
0

(t) = �x(t) and kf(t) � x(t)kB � k"

holds for every t 2 I.

Let C(X;R) be the Banach space of all real-valued bounded continuous functions on X

and C0(X;R) the Banach space of all functions of C(X;R) which vanish at in�nity. Let r

be a non-zero real number. In [2], we considered a di�erentiable map f on I into C(X;R)
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(resp. C0(X;R)) with the inequality kf
0

(t) � rf(t)k1 � ". Then we showed that the

Hyers-Ulam stability held for f . That is, f can be approximated by a solution to C(X;R)

(resp. C0(X;R)) valued di�erential equation x
0

(t) = rx(t).

In this paper, we consider a di�erentiable map f on I into A so that the inequality

kf
0

(t)� �f(t)k1 � " holds for every t 2 I. Unless Re� = 0, we show that the Hyers-Ulam

stability holds for f . If Re� = 0, we give an example so that the Hyers-Ulam stability does

not hold. Also we consider the Hyers-Ulam stability of an entire function.

2. Preliminaries

We give a characterization of the inequality kf
0

(t) � �f(t)k � ".

Proposition 2.1. Let B be a Banach space, f a di�erentiable map on I into B. Then the

following conditions are equivalent.

(i) kf
0

(t) � �f(t)kB � "; (t 2 I).

(ii) There exits a di�erentiable map g on I into B such that

f(t) = g(t)e�t and kg
0

(t)kB � "e�(Re�) t,

for every t 2 I.

Proof. (i) ) (ii) Put g(t) = f(t)e��t for every t 2 I. Then we see that g is di�erentiable

and

g
0

(t) = ff
0

(t) � �f(t)ge��t; (t 2 I):

By hypothesis, we have the inequality

kg
0

(t)kB � "e�(Re�) t

for every t 2 I.

(ii)) (i) If f(t) = g(t)e�t, we have

f
0

(t) = fg
0

(t) + �g(t)ge�t = g
0

(t)e�t + �f(t)

for every t 2 I. Since kg
0

(t)kB � "e�(Re�) t,

kf
0

(t) � �f(t)kB � "

holds for every t 2 I.

In particular, if we consider the case where " = 0, then we have a solution of Banach

space valued di�erential equation f
0

(t) = �f(t). For the completeness we give a proof.

Proposition 2.2. Let B be a Banach space, f a di�erentiable map on I into B. Then the

following conditions are equivalent.

(i) f
0

(t) = �f(t); (t 2 I).

(ii) There exists a g 2 B so that f(t) = ge�t; (t 2 I).

Proof. It is enough to show that the map g(t) given in the condition (ii) of Proposition 2.1

is constant, if g
0

(t) = 0 for every t 2 I. Fix any t0 2 I, then we de�ne the function ~g on I

into R as

~g(t) = kg(t) � g(t0)kB; (t 2 I):

We see that ~g is di�erentiable and ~g
0

(t) = 0 for every t 2 I, since g
0

(t) = 0. Therefore, ~g is

a constant function. Since ~g(t0) = 0, we have g(t) = g(t0). Thus g(t) is a constant function

and this completes the proof.
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3. One point case

The results below are proved in case where Re� > 0, while corresponding ones hold in

case where Re� < 0 and we omit them. In this section we consider the case where X is a

singleton. In Lemma 3.1 and 3.2, g denotes a di�erentiable function on I into C so that

jg
0

(t)j � "e�(Re�) t

for every t 2 I. Let u and v be the real part and the imaginary part of g, respectively.

Unless Re� = 0, we de�ne the functions ~u and ~v on I into C as

~u(t) = u(t)�
"

Re�
e�(Re�) t;

~v(t) = v(t)�
"

Re�
e�(Re�) t:

Lemma 3.1. Let Re � 6= 0 and t0 2 I. Then we have the inequalities

0 � ~u(s) � ~u(t0) �
2"

Re�

n
e�(Re�) t0 � e�(Re�) s

o
;

0 � ~v(s) � ~v(t0) �
2"

Re�

n
e�(Re�) t0 � e�(Re�) s

o
for every s 2 I with t0 � s.

Proof. Since g
0

(t) = u
0

(t) + iv
0

(t), we have

ju
0

(t)j; jv
0

(t)j � jg
0

(t)j � "e�(Re�) t

for every t 2 I. By de�nition,

~u
0

(t) = u
0

(t) + "e�(Re�) t; (t 2 I):

Hence, we obtain the inequality

0 � ~u
0

(t) � 2"e�(Re�) t

for every t 2 I. We de�ne the function U on I into C as

U(s) = �~u(s) �
2"

Re�
e�(Re�) s + ~u(t0) +

2"

Re�
e�(Re�) t0 ; (s 2 I):

Then U is di�erentiable and

U
0

(s) = �~u
0

(s) + 2"e�(Re�) s � 0

for every s 2 I. Since U(t0) = 0, we have U(s) � 0 if s � t0. Since ~u
0

(s) � 0, the inequality

~u(t0) � ~u(s) holds if t0 � s. Therefore, we have

0 � ~u(s) � ~u(t0) �
2"

Re�

n
e�(Re�) t0 � e�(Re�) s

o
;

if t0 � s. In a way similar to the above, we see that

0 � ~v(s) � ~v(t0) �
2"

Re�

n
e�(Re�) t � e�(Re�) s

o
holds, if t0 � s and a proof is omitted.

Lemma 3.2. Let Re � > 0, then both lims%sup I ~u(s) and lims%sup I ~v(s) exist.
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Proof. As a �rst step, we show that sup
t2I

~u(t) is �nite. To this end �x any t0 2 I, then

by Lemma 3.1 we have the inequality

~u(t) � ~u(t0) +
2"

Re�

n
e�(Re�) t0 � e�(Re�) t

o
< ~u(t0) +

2"

Re�
e�(Re�) t0 ;

if t0 � t. Since ~u
0

(t) � 0 for every t 2 I, we obtain ~u(t) � ~u(t0) if t < t0. Therefore,

~u(t) � ~u(t0) +
2"

Re�
e�(Re�) t0

holds for every t 2 I. Thus sup
t2I

~u(t) is �nite.

Next we show that lims%sup I ~u(s) = sup
t2I

~u(t). In fact, for every � > 0 there exists an

s0 2 I such that sup
t2I

~u(t) � � < ~u(s0). Since ~u
0

(t) � 0 for every t 2 I, we have

sup
t2I

~u(t) � � < ~u(s) < sup
t2I

~u(t) + �;

if s0 � s. Therefore,

lim
s%sup I

~u(s) = sup
t2I

~u(t)

holds. In a way similar to the above, we see that lims%sup I ~v(s) = sup
t2I

~v(t) and a proof

is omitted.

Theorem 3.3. Let Re� > 0, f a di�erentiable function on I into C so that

jf
0

(t) � �f(t)j � "; (t 2 I):

Then there exists a � 2 C such that

jf(t) � �e�tj �
p
2 "

Re�

holds for every t 2 I.

Proof. By Proposition 2.1, there exists a di�erentiable function g on I into C such that

f(t) = g(t)e�t and jg
0

(t)j � "e�(Re�)t; (t 2 I).

Let u and v be the real part and the imaginary part of g, respectively. We de�ne the

functions on I into C as

~u(t) = u(t)�
"

Re�
e�(Re�) t;

~v(t) = v(t)�
"

Re�
e�(Re�) t:

Then we see that both limt%sup I ~u(t) and limt%sup I ~v(t) exist, by Lemma 3.2. Note that

for every t 2 I we have

0 � ~u(s) � ~u(t) <
2"

Re�
e�(Re�) t;

if t � s, by Lemma 3.1. Therefore, we obtain the inequality����u(t)� lim
s%sup I

~u(s)

���� = lim
s%sup I

���~u(t) + "

Re �
e�(Re�)t � ~u(s)

���
�

"

Re�
e�(Re�)t

for every t 2 I. In a way similar to the above, we see that����v(t) � lim
s%sup I

~v(s)

���� � "

Re�
e�(Re�)t; (t 2 I):



ON THE HYERS-ULAM STABILITY 5

Therefore, we have the inequality����f(t) � lim
t%sup I

f~u(t) + i~v(t)g e�t
����

=

s�
u(t)� lim

s%sup I

~u(s)

�
2

+

�
v(t)� lim

s%sup I

~v(s)

�
2

e(Re�)t

�
p
2 "

Re�
e�(Re�)t e(Re�)t =

p
2 "

Re�

for every t 2 I. This completes the proof.

4. General case

In this section we consider the case where X is any topological space.

Theorem 4.1. Let Re� > 0, f a di�erentiable map on I into A so that

kf
0

(t) � �f(t)k1 � "; (t 2 I):

If A has constant functions, then there exists a � 2 A such that

kf(t) � �e�tk1 �
p
2 "

Re�

holds for every t 2 I. Unless A has constant functions, then there exists a ~� 2 A such that

kf(t) � ~�e�tk1 �
2
p
2 "

Re�

for every t 2 I.

Proof. For every x 2 X we de�ne the induced function fx on I into C as

fx(t) = f(t)(x); (t 2 I):

Then fx is a di�erentiable function, and for every x 2 X

(fx)
0

(t) = f
0

(t)(x); (t 2 I)

holds, by de�nition. Therefore, for every x 2 X we see that

j(fx)
0

(t) � �fx(t)j � kf
0

(t) � �f(t)k1 � "; (t 2 I):

By Proposition 2.1, for every x 2 X there corresponds a di�erentiable function gx on I into

C such that

fx(t) = gx(t)e
�t and j(gx)

0

(t)j � "e�(Re�)t

for every t 2 I. Let ux and vx be the real part and the imaginary part of gx, respectively.

We de�ne the functions on I into C as

~ux(t) = ux(t) �
"

Re�
e�(Re�) t;

~vx(t) = vx(t) �
"

Re�
e�(Re�) t:

By the proof of Theorem 3.3, for every x 2 X we have����fx(t) � lim
s%sup I

f~ux(s) + i~vx(s)g e�s
���� �

p
2 "

Re�
; (t 2 I):

We de�ne the function � on X into C as

�(x) = lim
s%sup I

f~ux(s) + i~vx(s)g :
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By de�nition, the inequality

kf(t) � �e�tk1 �
p
2 "

Re�

holds for every t 2 I.

Let ftng be a sequence of I so that tn % sup I. Then we de�ne the function �n on X

into C as

�n(x) = ~ux(tn) + i~vx(tn); (x 2 X):

Since gx(tn) = fx(tn)e
��tn , we see that the function x 7! gx(tn) belongs to A for every

n 2 N.
We show that � is an element of A, if A has constant functions. In fact, �n is an element

of A for every n 2 N by the de�nition of ~ux and ~vx. Note that

j~ux(s) � ~ux(t)j; j~vx(s) � ~vx(t)j �
2"

Re�
je�(Re�)s � e�(Re�)tj;

if t � s, by Lemma 3.1. Therefore, we have

j�(x) � �n(x)j = lim
s%sup I

p
j~ux(s) � ~ux(tn)j2 + j~vx(s) � ~vx(tn)j2

�
2
p
2 "

Re �

���� lim
s%sup I

e�(Re�)s � e�(Re�)tn

����
for every x 2 X and every n 2 N. Hence � is a uniform limit of f�ng � A. Since A is

uniformly closed, � is an element of A.

Next we consider the case where A does not have constant functions. We de�ne the

functions ~� and ~�n on X into C as

~�(x) = �(x) +
(1 + i)"

Re�
lim

s%sup I

e�(Re�)s;

~�n(x) = �n(x) +
(1 + i)"

Re�
e�(Re�)tn:

Note that ~�n(x) = gx(tn) holds for every x 2 X and every n 2 N, hence f~�ng � A. Then

we have

j~�(x) � ~�n(x)j � j�(x) � �n(x)j +
j1 + ij"
Re�

���� lim
s%sup I

e�(Re�)s � e�(Re�)tn

����
�

3
p
2 "

Re �

���� lim
s%sup I

e�(Re�)s � e�(Re�)tn

����
for every x 2 X and every n 2 N. Since A is uniform closed, ~� belongs to A. Moreover,

kf(t) � ~�e�tk1 � kf(t) � �e�tk1 +
j1 + ij"
Re�

���� lim
s%sup I

e�(Re�)s e�t
����

�
p
2 "

Re�
+

p
2 "

Re�
=

2
p
2 "

Re�

holds for every t 2 I. This completes the proof.

Corollary 4.2. Let Re� > 0, f a di�erentiable map on (a;+1), for some �1 � a < +1,

into A so that

kf
0

(t) � �f(t)k1 � "; (t 2 (a;+1)) :

Then f is uniquely approximated by a function of A in the sense of Theorem 4:1.
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Proof. By Theorem 4.1, it is enough to show that if �1; �2 2 A so that

kf(t) � �j e
�tk1 � kj "; (t 2 (a;+1))

for some kj � 0; (j = 1; 2) then �1 = �2. In fact,

k�1 � �2k1 � k�1 � f(t)e��tk1 + kf(t)e��t � �2k1
� (k1 + k2)"e

�(Re�)t ! 0; (t! +1):

Thus we have �1 = �2. This completes the proof.

In general, the Hyers-Ulam stability does not hold if Re � = 0.

Example 4.1. Let I = (0;+1), " > 0 and f be the function on I into C de�ned by

f(t) = "teit; (t 2 I):

Then the inequality jf
0

(t)� if(t)j = " holds for every t 2 I. On the other hand, the Hyers-

Ulam stability does not hold. In fact, assume to the contrary that there exist a c 2 C and

k � 0 such that

jf(t) � ceitj � k"; (t 2 I):

By the triangle inequality

jf(t)j � k"+ jcj

holds for every t 2 I. Though this is a contradiction, since jf(t)j = "t and since I =

(0;+1).

If we consider the case where I is a �nite interval, then the situation is di�erent:

Theorem 4.3. Let I = (a; b), where �1 < a < b < +1, " � 0 and � 2 C with Re� = 0.

If f is a di�erentiable map on I into A so that

kf
0

(t) � �f(t)k1 � "; (t 2 I);

then there exists a � 2 A such that

kf(t) � �e�tk1 �
(b � a)"
p
2

holds for every t 2 I.

Proof. Let fx; gx; ux and vx be the di�erentiable function on I into C , de�ned in the proof

of Theorem 4.1. Then for every x 2 X we see that

fx(t) = gx(t)e
�t and j(gx)

0

(t)j � "; (t 2 I);

by de�nition. Apply the mean value theorem to ux and vx respectively, then we have����gx(t)� gx

�
a+ b

2

����� =

����(ux) 0

(p)

�
t�

a + b

2

�
+ i(vx)

0

(q)

�
t�

a+ b

2

�����
<

p
2 "

b � a

2
=

(b � a)"
p
2

for some p; q 2 I. Since Re� = 0, the inequalityf(t) � g

�
a+ b

2

�
e�t

1

�
(b � a)"
p
2

holds for every t 2 I.
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5. Hyers-Ulam stability of an Entire function

Recall that a function is entire if it is holomorphic in the whole plane C . We may consider

the Hyers-Ulam stability of an entire function.

Theorem 5.1. Let f be an entire function so that

jf
0

(z) � �f(z)j � "; (z 2 C ):

Unless � = 0, there exists a � 2 C such that

jf(z) � �e�z j �
"

j�j
holds for every z 2 C . If we consider the case where � = 0, then the Hyers-Ulam stability

holds for f if and only if f is a constant function.

Proof. In a way similar to the proof of Proposition 2.1, we see that the inequality jf
0

(z)�
�f(z)j � " holds for every z 2 C if and only if there corresponds an entire function g so

that

f(z) = g(z)e�z and jg
0

(z)j � "je��zj; (z 2 C ):

Therefore g
0

(z)e�z is a bounded entire function. Thus g
0

(z)e�z is constant, by Liouville's

theorem. Put c1 = g
0

(z)e�z , then jc1j � ".

Unless � = 0, there exists a c2 2 C such that

g(z) = c2 �
c1

�
e��z; (z 2 C ):

Therefore, we have the equality

f(z) = c2e
�z �

c1

�
for every z 2 C . Hence

jf(z) � c2e
�zj �

"

j�j
; (z 2 C ):

Next we consider the case where � = 0. Then there exists a c3 2 C so that

g(z) = c1z + c3; (z 2 C ):

Therefore f(z) = c1z + c3 for every z 2 C , since � = 0. Then it is easy to see that the

Hyers-Ulam stability holds for f , if and only if f is a constant function, and a proof is

omitted.
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