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ON THE HYERS-ULAM STABILITY OF A DIFFERENTIABLE MAP
TAKESHI MIURA
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ABsTRACT. We consider a differentiable map f from an open interval T to a uniformly
closed linear subspace A of C(X), the Banach space of all complex-valued bounded
continuous functions on a topological space X. Let ¢ be a non-negative real number, A
a complex number so that Re A\ # 0. Then we show that f can be approximated by the
solution to A-valued differential equation « (t) = Az(t), if Hfl(t) — Af(®)]lso < € holds
for every t € I.

1. INTRODUCTION

In this paper, I denotes an open interval of the real number field R, unless the contrary is
explicitly stated. That is I = (a,b) for some —oo < a < b < +00. The letters ¢ and A denote
a non-negative real number and a complex number, respectively. Let X be a topological
space, C(X) a Banach space of all complex-valued bounded continuous functions on X with
respect to the pointwise operations and the supremum norm || - ||« on X. Throughout this
paper, A denotes a uniformly closed linear subspace of C(X).

Definition 1.1. Let B be a Banach spaceCf a map from I into B. We say that f is
differentiable, if for every t € I there exists an f (t) € B so that

(¢ — f(t '
s—0 S B
where || - ||p denotes the norm on B.

Let f be a differentiable function on I into R. Alsina and Ger [1] gave all the solutions to
the inequality |f/(t) — f(t)] < eforevery t € I. Then they showed that each solution to the
inequality above was approximated by a solution to the differential equation 2’ (t) ==2(t). In
accordance with [1], we define the Hyers-Ulam stability of Banach space valued differentiable
map:

Definition 1.2. Let B be a Banach space, f a differentiable map on I into B so that
IF (@) = Af@)llp <e  (tel)

We say that the Hyers-Ulam stability holds for f, if there exist a k > 0 and a differentiable
map x on I into B such that

e (t) = Aa(t) and |f(t) — ()| < ke
holds for every t € 1.
Let C(X,R) be the Banach space of all real-valued bounded continuous functions on X
and Cy(X,R) the Banach space of all functions of C(X,R) which vanish at infinity. Let r

be a non-zero real number. In [2], we considered a differentiable map f on I into C'(X,R)
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(resp. Co(X,R)) with the inequality Hfl(t) —rf(t)|lcc < e. Then we showed that the
Hyers-Ulam stability held for f. That is, f can be approximated by a solution to C'(X,R)
(resp. Co(X,R)) valued differential equation l’l(t) = ra(t).

In this paper, we consider a differentiable map f on [ into A so that the inequality
Hfl(t) — Af(t)|loo < € holds for every ¢ € I. Unless Re A = 0, we show that the Hyers-Ulam
stability holds for f. If Re A = 0, we give an example so that the Hyers-Ulam stability does
not hold. Also we consider the Hyers-Ulam stability of an entire function.

2. PRELIMINARIES

)=l <e.

Proposition 2.1. Let B be a Banach space, [ a differentiable map on I into B. Then the
following conditions are equivalent.

@) IF () =MDl <e, (tel),
(i1) There ezits a differentiable map g on I into B such that

F(t) = g(t)eM and ||g (t)||p < ce~ReN T

We give a characterization of the inequality

Jor every t € I.

Proof. (i) = (ii) Put g(t) = f(t)e > for every ¢t € I. Then we see that g is differentiable
and

g (1) ={f (1) =M@}, (el
By hypothesis, we have the inequality
lo' (1)l < cem e
for every t € I.
(ii) = (i) If f(¢t) = g(t)eM, we have
£ ={g' () + Mgt} = o' ()M + M f(1)
for every t € I. Since Hgl(t)HB < cem(Re Mt

If (t) = Af(B)llB <e
holds for every t € I. O

In particular, if we consider the case where ¢ = 0, then we have a solution of Banach
space valued differential equation fl(t) = Af(t). For the completeness we give a proof.

Proposition 2.2. Let B be a Banach space, [ a differentiable map on I into B. Then the
following conditions are equivalent.

(i) £ () =\(1), (tel).
(i1) There ezists a g € B so that f(t) = geM, (tel).

Proof. Tt is enough to show that the map g(¢) given in the condition (ii) of Proposition 2.1
is constant, if gl(t) = 0 for every t € I. Fix any tg € I, then we define the function § on [
into R as

9(t) = llg(t) — g(to)llB, (t € I).
We see that ¢ is differentiable and gl(f‘) = 0 for every t € I, since gl(t) = 0. Therefore, g is

a constant function. Since §(tg) = 0, we have g(t) = g(to). Thus ¢(t) is a constant function
and this completes the proof. O
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3. ONE POINT CASE

The results below are proved in case where Re A > 0, while corresponding ones hold in
case where Re A < 0 and we omit them. In this section we consider the case where X is a
singleton. In Lemma 3.1 and 3.2, g denotes a differentiable function on I into C so that

|9 (1)) < cem RN

for every t € I. Let u and v be the real part and the imaginary part of g, respectively.
Unless Re A = 0, we define the functions @ and © on I into C as

a(t) = u(t)—ﬁe_me)‘)t,
i) = ’u(i)—%e_m’e}‘)t.

Lemma 3.1. Let Re A # 0 and to € I. Then we have the inequalities

2e
< o~ < —(ReX)tg  _—(ReX)s
0 <da(s) —d(ty) < Re {e e } ,

0 < 9(s) — 9(to) < 25/\ {e—(Re)\) to _ 6—(Re>\)5}

for every s € I with ty < s.
Proof. Since gl(t) = ul(t) + ‘ivl(t)7 we have

u' ()], [0 (1)) < g (8)] < cem (RN
for every t € I. By definition,

i (1) =u'(t) e RNt ).
Hence, we obtain the inequality

0< i (t) <2ee”(ReM?

for every t € I. We define the function U on [ into C as
2e 2e
U(s) = —u(s) — oy emBeN s 4 di(to) + o e~ (ReNto (5.
Then U is differentiable and

1

U'(s) = —a (s) +2ee eV >

for every s € I. Since U(tg) = 0, we have U(s) > 01if s > to. Since @ I(s) > 0, the inequality
U(to) < u(s) holds if tg < s. Therefore, we have

0 < ii(s) —ii(to) < R(;

if {5 < s. In a way similar to the above, we see that

b

{ef(Re Nito  ~(Re)) 5}

2¢e
~ o~ —(ReX)t _—(ReM)s
0<9(s)—0(tg) < Re {e e }

holds, if {5 < s and a proof is omitted. O

Lemma 3.2. Let Re A > 0, then both lim, s~eup 1 a(s) and img sgup 1 0(s) exist.
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Proof. As a first step, we show that sup,c; @(t) is finite. To this end fix any ¢y € I, then
by Lemma 3.1 we have the inequality

a(t) < alto) +

m {ef(Re Mo —(Re A)t}

< ﬂ(to) + 7(Re A) to

)\
if tg < t. Since u I(t) > 0 for every t € I, we obtain @(t) < () if t < tg. Therefore,

ﬂ(t) < ﬁ(l‘o) 7(Re A) to

Re )\

a(t) is finite.

= sup,cyu(t ) In fact, for every n > 0 there exists an
0). Since @ ( ) > 0 for every t € I, we have

n < a(s) <supa(t)+n,
tel

holds for every ¢t € I. Thus sup,cra
Next we show that limg seup 7 @(

s
so € I such that sup,c; 4(t) —n < d(s
i(t) —

if 55 < s. Therefore,

lim a(s) = supa(t
s ‘sup I () tGI]:) ()

holds. In a way similar to the above, we see that lim, xgup 1 0(s) = sup,c; 0(¢) and a proof
is omitted. a

Theorem 3.3. Let Re A > 0, f a differentiable function on I into C so that
F1 () =Mt < (teD).
Then there emists a 8 € C such that

V2e

At
15t = 6] < Y=

holds for every t € I.
Proof. By Proposition 2.1, there exists a differentiable function ¢ on I into C such that
f(t) = g(t)e* and |g ()| < ce RV (¢t e 1),

Let u and v be the real part and the imaginary part of ¢, respectively. We define the
functions on I into C as

a(t) = u(t)f%e*me)‘)t,
B(t) = w(t)— —— ¢—(ReN)t,
o(t) v R

Then we see that both limy seyp 1 @(f) and limy seyp s 0(t) exist, by Lemma 3.2. Note that
for every t € I we have

0<a(s)—ult) < % o—(Re A)t./

if t < s, by Lemma 3.1. Therefore, we obtain the inequality

u(t) B s}igl?PIﬂ(S) - s/l‘isrl?pI ‘a(t) + RZ A 6_(Re Ve a(s)
€ —(ReMt
Re) <

for every t € I. In a way similar to the above, we see that

v(t) — lLm o(s)

s,/ 'sup I *(Re)\)t’ (t € I)
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Therefore, we have the inequality

P~ T {ae) +io()} N

tsup I

,\/{U,(t) - S}isflpj ﬂ,(S)}z + {v(t) - S/].(isrlflpj 5(5)}2 L(Re Nt

V2e o~ (Re Nt (Re Xt _ V2e
Re A Re )\
for every t € I. This completes the proof. O

4. GENERAL CASE
In this section we consider the case where X is any topological space.
Theorem 4.1. Let Re A > 0, f a differentiable map on I into A so that
IF (8 = M (D)lee <&, (tET),
If A has constant functions, then there exists a 8 € A such that

2e
_ At < f
1£(8) = 8Nl < X

holds for every t € I. Unless A has constant functions, then there ezists a 6 € A such that

2v/2¢e

Re A

I1£(t) = Xl <
for every t € I.

Proof. For every x € X we define the induced function f, on I into C as

fot) = f(#)(2), (tel).

Then f, is a differentiable function, and for every x € X

(fo) (1) = f (B)(x), (te])

holds, by definition. Therefore, for every x € X we see that
[(£a) () = AfaO] S IS () = M (B)llow <2 (ET).

By Proposition 2.1, for every @ € X there corresponds a differentiable function g, on I into

C such that
Fo(t) = go(H)eM and |(g,) (1)] < ce”(ReMt

for every t € I. Let u, and v, be the real part and the imaginary part of g, respectively.
We define the functions on I into C as

- € _(Re
Up(t) = ug(t) — Ee (R A)t7
a(t) = wz(t)—%e’me)‘)t.

By the proof of Theorem 3.3, for every » € X we have

Folt) — Lm {aa(s) +i5e(s)} €™ Sfi’ (tel).

s 'sup I Re
We define the function 6 on X into C as

o) = L {i(s) +ita(s))
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By definition, the inequality
\/§ I3
Re )

1£(t) — Xl <

holds for every t € 1.

Let {t,} be a sequence of I so that t, /" supI. Then we define the function ,, on X
into C as

On () = ty(ty) + 105 (tn), (v € X).

Since ¢z(tn) = fu(tn)e *n, we see that the function z + g.(t,) belongs to A for every
n € N.

We show that 8 is an element of A, if A has constant functions. In fact, ,, is an element
of A for every n € N by the definition of %, and ¢,. Note that

. 2 :
Ug(s) — U (D), [05(8) — 0,(t)] < =L e (ReX)s  —(ReA)t ,
() (D], [02(s) (t) < | :

Re A
if t < s, by Lemma 3.1. Therefore, we have
0 = 6] = im Vi) = () [iuls) = Balta P
2v2¢
< Ii —(ReX)s _ _—(ReX)i,
- Re A s/‘lsllillple c

for every © € X and every n € N. Hence 6 is a uniform limit of {6,} C A. Since A is
uniformly closed, 6 is an element of A.

Next we consider the case where A does not have constant functions. We define the
functions 6 and én on X into C as

(1+1)e

0 — : —(ReX)s
b(e) =0le) + o5, i e
5 _ (1+4)e _(Re e,
) = Onlr) + =g 3¢ -

Note that f,(z) = g, (t,) holds for every 2 € X and every n € N, hence {f,} C A. Then
we have

B) a1~ Bl 4 ESE ] i RN e
< 3v2e lim  e—(ReNs _ o—(Re )ty
~— Rel |s supl

for every # € X and every n € N. Since A is uniform closed, § belongs to A. Moreover,

50) 6N < 50— 8N oo ] i e
V2e V2e 242
= TRe)  Re\ Re\
holds for every ¢t € I. This completes the proof. O

Corollary 4.2. Let Re A > 0, f a differentiable map on (a,+o0), for some —oo < a < 400,
nto A so that

IF () = M)l <& (£ € (a,400)) .
Then f is untquely approzimated by a function of A in the sense of Theorem 4.1.
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Proof. By Theorem 4.1, it is enough to show that if 61,6, € A so that
|1 £(t) =8 Moo <Rje. (t € (a,400))

for some k; > 0, (j = 1,2) then 6; = 6;. In fact,

6= Oalloe < 161~ SO o A — Byl

< (ky Fhy)ee BN 00 (1 4o0).
Thus we have 6, = 0y. This completes the proof. d
In general, the Hyers-Ulam stability does not hold if Re A = 0.
Example 4.1. Let I = (0,+00), ¢ >0 and f be the function on I into C defined by
f(t) =ete', (tel).

Then, the inequality |f'(t) —if(t)| = ¢ holds for every t € I. On the other hand, the Hyers-

Ulam stability does not hold. In fact, assume to the contrary that there exist a ¢ € C and
k > 0 such that

|f(t) —ce'| < ke, (tel).
By the triangle inequality
[F()] < ke + |c]
holds for every t € I. Though this is a contradiction, since |f(t)] = ct and since I =
(0,+00).

If we consider the case where [ is a finite interval, then the situation is different:
Theorem 4.3. Let I = (a,b), where —oo < a < b < 400, € >0 and A € C with Re A = 0.
If f is a differentiable map on I wnto A so that

If (&) = Af()llee <&, (t€T),
then there exists a € A such that
(b—a)e

At
1) = 8™ loe < 7

holds for every t € I.

Proof. Let fu, ¢z, u,r and v, be the differentiable function on I into C, defined in the proof
of Theorem 4.1. Then for every = € X we see that

folt) = gu(t)eX and [(g2) ()| < e, (€ D),

by definition. Apply the mean value theorem to u, and v, respectively, then we have

gult) — gu <a—2|_b> (ue) (p) <t - a;_b> +i(v) () (t - a—2|—b>‘

< \/551);(1 _ (b\—@a)

for some p,q € I. Since Re A = 0, the inequality
< (b—a)e

o-+(43%) ] =5

holds for every t € 1. O
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5. HYERS-ULAM STABILITY OF AN ENTIRE FUNCTION

Recall that a function is entire if it is holomorphic in the whole plane C. We may consider
the Hyers-Ulam stability of an entire function.

Theorem 5.1. Let f be an entire function so that

If () = M(z) <e. (z€CQ).
Unless A = 0, there exists a 8 € C such that
|£(2) = 6eX| <
(2) N
holds for every z € C. If we consider the case where N = 0, then the Hyers-Ulam stability
holds for f if and only if f is a constant function.

Proof. In a way similar to the proof of Proposition 2.1, we see that the inequality \fl(z) —
Af(z)] < e holds for every z € C if and only if there corresponds an entire function ¢ so
that

f(z) = g(z)e* and |g ()| < ele™], (= € O).

Therefore gl(z)e>“Z is a bounded entire function. Thus g/(z)e)‘z

is constant, by Liouville’s
theorem. Put ¢; = ¢ (2)e*?, then |¢q] < e.
Unless A\ = 0, there exists a ¢ € C such that
c
g(z) = c2 — XlefAz, (z € C).

Therefore, we have the equality

f(2) = cae™™ — %1
for every z € C. Hence
. . €
F(2) — cae™] < o (z€C).

Next we consider the case where A = 0. Then there exists a c3 € C so that
g(z) =c1z+c3, (z€C).

Therefore f(z) = c¢12 + ¢3 for every z € C, since A = 0. Then it is easy to see that the
Hyers-Ulam stability holds for f, if and only if f is a constant function, and a proof is
omitted. O
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