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Abstract. Uniform L
2-decay of solutions for the linear heat equations will be given.

In order to derive the L
2-decay of solutions, the modi�ed method of Morawetz [6]

will be used and we shall show that the L2 norm of solutions decays like O(t�1) as

t! +1 for some kinds of weighted initial data. Furthermore, by the same argument,

one can also derive the L2-bound and L
2-decay for weak solutions of the linear free

and dissipative wave equations, respectively.

1. Introduction. Let 
 be an exterior domain in R
N (N � 2) with a compact

C2-boundary @
. Without loss of generality, we may assume 0 =2 
. In this paper, �rst we

are concerned with the initial-boundary value problem

ut(t; x) ��u(t; x) = 0; (t; x) 2 (0;1) �
;(1.1)

u(0; x) = u0(x); x 2 
;(1.2)

uj@
 = 0; t 2 (0;1):(1.3)

Throughout this paper, k � k means the usual L2(
)-norm. Furthermore, we set

(f; g) =

Z



f(x)g(x) dx:

First of all, we shall state the well-posedness to the problem (1.1)-(1.3) (c.f. Cazenave

and Haraux [2, Proposition 3.5.3]).

Proposition 1.1. For each u0 2 H1

0
(
), there exists a unique solution u(t; x) in the class

C([0;1);H1

0
(
))

\
C1((0;1);L2(
))

\
C((0;1);H2(
))

to the problem (1.1)-(1.3) satisfying

1

2
kru(t; �)k2 +

Z t

0

kut(s; �)k
2 ds =

1

2
kru0k

2 on [0;1),(1.4)

(ut(t; �); u(t; �)) + kru(t; �)k2 = 0 on [0;1).(1.5)
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For the equation (1.1), as will be seen in the proof of Corollary 1.3 below, we can

easily derive the decay of energy kru(t; �)k2. But then, it seems unknown at least for the

exterior problem whether L2-norm of the solution u(t; x) to the problem (1.1)-(1.3) decays

or not. Since we treat the continuous orbit fu(t; �)gt�0 in the phase space H1

0
(
), it is quite

natural to investigate L2-decay of solutions. On the other hand, in the case when 
 = R
N ,

although we can use the explicit formula through the fundamental solution for the heat

operator @
@t
�� (see Racke [10, Lemma 11.6]), our result will make sense (at least) of an

alternative proof.

The �rst purpose of this paper is to derive a certain decay rate of L2-norm of the solution

to the problem (1.1)-(1.3) with the weighted initial data in an \exterior domain". Our

argument is based on the (modi�ed) method of Morawetz [6] (for another use of Morawetz'

method, see also Ikehata and Matsuyama [4] and Nakao [8]), and the so called Hardy

inequality (see Dan and Shibata [3]). Before introducing our main theorem, we must de�ne

a function d(x) as follows:

d(x) =

(
jxj; N � 3;

jxj log(Bjxj); N = 2;
(1.6)

where B > 0 is a constant such that inf
x2


jxj �
2

B
> 0. Then, based on Proposition 1.1 our

main result reads as follows.

Theorem 1.2. Let N � 2 and assume that the initial data u0 belongs to H1

0
(
) and further

satis�es kd(�)u0k < +1. Then, the solution u(t; x) to the problem (1.1)-(1.3) satis�es

(1 + t)ku(t; �)k2 � C�kd(�)u0k
2

for all t � 0, where C� > 0 is a certain constant.

Corollary 1.3. Under the same assumptions as in Theorem 1.2, one has

(1 + t)ku(t; �)k2H1 � C(ku0k
2

H1 + kd(�)u0k
2)

for all t � 0 with some constant C > 0, where k � kH1 denotes the usual H1

0
(
)-norm.

The second purpose of this paper is to derive L2-bound for the free wave equation:

utt(t; x) ��u(t; x) = 0; (t; x) 2 (0;1) � 
;(1.7)

u(0; x) = u0(x); ut(0; x) = u1(x); x 2 
;(1.8)

uj@
 = 0; t 2 (0;1):(1.9)

Generally speaking, in studying the local energy decay of solutions to the problem (1.7)-

(1.9) it seems essential to derive the L2-bound for solutions (see [6] and [8]). Further, since

kru(t; �)k is bounded for all t � 0, from the point of view of the dynamical system, it

is important to know whether the L2-norm of the solution to the problem (1.7)-(1.9) is

bounded or not for the initial data fu0; u1g 2 H1

0
(
) � L2(
). In this occasion, we shall

proceed our argument based on the energy identity.
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Proposition 1.4. For each fu0; u1g 2 H1

0
(
) � L2(
), there exists a unique solution u 2

C([0;1);H1

0
(
)) \ C1([0;1);L2(
)) to the problem (1.7)-(1.9) such that

1

2
kru(t; �)k2 +

1

2
kut(t; �)k

2 =
1

2
kru0k

2 +
1

2
ku1k

2:

As in the results of Morawetz [6] and Nakao [8], we can see that the boundedness of

ku(t; �)k plays an essential role in deriving the local energy decay of solutions to the wave

equations with the compactly supported initial data fu0; u1g. However, the following result

implies that the L2-boundedness holds true without any compactness of the support of the

initial data. If, in particular, we impose the initial data as u1 = 0, then we can obtain the

L2-bound for the solution without any condition of compact support for the initial data u0.

Generalizing these observations, we have the following result.

Theorem 1.5. Let N � 2 and assume the initial data fu0; u1g belongs to H1

0
(
) � L2(
)

and further satis�es kd(�)u1k < +1. Then, the solution u(t; x) to the problem (1.7)-(1.9)

satis�es

ku(t; �)k2 � ku0k
2 + Ckd(�)u1k

2

for all t � 0 with a certain constant C > 0.

In [3] Dan and Shibata have investigated the asymptotic behaviour of the dissipa-

tive wave equations in an exterior domain and proved that if the initial data fu0; u1g

has a compact support, then the local energy Eloc(t) and L2-norm of solutions decay like

C(ku0k
2

H1 + ku1k
2)(1 + t)�N as t ! +1. The proof in [3] is based on a spectral analysis

and the Poincar�e type inequality (see [3, Lemma 2.3]), and the dissipative term ut plays an

essential role.

Our �nal result is concerned with the L2-decay of solutions for the following dissipative

wave equation:

utt(t; x) ��u(t; x) + ut(t; x) = 0; (t; x) 2 (0;1)� 
;(1.10)

u(0; x) = u0(x); ut(0; x) = u1(x); x 2 
;(1.11)

uj@
 = 0; t 2 (0;1):(1.12)

In [4], we have derived the uniform L2-decay of a solution to the problem (1.10)-(1.12)

for an appropriately selected initial data. Compared with (especially) the Cauchy problem

in RN for the dissipative wave equation (1.10) treated by Kawashima et al. [5], our result

is much stronger than [5] in the sense that if we apply the result of [5] to our problem, we

can only derive the L2-bound for the solution with the same initial data as in [4]. On the

contrary, if the initial data fu0; u1g has the weight d(x), we can derive the L2-decay of the

solution to the problem (1.10)-(1.12). To state the result, we need the well-posedness of the

problem (1.10)-(1.12).

Proposition 1.6. For each fu0; u1g 2 H1

0
(
) � L2(
), there exists a unique solution u 2

C([0;1);H1

0
(
)) \ C1([0;1);L2(
)) to the problem (1.10)-(1.12) such that

1

2
kru(t; �)k2 +

1

2
kut(t; �)k

2 +

Z t

0

kut(s; �)k
2 ds =

1

2
kru0k

2 +
1

2
ku1k

2;(1.13)

d

dt
(ut(t; �); u(t; �)) + kru(t; �)k2 + (ut(t; �); u(t; �)) = kut(t; �)k

2:(1.14)
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Our �nal result reads as follows.

Theorem 1.7. Let N � 2 and assume the initial data fu0; u1g 2 H1

0
(
) � L2(
) further

satis�es kd(�)(u0 + u1)k < +1. Then, the solution u(t; x) to the problem (1.10)-(1.12)

satis�es

(1 + t)ku(t; �)k2 � Cfku0k
2

H1 + ku1k
2 + kd(�)(u0 + u1)k

2g(1.15)

for all t � 0 with a constant C > 0 independent of t 2 [0;1).

Remark 1.8. If u0 + u1 = 0 in L2(
), then this result coincides with that of [4]. On the

other hand, if suppu0 [ suppu1 is compact, then kd(�)(u0 + u1)k < +1 obviously follows.

Thus, in the framework of compactly supported initial data, the decay estimate (1.15) is also

valid.

2. Proof of Theorem 1.2. In this section, we shall prove our main Theorem 1.2.

First, we shall prepare the Hardy inequality (see [3]).

Lemma 2.1. For each u 2 H1

0
(
), it holds thatZ




ju(x)j2

d(x)2
dx � Ckruk2;

where d(x) is the function de�ned in (1.6).

Lemma 2.2. For each u0 2 H1

0
(
), the solution u(t; x) to the problem (1.1)-(1.3) satis�es

(1 + t)ku(t; �)k2 � ku0k
2 +

Z t

0

ku(s; �)k2 ds

for all t > 0.

Proof. Multiplying the both sides of the identity (1.5) by 1+ t and integrating it over [0; t],

one has Z t

0

(1 + s)
1

2

d

ds
ku(s; �)k2 ds+

Z t

0

(1 + s)kru(s; �)k2 ds = 0:

Then integrating by parts, we seeZ t

0

(1 + s)
1

2

d

ds
ku(s; �)k2 ds =

1 + t

2
ku(t; �)k2 �

1

2
ku0k

2 �
1

2

Z t

0

ku(s; �)k2 ds;

which completes the proof of Lemma 2.2.

The following lemma plays an essential role in our argument and Theorem 1.2 is an

immediate consequence of Lemmas 2.2 and 2.3 below.

Lemma 2.3. Under the assumptions as in Theorem 1.2, one hasZ t

0

ku(s; �)k2 ds � C�kd(�)u0k
2

for all t > 0 with some constant C� > 0.
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Proof. As in [4], set

w(t; x) =

Z t

0

u(s; x) ds:

Then, since k�u(t; �)k = kut(t; �)k 2 L1

loc(0;1) holds (c.f. [2, Proposition 3.5.3]), it follows

from the identity (1.4) that w 2 C1([0;1);H1

0
(
)) \ C((0;1);H2(
)) satis�es

wt(t; �) ��w(t; �) = u0 on (0;1);

w(0; x) = 0; x 2 
;

wj@
 = 0; t 2 (0;1);

so that

kwt(t; �)k
2 +

1

2

d

dt
krw(t; �)k2 = (u0; wt(t; �)):(2.1)

Hence, noting wt = u and integrating the both sides of the identity (2.1), one hasZ t

0

ku(s; �)k2 ds +
1

2
krw(t; �)k2 =

Z t

0

(u0; wt(s; �)) ds

= (u0; w(t; �)) � (u0; w(0; �))

= (u0; w(t; �)):(2.2)

Here we note that

j(u0; w(t; �))j �

 Z



ju0(x)j
2d(x)2 dx

!1=2 Z



jw(t; x)j2

d(x)2
dx

!1=2

:(2.3)

Then, combining Lemma 2.1 with the inequality (2.3), we have

j(u0; w(t; �))j � Ckd(�)u0k krw(t; �)k

�
C

2"
kd(�)u0k

2 +
C"

2
krw(t; �)k2;(2.4)

where C > 0 is a constant appearing in Lemma 2.1 and " > 0 is an arbitrarily �xed real

number. Thus, it follows from (2.2) and (2.4) thatZ t

0

ku(s; �)k2 ds +
1

2
(1 � C")krw(t; �)k2 �

C

2"
kd(�)u0k

2:

Taking " > 0 so small that 0 < " < 1

C
, one obtains the desired inequality.

Secondly, let us prove Corollary 1.3. The essential part of the proof of Corollary 1.3 lies

in deriving the decay of kru(t; �)k.

Proof of Corollary 1:3. Since the function t 7! kru(t; �)k2 is monotone decreasing

because of the energy identity (1.4), we have

d

dt
f(1 + t)kru(t; �)k2g = kru(t; �)k2 + (1 + t)

d

dt
kru(t; �)k2

� kru(t; �)k2:(2.5)
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Integrating the inequality (2.5) over [0; t], we see

(1 + t)kru(t; �)k2 � kru0k
2 +

Z t

0

kru(s; �)k2 ds:(2.6)

On the other hand, it follows from the identity (1.5) thatZ t

0

kru(s; �)k2 ds +
1

2
ku(t; �)k2 =

1

2
ku0k

2:(2.7)

Hence, we see from (2.6) and (2.7) that

(1 + t)kru(t; �)k2 � kru0k
2 +

1

2
ku0k

2 � ku0k
2

H1:(2.8)

Combining (2.8) with the estimate in Theorem 1.2, we have the desired result.

Finally, let us remark the Cauchy problem in RN (N � 3) for the heat equation (1.1):

ut(t; x) ��u(t; x) = 0; (t; x) 2 (0;1)�R
N ;(2.9)

u(0; x) = u0(x); x 2 RN :(2.10)

Then we can obtain the similar result to the problem (1.1)-(1.3) by using the Hardy in-

equality replaced by the following one.

Lemma 2.4. (Benci and Cerami [1]) Let N � 3. For each u 2 H1(RN ), it holds thatZ
RN

ju(x)j2

(1 + jxj)2
dx � Ckruk2

with a certain constant C > 0.

Our result concerning the Cauchy problem reads as follows.

Theorem 2.5. Let N � 3 and assume that the initial data u0 2 H1(RN ) further satis�es

k(1 + jxj)u0k < +1. Then, the solution u(t; x) to the problem (2.9)-(2.10) in the sense of

Proposition 1.1 replaced by 
 = R
N satis�es

(1 + t)ku(t; �)k2 � C�k(1 + jxj)u0k
2

for all t > 0, where C� > 0 is a certain constant.

3. Proof of Theorems 1.5 and 1.7. In this section, we shall prove Theorems 1.5

and 1.7. This is done by modifying the arguments in the previous section. To begin with,

let us prove Theorem 1.5.

Proof of Theorem 1:5. Set

w(t; x) =

Z t

0

u(s; x) ds:

Then, w 2 C1([0;1);H1

0
(
)) \ C2([0;1);L2(
)) satis�es

wtt(t; x) ��w(t; x) = u1; (t; x) 2 (0;1) � 
;(3.1)
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w(0; x) = 0; wt(0; x) = u0(x); x 2 
;(3.2)

wj@
 = 0; t 2 (0;1)(3.3)

and

1

2
kwt(t; �)k

2 +
1

2
krw(t; �)k2 =

1

2
ku0k

2 +

Z t

0

(u1; wt(s; �)) ds:(3.4)

Since Z t

0

(u1; wt(s; �)) ds =

Z t

0

d

dt
(u1; w(s; �)) ds = (w(t; �); u1);

it follows from the identity (3.4) that

1

2
kwt(t; �)k

2 +
1

2
krw(t; �)k2 =

1

2
ku0k

2 + (u1; w(t; �)):(3.5)

On the other hand, by the similar argument to the proof of the inequality (2.4) we see that

j(u1; w(t; �))j �
C1

"
kd(�)u1k

2 +
C2"

2
krw(t; �)k2(3.6)

with some constants Ci > 0 (i = 1; 2), where we have just used the Hardy inequality in

Lemma 2.1. Thus, (3.4)-(3.6) imply

1

2
kwt(t; �)k

2 +
1

2
(1 �C2")krw(t; �)k

2 �
1

2
ku0k

2 +
C1

"
kd(�)u1k

2:

Taking " > 0 so small above, one has

ku(t; �)k2 = kwt(t; �)k
2 � ku0k

2 + 2C1"
�1kd(�)u1k

2;

which completes the proof of Theorem 1.5.

Finally, we shall prove Theorem 1.7. Indeed, setting

w(t; x) =

Z t

0

u(s; x) ds;

we see that w 2 C1([0;1);H1

0
(
)) \ C2([0;1);L2(
)) satis�es

wtt(t; x) ��w(t; x) + wt(t; x) = u1 + u0; (t; x) 2 (0;1) �
;

w(0; x) = 0; wt(0; x) = u0(x); x 2 
;

wj@
 = 0; t 2 (0;1)

and

1

2
kwt(t; �)k

2 +
1

2
krw(t; �)k2 +

Z t

0

kwt(s; �)k
2 ds

=
1

2
ku0k

2 +

Z t

0

(u1 + u0; wt(s; �)) ds:(3.7)
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Since Z t

0

(u1 + u0; wt(s; �)) ds =

Z t

0

d

ds
(u1 + u0; w(s; �)) ds = (w(t; �); u1 + u0);

in a completely analogous way to the proof of Theorem 1.5 we see from the identity (3.7)

that

1

2
kwt(t; �)k

2 +
1

2
krw(t; �)k2 +

Z t

0

kwt(s; �)k
2 ds

�
1

2
ku0k

2 + C3kd(�)(u0 + u1)k
2 +

C4"

2
krw(t; �)k2;

which implies

1

2
ku(t; �)k2 +

1

2
(1� C4")krw(t; �)k

2 +

Z t

0

ku(s; �)k2 ds �
1

2
ku0k

2 + C3kd(�)(u0 + u1)k
2

for " > 0 with some constants Ci > 0 (i = 3; 4). Taking " > 0 so small, we arrive at the

following estimate.

Lemma 3.1. Under the same assumptions as in Theorem 1.7, it holds that

1

2
ku(t; �)k2 +

Z t

0

ku(s; �)k2 ds �
1

2
ku0k

2 + C3kd(�)(u0 + u1)k
2

for all t > 0.

On the other hand, we have the following estimate which has been proved in [4, Lemma

3.1]. For the convenience of the readers we shall prove it briey.

Lemma 3.2. Under the assumptions as in Theorem 1.7, one has

(1 + t)ku(t; �)k2 � C5fku0k
2

H1 + ku1k
2g+

Z t

0

ku(s; �)k2 ds(3.8)

for all t > 0, where C5 > 0 is a constant.

Proof. Multiplying the both sides of (1.14) by t and integrating it over [0; t], one hasZ t

0

s
d

ds
(us(s; �); u(s; �)) ds �

Z t

0

skus(s; �)k
2 ds

+

Z t

0

skru(s; �)k2 ds +
1

2

Z t

0

s
d

ds
ku(s; �)k2 ds = 0:

Integrating by parts, we see thatZ t

0

s
d

ds
(us(s; �); u(s; �)) ds = t(ut(t; �); u(t; �)) �

1

2
ku(t; �)k2 +

1

2
ku0k

2

and Z t

0

s
d

ds
ku(s; �)k2 ds = tku(t; �)k2 �

Z t

0

ku(s; �)k2 ds:
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Thus, we get

t(ut(t; �); u(t; �)) +
1

2
ku0k

2 +

Z t

0

skru(s; �)k2 ds+
t

2
ku(t; �)k2

=
1

2
ku(t; �)k2 +

Z t

0

skus(s; �)k
2 ds+

1

2

Z t

0

ku(s; �)k2 ds:(3.9)

On the other hand, it is easy to prove (cf. [4] or [5])

ku(t; �)k2 � I0; (1 + t)E(t) � E(0) + �;

Z t

0

E(s) ds � �;(3.10)

where we set � =
1

2
E(0) +

1

8
I0 with I0 = 2ku0k

2 + (u0; u1) + 8E(0) and

E(t) =
1

2
fkru(t; �)k2 + kut(t; �)k

2g:

Therefore, integrating by parts with respect to t, one gets

� �

Z t

0

E(s) ds = tE(t) �

Z t

0

sE0(s) ds = tE(t) +

Z t

0

skus(s; �)k
2 ds;

from which it follows that Z t

0

skus(s; �)k
2 ds � �;(3.11)

where we have just used the relation E0(t) = �kut(t; �)k
2 (see (1.13)). Note that

�(ut(t; �); u(t; �)) � kut(t; �)kku(t; �)k �
1

4
ku(t; �)k2 + kut(t; �)k

2:(3.12)

From the estimates (3.9), (3.11) and (3.12) it follows that

1

2
ku(t; �)k2 +

Z t

0

skus(s; �)k
2 ds+

1

2

Z t

0

ku(s; �)k2 ds � t(ut(t; �); u(t; �)) +
t

2
ku(t; �)k2

�
t

4
ku(t; �)k2 � tkut(t; �)k

2;

which implies that

tkut(t; �)k
2 +

1

2

Z t

0

ku(s; �)k2 ds +

Z t

0

skus(s; �)k
2 ds+

1

2
ku(t; �)k2 �

t

4
ku(t; �)k2:

Noting that (1+ t)E(t) � �+E(0) implies tkut(t; �)k
2 � 2(�+E(0)) and combining it with

the estimates (3.10), we arrive at the desired inequality (3.8).

Therefore, Theorem 1.7 is an immediate consequence of Lemmas 3.1 and 3.2.

Remark 3.3. Using Lemma 2.4 instead of Lemma 2.1, we can obtain the similar result

associated with Theorem 2.5 for the Cauchy problem in RN to the equation (1.7) or (1.10).

So we shall omit the details.
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